Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density

5.årsoppgave i Stadium IV – medisinstudiet ved Universitetet i Tromsø

Mette Sagsveen kull-98

Veiledere: Associate Professor Cindy Farquhar, Cochrane Menstrual Disorders & Subfertility Group, University of Auckland og Professor Egil Arnesen, Institutt for Samfunnsmedisin, Universitetet i Tromsø

Auckland, New Zealand mars - juni 2003
List of contents

Cover sheet 1
 - Title
 - Reviewers
 - Dates
 - Contact reviewer
 - Internal sources of support
 - External sources of support
 - Contribution of reviewers
 - Acknowledgments
 - Potential conflict of interest

Abstract 3
 - Background
 - Objectives
 - Search strategy
 - Selection criteria
 - Data collection and analysis
 - Main results
 - Reviewers’ conclusions

Background 5

Objectives 6

Criteria for considering studies for this review 6
 - Types of studies
 - Types of participants
 - Types of interventions
 - Types of outcome measures

Search strategy for identification of studies 7

Methods of the review 8
 - Selection of studies
 - Quality assessment
 - Data extraction
 - Analysis
 - Changes to the original protocol
 - Timeline

Description of studies 9
 - Excluded studies
 - Included studies
 - Participants
 - Interventions
 - Outcomes

Methodological quality of included studies 10
 - Randomisation and allocation concealment
 - Study design
 - Blinding
 - Power calculation
 - Sources of funding
Results
- 1) GnRHa vs placebo
- 2) GnRHa vs danazol/gestrinone
- 3) GnRHa vs GnRHa + progesterone only add-back
- 4) GnRHa vs GnRHa + oestrogen and progesterone or oestrogen only add-back
- 5) GnRHa vs progestagens
- 6) GnRHa vs oral contraceptive pill
- 7) GnRHa vs calcium-regulating agents
- 8) GnRHa in monthly preparation vs GnRHa in 3-monthly preparation
- 9) GnRHa depot vs GnRHa intranasally
- 10) GnRHa + low-dose HRT vs GnRHa + high-dose HRT

Discussion
- GnRHa vs danazol/gestrinone
- GnRHa vs GnRHa + progesterone only add-back
- GnRHa vs GnRHa + progesterone and oestrogen or oestrogen only add-back
- GnRHa vs GnRHa + calcium-regulating agents
- GnRHa + low-dose HRT vs GnRHa + high-dose HRT
- Method of bone mineral density measurement
- Length of treatment
- Length of follow-up

Reviewers' conclusions
- Implications for practice
- Implications for research

Characteristics of included studies (table)

Characteristics of excluded studies

References to studies
- Included studies
- Excluded studies

Other references
- Additional references

Additional tables
- Quality of included studies
- Descriptive data for trials not included in the meta-analysis

Contact details for co-reviewers

The meta-analysis graphs
Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density

Cover sheet

Title
Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density

Reviewers
Sagsveen M, Farmer JE, Prentice A, Breeze A

Dates
- Date edited: 06/06/2003
- Date of last substantive update: 28/07/1998
- Date of last minor update: 06/06/2003
- Date next stage expected: 31/08/2005

Contact reviewer: Miss Mette MS Sagsveen
medical student
c/o Cochrane Menstrual Disorders and Subfertility Group
University of Auckland
National Women's Hospital
Claude Road
Epsom
Auckland NEW ZEALAND
1003
Telephone 1: +64-9-6309943 extension: 3250
Telephone 2: +64-9-6389919 extension: 3240
Facsimile: +64-9-6309858
E-mail: msagsveen@yahoo.com
Secondary address (home):
Sommerlystveien 11
Tromsoe
NORWAY
9012
Telephone: +47-97515989
Secondary contact person's name: Jessica Farmer
Internal sources of support
University of Cambridge, UK
University of Auckland, NEW ZEALAND

External sources of support
None

Contribution of reviewers
Andrew Breeze: Developed the protocol, extracted and entered data in the first phase of work on the review

Jessica Farmer: Screened titles and abstracts to assess whether the studies met the inclusion criteria, extracted data from the included trials, entered data from the included studies and wrote the majority of the results and discussion sections

Andrew Prentice: Developed the protocol and revised final drafts of the review

Mette Sagsveen: Screened titles and abstracts to assess whether the studies met the inclusion criteria, extracted data from the included trials, entered data from the included studies, contacted study authors for additional information and wrote parts of the results and discussion sections

Acknowledgements
The authors would like to thank several people for helping in the construction of this review. Namely Professor Cindy Farquhar and Review group Coordinator Michelle Proctor for their supervision, Ruth Buist for retrieval of most of the trials, Sue Hall for collecting trials we needed from the library, and Andrew Prentice, Andrew Breeze, David Barlow and Alison Deary for writing the protocol and letting us go on with the review. A special thanks to Dr Milan Henzl (Henzl 1990) for putting such an effort into getting the information we asked for and for always replying to the numerous e-mails we sent. We would also like to thank Miss Karen Bancroft (Whitehouse 1990), Dr Patrycja Fiegler (Kaminski 2001), Dr Henk Franke (Franke 2000), Dr Christian Gnoth (Gnoth 1999), Professor Kamran Moghissi (Moghissi 1996), Dr Christian Roux (Roux 1995), Dr Markus Seibel (Sillem 1999), Dr Eric Surrey (Surrey 1992) and Professor Olavi Ylikorkala (Ylikorkala 1990) for their replies to our questions concerning the trials.

Potential conflict of interest
None known

Abstract

Background

Gonadotrophin-releasing hormone analogues (GnRHAs) are generally well tolerated, and are effective in relieving the symptoms of endometriosis (Prentice 2003). Unfortunately the low oestrogen state that they induce is associated with adverse effects including an acceleration in bone mineral density (BMD) loss.

Objectives

To determine the effect of treatment with gonadotrophin-releasing hormone analogues (GnRHAs) on the bone mineral density of women with endometriosis, compared to placebo, no treatment, or other treatments for endometriosis, including GnRHAs with add-back therapy.

Search strategy

We searched the Cochrane Menstrual Disorders and Subfertility Group's specialised register of controlled trials (23rd October 2002) and the Cochrane Central Register of Controlled Trials (Cochrane Library, issue 4, 2002). We also carried out electronic searches of MEDLINE (1966 - March Week 2 2003) and EMBASE (1980 - March Week 2 2003). We also searched the reference lists of articles and contacted researchers in the field.

Selection criteria

Prospective, randomised controlled studies of the use of GnRHAs for the treatment of women with endometriosis were considered, where bone density measurements were an end point. The control arm of the studies was either placebo, no treatment, another medical therapy for endometriosis, or GnRHAs with add-back therapy.

Data collection & analysis

Two reviewers (JF and MS) independently assessed trial quality and extracted data. Study authors were contacted for additional information.

Main results

Thirty studies involving 2,391 women were included, however only 15, involving 910 women, could be included in the meta-analysis. The meta-analysis showed that danazol and progesterone + oestrogen add-back are protective of BMD at the lumbar spine both during treatment and for up to six and twelve months after treatment, respectively. Between the groups receiving GnRHa and the groups receiving danazol/gesprinone, there was a significant difference in percentage change of BMD after six months of treatment, the GnRH analogue producing a reduction in BMD from baseline and danazol producing an increase in BMD (SMD -3.43; 95 % CI -3.91 to -2.95). Progesterone only add-back is not protective; after six months of treatment absolute value BMD measurements of the lumbar spine did not differ significantly from the group receiving GnRH analogues (SMD 0.15; 95 % CI -0.21 to 0.52). In the comparison of GnRHa versus GnRHa + HRT add-back, that is oestrogen + progesterone or oestrogen only, there was a significantly
bigger BMD loss in the GnRHa only group (SMD -0.49 95% CI -0.77 to -0.21). These numbers reflect the absolute value measurements at the lumbar spine after six months of treatment. Due to the small number of studies in the comparison we are unable to conclude whether calcium-regulating agents are protective. No difference was found between low and high dose add-back regimes but again only one study was identified for this comparison. Only one study comparing GnRH analogues with placebo was identified, but the study gave no data. No studies comparing GnRH with the oral contraceptive pill (OCP) or progestagens were identified.

Reviewers' conclusions

Both danazol and progesterone + oestrogen add-back have been shown to be protective of BMD, while on treatment and up to six and 12 months later, respectively. However, by 24 months of follow-up there was no difference in BMD in those women who had HRT add-back. Studies of danazol versus GnRHa did not report long-term follow-up. The significant side effects associated with danazol limit its use.
Background

Endometriosis is a common gynaecological condition, affecting an unknown proportion of pre-menopausal women. Endometriosis occurs when endometrial tissue, which is normally only found in the lining of the womb, appears in other parts of the body, such as the ovaries, Fallopian tubes, pelvis and bowel. The condition is oestrogen-dependent, and while the removal of both ovaries has long been known to provide permanent relief of symptoms (Graves 1925), in women of child-bearing potential, this is often not an acceptable option. Medical therapies, therefore, aim to have the same effect as removing the ovaries, but in a reversible fashion, with the aim of reducing circulating levels of oestrogens, allowing the endometriotic deposits to become inactive, and alleviating symptoms.

One of the treatments for endometriosis is gonadotrophin-releasing hormone analogues (GnRHAs), which work by inducing a temporary menopause-like state, with very low levels of circulating oestrogens. GnRH analogues are generally well tolerated by women and are effective agents for relieving the symptoms of endometriosis (Prentice 2003). Although generally well tolerated, some women experience adverse effects such as hot flushes, vaginal dryness and loss of libido due to the oestrogen deficiency. Unfortunately, one of the other side-effects of low oestrogen levels is an acceleration of bone mass loss, as seen following the menopause (Nilas 1987; Christiansen 1993). This is significant as it could put these women at increased risk of fractures or developing osteoporosis. Oestrogen in pre-menopausal women prevents resorption of calcium from the bones, maintaining bone mineral density. Once oestrogen levels are lowered at the time of menopause, either natural or induced, this protective effect is lost, and the loss of bone density accelerates. Other treatments for endometriosis also reduce oestrogen levels, and there is some evidence that some of them have a similar effect on bone density, for example medroxyprogesterone acetate (Depo Provera) (Cundy 1991). Danazol has some androgenic properties, which help to conserve bone density, as do other therapies, such as norethisterone and gestrinone. However, the significant androgenic side effects (for example hirsutism and acne) and adverse effects on lipid profile associated with danazol limit its usefulness as a first line treatment for endometriosis (Selak 2003). Common side effects of danazol use are weight gain, acne, hirsutism, oily skin and hair, myalgia (muscle pain) and headache (Henzl 1990; Miller 1990; Rock 1993).

There has been some debate that the bone density of women with endometriosis who are not being treated is less than that of their healthy counterparts. However, with the exception of one study (Comite 1989), this has not been shown to be the case (Dodin 1991; Lane 1991). Lane compared 85 women with laparoscopically proven endometriosis with 52 women who were of a similar age, had regular menstrual cycles, and no major medical problems. No differences were found between the bone mineral density of the two groups. Dodin compared 26 women with endometriosis with 26 similar, healthy women, and again found no difference in their bone mineral densities. It would seem reasonable to suppose, therefore, that if the bone density of women with endometriosis is found to have decreased after a course of treatment for endometriosis, it is a side-effect of the treatment that is the cause, rather than the disease itself.

In recent years, so-called "add-back" therapy has been used to alleviate the side effects of GnRH analogues, which are both temporary, for example hot flushes, loss of libido (sex drive), and possibly permanent -i.e. the loss of bone density. Add-back therapy means adding hormones or non-hormonal substances to the GnRHa treatment in order to avoid some of these side effects caused by the GnRHa-induced suppression of oestrogen. Hormones used as add-back are
progesterone alone, oestrogen alone or a combination of oestrogen and progesterone. Examples of non-hormonal add-back regimes are vitamin D, calcitonin and parathyroid hormone (PTH). The dosage, duration and type of add-back therapy varies. It is often in the form of hormone replacement therapy, but there have also been studies of GnRH analogues in combination with various agents influencing calcium metabolism in bones. This review seeks to examine the effects on bone density of GnRH analogues treatment.

Objectives

To determine the effects of GnRH analogues on the bone mass density of women with endometriosis, we have tested the following hypotheses

1. That treatment with GnRH analogues causes a greater loss of bone mineral density than placebo or no treatment.

2. That treatment with GnRH analogues causes a greater loss of bone mineral density than treatment with danazol.

3. That treatment with GnRH analogues causes a greater loss of bone mineral density than treatment with progestagens.

4. That treatment with GnRH analogues causes a greater loss of bone mineral density than treatment with the oral contraceptive pill.

5. That treatment with GnRH analogues alone causes a greater loss of bone mineral density than treatment with GnRH analogues plus hormone replacement therapy.

7a. That administration of GnRH analogues intramuscularly causes a greater loss of bone mineral density than if they were administered sub-cutaneously.

7b. That administration of GnRH analogues sub-cutaneously causes a greater loss of bone mineral density than if they were administered intra-nasally.

7c. That administration of GnRH analogues intramuscularly causes a greater loss of bone mineral density than if they were administered intra-nasally.

8. That the bone density loss in women treated with GnRH analogues is reversible once treatment has finished.

Criteria for considering studies for this review

Types of studies

All prospective, randomised controlled studies comparing GnRH analogues with placebo, no treatment or other medical therapies for the treatment of women with endometriosis were considered for inclusion. Open studies as well as double-blind studies were considered, since it is
difficult to blind either investigators or participants when GnRHa treatment causes menstrual periods to stop, while placebo, or another treatment may not. Studies including participants being treated for a mixed group of benign gynaecological conditions were included providing that the group of women contained some with endometriosis and that the treatment regimen was consistent across groups and was treatment aimed at the management of endometriosis.

Types of participants

Premenopausal women suffering from endometriosis diagnosed visually by laparoscopy or laparotomy, or presumptively, from symptom history.

Types of interventions

Gonadotrophin-releasing hormone analogues versus placebo, no treatment, danazol, progestagens, the oral contraceptive pill (OCP), GnRH analogues plus hormonal or non-hormonal add-back, and GnRH analogues plus calcium-regulating agents were considered. Trials comparing GnRH analogues given by different administration routes were also considered. Only trials where the treatment period exceeded six months were considered for inclusion. The reason for this decision is that shorter treatment periods do not seem to treat the disease effectively (Audebert 1998).

Types of outcome measures

The objective measurement of bone density was considered. Any method of measurement was considered - methods used to measure bone mineral density are dual-energy photon absorptiometry (DPA), dual-energy x-ray absorptiometry (DXA) single-energy photon absorptiometry (SPA), single-energy x-ray absorptiometry (SXA) and quantitative computed tomography (QCT). Measurements taken at the lumbar spine and femoral head were considered, whilst those at the distal forearm were excluded because here measurements are of cortical bone which is less affected by GnRHa therapy (Whitehouse 1990; Ylikorkala 1990). Bone density measurements at the end of treatment and in the follow-up period were included. Measurements were grouped according to the anatomical location of measurements and the timing of measurements.

Search strategy for identification of studies

The review drew on the search strategy developed for the Menstrual Disorders and Subfertility group. We searched the Cochrane Menstrual Disorders and Subfertility Group's specialised register of controlled trials (23rd October 2002) and the Cochrane Central Register of Controlled Trials (Cochrane Library, issue 4, 2002). We also carried out electronic searches of MEDLINE (1966 - March week 2, 2003) and EMBASE (1980 - March week 2, 2003).

The following Medical Subject headings (MeSH terms) and all combinations of these words were used: terms included endometriosis, bone mineral density, gonadotrophin-releasing hormone analogue, buserelin, goserelin, leuporelin, leuprolide, triptorelin, nafarelin and add-back therapy.

We also searched the reference lists of articles and contacted researchers in the field.
Methods of the review

SELECTION OF STUDIES
The review was undertaken by two reviewers (JF and MS). The search strategy described previously was employed to obtain titles, and, where possible, abstracts of studies that were potentially relevant to the review. The titles and abstracts were screened by JF and MS, who discarded studies that were clearly ineligible but aimed to be overly inclusive rather than risk losing relevant studies. Copies of the full articles were obtained. Both reviewers independently assessed whether the studies met the inclusion criteria. Disagreements were resolved by referring to an expert in the field (Professor C. Farquhar) for discussion. Further information was sought from the authors where papers contained insufficient information to make a decision about eligibility.

QUALITY ASSESSMENT
The quality of all studies that were deemed eligible for the review was then assessed independently by the two reviewers, with discrepancies being resolved as above. The quality of allocation concealment was graded as either adequate (A), unclear (B) or inadequate (C), following the detailed descriptions of these categories provided by the Cochrane Menstrual Disorders and Subfertility Group. Other aspects of study quality, including the extent of blinding, whether the groups were comparable at baseline, the extent of losses to follow-up, non-compliance and whether the outcome assessments were standardised, were assessed using a standard checklist developed by the Menstrual Disorders and Subfertility Review Group. This information was presented in a table describing the included studies, and provides a context for discussing the reliability of the results.

DATA EXTRACTION
Having decided on studies to include, JF and MS independently extracted information from them using the proformas designed by the review group. Discrepancies were resolved by discussion. For each included trial, information was collected regarding the location of the study, methods of the study (as per the quality assessment checklist), the participants (age range, eligibility criteria), the nature of the interventions, and data relating to the outcomes specified above. Where possible, missing data was sought by the authors. Additional information was received from Miss Karen Bancroft (Whitehouse 1990), Dr Patrycja Fiegler (Kaminski 2001), Dr Henk Franke (Franke 2000), Dr Christian Gnoth (Gnoth 1999), Dr Milan Henzl (Henzl 1990), Professor Kamran Moghissi (Moghissi 1996), Dr Christian Roux (Roux 1995), Dr Markus Seibel (Sillen 1999), Dr Eric Surrey (Surrey 1992) and Professor Olavi Ylikorkala (Ylikorkala 1990). Responses were received from Dr Joel Finkelstein (Finkelstein 1994) and Dr John Rock (Rock 1993).

ANALYSIS
Statistical analyses were performed according to the statistical guidelines for reviewers in the Menstrual Disorders and Subfertility Review Group. All outcomes were continuous. Standard mean differences were used for comparisons because many different methods were used to measure bone mineral density. Although the different methods gave different absolute values, they conceptually measured the same parameter. Different methods of measuring bone density were thus considered together and not subjected to separate sub-group analysis. When there were
multiple treatment arms in a study with a common control the control numbers were divided equally between the arms. If the control group contained an uneven number of participants (as was the case with Hornstein 1998) so that numbers could not be equally divided then the analysis was done in both ways to detect possible differences in the results caused by an unequal division of the numerator and denominator. Heterogeneity in the data was noted and cautiously explored using previously identified characteristics of the studies, particularly assessments of quality. Sensitivity analyses were undertaken to examine the viability of the results in relation to a number of factors including study quality and the source of the data (published or unpublished). See Review Group module details for more information.

CHANGES TO THE ORIGINAL PROTOCOL
Prior to data extraction the reviewers agreed to leave out studies measuring bone mineral density at the forearm/radius and calcaneus. The reason for this decision is that turnover of cortical bone is approximately one eighth of trabecular bone and therefore the effects of GnRH agonists are more profound in trabecular than cortical bone in time periods studied (Dawood 1989; Ylikorkala 1990). At this point we also decided to include only trials where the treatment period exceeded six months. The reason for this decision is that shorter treatment periods do not seem to treat the disease effectively (Audebert 1998).

TIMELINE
It is the intention of the reviewers that a new search for trials will be carried out every two years and the review updated accordingly.

Description of studies

Seventy-seven documents were found with the adopted search strategy. Twenty-four were directly excluded as their title and abstract did not meet the basic inclusion criteria. Fifty-three were identified which could potentially provide data about the effect of gonadotrophin-releasing hormone analogues on bone mineral density. Further evaluation based on the inclusion criteria showed 30 trials eligible for inclusion in this review. Altogether 23 studies were excluded. Full agreement between the two researchers was obtained concerning inclusion or exclusion of trials.

EXCLUDED STUDIES
Twenty-three studies failed to meet the inclusion criteria for reasons outlined in the table of excluded studies.

INCLUDED STUDIES
Thirty studies have been included and reviewed in detail. See the table of included studies for details.

PARTICIPANTS
The included studies comprised 2,391 women having BMD measurements. Results from 910 women are reported in the meta-analysis. All women included were premenopausal with an age range of 20 - 44 years. All women with endometriosis had been diagnosed or confirmed laparoscopically. One trial also included women with unexplained menorrhagia (heavy menstrual bleeding) (Eldred 1992), and two trials included women with fibroids (Lindsay 1996; Mukherjee
Trials used varying inclusion and exclusion criteria: Three trials (Kiesel 1996; Lindsay 1996; Franke 2000) included women depending upon their American Fertility Society (AFS) score although the score cut-off varied from >2 to >5. Surrey 1992 and Gregoriou 1997 excluded women who had fewer than four visible endometriotic lesions. Several trials excluded women who were taking drugs known to affect bone metabolism (Eldred 1992; Fukushima 1993; Howell 1995; Roux 1995; Lindsay 1996; Mukherjee 1996; Gregoriou 1997) or women with diseases that would affect bone metabolism (Dodin 1991; Fukushima 1993; Howell 1995; Mukherjee 1996; Gregoriou 1997). Other trials excluded women who were taking particular medications that could affect bone mineral density. See the table of included studies for further details.

For other inclusion and exclusion criteria see the table of included studies.

INTERVENTIONS

The following interventions were tested in the included trials: GnRH analogue vs placebo (one trial; Miller 1990), GnRH analogue vs danazol or gestrinone (nine trials; Henzl 1990; Miller 1990; Whitehouse 1990; Dodin 1991; Chan 1993; Fukushima 1993; Rock 1993; Dawood 1995; Vercellini 1996), GnRH analogue vs GnRH analogue + progesterone-only hormonal add-back (four trials; Surrey 1992; Kiesel 1996; Hornstein 1998; Sille 1999), GnRH analogue vs GnRH analogue + oestrogen and progesterone or oestrogen-only add-back (11 trials; Edmonds 1994; Howell 1995; Vella 1995; Lindsay 1996; Moghissi 1996; Gregoriou 1997; Hornstein 1998; Gnath 1999; Asaka 2000; Franke 2000; Irahara 2000), GnRH analogue vs GnRH analogue + calcium-regulating agents (three trials; Roux 1995; Mukherjee 1996; Somekawa 1999) GnRH analogue + add-back vs GnRH analogue + add-back (high dose) (three trials; Eldred 1992; Moghissi 1996; Hornstein 1998), GnRH analogue (3-monthly administration) versus GnRH analogue (1-monthly preparation) (one trial; Crosgian 1996). Tibolone, a synthetic steroid, is here grouped together with the oestrogen only/oestrogen + progesterone add-back as it exhibits oestrogenic, progestagenic and androgenic activity (Lindsay 1996). No trials comparing depot GnRH analogues vs intranasal GnRH analogues were obtained. Neither were any trials comparing GnRH analogues vs the oral contraceptive pill or progestagens obtained. See table of included studies for further details.

OUTCOMES

All trials measured bone mineral density (BMD). Methods for measuring BMD were Dual energy x-ray absorptiometry (DEXA) (16 trials), Dual energy photon absorptiometry (DPA) (three trials), Single energy photon absorptiometry (SPA) (three trials), Quantitative Computerised Tomography (QCT) (three trials). Five trials used more than one method of BMD measurements. Three trials failed to mention the method of bone mineral density measurement (Chan 1993; Vella 1995; Kiesel 1996). These authors have been contacted and we are awaiting responses. The sites for measuring bone mineral density used in the trials were lumbar spine and hip (femoral neck, Ward's triangle, trochanteric area and intertrochanteric area). See the table of included studies for further details.

Methodological quality of included studies
See Table 01 "Quality of Included Studies" for a summary of the methodological quality of included trials.

RANDOMISATION AND ALLOCATION CONCEALMENT
Ten studies had adequate randomisation. Four of these studies randomised by code (Eldred 1992; Dawood 1995; Lindsay 1996; Vercillini 1996), one randomised according to a computer-generated sequence (Crosignani 1996), three randomised by a centralised scheme (Roux 1995; Gnoth 1999; Sillem 1999), one randomised with sealed, opaque, sequentially numbered, identical envelopes (Franke 2000) and one stated that cases were sequentially numbered (Whitehouse 1990).

In twenty studies the adequacy of the method of randomisation was unclear. Sixteen of these studies stated that the trial was randomised but gave no further details, whereas one study randomised by sequential numerical allocation to a randomisation list before commencing the trial (Gregoriou 1997), one study randomised by permuted blocks of four at each of the 26 study sites (Hornstein 1998), one study randomised by lottery (Mukherjee 1996) and one study randomised to therapeutic groups based on order of entry, and not severity of disease (Surrey 1992). None of the studies used clearly inadequate methods of randomisation.

In twenty-five studies it was unclear whether the allocation concealment was adequate or not. Five studies had clearly adequate allocation concealment. One study (Franke 2000) used sealed, opaque, sequentially numbered, identical envelopes, another study used computerised allocation (Surrey 1992), whilst the last three studies (Roux 1995; Gnoth 1999; Sillem 1999) stated that they used a centralised randomisation process.

STUDY DESIGN
There were 15 single centre studies and 15 multi centre studies. All trials that did not state that they were multi centre were counted as single centre.

BLINDING
There were five open label studies, two single blinded studies (in both it was the assessor of bone mineral density that was blinded), 17 double-blind studies and one triple blind study. Five studies did not state any information on blinding. We have contacted the authors of these studies and are currently awaiting replies.

POWER CALCULATION
Twenty-six trials did not mention power calculations. Four trials had performed power calculations. Hornstein 1998 stated that "the initial sample size was chosen to ensure an 80 % power to detect a difference between any two dosing regimens with regard to mean percentage bone loss. Calculation was not performed to take into account dropout during follow-up."
Moghissi 1996 stated that the sample size had adequate power to detect a 2 % difference in the percentage change in bone mineral density. Mukherjee 1996 stated that the trial had an 80 % power to detect a 10 % change with an alfa level of 0.05. Vercillini 1996 stated that "a post hoc analysis of our data indicated that, assuming an alpha level of 0.05, our study had a power of 89 % for the difference in bone mineral density variations at the end of treatment."
SOURCES OF FUNDING
Crosignani 1996 - Takeda Italia Farmaceutici, Italy
Dawood 1995 - TAP Pharmaceuticals
Dodin 1991 - ICI Pharma, Canada
Eldred 1992 - Syntex Research Europe
Franke 2000 - Astra Zeneca and Novo Nordisk
Henzl 1990 - Syntex Research, Palo Alto, California, USA
Hornstein 1998 - TAP Pharmaceuticals
Howell 1995 - Zeneca Pharmaceuticals
Lindsay 1996 - Organon International, the Netherlands
Miller 1990 - TAP Abbott Research and Development
Moghissi 1996 - Zeneca Pharmaceuticals, Delaware, USA
Mukherjee 1996 - Depot Lupon supplied by TAP Pharmaceuticals
Rock 1993 - ICI Pharmaceuticals Group, a business unit of Zeneca Inc, Delaware, USA
Surrey 1992 - TAP Pharmaceuticals, Illinois, USA
Vercillini 1996 - Poli Industria Chimica, Italy

Results

1) GNRH ANALOGUES VS PLACEBO
Only one study (Miller 1990 study 1) was identified for this comparison, but the study gave no data.

2) GNRH ANALOGUES VS DANAZOL/GESTRINONE
Nine studies were identified for this comparison. Three studies (Henzl 1990; Chan 1993; Rock 1993) did not provide sufficient data for the meta-analysis. We are awaiting responses from these authors. The results from the six studies with sufficient data are presented below, together with some comments on the findings in the trials not included in the meta-analysis. Chan 1993 is not mentioned as the trial did not report any clear results.

a) Lumbar spine - after six months treatment - absolute values
Three studies (Whitehouse 1990; Dodin 1991; Fukushima 1993) reported absolute values of bone mineral density at the lumbar spine after six months of treatment. The summary statistic showed a significant difference between the two treatments with GnRHa groups having a significantly lower absolute BMD than danazol groups (SMD -1.17 95% CI -1.73 to -0.62).

b) Lumbar spine - after six months treatment - percentage change
Four studies (Miller 1990; Whitehouse 1990; Dawood 1995; Vercillini 1996) reported percentage change of bone mineral density at the lumbar spine after six months treatment. The summary statistic showed a significant difference between the two treatments with the danazol/gestrinone groups having a percentage increase from baseline whilst the GnRHa showed a percentage decrease from baseline (SMD -1.12 95% CI -1.38 to -0.86). When a sensitivity analysis was performed, removing Vercillini 1996, the only study in this comparison that used gestrinone rather than danazol, there was still a significant difference between treatments (SMD -1.14 95% CI -1.42 to -0.85). Also, removing the trials that measured BMD using QCT (Miller 90 Study2

QCT; Whitehouse 1990; Dawood 1995) there was still a significant difference between the groups (SMD -0.96 95% CI -1.23 to -0.69).

These findings are supported by Rock 1993 who states that mean bone mineral density of the lumbar spine decreased from baseline in the GnRHa group and increased in the danazol group at the end of six months of treatment. The findings are not supported by Henzl 1990 as his results suggest no significant bone mineral density loss between danazol and GnRHa treatment groups.

c) Femoral neck - after six months treatment - absolute values
One study (Dodin 1991) reported absolute values of bone mineral density at the femoral neck after six months of treatment. This study showed a statistically significant difference between the two treatments, with the GnRH analogue group having a significantly lower bone mineral density than the danazol group (SMD -1.05 95% CI -1.95 to -0.14).

d) Femoral neck - after six months treatment - percentage change
One study (Miller 90 study 2 DPA) reported percentage change of bone mineral density at the femoral neck after six months of treatment. This study showed no statistically significant difference between treatments (SMD -0.31 95% CI -0.78 to 0.16).

e) Lumbar spine - follow-up after six months treatment and six months follow-up - absolute values
Two studies (Dodin 1991; Fukushima 1993) reported absolute values of bone mineral density at the lumbar spine after six months of treatment and six months of follow-up. The summary statistic showed a significant difference between the two treatments - GnRH analogue group bone mineral density being significantly lower than the danazol group bone mineral density (SMD -1.42 95% CI -2.20 to -0.63).

f) Lumbar spine - follow-up after six months treatment and six months follow-up - percentage change
Two studies (Dawood 1995; Vereillini 1996) reported percentage change of bone mineral density at the lumbar spine after six months of treatment and six months of follow-up. The summary statistic showed a significant difference between the two treatments with the danazol/gestrinone groups having a percentage increase in BMD from baseline and the GnRHs groups having a percentage decrease from baseline (SMD -1.27 95% CI -1.89 to -0.65). When a sensitivity analysis was performed, removing Vereillini 1996 (which used gestrinone rather than danazol) the result remained significant (SMD -3.13 95% CI -5.04 to -1.23).

g) Femoral neck - follow-up after six months treatment and six months follow-up - absolute values
One study (Dodin 1991) reported absolute values of bone mineral density at the femoral neck after six months of treatment and six months of follow-up. This study showed no statistically significant difference between treatments (SMD -0.52 95% CI -1.69 to 0.64).

3) GNRH ANALOGUES VS GNRH ANALOGUES + ADD-BACK (PROGESTERONE ONLY)
Four studies were identified for this comparison. One (Kiesel 1996) of these did not provide sufficient data. The authors have been contacted and we are still awaiting the reply. The results from the meta-analysis of the other three studies are presented below. These results are supported by Kiesel 1996. See the additional table "descriptive data for trials not included in the meta-analysis" for more information.

a) Lumbar spine - after six months of treatment - absolute values
Two studies (Hornstein 1998; Sillem 1999) reported absolute values of bone mineral density at the lumbar spine after six months of treatment. The summary statistic showed no difference between the two treatments (SMD -0.06 95% CI -0.45 to 0.32).

b) Lumbar spine -after twelve months of treatment - absolute values
One study (Hornstein 1998) reported absolute values of bone mineral density at the lumbar spine after twelve months of treatment. This study showed no statistical difference between the two treatments (SMD -0.40 95% CI -0.91 to 0.11).

c) Femoral neck - after six months of treatment - absolute values
One study (Sillem 1999) reported absolute values of bone mineral density at the femoral neck after six months of treatment. This study showed no statistical difference between the two treatments (SMD 0.11 95% CI -0.71 to 0.93).

d) Lumbar spine - after six months of treatment - percentage change
One study (Surrey 1992) reported percentage change of BMD at the lumbar spine after six months of treatment. This study showed there was a statistical difference between the two treatments (SMD -1.07 95% CI -2.03 to -0.12) favouring GnRHa + progesterone.

e) Lumbar spine - follow-up after twelve months treatment and twelve months follow-up - percentage change
One study (Hornstein 1998) reported percentage change from baseline of bone mineral density at the lumbar spine after twelve months of treatment and twelve months of follow-up. This study showed no statistical difference between the two treatments (SMD -0.66 95% CI -1.44 to 0.13).

f) Lumbar spine - follow-up after twelve months treatment and twenty-four months follow-up - percentage change
One study (Hornstein 1998) reported percentage change from baseline of bone mineral density at the lumbar spine after twelve months of treatment and twenty-four months of follow-up. This study showed no statistical difference between the two treatments (SMD -0.89 95% CI -2.25 to 0.47).

4) GNRH ANALOGUES VS GNRH ANALOGUES + ADD-BACK (OESTROGEN AND PROGESTERONE/ OESTROGEN ONLY)
Eleven studies were identified for this comparison. However, seven (Edmonds 1994; Howell 1995; Vella 1995; Moghissi 1996; Gregoriou 1997; Aisaka 2000; Irahara 2000) did not provide data of sufficient quality to be entered into the meta-analysis. These authors have been contacted for further data and we are awaiting replies. The results from the four studies with sufficient data
are presented below. Tibolone, a synthetic steroid, is grouped together with the oestrogen and progesterone/ oestrogen only add-back as it exhibits estrogenic, progestagenic and androgenic activity.

a) Lumbar spine - after six months of treatment - absolute values
Four studies (Lindsay 1996; Hornstein 1998; Gnoth 1999; Franke 2000) reported absolute values of bone mineral density at the lumbar spine after six months of treatment. The summary statistic showed a significant difference between GnRH analogue and GnRH analogue + oestrogen and progesterone groups with the bone mineral density of the GnRHa + add-back group being significantly higher than the BMD of the GnRHa only group (SMD -0.49 95% CI -0.77 to -0.21). We performed sensitivity analyses, taking out Lindsay 1996 which used tibolone as add-back, and Hornstein p + ld o since all the other studies used high dose add-back. When these studies were taken out separately and together the summary statistic remained significant (with Lindsay 1996 removed SMD -0.40 95% CI -0.70 to -0.10, with Hornstein p + ld o removed SMD -0.58 95% CI -0.90 to -0.25 and with both studies removed SMD -0.46 95% CI -0.82 to -0.09).

b) Lumbar spine - after twelve months of treatment - absolute values
One study (Hornstein 1998) reported absolute values of bone mineral density at the lumbar spine after twelve months of treatment. The summary statistic showed a significant difference between the two treatments with the bone mineral density of the GnRHa + add-back group being significantly higher than that of the GnRHa only group (SMD -0.56 95% CI -1.02 to -0.10).

c) Femoral neck - after six months treatment - absolute value
Two studies (Lindsay 1996; Gnoth 1999) reported absolute values of bone mineral density at the femoral neck after six months of treatment. The summary statistic showed no difference between the two treatments (SMD -0.09 95% CI -0.61 to 0.42).

d) Lumbar spine - after twelve months treatment and twelve months follow-up - percentage change
One study (Hornstein 1998) reported percentage change of bone mineral density at the lumbar spine after twelve months of treatment and twelve months of follow-up. This study had two treatment arms with oestrogen + progesterone add-back (as described above). In order to include both treatment arms in the meta-analysis we assigned half the GnRHa only group to each treatment arm. The summary statistic showed a significant difference between the two treatments with GnRHa only producing a significantly greater percentage reduction in bone mineral density from baseline than the GnRHa + oestrogen and progesterone add-back groups (SMD -1.19 95% CI -1.88 to -0.51).

e) Lumbar spine - after twelve months treatment and twenty-four months follow-up - percentage change
One study (Hornstein 1998) reported the percentage change of bone mineral density at the lumbar spine after twelve months of treatment and twenty-four months of follow-up. The summary statistic showed no significant difference between the two treatments (SMD -0.66 95% CI -1.90 to 0.59).
The results suggesting that there is a significant difference between the treatment groups, favouring GnRHα + add-back, are supported by the studies not included in the meta-analysis. See table “descriptive data for trials not included in the meta-analysis” for more details.

5) GNRH ANALOGUES VS PROGESTAGENS
No studies were identified for this comparison.

6) GNRH ANALOGUES VS ORAL CONTRACEPTIVE PILL
No studies were identified for this comparison.

7) GNRH ANALOGUES VS CALCIUM REGULATING AGENTS
Three studies were identified for this group. One study (Mukherjee 1996) did not provide sufficient data to be entered into the meta-analysis.

a) Lumbar spine - after six months treatment - absolute values
One study (Roux 1995) reported absolute values of bone mineral density at the lumbar spine after six months of treatment. The summary statistic showed no difference between the two treatments (SMD 0.22 95% CI -0.43 to 0.88).

b) Femoral neck - after six months of treatment - absolute values
One study (Roux 1995) reported absolute values of bone mineral density at the femoral neck after six months of treatment. The summary statistic showed no difference between the two treatments (SMD 0.26 95% CI -0.40 to 0.91).

c) Lumbar spine - after six months of treatment - percentage change
One study (Somekawa 1999) reported the percentage change from baseline of bone mineral density at the lumbar spine after six months of treatment. This study had three treatment arms of GnRHα + calcium-regulating agent - one group received oral metacetrenone (vitamin K) 45 mg per day, one group received oral 1, 25 (OH)2 - D3 0.5 mg per day and the last group received oral metacetrenone 45 mg per day + oral 1, 25 (OH)2 - D3 0.5 mg per day. The summary statistic showed a significantly greater percentage reduction in bone mineral density from baseline with the GnRHα only groups when compared to the GnRHα + calcium-regulating agent groups (SMD -2.47 95% CI -3.05 to -1.89).

The study not included in the meta-analysis, Mukherjee 1996, reported that GnRHα treatment produced a significant decrease in bone density at the anteroposterior and lateral spine, whilst no significant change was demonstrated in etidronate-treated patients.

8) GNRH ANALOGUES (MONTHLY PREPARATION) VS GnRH ANALOGUES (3-MONTHLY PREPARATION)
One study (Crosignani 1996) was identified for this comparison. The trial stated a statistically significant variation of lumbar spine bone mineral density observed at the end of GnRHα
treatment in both study groups (P<0.01), the percentage decrease over basal being 5.2 % and 4.9 % respectively. But the study did not provide sufficient data for comparison of the groups, so we contacted the authors and are still awaiting a reply.

9) GNRH ANALOGUE DEPOT VS GNRH ANALOGUE INTRANASALLY (IN)
No studies were identified for this comparison.

10) GNRH ANALOGUES + LOW DOSE HRT VS GNRH ANALOGUES + HIGH DOSE HRT
Three studies were identified for inclusion into this group. However, two (Eldred 1992; Moghissi 1996) did not provide sufficient data to be entered into the meta-analysis. The authors of these studies have been contacted and we are awaiting further data. The results of the one study that did provide sufficient data for the meta-analysis are presented below.

a) Lumbar spine - after six months treatment - absolute values
One study (Hornstein 1998) reported absolute values of bone mineral density at the lumbar spine after six months of treatment. This study showed no significant difference between the two treatments (SMD -0.08 95% CI -0.52 to 0.36).

b) Lumbar Spine - after twelve months of treatment - absolute values
One study (Hornstein 1998) reported absolute values of bone mineral density at the lumbar spine after twelve months of treatment. This study showed no significant difference between the two treatments (SMD -0.08 95% CI -0.61 to 0.44).

c) Lumbar Spine - after twelve months of treatment and twelve months of follow-up - percentage change
One study (Hornstein 1998) reported absolute values of bone mineral density at the lumbar spine after twelve months of treatment and twelve months of follow-up. This study showed no significant difference between the two treatments (SMD 0.12 95% CI -0.62 to 0.87).

d) Lumbar Spine - after twelve months of treatment and twenty-four months of follow-up - percentage change
One study (Hornstein 1998) reported absolute values of bone mineral density at the lumbar spine after twelve months of treatment and twenty-four months of follow-up. This study showed no significant difference between the two treatments (SMD 0.11 95% CI -1.21 to 1.43).

Both Eldred 1992 and Moghissi 1996 support the finding that there is no significant difference in bone mineral density after GnRHa treatment and either high dose or low dose HRT. See table "descriptive data for trials not included in the meta-analysis" for further details.

Discussion
This review set out to determine the effect of treatment with gonadotrophin-releasing hormone
analogue (GnRH-a) on the bone mineral density (BMD) of women with endometriosis, compared to placebo, no treatment or other treatments used for endometriosis. We have only been able to complete part of these objectives because no studies were found comparing GnRH-a with no treatment, OCP or progestagens. Unfortunately a large number of our included studies (15 out of a total of 30) did not provide enough data to be entered into the meta-analysis. We have contacted the authors of these studies and are currently awaiting responses. Meanwhile the main findings from these studies have been reported in Table 02 "Descriptive data for trials not included in the meta-analysis."

GNRHA VS DANAZOL/GESTRINONE

Our findings broadly show that treatment with danazol or gestrinone has a protective effect on BMD when compared to treatment with GnRH analogues. After six months of treatment women treated with danazol had a significantly higher absolute value of BMD than GnRH-a group women at the lumbar spine. Analysis of BMD percentage change from baseline at the lumbar spine after six months showed that whilst GnRH-a groups had a reduction in BMD from baseline, the danazol group actually had an increase in percentage BMD from baseline. This result was not unexpected, since danazol is known to have a directly suppressive effect on bone resorption presumably because of testosterone (Whitehouse 1990; Davood 1995; Morgante 1999). At the femoral neck after six months treatment there was found to be no difference in percentage change from baseline between groups. However, this comparison included only one study. Follow-up results, after six months of treatment and six months follow-up, also showed danazol groups to have significantly higher absolute values of BMD and significantly smaller percentage changes from baseline at the lumbar spine when compared to GnRH-a groups. At the femoral neck no difference was found between treatments but this comparison included only one study. In conclusion danazol has been shown to be protective of bone mineral density when compared to GnRH analogues. However, the significant androgenic side effects and adverse effects on lipid profile associated with danazol limit its usefulness as a first line treatment for endometriosis (Selak 2003). Common side effects of danazol use are weight gain, acne, hirsutism, oily skin and hair, myalgia and headache (Henzi 1990; Miller 1990; Rock 1993).

GNRHA VS GNRHA + PROGESTERONE ONLY ADD-BACK

The addition of only progesterone to GnRH-a therapy is not protective of BMD. All, but one result (Surrey 1992), showed no statistical difference between the two treatment groups, either on treatment or during follow-up off treatment. The reason for the one exception is not clear. The trial states the two treatment groups were similar in terms of mean age and prior therapeutic experience, but more patients with severe endometriosis were randomised to receive GnRH-a only. There is evidence that women with endometriosis does not have any different bone mineral density than their healthy counterparts (Dodin 1991; Lane 1991), although we do not know whether BMD changes could be greater the more severe the endometriosis is. In conclusion, progesterone add-back does not have a protective effect on bone mineral density when prescribed with GnRH analogues.

GNRHA VS GNRHA + PROGESTERONE AND OESTROGEN/OESTROGEN ONLY ADD-BACK
This comparison had the highest number of trials that could not be entered into the meta-analysis because of insufficient data (six out of eleven trials in the comparison). The results from studies that did provide adequate data for the meta-analysis show that during treatment the use of progesterone + oestrogen add-back is protective of bone mineral density at the lumbar spine. They also show that twelve months after treatment bone mineral density remains higher in groups that received add-back. The results showed no difference between groups after twenty-four months of follow-up but the number of participants analysed was small (n = 13) and the comparison included only one study so we are unable to draw any firm conclusions based on this result. The results showed no difference in bone mineral density between groups at the femoral neck after treatment, but this comparison included only one study and therefore we are unable to draw any conclusions based on this result.

In conclusion we have found progesterone + oestrogen add-back to be protective of bone mineral density at the lumbar spine both during and after treatment and would therefore recommend the use of this add-back during treatment with GnRH analogues. Also hypoestrogenic side effects of hot flushes and loss of libido were significantly less in the group that received add-back (Edmonds 1994; Howell 1995; Moghissi 1996). This difference between the groups was not seen for vaginal dryness and headaches, though. However it must be noted that the studies included used differing add-back regimes and it is not possible with the evidence available to state which add-back regime is most effective.

GNRHA VS GNRHA + CALCIUM-REGULATING AGENTS (CRA’S)
This comparison was limited by the small number of studies that were found for inclusion (only three studies were found and only two provided enough data for the meta-analysis). All calcium-regulating agents (CRA’s) were allocated to the same comparison. However, our results suggest that using different calcium regulating agents as add-back might have differing effects on BMD. Roux 1995 used calcitrition as add-back and the results from this study showed no significant BMD difference between GnRHα only and add-back groups at either the femoral neck or lumbar spine after six months of treatment. However, the results from Somekawa 1999 which used vitamin D and vitamin K add-back did show a significant difference between the percentage change of BMD from baseline in GnRHα only groups and all GnRHα + add-back groups. However, these results do not allow us to draw any solid conclusions about the type of CRA’s that should be used in conjunction with GnRHαs. They can only be used to suggest that this might be an area for further research.

GNRHA + LOW DOSE HRT VS GNRHA + HIGH DOSE HRT
Our findings show no differences in BMD between GnRHα + low dose HRT and GnRHα + high dose HRT both during treatment and during follow-up. However, this comparison is limited by the inclusion of only one study and we are therefore unable to conclude whether or not use of high-dose HRT is protective of bone mineral density. The adverse effects of HRT make the use of high dose HRT for this purpose unlikely.

METHOD OF BONE MINERAL DENSITY MEASUREMENT
The method of bone mineral density measurement is an important methodological consideration. In this review we have entered data from all methods of BMD measurement. However, there is some suggestion that certain methods of measurement are more accurate than others. It is generally agreed that Single Photon Absorptiometry and Dual Photon Absorptiometry are less accurate methods than Quantitative Computed Tomography (QCT) and the newer method of Dual Energy X-ray Absorptiometry (DEXA) (Whitehouse 1990; Eldred 1992; Uemura 1993). Whilst DEXA and QCT are of about equal clinical value (Wahner 1989), DEXA allows measurement of the femoral head, has a lower radiation dose and is a more precise method, particularly for measurements of the anterior/posterior spine. Because QCT provides a measure of volumetric density, measurements may give an overestimate of actual changes (Wells 2002).

In half of the studies included in the meta-analysis measurements were done by DEXA, whilst QCT was used in three, DPA used in two, and two studies used more than one method (QCT and DPA or DEXA and DPA). The method of measurement does not seem to have influenced the results, although it is evident that QCT measurements gave higher percentage changes of BMD. QCT was used in four studies, all in the GnRHa versus danazol/gestrinone group. In a sensitivity analysis removing the studies using QCT, the overall result was not changed; there was still evidence of a significant difference in BMD between GnRHa and danazol/gestrinone groups.

LENGTH OF TREATMENT
As stated in the "changes to the original protocol" section, we only included studies where treatment was given for a minimum of six months. This was because medical treatment less than six months is less likely to cure the women of the disease (Audebert 1998). Only one study (Chang 1996) was excluded due to this change. It is a strength to the review that most of the included studies gave treatment for six months, as this makes the trials easily comparable.

LENGTH OF FOLLOW-UP
Sixteen of the studies did not do any follow-up measurements, ten studies followed up their women for half a year and three studies did one-year follow-up measurements. The longest follow-up was two years, but only one study had this length of follow-up (Hornstein 1998). In the GnRHa versus danazol/gestrinone comparison there was a significant difference during treatment and in the six months follow-up, except from at the femoral neck after six months of treatment and six months of follow-up. What about the longer-term follow-up? If one perhaps could prove that there was no significant difference in bone mineral density on a longer term, women would be spared the androgenic side effects and adverse effects on lipid profile from danazol treatment. In the GnRHa versus GnRHa and progesterone only group the two-year follow-up results are consistent with the results during treatment, as is also the case when comparing low dose HRT to high dose HRT. Comparing GnRHa to GnRHa plus oestrogen and progesterone oestrogen only add-back, the result changed from significant difference during treatment and at the one year follow-up to non-significant at the two-year follow-up measurement. The fact that not all comparison groups had follow-up measurements, and the ones that did only had a few trials doing follow-up measurements, weakens our results.
Reviewers' conclusions

Implications for practice
Primarily clinicians and women with endometriosis will make decisions about the choice of drug based on their ability to control the symptoms of a disease. In endometriosis the main symptom is pain and women tend to make treatment decisions based on a treatments effectiveness for this condition. A previous review has shown no difference in efficacy between medical treatments for pain associated with endometriosis (Prentice 2003). However if a treatment causes a reduction in bone mineral density then this is a very important side effect since a reduction of one standard deviation (SD) in bone mass is associated with an increase of fifty to one hundred percent in the incidence of fractures (Dawood 1995). Therefore it should be an important consideration when making treatment decisions.

This review has shown that both danazol/gestrinone and progesterone + oestrogen add-back are protective against the reduction of bone mineral density caused by GnRH analogues. However, as danazol is associated with a number of adverse side effects we would recommend the use of progesterone + oestrogen add-back in the treatment of endometriosis. However, two years after treatment is stopped, no difference was seen between the group receiving GnRHa only and the group receiving GnRHa + HRT add-back.

Implications for research
Future research should consider the dose regimens of oestrogen and progesterone add-back therapy, the length of treatment and duration of response. Alternatives to hormone replacement therapy should also be investigated further; particularly calcium-regulating agents.
Characteristics of included studies

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Methods</th>
<th>Participants</th>
<th>Interventions</th>
<th>Outcomes</th>
<th>Notes</th>
<th>Allocation concealment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aisaka 2000</td>
<td>Randomisation: randomised trial</td>
<td>Number of women: 53 Diagnosis: not stated Inclusion criteria: not stated</td>
<td>group 1: leuprolin + mestranol 0.05mg and norethisterone 1mg/tab 1 tab/day. group 2: leuprolin alone Duration of treatment: 3 years of leuprolone +add-back, then 6 months of leuprolone alone Duration of follow-up: none</td>
<td>Outcome: bone mineral density Measured at: Lumbar spine (L1-L4) Method: Dual Energy X-ray Absorptiometry (DEXA) Timing: not stated</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Chan 1993</td>
<td>Randomisation: randomised trial</td>
<td>Number of women: 149 Diagnosis: laparoscopic Inclusion criteria: not stated</td>
<td>group 1: 6 months of gestrinone. group 2: 6 months of danazol and group 3: 4 im injections of tryptorelin. Duration of treatment: 6 months Duration of follow-up: 2 years</td>
<td>Outcome: bone mineral density Measured at: Vertebral spine. Method: not stated Timing: baseline, end of treatment, 6 months post-treatment and 2 years after diagnosis</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Crosignani 1996</td>
<td>Randomisation: according to a computer-generated sequence</td>
<td>Number of women: 30 Diagnosis: laparoscopic Inclusion criteria: premenopausal women aged 18-38, written consent, symptomatic endometriosis stages I-IV of the rAFS Exclusion criteria: major disease Age of participants: 18-38 years Location: Italy</td>
<td>group 1: monthly depot leuprolide IM 11.25 mg, n=15 group 2: Monthly depot leuprolide IM 3.75 mg, n=15 Duration of treatment: 6 months Duration of follow-up: none</td>
<td>Outcome: bone mineral density Measured at: lumbar spine; L2-L4 Method: DEXA Timing: baseline and end of treatment</td>
<td>1 participant from group 1 excluded because she didn't want to undergo venipunctures and follow-up laparoscopy. 1 patient from group 2 stopped therapy at the 3rd month because of desire to conceive. Study sponsored by Takeda Italia Farmaceutici, Italy.</td>
<td>B</td>
</tr>
</tbody>
</table>

Review Manager 4.2 06/06/2003
<table>
<thead>
<tr>
<th>Study</th>
<th>Randomisation</th>
<th>Blinding</th>
<th>Design</th>
<th>Number of women</th>
<th>Diagnosis</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Duration of treatment</th>
<th>Duration of follow-up</th>
<th>Outcome</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dawood 1995</td>
<td>by code</td>
<td>double</td>
<td>Multicentre, double dummy trial</td>
<td>12</td>
<td>laparoscopic</td>
<td>no use of specific hormone treatment or oral-contraceptive use in the 6 months before enrolment in the study. No previous use of GnRH analogue. Exclusion criteria: use of contraception other than the barrier method</td>
<td>Age: 23 - 39 years Location: USA</td>
<td>24 weeks</td>
<td>12 months</td>
<td>bone mineral density</td>
<td>Trial sponsored by TAP pharmaceuticals</td>
</tr>
<tr>
<td>Dodin 1991</td>
<td>randomised control trial.</td>
<td>none - open label trial</td>
<td>not stated</td>
<td>26</td>
<td>laparoscopic</td>
<td>oral contraceptive use during the treatment period or for the 6 months after the treatment period, diseases known to affect bone metabolism, pregnancy.</td>
<td>Age: 22-37 years Location: Canada</td>
<td>6 months</td>
<td>6 months</td>
<td>bone mineral density</td>
<td>3 participants excluded due to oral contraceptive use. Post treatment 8 participants (5 in GnRh group and 3 in danazol group) became pregnant and were therefore excluded. Study sponsored by ICI Pharma Canada</td>
</tr>
<tr>
<td>Edmonds 1994</td>
<td>randomised control trial</td>
<td>not stated</td>
<td>not stated</td>
<td>50</td>
<td>laparoscopic</td>
<td>significant pelvic pain. Exclusion criteria: no pelvic pain.</td>
<td>Age: not stated Location: UK</td>
<td>6 months</td>
<td>6 months</td>
<td>bone mineral density</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>group 1: 3.7mg leuprolide acetate monthly injection + oral placebo every day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>group 2: 800mg danazol orally + monthly placebo injection.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Outcome: bone mineral density</td>
<td>Measured at: Lumbarspine (T12 - L4) and lower forearm Method: Quantitative Computerised Tomography (QCT) Timing: baseline, 6 months, 12 months and 18 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density (Without Surrey)

Eldred 1992
- Randomisation: by code
- Blinding: double blind
- Design: multi centre trial

Number of women: 94

Diagnosis: laparoscopic (endometriosis) or unexplained menorrhagia.

Inclusion criteria: women with laparoscopically proven endometriosis or unexplained menorrhagia aged 18-46, definite regular menstrual cycle of 22-35 days, plasma FSH concentration < 20 IU/l and plasma LH/FSH ratio less than three in the early follicular phase.

Exclusion criteria: pregnancy, hormonal treatment or any drug that might effect bone metabolism during the 3 months pre-study, unwillingness to use barrier contraception throughout the study, concurrent disease or abnormality on haematological and biochemical screening on renal, liver and thyroid function tests or in calcium, phosphorus and alkaline phosphatase test.

Age: 23 - 46 years

Location: UK

Duration of follow-up: 6 months

Duration of treatment: 6 months

Group 1: Nafarelin 400 ug IN + 0.7 mg norethisterone PO daily.

Group 2: Nafarelin 400 ug IN+ 1.4 mg norethisterone PO daily.

Group 3: Nafarelin 400 ug IN+2.45 mg norethisterone PO daily. Group 4: Nafarelin 400 ug IN+placebo.

Outcome: bone mineral density

Measured at: L2-L4 and the distal forearm.

Method: Single Photon Absorptiometry (SPA) and DPA.

Timing: baseline, cessation of treatment and 6 months post-treatment.

Post-treatment and 24 weeks post-treatment

31 women left the study early: B

20 because of adverse effects,

4 were lost to follow-up,

4 had unsatisfactory therapeutic response and 3 were non-compliant with protocol.

Sponsored by Syntex Research Europe.

Franke 2000
- Randomisation: sealed,

Number of women: 41

Group 1: goserelin acetate s.c

Outcome: bone mineral density

1 participant in group 1
Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density (Without Surrey)

Opaque, sequentially numbered, identical envelopes
Blinding: double-blind
Design: multicentre trial

Diagnosis: laparoscopic
Inclusion criteria: Women included if AFS score ≥ 2
Exclusion criteria: not stated
Age: Mean age of group 1 29.9 years and mean age of group 2 31.2 years.
Location: The Netherlands

3.6mg every 4 weeks + oral placebo.
- group 2: goserelin acetate s.c.
- group 3: leuprolin acetate 3.75mg IM + oral placebo each day
- group 4: leuprolin acetate 3.75mg IM + 20μg ethinyl estradiol and 0.15mg desogestrel per day.
Duration of treatment: 24 weeks.
Duration of follow-up: 6 months

density
Measured at: lumbar spine (L2-L4)
Method: DEXA
Timing: baseline and end of treatment

discontinued treatment due to severe climacteric symptoms.
Trial sponsored by AstraZeneca and Novo Nordisk, who also supplied the active drugs and placebo.

Fukushima 1993
Randomisation:
Blinding: single blind (to assessor of bone mineral density)
Design: single centre

Number of women: 28
Diagnosis: laparoscopic
Inclusion criteria: regular menstrual cycles, negative cervical cytology and body weight within 25% of the normal range.
Exclusion criteria: conditions that might affect calcium metabolism, administration of drugs known to affect sex hormone levels or bone metabolism during the study.
Age: 21 - 46 years
Location: Japan

Group 1: danazol 400mg/day orally
Group 2: busclerel 900μg/day intranasally.
Duration of treatment: 24 weeks.
Duration of follow-up: 6 months

Outcome: Bone mineral density
Measured at: lumbar spine (L3)
Method: QCT
Timing: baseline, cessation of treatment and 6 months post-treatment

9 participants did not complete the study for reasons unrelated to treatment.

Gnoth 1999
Randomisation: by centralised randomisation process
Blinding: double blind
Design: not stated

Number of women: 27
Diagnosis: laparoscopic
Inclusion criteria: laparoscopically confirmed endometriosis (AFS I-IV), no hormonal pretreatment at least 8 weeks prior to study entry, age 18-45, normal bone mineral density prior to study

Outcome: bone mineral density
Measured at: Lumbar spine (L2-L4), femoral neck, and Ward's triangle
Method: DEXA
Timing: baseline and end of treatment

Pre-treatment measurements of one woman was not done. 1 early pregnancy post -treatment. The reply from the authors state that there were no exclusions post-randomisation or losses to follow-up, but remarks that one woman withdrew directly
Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density (Without Surrey)
commencing trial. Blinding: none - open label Design: not stated

of 4 endometrial lesions, endometriotic symptoms and pelvic pain graded at least 3 (severe), negative cervical smear.
Exclusion criteria: smoking, medications that might affect bone metabolism, medical conditions that could affect bone metabolism.
Age: Mean age of group 1 28.3 years and mean age of group 2 29.1 years.
Location: Greece

Henzl 1990

This trial reports two different studies. The characteristics of these two studies are reported as Henzl 1990 study 1 and Henzl 1990 study 2.

Henzl 1990 study 1

Randomisation: randomised trial
Blinding: double
Design: multi centre

Number of women: 236, but only 213 did BMD measurements
Diagnosis: laparoscopic
Inclusion criteria: completion of more than 150 days of treatment, pre- and post-treatment laparoscopic examinations and evaluation of clinical symptoms of endometriosis
Exclusion criteria: premature withdrawal from treatment either for medical reasons (adverse effects, laboratory

group 1: nafarelin 400 µg/day IN (NAF 400), n=73
group 2: nafarelin 800 µg/day IN (NAF 800), n=70
group 3: danazol 800 mg/day PO (DAN 800), n=70

Duration of treatment: 6 months
Duration of follow-up: not stated

Outcome: bone mineral density
Measured at: lumbar spine
Method: QCT and DPA
Timing: not stated

L2 - L4 and femoral neck
Method: DEXA
Timing: Baseline, end of treatment and 6 months post-treatment

Study sponsored by Syntex Research, Palo Alto, California

Only 213 of the 236 women randomised did BMD bone mineral density analysis. This loss of 23 women is not sufficiently explained in the text. The trial only states that one person was excluded because of non-compliance, two women receiving DAN 800 were withdrawn prematurely because of a rapid rise in liver enzyme levels.

Study sponsored by Syntex Research, Palo Alto, California
Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density (Without Surrey)

<table>
<thead>
<tr>
<th>Henzl 1990 study 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomisation: randomised trial</td>
</tr>
<tr>
<td>Blinding: double</td>
</tr>
<tr>
<td>Design: multi centre</td>
</tr>
</tbody>
</table>

- Number of women: 194
- Diagnosis: laparoscopic
- Inclusion criteria: completion of more than 150 days of treatment, pre-and post-treatment laparoscopic examinations and evaluation of clinical symptoms of endometriosis
- Exclusion criteria: premature withdrawal from treatment either for medical reasons (adverse effects, laboratory abnormalities, intercurrent illness or unsatisfactory therapeutic response) or due to problems in study administration.

Age:
- 11% less than 25 yrs,
- 29% between 25 and 30 yrs,
- 40% between 30 and 35 yrs
- 20% more than 35 yrs.

Location: Sweden, Canada and USA

| **Group 1:** nafarelin 400 ug/day IN (NAF 400), n = 104 |
| **Group 2:** danazol 600 mg/day PO (DAN 600), n = 63 |

- **Duration of treatment:** 6 months
- **Duration of follow-up:** not stated

Outcome: bone mineral density

Measured at: lumbar spine

Method: QCT and DPA

Timing: not stated

Study sponsored by Syntex Research, Palo Alto, California

Review Manager 4.2

06/06/2003
Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density (Without Surrey)

Hornstein 1998

Randomisation: by permuted blocks of four at each of the 26 study sites
Blinding: double
Design: multicentre trial - placebo controlled

Number of women: 201
Diagnosis: surgical (laparoscopy or laparotomy)
Inclusion criteria: regular cycles, diagnosis within 12 months of the start of trial, persistent/recurrent pain, if previous surgical treatment then pain must have returned to baseline.
Exclusion criteria:
Age: 18 - 43 years
Location: USA

group 1: lupon depot 3.75 mg every 4 weeks + daily oral placebo.
group 2: lupon depot 3.75 mg every 4 weeks + daily oral norethindrone 5mg + oestrogen placebo.
group 3: lupon depot 3.75 mg every 4 weeks + daily oral norethindrone 5 mg + conjugated equine oestrogens 0.625mg daily.
group 4: lupon depot 3.75 mg every 4 weeks + daily oral norethindrone 5 mg + conjugated equine oestrogens 1.25mg. All participants received 1000mg of calcium per day during treatment and follow-up.

Duration of treatment: 52 weeks
Duration of follow-up: 2 years

Outcome: bone mineral density
Measured at: lumbar spine
Method: DEXA
Timing: 0 months, 6 months, 12 months, 18 months, 24 months, 28 months, 32 months, 36 months.

Only 123 of the original participants completed the trial and entered year 1 of follow-up. Only 60 patients entered year 2 of follow-up.
Trial sponsored by TAP Pharmaceuticals

Hornstein p + hd o
Hornstein p + ld o
Hornstein prog only

Howell 1995

Randomisation: randomised trial
Blinding: none - open label
Design: not stated

Number of women: 50
Diagnosis: laparoscopic injection of goserelin every 4 weeks.
Inclusion criteria: drugs known to affect bone
Exclusion criteria:

group 1: 3.6 mg s.c depot injection every 4 weeks and

group 2: 3.6mg s.c injection every four weeks and

Outcome: bone mineral density
Measured at: lumbar spine (L2-L4), Ward’s triangle and femoral neck

20 participants did not complete all the bone mineral density assessments - 2 did not complete treatment and the other 18 did not complete
Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density (Without Surrey)

Irahara 2000
- **Randomisation:** randomised trial
- **Blinding:** not stated
- **Design:** not stated

<table>
<thead>
<tr>
<th>Number of women: 21</th>
<th>Diagnosis: Laparoscopy or laparotomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion criteria: Negative smear and negative mammogram in 6 months prior to the start of the study; no previous hormonal treatment received for endometriosis</td>
<td></td>
</tr>
<tr>
<td>Age: 30 - 49 years</td>
<td></td>
</tr>
<tr>
<td>Location: Japan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of women: 21</th>
<th>Diagnosis: Laparoscopy or laparotomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion criteria: Negative smear and negative mammogram in 6 months prior to the start of the study; no previous hormonal treatment received for endometriosis</td>
<td></td>
</tr>
<tr>
<td>Age: 30 - 49 years</td>
<td></td>
</tr>
<tr>
<td>Location: Japan</td>
<td></td>
</tr>
</tbody>
</table>

Method: DEXA
Timing: baseline, end of treatment, 3 months post-treatment and 6 months post-treatment
Outcome: bone mineral density measured at lumbar spine (L2-L4)

Kiesel 1996
- **Randomisation:** randomised trial
- **Blinding:** double blind
- **Design:** multi centre

<table>
<thead>
<tr>
<th>Number of women: 123</th>
<th>Diagnosis: laparoscopic</th>
</tr>
</thead>
</table>
| **Inclusion criteria:** AFS score > 5.
- Exclusion criteria: pregnancy, breast feeding, recent use of sex hormones, danazol or GnRH agonists, clinically significant renal, hepatic, haemopoietic or endocrine disorders, cervical |

<table>
<thead>
<tr>
<th>Number of women: 123</th>
<th>Diagnosis: laparoscopic</th>
</tr>
</thead>
</table>
| **Inclusion criteria:** AFS score > 5.
- Exclusion criteria: pregnancy, breast feeding, recent use of sex hormones, danazol or GnRH agonists, clinically significant renal, hepatic, haemopoietic or endocrine disorders, cervical |

Group 1: goserelin 3.6mg every 4 weeks + oral placebo every day

| **Group 2:** goserelin 3.6mg every 4 weeks for 6 months + placebo every day for 3 months and then medrogestone (10mg/day) for 3 months.
| **Group 3:** goserelin 3.6mg every 4 weeks + 6 months |

Outcome: bone mineral density measured at lumbar spine, femoral neck and Ward's triangle

Method: not stated
Timing: baseline and end of treatment

1 participant excluded from trial prior to treatment and 9 participants did not complete treatment.
Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density (Without Surrey)

abnormalities, sensitivity to GnRH analogues or hypothalamic hormones.
Age: not stated
Location: Germany
medrogestone (10mg per day)
Duration of treatment: 6 months
Duration of follow-up:

Lindsay 1996
Randomisation: by code
Blinding: double blind
Design: multicentre
Number of women: 31 - 29
with endometriosis and 2 with
fibroids.
Diagnosis: surgical diagnosis
of endometriosis
Inclusion criteria: AFS score
of II or higher or fibroids that
required surgery.
Exclusion criteria: smoking,
Asian origin, medications that
might affect bone mineral
density measurements or any
type of menstrual cycle
suppression in the last 3
months.
Age: Mean age of group 1
31.9 years and mean age of
group 2 33.1 years.
Location: UK

group 1: triptorelin 3.75mg
IM every 4 weeks + oral
placebo daily.
group 2: triptorelin 3.75mg
IM every 4 weeks + 2.5mg
tibolone daily po.
Duration of treatment: 24
weeks
Duration of follow-up: none
Outcome: bone mineral
density
Measured at: lumbar spine
(L2-L4) and the femoral neck
Method: DEXA
Timing: baseline and end of
treatment

Miller 1990
This trial reports two different
studies; one comparing
leuproide and placebo, the
other comparing leuproide
and danazol. The data is
entered as Miller 1990 study

Study sponsored by TAP-Abbott Research and Development

2 participants excluded from
the trial due to resumption of
smoking. Trial sponsored by
Organon International
Miller 1990 Study 1

<table>
<thead>
<tr>
<th>Randomisation: randomised trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding: double blind</td>
</tr>
<tr>
<td>Design: multi centre</td>
</tr>
</tbody>
</table>

- **Number of women:** not stated
- **Diagnosis:** laparoscopic
- **Inclusion criteria:** significant pain secondary to the endometriosis
- **Exclusion criteria:** treatment of endometriosis within the 3 months prior to initiating the study
- **Age:** not stated
- **Location:** USA

- **Outcome:** bone mineral density
- **Measure at:**
- **Method:** DPA + more
- **Timing:** not stated

1 Lupron participant and 1 placebo participant withdrew from the study due to adverse events. After 3 months of dosing, those participants who had achieved little or no pain relief were allowed to discontinue the study.

Miller 90 Study 2 DPA

<table>
<thead>
<tr>
<th>Randomisation: randomised trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding: double blind</td>
</tr>
<tr>
<td>Design: multi centre, 22 centres</td>
</tr>
</tbody>
</table>

- **Number of women:** 270
- **Diagnosis:** laparoscopic
- **Inclusion criteria:** premenopausal women aged 18 or more, laparoscopic diagnosis of endometriosis within a 4-month period before study entry, use of barrier contraception throughout the study and 6 weeks after the last injection, if previously on OCP the patient must have resumed normal spontaneous menses for at least 2 cycles, any other treatment for endometriosis must have been completed > 3 months before study entry and diagnostic laparoscopy performed after discontinuation of previous

- **Outcome:** bone mineral density
- **Measured at:** the spine and the femoral neck
- **Method:** the spine - by DPA in 17 centres and QCT in 5 centres, the femoral neck - by DPA in 9 centres
- **Timing:** baseline and end of treatment (week 24)

17 women were excluded: 3 did not meet inclusion criteria (leuprolide group; 2, danazol group; 1), 13 were non-compliant with dosing regimen (leuprolide group; 3, danazol group; 10) and 1 because of inadvertent dosing with another participant's designated leuprolide. Each investigator determined bone density by his or her usual method. The study was sponsored by TAP Pharmaceuticals Inc.

Miller 90 Study 2 QCT

The characteristics of this study are the same as for Miller 1990 Study 2 DPA and are entered under this heading. The reason for separation was to make sure that all data from the trial could be identified separately in the analysis.

Moghissi 1996

<table>
<thead>
<tr>
<th>Randomisation: randomised trial</th>
<th>Number of women: 345</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding: double blind</td>
<td>Diagnosis: laparoscopic</td>
</tr>
<tr>
<td>Design: multicentre</td>
<td>Inclusion criteria: premenopausal women, 18-45 years of age, with confirmed diagnosis of endometriosis and pelvic symptoms, diagnosis of stage 1-IV endometriosis confirmed during the initial laparoscopy. If a laparoscopy included therapeutic intervention, patients had to have an initial clinical response, recurrence of pelvic symptoms, and stability in severity of pelvic symptoms. group 1: goserelin 3.6mg every 28 days + oral placebo. group 2: goserelin 3.6mg every 28 days + conjugated oestrogen 0.3mg daily + medroxyprogesterone acetate 5mg daily. group 3: goserelin 3.6mg every 28 days + conjugated oestrogen 0.625mg daily + medroxyprogesterone 5mg daily. HRT therapy was started on day 15 of the treatment period and continued daily for the next 22 weeks.</td>
</tr>
<tr>
<td>Outcome: bone mineral density</td>
<td>Measured at: lumbar spine, L2-L4</td>
</tr>
<tr>
<td>Sponsored by Zeneca Pharmaceuticals, Wilmington, Delaware.</td>
<td></td>
</tr>
<tr>
<td>Measured using: DEXA or DPA</td>
<td>Timing: baseline, week 12, end of treatment, week 48 and week 72, or at the time of withdrawal, provided that withdrawal occurred 3 months or more after the last bone mineral density assessment</td>
</tr>
</tbody>
</table>
symptoms for at least three months before pretreatment assessments
Exclusion criteria: Positive urine pregnancy test, pregnancy or lactation, if a nursing mother, use of nonsteroidal hormonal agents such as oestrogen, progesterone, or clomiphene within 60 days before pretreatment assessments until the end of the study, use of any drug at doses suppressing the hypothalamic-pituitary-adrenal axis, serious concomitant condition, long-term exposure (over three months) to GnRH agonists within 12 months before pretreatment assessments, baseline bone mineral density measurements over 2 SDs below that of age-matched controls, hypersensitivity to previous hormone therapy or oestrogen or progestin replacement therapies, and any condition that would preclude a patient from receiving study therapy.
Age: 29.6 +/- 6.6 in placebo group, 30.7 +/- 6.0 in low-dose HRT group and 29.4 +/- 5.7 in high-dose HRT group.
Location: USA
Duration of treatment: 24 weeks
Duration of follow-up: 48 weeks
Mukherjee 1996

Randomisation: by lottery
Blinding: double blind
Design: multicentre

Number of women: 31
Diagnosis: laparoscopic diagnosis of endometriosis (n=10) or a diagnosis of leiomyoma (n=21).
Inclusion criteria:
Exclusion criteria: medical illness or were taking medication that could affect bone metabolism.
Age: 24 - 46 years
Location: USA

Group 1: Lupron depot (3.75mg) + oral placebo.
Group 2: Lupron depot and two weeks of oral etidronate 400mg, per two month cycle.
Duration of treatment: 6 months
Duration of follow-up: none
Outcome: bone mineral density
Method: DEXA
Timing: baseline and end of treatment

Rock 1993

Randomisation: randomised trial
Blinding: none - open label
Design: multicentre

Number of women: 315, but only 58 did BMD measurements
Diagnosis: laparoscopy or laparotomy
Inclusion criteria:
symptomatic or asymptomatic endometriosis with or without infertility, written informed consent, rAFS score of 2 or above for active peritoneal and ovarian implants
Exclusion criteria: stage IV endometriosis
Age: 20-42 years
Location: USA

Group 1: 3.6 mg Zoladex SC as an implant every 28 days.
Group 2: 400 mg Danazol PO twice daily (ie. 800 mg/day).
This could be adjusted to 200 mg thrice daily, 200 mg twice daily, or followed by any one of these three regimens if clinically indicated
Duration of treatment: 24 weeks
Duration of follow-up: 48 weeks
Outcome: bone mineral density
Method: DPA
Timing: baseline and after treatment according to the text of the article. At weeks 0, 12, 24, 48 and 72 according to figure 6 in the article.

Roux 1995

Randomisation: centralised
Blinding: double blind.
Design: single centre

Number of women: 42
Diagnosis: signs or symptoms or laparoscopy.
Inclusion criteria: diagnosed endometriosis
Exclusion criteria:
All participants received triptorelin 3.75mg IM every four weeks + nomegestrol acetate 5mg/day during the first 3 weeks following injection and then 1g calcium
Outcome: bone mineral density
Measured at: lumbar spine (L2-L4), femoral neck, Ward's triangle, trochanteric area, intertrochanteric area,

2 participants failed to complete the study - one was lost to follow up and one was excluded due to orthopaedic material in the lumbar spine.
Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density (Without Surrey)

amenorrhoea, taking drugs known to affect bone metabolism, evidence of an associated disease, interruption of more than 15 days in the administration of the drug.
Age: 20 - 44 years
Location: France
carbonate daily for 27 weeks.
In addition
- group 1 received placebo intranasal spray,
- group 2 received salmon calcitonin 100 IU IN daily, and
- group 3 received salmon calcitonin 200 IU IN daily.
Duration of treatment: 27 weeks
Duration of follow-up: 6 months
distal radius and proximal radius.
Method: DEXA
Timing: baseline, cessation of treatment and 6 months post-treatment

Roux 1995 100 IU
See Roux 1995

Roux 1995 200 IU
See Roux 1995

Sille 1999
Randomisation: centralised randomisation process
Blinding: double
Design: double-dummy trial
Number of women: 23
Diagnosis: laparoscopic
Inclusion criteria: laparoscopically proven endometriosis, symptomatic endometriosis and regular menstruation
Exclusion criteria: osteopaenia, osteoporosis or other skeletal disease, significant non-skeletal disease, pregnancy, lactation, use of medications known to interfere with bone metabolism in the three months prior to enrolment, psychiatric disorders.
Age: 22 - 37 years
Location: Germany
group 1: goserelin 3.6mg every 4 weeks s.c + oral placebo
group 2: goserelin 3.6mg every 4 weeks s.c +5mg medrogestone orally twice daily
Duration of treatment: 6 months
Duration of follow-up: none
Outcome: bone mineral density
Measured at: lumbar spine, ward's triangle and femoral neck.
Method: DEXA
Timing: baseline and end of treatment

The reply from the author states that there were losses to follow-up, but does not give any further information.
Somekawa + vitK + vitD

Somekawa 1999
- **Randomisation:** randomised trial
- **Blinding:** triple blind
- **Design:** not stated

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Number of women</th>
<th>Mean age</th>
<th>Duration of treatment</th>
<th>Duration of follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>leuprolide acetate 1.88mg s.c.</td>
<td>110</td>
<td>25 - 52 years</td>
<td>6 months</td>
<td>none</td>
</tr>
<tr>
<td>Group 2</td>
<td>leuprolide acetate 1.88mg s.c. + oral menatetrenone 45mg/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3</td>
<td>leuprolide acetate 1.88mg s.c. + oral 1.25(OH)D3 0.5mg/day</td>
<td></td>
<td></td>
<td>24 weeks</td>
<td></td>
</tr>
</tbody>
</table>

Outcome:
- Bone mineral density measured at lumbar spine (L2-L4)
- Method: DEXA
- Timing: baseline and end of treatment

6 women withdrew from the trial (3 because of side-effects, 3 for personal reasons)

Somekawa 1999 + vitD

Somekawa 1999 + vitK

Surrey 1992
- **Randomisation:** randomised to therapeutic groups based on order of entry (and not severity of disease)
- **Blinding:** single blind
- **Design:** not stated

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Number of women</th>
<th>Mean age</th>
<th>Duration of treatment</th>
<th>Duration of follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>leuprolide acetate 3.75mg im every 28 days</td>
<td>20</td>
<td>32.9 years</td>
<td>24 weeks</td>
<td>24 weeks</td>
</tr>
<tr>
<td>Group 2</td>
<td>leuprolide acetate 3.75mg im every 28 days and norethindrone po 5mg for the first four weeks and then 10 mg daily for the remaining 20 weeks</td>
<td></td>
<td></td>
<td>24 weeks</td>
<td></td>
</tr>
</tbody>
</table>

Outcome:
- Bone mineral density measured at lumbar spine (L2-L4)
- Method: DEXA
- Timing: baseline, end of treatment and 24 weeks post-treatment

3 participants lost to follow-up.

Sponsored by TAP Pharmaceuticals
Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density (Without Surrey)

Vella 1995
- **Randomisation:** randomised trial
- **Blinding:** not stated
- **Design:** not stated
- **Location:** USA
- **Number of women:** 30
- **Diagnosis:** not stated
- **Inclusion criteria:** not stated
- **Exclusion criteria:** not stated
- **Age:** not stated
- **Location:** not stated
- **Group 1:** goserelin
- **Group 2:** goserelin + premarin (conjugated oestrogens) 1.25mg
- **Duration of treatment:** 6 months
- **Duration of follow-up:** not stated
- **Outcome:** bone mineral density
- **Measured at:** the lumbar spine (L2-L4), femoral neck and ward's triangle.
- **Method:** not stated
- **Timing:** not stated

Vercellini 1996
- **Randomisation:** by code
- **Blinding:** double-blind
- **Design:** multicentre
- **Number of women:** 55
- **Diagnosis:** laparoscopic
- **Inclusion criteria:** not stated
- **Exclusion criteria:** used any drugs other than NSAIDs in the last 6 months, if they had concomitant disorders that might cause gynaecological pain, if there were contraindications to the use of gestrinone or GnRH analogues, abnormal baseline BMDs or refusal to use barrier contraception.
- **Age:** 18 - 40 years
- **Location:** Italy
- **Group 1:** oral gestrinone 2.5mg twice a week.
- **Group 2:** leuprolide acetate 3.75mg IM depot every 4 weeks.
- **Duration of treatment:** 6 months
- **Duration of follow-up:** 6 months
- **Outcome:** bone mineral density
- **Measured at:** the lumbar spine (L2-L4)
- **Method:** DEXA
- **Timing:** baseline, end of treatment and 6 months post-treatment
- **Only 41 participants underwent complete follow-up. Study funded by Poli Industria Chimica, Italy**

Whitehouse 1990
- **Randomisation:** cases were sequentially numbered
- **Blinding:** double blind
- **Design:** not stated
- **Number of women:** 24
- **Diagnosis:** laparoscopic
- **Inclusion criteria:** endometriosis diagnosed at laparoscopy, consent to participate in study of Nafarelin and Danazol in the treatment of endometriosis, consent to bone mineral density
- **Group 1:** nafarelin 200mg twice daily administered intranasally
- **Group 2:** danazol 200mg.
- **Duration of treatment:** 6 months
- **Duration of follow-up:** 6 months
- **Outcome:** bone mineral density
- **Measured at:** T12-L3
- **Method:** single and dual QCT
- **Timing:** Baseline, end of treatment and 6 months post-treatment
- **2 participants did not complete trial - one became pregnant and one failed to return for final assessment. The results from these participants were excluded from analysis.**
density measurements by QCT
Exclusion criteria: medically unsuitable to undergo quantitative computerized tomography
Age: 24 - 44 years
Location: UK
Characteristics of excluded studies

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarwal 1997</td>
<td>Trial compared two different kinds of GNRH analogue.</td>
</tr>
<tr>
<td>Agarwal 1999</td>
<td>Looked at age-related effect of GNRH analogue therapy on bone mineral density.</td>
</tr>
<tr>
<td>Chang 1996</td>
<td>Treatment time less than six months and bone mineral density data was only measured in patients receiving leuprolin acetate.</td>
</tr>
<tr>
<td>Cirkel 1995</td>
<td>No measurements of bone mineral density were taken.</td>
</tr>
<tr>
<td>Claesson 1989</td>
<td>Bone mineral density measurements made at distal forearm only.</td>
</tr>
<tr>
<td>Dawood 1989</td>
<td>Bone mineral density measured at distal radius and ulna. Measured at lumbar spine only for the danazol groups.</td>
</tr>
<tr>
<td>Dawood 1997</td>
<td>Compared two different doses of GnRH analogue only.</td>
</tr>
<tr>
<td>Finkelstein 1994</td>
<td>Three studies. Excluded because of uncertainty over the number of patients randomised and analysed. Authors were contacted but were unable to provide any further information regarding the trials.</td>
</tr>
<tr>
<td>Fogelman 1994</td>
<td>Two studies reported - first used healthy controls and second study looked at premenstrual tension.</td>
</tr>
<tr>
<td>Giorgino 1991</td>
<td>Not randomised.</td>
</tr>
<tr>
<td>Kaminski 2001</td>
<td>Measured bone mineral density only of the calcaneus.</td>
</tr>
<tr>
<td>Morgante 1999</td>
<td>Participants treated for six months with GnRH therapy, then switched either to danazol or placebo.</td>
</tr>
<tr>
<td>Orwell 1994</td>
<td>Comparison of nafarelin for three months and nafarelin for six months.</td>
</tr>
<tr>
<td>Pierce 2000</td>
<td>Trial only partially randomised - some subjects were not randomised but were put into a treatment group according to their preference.</td>
</tr>
<tr>
<td>Segura 1994</td>
<td>Not randomised.</td>
</tr>
<tr>
<td>Surrey 1995</td>
<td>Compared two different add-back regimes - one a calcium regulating agent with progesterone and the other progesterone only - this not in our objectives.</td>
</tr>
<tr>
<td>Surrey 1998</td>
<td>This was only a literature review, not a randomised trial.</td>
</tr>
<tr>
<td>Tahara 2000</td>
<td>Participants randomised to receive either GnRH analogue full dose for 24 weeks or GnRH analogue full dose for four weeks and then half dose for 20 weeks.</td>
</tr>
<tr>
<td>Study</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Taskin 1997</td>
<td>Trial compared GnRH analogue + tibolone versus GnRH analogue + iron pill.</td>
</tr>
<tr>
<td>Uemura 1993</td>
<td>Not randomised. Trial compared women with endometriosis with healthy controls.</td>
</tr>
<tr>
<td>Uemura 1994</td>
<td>Not randomised.</td>
</tr>
<tr>
<td>Ylikorkala 1990</td>
<td>Bone mineral density measured at the distal radius only.</td>
</tr>
<tr>
<td>Zamberlan 1997</td>
<td>Trial studied hirsute hyperandrogenic women and not those with endometriosis.</td>
</tr>
</tbody>
</table>
References to studies

Included studies

Aisaka 2000 {published data only}

Chan 1993 {published data only}

Crosignani 1996 {published data only}

Dawood 1995 {published data only}

Dodin 1991 {published data only}

Edmonds 1994 {published data only}

Eldred 1992 {published data only}

Franke 2000 {published data only}
Gonadotrophin-releasing hormone analogues for endometriosis: bone

Fukushima 1993

Gnoth 1999

Gregoriou 1997

Henzl 1990

Henzl 1990 study 1
Gonadotrophin-releasing hormone analogues for endometriosis: bone

Henzl 1990 study 2

Hornstein 1998

Hornstein p + hd o

Hornstein p + ld o

Hornstein prog only

* Hornstein MD, Surrey ES, Weisberg GW, Casino LA. Leuprolide Acetate Depot and Hormonal

Howell 1995

Irahara 2000

Kiesel 1996

Lindsay 1996

Lindsay PC, Shaw RW, Bennink HJ, Kicovic P. The effect of add-back treatment with tibolone (Livial) on patients treated with the gonadotrophin releasing hormone agonist triptorelin (decapreptyl). Fertility and Sterility 1996;65(2):342-347.

Miller 1990

Miller 1990 study 1

* Miller JD. Leuprolide acetate for the treatment of endometriosis. Progress in Clinical &
Gonadotrophin-releasing hormone analogues for endometriosis: bone

Biological Research 1990;323:337-341.

Miller 90 study2 DPA

Miller 90 Study2 QCT

Moghissi 1996

Mukherjee 1996

Gonadotrophin-releasing hormone analogues for endometriosis: bone

Rock 1993

Roux 1995

Roux 1995 100 IU

Roux 1995 200 IU

Sillem 1999

Somekawa +vitK +vitD

{published data only}
Gonadotrophin-releasing hormone analogues for endometriosis: bone

Somekawa 1999

Somekawa 1999 + vitD

Somekawa 1999 + vitK

Surrey 1992

Vella 1995

Vercillini 1996

Whitehouse 1990

Excluded studies

Agarwal 1997

{published data only}

Review Manager 4.2

06/06/2003

Agarwal 1999

Chang 1996

Cirkel 1995

Claesson 1989

Dawood 1989

Dawood 1997

Finkelstein 1994

Review Manager 4.2 06/06/2003

Fogelman 1994

Giorgino 1991

Kaminski 2001

Morgante 1999

Orwoll 1994

Pierce 2000

Segura 1994
Segura GB, Orozco JATY, Rosales DCO, Origel AV. Analisis de masa y remodelado oseos en mujeres con inhibicion farmacologica de funcion ovarica. Respuesta a calcitonina nasal.. Ginecologia y obstetricia de Mexico 1994;62(274-278).

Surrey 1995
* published data only
Gonadotrophin-releasing hormone analogues for endometriosis: bone

Surrey 1998 {published data only}

Tahara 2000 {published data only}

Taskin 1997 {published data only}

Uemura 1993 {published data only}

Uemura 1994 {published data only}

Ylikorkala 1990 {published data only}

Zamberlan 1997 {published data only}

* indicates the primary reference for the study
Other references

Additional references

Audebert 1998

Christiansen 1993

Comite 1989

Cundy 1991

Dodin 1991

Graves 1925

Lane 1991

Mazess 1990

Nilas 1987
Nilas L, Christiansen C. Bone mass and its relationship to age and the menopause. Journal of

Prentice 2003

Selak 2003

Wahner 1989

Wells 2002

Additional tables

01 Quality of Included Studies

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Allocation Concealed</th>
<th>Randomisation method</th>
<th>Blinding</th>
<th>Follow-up</th>
<th>BMD at >1 site</th>
<th>Other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aisaka 2000</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Not stated</td>
<td>None</td>
<td>No - lumbar spine only</td>
<td></td>
</tr>
<tr>
<td>Chan 1993</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Not stated</td>
<td>None</td>
<td>No - spine only</td>
<td></td>
</tr>
<tr>
<td>Crosignani 1996</td>
<td>Unclear</td>
<td>According to a computer-generated sequence</td>
<td>Open label</td>
<td>None</td>
<td>No - lumbar spine only</td>
<td></td>
</tr>
<tr>
<td>Dawood 1995</td>
<td>Unclear</td>
<td>By code</td>
<td>Double</td>
<td>12 months</td>
<td>Yes - lumbar spine and lower forearm</td>
<td></td>
</tr>
<tr>
<td>Dodin 1991</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Open label</td>
<td>6 months</td>
<td>Yes - lumbar spine and femoral neck</td>
<td></td>
</tr>
<tr>
<td>Edmonds 1994</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Not stated</td>
<td>6 months</td>
<td>Yes - lumbar spine, femoral neck and Ward's triangle</td>
<td></td>
</tr>
<tr>
<td>Eldred 1992</td>
<td>Unclear</td>
<td>By code</td>
<td>Double</td>
<td>6 months</td>
<td>Yes - lumbar spine and distal forearm</td>
<td>31 women left the study early; 20 because of adverse effects, four were lost to follow-up, four had unsatisfactory therapeutic response and three were non-compliant with the protocol</td>
</tr>
<tr>
<td>Franke 2000</td>
<td>Adequate</td>
<td>Sealed, opaque, sequentially</td>
<td>Double</td>
<td>None</td>
<td>No - lumbar spine only</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Randomisation</td>
<td>Allocation</td>
<td>Duration</td>
<td>Bone Mineral Density Assessed</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>------------</td>
<td>----------</td>
<td>-------------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Fukushima 1993</td>
<td>Unclear</td>
<td>Not stated</td>
<td>6 months</td>
<td>No - lumbar spine only</td>
<td>9 patients did not complete the study for reasons unrelated to treatment</td>
<td></td>
</tr>
<tr>
<td>Gnoth 1998</td>
<td>Adequate</td>
<td>By centralised randomisation process</td>
<td>Double</td>
<td>None</td>
<td>Yes - lumbar spine, femoral neck and Ward's triangle</td>
<td></td>
</tr>
<tr>
<td>Gregoriou 1997</td>
<td>Unclear</td>
<td>By sequential numerical allocation to a randomisation list before commencing trial</td>
<td>Open label</td>
<td>6 months</td>
<td>Yes - lumbar spine and femoral neck</td>
<td></td>
</tr>
<tr>
<td>Henzl 1990 study 1</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Double</td>
<td>None</td>
<td>No - lumbar spine only</td>
<td>Only 213 of 236 women randomised did bone mineral density analysis. This loss of 23 women is not sufficiently explained in the text.</td>
</tr>
<tr>
<td>Henzl 1990 study 2</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Double</td>
<td>None</td>
<td>No - lumbar spine only</td>
<td></td>
</tr>
<tr>
<td>Hornstein 1998</td>
<td>Unclear</td>
<td>By permuted blocks of four at each of the 26 study sites</td>
<td>Double</td>
<td>2 years</td>
<td>No - lumbar spine only</td>
<td>Only 123 of the original women completed the trial and entered year one of follow-up. Only 60 women entered year two of follow-up.</td>
</tr>
<tr>
<td>Howell 1995</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Open label</td>
<td>6 months</td>
<td>Yes - lumbar spine, femoral neck and Ward's triangle</td>
<td>20 women did not complete all the bone mineral density measurements - 2 did not complete treatment and the other 18 did not complete follow-up</td>
</tr>
<tr>
<td>Study</td>
<td>Blinding</td>
<td>Randomisation</td>
<td>Allocation Masking</td>
<td>Outcome</td>
<td>Other Notes</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>---------------</td>
<td>--------------------</td>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Irahara 2000</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Not stated</td>
<td>None</td>
<td>No - only lumbar spine</td>
<td></td>
</tr>
<tr>
<td>Kiesel 1996</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Double</td>
<td>None</td>
<td>Yes - lumbar spine, femoral neck and Ward's triangle One women excluded from trial and nine patients did not complete treatment</td>
<td></td>
</tr>
<tr>
<td>Lindsay 1996</td>
<td>Unclear</td>
<td>By code</td>
<td>Double</td>
<td>None</td>
<td>Yes - lumbar spine and femoral neck</td>
<td></td>
</tr>
<tr>
<td>Miller 1990</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Double</td>
<td>None</td>
<td>Not stated After three months of dosing, those women who had achieved little or no pain relief were allowed to discontinue the study</td>
<td></td>
</tr>
<tr>
<td>Miller study 1</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Double</td>
<td>None</td>
<td>Yes - the spine and femoral neck</td>
<td></td>
</tr>
<tr>
<td>Miller study 2</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Double</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moghissi 1996</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Double</td>
<td>48 weeks</td>
<td>Not stated</td>
<td></td>
</tr>
<tr>
<td>Mukherjee 1996</td>
<td>Unclear</td>
<td>By lottery</td>
<td>Double</td>
<td>None</td>
<td>Yes - lumbar spine and femoral neck</td>
<td></td>
</tr>
<tr>
<td>Rock 1993</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Open label</td>
<td>48 weeks</td>
<td>No - lumbar spine only There were 315 study participants, but only 58 of these did bone mineral density measurements.</td>
<td></td>
</tr>
<tr>
<td>Roux 1995</td>
<td>Adequate</td>
<td>Centralised randomisation process</td>
<td>Double</td>
<td>6 months</td>
<td>Yes - lumbar spine, femoral neck, Ward's triangle, trochanteric area, distal radius and proximal radius</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Allocation</td>
<td>Randomisation Method</td>
<td>Randomisation Process</td>
<td>Follow-up</td>
<td>Bone Mineral Density</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Sille 1999</td>
<td>Adequate</td>
<td>Centralised</td>
<td>Double</td>
<td>None</td>
<td>Yes - lumbar spine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>randomisation</td>
<td></td>
<td></td>
<td>femoral neck and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>process</td>
<td></td>
<td></td>
<td>Ward's triangle</td>
<td></td>
</tr>
<tr>
<td>Somekawa 1999</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Triple</td>
<td>None</td>
<td>No - lumbar spine</td>
<td></td>
</tr>
<tr>
<td>Surrey 1992</td>
<td>Unclear</td>
<td>Randomised to</td>
<td>Single</td>
<td>24 weeks</td>
<td>No - lumbar spine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>therapeutic groups</td>
<td></td>
<td></td>
<td>only</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>based on order of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>entry and not</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>severity of disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>according to the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>article. Computerised</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>allocation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>according to reply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>from author</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vella 1995</td>
<td>Unclear</td>
<td>Not stated</td>
<td>Not stated</td>
<td>None</td>
<td>Yes - lumbar spine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>femoral neck and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ward's triangle</td>
<td></td>
</tr>
<tr>
<td>Vercellini 1996</td>
<td>Unclear</td>
<td>By code</td>
<td>Double</td>
<td>6 months</td>
<td>No - lumbar spine only</td>
<td></td>
</tr>
<tr>
<td>Whitehouse 1990</td>
<td>Unclear</td>
<td>Cases were sequentially numbered</td>
<td>Double</td>
<td>6 months</td>
<td>No - lumbar spine only</td>
<td></td>
</tr>
</tbody>
</table>
Additional tables

02 Descriptive data for trials not included in the meta-analysis

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Treatment studied</th>
<th>Site of measurement</th>
<th>Way of measurement</th>
<th>Number of women</th>
<th>Study conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aisaka 2000</td>
<td>GnRHa vs GnRHa + oestrogen/progestosterone</td>
<td>Lumbar spine</td>
<td>DEXA</td>
<td>53</td>
<td>The BMD values showed a significant decrease during GnRHa administration without the add-back.</td>
</tr>
<tr>
<td>Chan 1993</td>
<td>GnRHa vs danazol/gestrinone</td>
<td>Lumbar spine</td>
<td></td>
<td>149</td>
<td>No clear results reported</td>
</tr>
<tr>
<td>Crosignani 1996</td>
<td>Monthly GnRHa vs 3-monthly GnRHa</td>
<td>Lumbar spine</td>
<td>DEXA</td>
<td>30</td>
<td>A statistically significant variation of lumbar spine bone mineral density was observed at the end of leuprolide (GnRHa) treatment in both study groups (P<0.01), the percentage decrease over basal being 5.2 and 4.9% in the 3-monthly and monthly depot arms respectively.</td>
</tr>
<tr>
<td>Edmonds 1994</td>
<td>GnRHa vs GnRHa + oestrogen/progestosterone</td>
<td>Lumbar spine, femoral neck and Ward's triangle</td>
<td>DEXA</td>
<td>50</td>
<td>The mineral loss is reduced by 50 % to 2.5 % overall by the addition of HRT and there is a significant difference in the rate of return to normal of bone mineral density during post-treatment follow-up. In neither group was there a complete return to the pretreatment levels during the six months of follow-up.</td>
</tr>
<tr>
<td>Eldred 1992</td>
<td>GnRHa + lowdose HRT vs GnRHa + highdose HRT</td>
<td>Lumbar spine</td>
<td>SPA and DPA</td>
<td>94</td>
<td>Densitometry of the spine showed decreases at six months in all groups, that is nafarelin and placebo, nafarelin + norethisterone 0.7, 1.4 and 2.45 mg respectively. Six months after stopping nafarelin, with or without norethisterone, bone mass was not significantly different from baseline. The differences between the group receiving placebo and the groups receiving doses of norethisterone were all non-significant.</td>
</tr>
<tr>
<td>Gregoriou 1997</td>
<td>GnRHa vs GnRHa + oestrogen/progestosterone</td>
<td>Lumbar spine and femoral neck</td>
<td>DEXA</td>
<td>40</td>
<td>The mean loss of 4.2% from the lumbar spine in the GnRHa group at the end of treatment was significant (P<0.001) compared to the baseline value. On the contrary, the 0.9% loss in the lumbar spine in the GnRH + HRT group was not significantly different from baseline. Similarly, bone loss in the femoral neck was 1.2 % in the GnRH + HRT group, but 4.5% in the GnRH group, which is</td>
</tr>
</tbody>
</table>
Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density (Without Surrey)

<table>
<thead>
<tr>
<th>Study</th>
<th>Group Comparison</th>
<th>Measurement Site</th>
<th>Measurement Method</th>
<th>BMD Measurements</th>
<th>Result Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henzl 1990</td>
<td>GnRHa vs danazol/gestrinone</td>
<td>Lumbar spine</td>
<td>QCT and DPA</td>
<td>236, but only 213 did BMD measurements</td>
<td>Results suggest no significant difference in bone mineral density loss between danazol and GnRHa treatment groups.</td>
</tr>
<tr>
<td>Henzl 1990</td>
<td>GnRHa vs danazol/gestrinone</td>
<td>Lumbar spine</td>
<td>QCT and DPA</td>
<td>194</td>
<td>Results suggest no significant difference in bone mineral density loss between danazol and GnRHa treatment groups.</td>
</tr>
<tr>
<td>Howell 1995</td>
<td>GnRHa vs GnRHa + oestrogen/progestrone</td>
<td>Lumbar spine, femoral neck and Ward's triangle</td>
<td>DEXA</td>
<td>50</td>
<td>The amount of bone mineral density loss was significantly less in the HRT group at the lumbar spine, although it was not prevented completely.</td>
</tr>
<tr>
<td>Irahara 2000</td>
<td>GnRHa vs GnRHa + oestrogen/progestrone</td>
<td>Lumbar spine</td>
<td>DEXA</td>
<td>21</td>
<td>The control group significantly (P<0.01) decreased BMD of the lumbar spine (mean percentage change: -6.3%) after six months of treatment; however, add-back therapy prevented this BMD reduction (mean percentage change: -0.8%).</td>
</tr>
<tr>
<td>Kiesel 1996</td>
<td>GnRHa vs GnRHa + progesterone</td>
<td>Lumbar spine, femoral neck and Ward's triangle</td>
<td></td>
<td>123</td>
<td>Statistically significant reductions from baseline (P<0.01) were seen in each region and for each treatment, with the exception of the effect of immediate add-back on Ward's triangle. Generally, the losses at the end of the 24-week treatment period were less in the HRT groups than in the goserelin (GnRHa) monotherapy group, although the only statistically significant difference was in the lumbar spine region when comparing goserelin monotherapy (-5.5%) with goserelin plus deferred HRT (-3.8%; P<0.05).</td>
</tr>
<tr>
<td>Moghissi 1996</td>
<td>GnRHa + lowdose oestrogen/progestrone vs GnRHa + highdose oestrogen/progestrone</td>
<td>Lumbar spine</td>
<td>DEXA</td>
<td>345</td>
<td>Some degree of BMD loss was seen in all groups; however, rates of loss in the highdose and lowdose HRT groups were significantly less than that in the GnRHa + placebo group. At week 24, the mean percentage decreases from baseline in BMD for the placebo, lowdose HRT and highdose HRT were 4.1 %, 2.0 % and 1.5 %, respectively. There were no statistically significant differences between the</td>
</tr>
<tr>
<td>Study</td>
<td>Group Description</td>
<td>Measurement Site</td>
<td>Instrument</td>
<td>Sample Size</td>
<td>Notes</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
<td>---------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Mukherjee 1996</td>
<td>GnRhA vs GnRhA + calcium-regulating agents</td>
<td>Lumbar spine and femoral neck</td>
<td>DEXA</td>
<td>31</td>
<td>GnRhA treatment produced a significant decrease (4% to 10%) in bone density at the anteroposterior and lateral spine in placebo-treated patients. No significant change was demonstrated in etidronate-treated patients. Etidronate blocks bone mineral density changes associated with GnRhA therapy.</td>
</tr>
<tr>
<td>Rock 1993</td>
<td>GnRhA vs danazol/gestrinone</td>
<td>Lumbar spine</td>
<td>DPA</td>
<td>315, but only 58 did BMD measurements</td>
<td>Mean bone mineral density decreased from baseline by 5.4% in the Zoladex (GnRhA) group and increased by 1.0% in the danazol group at the end of treatment.</td>
</tr>
<tr>
<td>Vella 1995</td>
<td>GnRhA vs GnRh + oestrogen/progestosterone</td>
<td>Lumbar spine, femoral neck and Ward's triangle</td>
<td></td>
<td>30</td>
<td>The Zoladex (GnRhA) only group had a significant loss in both vertebral and femoral neck bone densities at the end of the six month periods whilst the Zoladex and Premarin (conjugated oestrogens) group had as such loss.</td>
</tr>
</tbody>
</table>
Contact details for co-reviewers

Dr Andrew Breeze
'Uplands'
Odda Lane
Leeds
Hawksworth UK
LS20 8NZ
Telephone 1: 44 1223 509786
E-mail: acgb100@hotmail.com
Secondary address:
"Uplands"
Odda Lane
Hawkesworth
Leeds UK
LS20 8NZ
Telephone: 44 1223 509786

Dr Andrew Prentice
University Lecturer/Consultant Obstetrician and Gynaecologist
Department of Obstetrics and Gynaecology
Rosie Maternity Hospital
Robinson Way
Cambridge
UK
CB2 2SW
Telephone 1: +44 1223 336876
Telephone 2: +44 1223 336881
Facsimile: +44 1223 215327
E-mail: ap128@mole.bio.cam.ac.uk
Secondary contact person's name: Ms A J Deary

Miss Jessica E Farmer
medical student
c/o Cochrane Menstrual Disorders and Subfertility Group
University of Auckland
National Women's Hospital
Claude Road
Auckland
Epsom NEW ZEALAND
1003
Telephone 1: +64-9-6309943 extension: 3250
E-mail: jef26@cam.ac.uk
Review
Gonadotropin-releasing hormone analogues for endometriosis: bone mineral density (Willis S 澳沽

Comparison: 02 GnRHα vs danazol/gestronone
Outcome: 01 Bone mineral density of lumbar spine treatment (absolute values)

Study or Sub-Category
<table>
<thead>
<tr>
<th>Study or Sub-Category</th>
<th>GnRHα (Mean (SE))</th>
<th>Danazol/gestronone (Mean (SE))</th>
<th>SMD (fixed)</th>
<th>Weight</th>
<th>SMD (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
</tr>
</tbody>
</table>

01 after 6 mths treatment

Whitlock 1990

<table>
<thead>
<tr>
<th></th>
<th>16</th>
<th>140.60 (22.60)</th>
<th>9</th>
<th>197.00 (20.50)</th>
<th>44.00</th>
<th>-0.33 (-1.14, 0.50)</th>
</tr>
</thead>
</table>

Dickin 1991

<table>
<thead>
<tr>
<th></th>
<th>17</th>
<th>0.98 (9.12)</th>
<th>9</th>
<th>1.17 (0.12)</th>
<th>45.34</th>
<th>-1.38 (-2.46, -0.30)</th>
</tr>
</thead>
</table>

Fukushima 1993

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>146.19 (11.40)</th>
<th>9</th>
<th>170.84 (16.40)</th>
<th>39.02</th>
<th>-2.45 (-3.25, -1.64)</th>
</tr>
</thead>
</table>

Subtotal (95% CI)

<table>
<thead>
<tr>
<th></th>
<th>47</th>
<th></th>
<th>27</th>
<th></th>
<th>100.00</th>
<th>-1.27 (-1.72, -0.82)</th>
</tr>
</thead>
</table>

Test for heterogeneity: Chi^2 = 8.80, df = 2, P = 0.02, I^2 = 75.9%
Test for overall effect: Z = 1.0 (P = 0.0001)

02 after 12 mths treatment

Subtotal (95% CI) Not estimable

Test for heterogeneity: Not applicable
Test for overall effect: Not applicable

Review
Gonadotropin-releasing hormone analogues for endometriosis: bone mineral density (Without Syrli

Comparison: 02 GnRHα vs danazol/gestronone
Outcome: 02 Bone mineral density of lumbar spine follow-up (absolute values)

Study or Sub-Category
<table>
<thead>
<tr>
<th>Study or Sub-Category</th>
<th>GnRHα (Mean (SE))</th>
<th>Danazol/gestronone (Mean (SE))</th>
<th>SMD (fixed)</th>
<th>Weight</th>
<th>SMD (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
</tr>
</tbody>
</table>

01 after 6 months treatment and 6 months follow-up

Dickin 1991

<table>
<thead>
<tr>
<th></th>
<th>22</th>
<th>1.06 (0.10)</th>
<th>3</th>
<th>1.34 (0.08)</th>
<th>44.24</th>
<th>-1.36 (-2.47, -0.11)</th>
</tr>
</thead>
</table>

Fukushima 1993

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>149.30 (1.40)</th>
<th>9</th>
<th>154.70 (17.75)</th>
<th>55.72</th>
<th>-0.57 (-2.06, -0.46)</th>
</tr>
</thead>
</table>

Subtotal (95% CI)

<table>
<thead>
<tr>
<th></th>
<th>41</th>
<th></th>
<th>14</th>
<th></th>
<th>100.00</th>
<th>-0.92 (-2.60, -0.36)</th>
</tr>
</thead>
</table>

Test for heterogeneity: Chi^2 = 6.07, df = 1, P = 0.02, I^2 = 0%
Test for overall effect: Z = 0.54 (P = 0.0004)

02 after 6 months treatment and 12 months follow-up

Subtotal (95% CI) Not estimable

Test for heterogeneity: Not applicable
Test for overall effect: Not applicable

03 after 12 months treatment and 6 months follow-up

Subtotal (95% CI) Not estimable

Test for heterogeneity: Not applicable
Test for overall effect: Not applicable

04 after 12 months treatment and 12 months follow-up

Subtotal (95% CI) Not estimable

Test for heterogeneity: Not applicable
Test for overall effect: Not applicable

Review
Gonadotropin-releasing hormone analogues for endometriosis: bone mineral density (Without Syrli

Comparison: 02 GnRHα vs danazol/gestronone
Outcome: 03 Bone mineral density of the femoral neck treatment (absolute values)

Study or Sub-Category
<table>
<thead>
<tr>
<th>Study or Sub-Category</th>
<th>GnRHα (Mean (SD))</th>
<th>Danazol/gestronone (Mean (SD))</th>
<th>SMD (fixed)</th>
<th>Weight</th>
<th>SMD (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
</tr>
</tbody>
</table>

01 after 6 mths treatment

Dickin 1991

<table>
<thead>
<tr>
<th></th>
<th>36</th>
<th>0.66 (0.12)</th>
<th>6</th>
<th>0.56 (0.22)</th>
<th>155.00</th>
<th>-1.09 (-1.89, -0.29)</th>
</tr>
</thead>
</table>

Subtotal (95% CI)

<table>
<thead>
<tr>
<th></th>
<th>74</th>
<th></th>
<th>12</th>
<th></th>
<th>140.00</th>
<th>-0.35 (-1.34, 0.04)</th>
</tr>
</thead>
</table>

Test for heterogeneity: Not applicable
Test for overall effect: Z = 2.26 (P = 0.01)

02 after 12 mths treatment

Subtotal (95% CI) Not estimable

Test for heterogeneity: Not applicable
Test for overall effect: Not applicable

Review
Gonadotropin-releasing hormone analogues for endometriosis: bone mineral density (Without Syrli

Comparison: 02 GnRHα vs danazol/gestronone
Outcome: 04 Bone mineral density of the femoral neck follow-up (absolute values)

Study or Sub-Category
<table>
<thead>
<tr>
<th>Study or Sub-Category</th>
<th>GnRHα (Mean (SE))</th>
<th>Danazol/gestronone (Mean (SE))</th>
<th>SMD (fixed)</th>
<th>Weight</th>
<th>SMD (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
</tr>
</tbody>
</table>

01 after 6 months treatment and 6 months follow-up

Dickin 1991

<table>
<thead>
<tr>
<th></th>
<th>17</th>
<th>0.63 (0.14)</th>
<th>6</th>
<th>0.66 (0.60)</th>
<th>160.00</th>
<th>-0.12 (-1.49, 0.14)</th>
</tr>
</thead>
</table>

Subtotal (95% CI)

<table>
<thead>
<tr>
<th></th>
<th>31</th>
<th></th>
<th>8</th>
<th></th>
<th>160.00</th>
<th>-0.52 (-1.49, 0.34)</th>
</tr>
</thead>
</table>

Test for heterogeneity: Not applicable
Test for overall effect: Z = 0.86 (P = 0.38)

02 after 6 months treatment and 12 months follow-up

Subtotal (95% CI) Not estimable

Test for heterogeneity: Not applicable
Test for overall effect: Not applicable

03 after 12 months treatment and 6 months follow-up

Subtotal (95% CI) Not estimable

Test for heterogeneity: Not applicable
Test for overall effect: Not applicable

04 after 12 months treatment and 12 months follow-up

Subtotal (95% CI) Not estimable

Test for heterogeneity: Not applicable
Test for overall effect: Not applicable
<table>
<thead>
<tr>
<th>Study no.</th>
<th>Sub-category</th>
<th>GNRHa</th>
<th>danazol/gestrone</th>
<th>SMR (fixed)</th>
<th>Weight</th>
<th>SMD (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Mean (SD)</td>
<td>N</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% CI</td>
</tr>
<tr>
<td>01 after 6 months treatment
Miller 1995: QCT
Whitley 1995
Owen 1995
Avery 1996
Suprather 1996</td>
<td>0.64</td>
<td>15.60 (6.01)</td>
<td>9</td>
<td>12.10 (5.50)</td>
<td>9</td>
<td>-4.60 (2.11)</td>
</tr>
<tr>
<td>01 after 12 months treatment
Suprather 1995</td>
<td>0.65</td>
<td>15.60 (6.01)</td>
<td>9</td>
<td>12.10 (5.50)</td>
<td>9</td>
<td>-4.60 (2.11)</td>
</tr>
<tr>
<td>01 after 6 months treatment and 6 months follow-up
Curstedt 1995
Veendelf 1996</td>
<td>0.67</td>
<td>-1.24 (1.80)</td>
<td>9</td>
<td>1.00 (3.12)</td>
<td>9</td>
<td>-3.11 (1.04, -1.23)</td>
</tr>
<tr>
<td>01 after 12 months treatment and 6 months follow-up
Veendelf 1996</td>
<td>0.69</td>
<td>-1.24 (1.80)</td>
<td>9</td>
<td>1.00 (3.12)</td>
<td>9</td>
<td>-3.11 (1.04, -1.23)</td>
</tr>
<tr>
<td>01 after 6 months treatment
Miller 1995 study, DPA
Subtotal (95% CI)</td>
<td>0.66</td>
<td>-1.24 (1.80)</td>
<td>9</td>
<td>1.00 (3.12)</td>
<td>9</td>
<td>-3.11 (1.04, -1.23)</td>
</tr>
<tr>
<td>01 after 12 months treatment
Miller 1995 study, DPA
Subtotal (95% CI)</td>
<td>0.66</td>
<td>-1.24 (1.80)</td>
<td>9</td>
<td>1.00 (3.12)</td>
<td>9</td>
<td>-3.11 (1.04, -1.23)</td>
</tr>
<tr>
<td>01 after 6 months treatment and 6 months follow-up
Miller 1995 study, DPA
Subtotal (95% CI)</td>
<td>0.66</td>
<td>-1.24 (1.80)</td>
<td>9</td>
<td>1.00 (3.12)</td>
<td>9</td>
<td>-3.11 (1.04, -1.23)</td>
</tr>
<tr>
<td>01 after 12 months treatment and 6 months follow-up
Miller 1995 study, DPA
Subtotal (95% CI)</td>
<td>0.66</td>
<td>-1.24 (1.80)</td>
<td>9</td>
<td>1.00 (3.12)</td>
<td>9</td>
<td>-3.11 (1.04, -1.23)</td>
</tr>
<tr>
<td>01 after 6 months treatment
Miller 1995 study, DPA
Subtotal (95% CI)</td>
<td>0.66</td>
<td>-1.24 (1.80)</td>
<td>9</td>
<td>1.00 (3.12)</td>
<td>9</td>
<td>-3.11 (1.04, -1.23)</td>
</tr>
<tr>
<td>01 after 12 months treatment
Miller 1995 study, DPA
Subtotal (95% CI)</td>
<td>0.66</td>
<td>-1.24 (1.80)</td>
<td>9</td>
<td>1.00 (3.12)</td>
<td>9</td>
<td>-3.11 (1.04, -1.23)</td>
</tr>
</tbody>
</table>
Outcome: Bone mineral density of lumbar spine: follow-up (percentage change)

<table>
<thead>
<tr>
<th>Study sub-category</th>
<th>N</th>
<th>GNRH A Mean (SD)</th>
<th>GNRH A + progesterone Mean (SD)</th>
<th>GNRH A + progesterone + HRT Mean (SD)</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight %</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 after 6 months treatment and 6 months follow-up</td>
<td>10</td>
<td>-5.57 (2.99)</td>
<td>-2.64 (2.67)</td>
<td>100.00 (0.00)</td>
<td>100.00 (0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 after 6 months treatment and 12 months follow-up</td>
<td>10</td>
<td>-2.93 (2.45)</td>
<td>-1.76 (2.32)</td>
<td>100.00 (0.00)</td>
<td>100.00 (0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 after 12 months treatment and 6 months follow-up</td>
<td>10</td>
<td>-3.96 (2.56)</td>
<td>-2.56 (2.33)</td>
<td>100.00 (0.00)</td>
<td>100.00 (0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 after 12 months treatment and 12 months follow-up</td>
<td>10</td>
<td>-2.93 (2.45)</td>
<td>-1.76 (2.32)</td>
<td>100.00 (0.00)</td>
<td>100.00 (0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 after 12 months treatment and 24 months follow-up</td>
<td>10</td>
<td>-3.96 (2.56)</td>
<td>-2.56 (2.33)</td>
<td>100.00 (0.00)</td>
<td>100.00 (0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Not estimable</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outcome: Bone mineral density of lumbar spine: follow-up (absolute values)

<table>
<thead>
<tr>
<th>Study sub-category</th>
<th>N</th>
<th>GNRH A Mean (SD)</th>
<th>GNRH A + HRT (prog) Mean (SD)</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight %</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 after 6 months treatment</td>
<td>12</td>
<td>-0.05 (0.04)</td>
<td>-0.01 (0.05)</td>
<td>12.35 (12.35)</td>
<td>12.35 (12.35)</td>
<td></td>
</tr>
<tr>
<td>02 after 6 months treatment</td>
<td>12</td>
<td>0.00 (0.03)</td>
<td>0.00 (0.03)</td>
<td>24.20 (24.20)</td>
<td>24.20 (24.20)</td>
<td></td>
</tr>
<tr>
<td>03 after 12 months treatment</td>
<td>12</td>
<td>0.00 (0.03)</td>
<td>0.00 (0.03)</td>
<td>36.59 (36.59)</td>
<td>36.59 (36.59)</td>
<td></td>
</tr>
</tbody>
</table>

Outcome: Bone mineral density of lumbar spine: follow-up (percentage change)

<table>
<thead>
<tr>
<th>Study sub-category</th>
<th>N</th>
<th>GNRH A Mean (SD)</th>
<th>GNRH A + progesterone Mean (SD)</th>
<th>GNRH A + progesterone + HRT Mean (SD)</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight %</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 after 6 months treatment</td>
<td>12</td>
<td>0.00 (0.04)</td>
<td>0.00 (0.05)</td>
<td>12.35 (12.35)</td>
<td>12.35 (12.35)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 after 6 months treatment</td>
<td>12</td>
<td>0.00 (0.03)</td>
<td>0.00 (0.03)</td>
<td>24.20 (24.20)</td>
<td>24.20 (24.20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 after 12 months treatment</td>
<td>12</td>
<td>0.00 (0.03)</td>
<td>0.00 (0.03)</td>
<td>36.59 (36.59)</td>
<td>36.59 (36.59)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outcome: Bone mineral density of lumbar spine: follow-up (absolute values)

<table>
<thead>
<tr>
<th>Study sub-category</th>
<th>N</th>
<th>GNRH A Mean (SD)</th>
<th>GNRH A + HRT (prog) Mean (SD)</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight %</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 after 6 months treatment</td>
<td>12</td>
<td>0.00 (0.04)</td>
<td>0.00 (0.05)</td>
<td>12.35 (12.35)</td>
<td>12.35 (12.35)</td>
<td></td>
</tr>
<tr>
<td>02 after 6 months treatment</td>
<td>12</td>
<td>0.00 (0.03)</td>
<td>0.00 (0.03)</td>
<td>24.20 (24.20)</td>
<td>24.20 (24.20)</td>
<td></td>
</tr>
<tr>
<td>03 after 12 months treatment</td>
<td>12</td>
<td>0.00 (0.03)</td>
<td>0.00 (0.03)</td>
<td>36.59 (36.59)</td>
<td>36.59 (36.59)</td>
<td></td>
</tr>
</tbody>
</table>

Outcome: Bone mineral density of lumbar spine: follow-up (percentage change)

<table>
<thead>
<tr>
<th>Study sub-category</th>
<th>N</th>
<th>GNRH A Mean (SD)</th>
<th>GNRH A + progesterone Mean (SD)</th>
<th>GNRH A + progesterone + HRT Mean (SD)</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight %</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 after 6 months treatment</td>
<td>12</td>
<td>0.00 (0.04)</td>
<td>0.00 (0.05)</td>
<td>12.35 (12.35)</td>
<td>12.35 (12.35)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 after 6 months treatment</td>
<td>12</td>
<td>0.00 (0.03)</td>
<td>0.00 (0.03)</td>
<td>24.20 (24.20)</td>
<td>24.20 (24.20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 after 12 months treatment</td>
<td>12</td>
<td>0.00 (0.03)</td>
<td>0.00 (0.03)</td>
<td>36.59 (36.59)</td>
<td>36.59 (36.59)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outcome: Bone mineral density of lumbar spine: follow-up (absolute values)

<table>
<thead>
<tr>
<th>Study sub-category</th>
<th>N</th>
<th>GNRH A Mean (SD)</th>
<th>GNRH A + HRT (prog) Mean (SD)</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight %</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 after 6 months treatment</td>
<td>12</td>
<td>0.00 (0.04)</td>
<td>0.00 (0.05)</td>
<td>12.35 (12.35)</td>
<td>12.35 (12.35)</td>
<td></td>
</tr>
<tr>
<td>02 after 6 months treatment</td>
<td>12</td>
<td>0.00 (0.03)</td>
<td>0.00 (0.03)</td>
<td>24.20 (24.20)</td>
<td>24.20 (24.20)</td>
<td></td>
</tr>
<tr>
<td>03 after 12 months treatment</td>
<td>12</td>
<td>0.00 (0.03)</td>
<td>0.00 (0.03)</td>
<td>36.59 (36.59)</td>
<td>36.59 (36.59)</td>
<td></td>
</tr>
</tbody>
</table>
Review: Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density (Without Survey)

Comparison 04 GNRHa vs GNRHa + HRT (estrogen and progesterone/estrogen only)

Outcome 05 Bone mineral density of femoral neck: treatment (absolute values)

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>GNRHa Mean (SD)</th>
<th>GNRHa + HRT (Mean)</th>
<th>SMD (fixed)</th>
<th>Weight</th>
<th>SMD (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>95% CI</td>
<td>%</td>
<td>95% CI</td>
</tr>
<tr>
<td>01 after 6 months treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lindsey 1996</td>
<td>15</td>
<td>-0.01 (0.04)</td>
<td>-0.01 (0.01)</td>
<td>53.20</td>
<td>-0.31 (-0.62, 0.00)</td>
</tr>
<tr>
<td>Gnothi 1999</td>
<td>13</td>
<td>0.00 (0.13)</td>
<td>0.00 (0.13)</td>
<td>46.60</td>
<td>0.18 (-0.69, 0.03)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: Ch2 = 0.78, df = 1 (P = 0.38), I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.35 (P = 0.72)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 after 12 months treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Worse with GNRHa

Worse w GNRHa+HRT

Review: Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density (Without Survey)

Comparison 04 GNRHa vs GNRHa + HRT (estrogen and progesterone/estrogen only)

Outcome 06 Bone mineral density of lumbar spine: follow-up (percentage change)

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>GNRHa Mean (SD)</th>
<th>GNRHa + HRT Mean (SD)</th>
<th>SMD (fixed)</th>
<th>Weight</th>
<th>SMD (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>95% CI</td>
<td>%</td>
<td>95% CI</td>
</tr>
<tr>
<td>01 after 6 months treatment and 6 months follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 after 12 months treatment and 12 months follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 after 12 months treatment and 6 months follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 after 12 months treatment and 12 months follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormones p = 0.06 8</td>
<td>-0.30 (0.18)</td>
<td>14</td>
<td>0.38 (0.29)</td>
<td>53.72</td>
<td>-1.24 (-2.09, -0.39)</td>
</tr>
<tr>
<td>Hormones p = 0.06 7</td>
<td>-0.20 (0.15)</td>
<td>14</td>
<td>0.29 (0.18)</td>
<td>47.38</td>
<td>-1.24 (-2.09, -0.39)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: Ch2 = 0.22, df = 1 (P = 0.65), I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 3.40 (P = 0.0007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 after 12 months treatment and 24 months follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormones p = 0.06 8</td>
<td>-0.30 (0.18)</td>
<td>14</td>
<td>0.38 (0.29)</td>
<td>49.35</td>
<td>-0.60 (-1.23, 0.03)</td>
</tr>
<tr>
<td>Hormones p = 0.06 7</td>
<td>-0.20 (0.15)</td>
<td>14</td>
<td>0.29 (0.18)</td>
<td>51.45</td>
<td>-0.60 (-1.23, 0.03)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: Ch2 = 0.01, df = 1 (P = 0.93), I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.05 (P = 0.30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Worse with GNRHa

Worse w GNRHa+HRT

Review: Gonadotrophin-releasing hormone analogues for endometriosis: bone mineral density (Without Survey)

Comparison 07 GNRHa vs GNRHa + calcium-regulating agents (CRA)

Outcome 01 Bone mineral density of lumbar spine: treatment (absolute values)

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>GNRHa Mean (SD)</th>
<th>GNRHa + CRA Mean (SD)</th>
<th>SMD (fixed)</th>
<th>Weight</th>
<th>SMD (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>95% CI</td>
<td>%</td>
<td>95% CI</td>
</tr>
<tr>
<td>01 after 6 months treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rose 1995 100.0</td>
<td>7</td>
<td>1.03 (0.09)</td>
<td>1.03 (0.05)</td>
<td>50.10</td>
<td>0.14 (-0.78, 1.04)</td>
</tr>
<tr>
<td>Rose 1995 260.0</td>
<td>7</td>
<td>1.03 (0.09)</td>
<td>1.03 (0.05)</td>
<td>49.75</td>
<td>0.31 (-0.67, 1.36)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: Ch2 = 0.28, df = 1 (P = 0.61), I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.57 (P = 0.56)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 after 9 months treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 after 12 months treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Worse with GNRHa

Worse w GNRHa+CRA
Comparison:
01: GNRH (a vs GNRH (a + calcium-regulating agents (CRA))
Outcome:
01: Bone mineral density of the femoral neck treatment (absolute values)

<table>
<thead>
<tr>
<th>Study of category</th>
<th>GNRH (a) Mean (SD)</th>
<th>GNRH (a) + CRA Mean (SD)</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight %</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 6 months treatment</td>
<td>9.51 (1.02)</td>
<td>9.51 (1.02)</td>
<td>0.00 (0.00)</td>
<td>50.00</td>
<td>0.00 (0.00)</td>
</tr>
</tbody>
</table>
| Test for heterogeneity: N = 9, df = 2 (P = 0.000), I² = 0.0%.
Test for overall effect: Z = 0.00 (P = 0.0000). |

<table>
<thead>
<tr>
<th>Study of category</th>
<th>GNRH (a) Mean (SD)</th>
<th>GNRH (a) + CRA Mean (SD)</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight %</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 9 months treatment</td>
<td>9.51 (1.02)</td>
<td>9.51 (1.02)</td>
<td>0.00 (0.00)</td>
<td>50.00</td>
<td>0.00 (0.00)</td>
</tr>
</tbody>
</table>
| Test for heterogeneity: N = 9, df = 2 (P = 0.000), I² = 0.0%.
Test for overall effect: Z = 0.00 (P = 0.0000). |

<table>
<thead>
<tr>
<th>Study of category</th>
<th>GNRH (a) Mean (SD)</th>
<th>GNRH (a) + CRA Mean (SD)</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight %</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 12 months treatment</td>
<td>9.51 (1.02)</td>
<td>9.51 (1.02)</td>
<td>0.00 (0.00)</td>
<td>50.00</td>
<td>0.00 (0.00)</td>
</tr>
</tbody>
</table>
| Test for heterogeneity: N = 9, df = 2 (P = 0.000), I² = 0.0%.
Test for overall effect: Z = 0.00 (P = 0.0000). |

Comparison:
01: GNRH (a vs GNRH (a + high dose HRT)
Outcome:
01: Bone mineral density of lumbar spine treatment (percentage change)

<table>
<thead>
<tr>
<th>Study of sub-category</th>
<th>GNRH (a) Mean (SD)</th>
<th>GNRH (a) + HRT Mean (SD)</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight %</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 6 months treatment</td>
<td>9.51 (1.02)</td>
<td>9.51 (1.02)</td>
<td>0.00 (0.00)</td>
<td>50.00</td>
<td>0.00 (0.00)</td>
</tr>
</tbody>
</table>
| Test for heterogeneity: N = 9, df = 2 (P = 0.000), I² = 0.0%.
Test for overall effect: Z = 0.00 (P = 0.0000). |

<table>
<thead>
<tr>
<th>Study of sub-category</th>
<th>GNRH (a) Mean (SD)</th>
<th>GNRH (a) + HRT Mean (SD)</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight %</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 9 months treatment</td>
<td>9.51 (1.02)</td>
<td>9.51 (1.02)</td>
<td>0.00 (0.00)</td>
<td>50.00</td>
<td>0.00 (0.00)</td>
</tr>
</tbody>
</table>
| Test for heterogeneity: N = 9, df = 2 (P = 0.000), I² = 0.0%.
Test for overall effect: Z = 0.00 (P = 0.0000). |

<table>
<thead>
<tr>
<th>Study of sub-category</th>
<th>GNRH (a) Mean (SD)</th>
<th>GNRH (a) + HRT Mean (SD)</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight %</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 12 months treatment</td>
<td>9.51 (1.02)</td>
<td>9.51 (1.02)</td>
<td>0.00 (0.00)</td>
<td>50.00</td>
<td>0.00 (0.00)</td>
</tr>
</tbody>
</table>
| Test for heterogeneity: N = 9, df = 2 (P = 0.000), I² = 0.0%.
Test for overall effect: Z = 0.00 (P = 0.0000). |
<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>N</th>
<th>Mean (SD)</th>
<th>N</th>
<th>Mean (SD)</th>
<th>SMD (fixed) 95% CI</th>
<th>Weight</th>
<th>SMD (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1 after 5 months treatment and 6 months follow-up</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (55%) CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2 after 6 months treatment and 12 months follow-up</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (55%) CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3 after 8 months treatment and 6 months follow-up</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (55%) CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4 after 8 months treatment and 12 months follow-up</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (55%) CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5 after 12 months treatment and 6 months follow-up</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (55%) CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6 after 12 months treatment and 12 months follow-up</td>
<td>14</td>
<td>4.40 (2.29)</td>
<td>14</td>
<td>0.50 (2.32)</td>
<td>100.00 0.12 [-0.42, 0.67]</td>
<td>0.12 [-0.42, 0.67]</td>
<td></td>
</tr>
<tr>
<td>Homstein 1998</td>
<td>14</td>
<td>4.40 (2.29)</td>
<td>14</td>
<td>0.50 (2.32)</td>
<td>100.00 0.12 [-0.42, 0.67]</td>
<td>0.12 [-0.42, 0.67]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (55%) CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.33 (P = 0.74)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O7 after 12 months treatment and 24 months follow-up</td>
<td>4</td>
<td>1.70 (2.44)</td>
<td>4</td>
<td>0.90 (2.34)</td>
<td>100.00 0.11 [-0.21, 1.41]</td>
<td>0.11 [-0.21, 1.41]</td>
<td></td>
</tr>
<tr>
<td>Homstein 1998</td>
<td>4</td>
<td>1.70 (2.44)</td>
<td>4</td>
<td>0.90 (2.34)</td>
<td>100.00 0.11 [-0.21, 1.41]</td>
<td>0.11 [-0.21, 1.41]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (55%) CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test for heterogeneity: not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.16 (P = 0.87)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>