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Abstract 

 

Cholesterol crystals are known to be a hallmark of atherosclerosis with recent studies 

demonstrating deposition of these crystals in early fatty streak formation as well as penetrating 

the intima following plaque rupture. Inflammation has also become a central focus in atheroma 

development and endothelial cell activation is recognized as necessary for the recruitment of 

inflammatory cells to the plaque. However, the extent to which cholesterol crystals can induce 

inflammation and activate endothelial cells is not known. To investigate this, we developed a 

novel model activating human umbilical vein endothelial cells using lepirudin anticoagulated 

human whole blood. We found that cholesterol crystals caused a marked and dose-dependent 

increase in the adhesion molecules E-selectin and ICAM-1 on the surface of the endothelial cells 

after incubation with whole blood. There was no activation of the cells when the crystals were 

incubated in medium alone, or in human serum, despite substantial crystal-induced complement 

activation in serum. Complement inhibitors at the C3 and C5 levels reduced the whole blood 

induced endothelial cell activation by up to 89% (p < 0.05) and abolished TNF release (p < 

0.01). Finally, the TNF inhibitor infliximab reduced endothelial activation to background levels 

(p < 0.05). In conclusion, these data demonstrate that endothelial activation by cholesterol 

crystals is mediated by complement-dependent TNF release, and suggests that complement-

inhibition might have a role in alleviating atherosclerosis-induced inflammation. 
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Introduction 

 

Cardio-vascular diseases are a major cause of mortality world wide, and although 

survival has improved over recent years, there are many facets of these diseases not yet well 

understood. Atherosclerosis is frequently implicated in diseases such as stroke, myocardial 

infarction and aortic aneurisms. Early on, cholesterol crystals (CC) were recognized as a 

hallmark of the late atherosclerotic plaque, and recent studies have also demonstrated its 

presence already at the development of the fatty streak being one of the earliest manifestations of 

atherosclerosis (Duewell et al., 2010). George Abela and his group have also demonstrate that in 

post-mortem examination of atherosclerotic plaque rupture, there are cholesterol crystals 

piercing the intima thus potentially playing a role in subsequent inflammatory reactions (Abela et 

al., 2009; 2010). 

Although first thought to be mainly a disease of lipid-deposition, today there are 

overwhelming data supporting a central role of inflammation both in atheroma development as 

well as its subsequent morbidity and mortality (Hansson and Hermansson, 2011; Hansson et al., 

2002; Libby et al., 2009). The complement system appears to play a role in this response, as 

several studies in mice and men have indicated complement deposition in atherosclerotic plaques 

as well as modulating effects of complement inhibition on atheroma formation (Francescut et al., 

2012; Haskard et al., 2008; Manthey et al., 2011; Niculescu and Rus, 1999; Speidl et al., 2011a; 

2011b; Torzewski and Bhakdi, 2013). The complement system is known to play a role in a large 

number of inflammatory diseases (Klos et al., 2009; Ricklin et al., 2010), where three separate 

activating pathways all converge on the splitting of C3 to C3b and C3a. C3a is a known 

inflammatory mediator, whereas C3b is both important for opsonisation as well as amplification 
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and the formation of the C5-convertases (Ricklin et al., 2010; Sarma and Ward, 2011). The C5-

convertases splits C5 into C5a and C5b, where C5a is a potent inflammatory mediator which 

effects are mainly due to its interaction with the C5a-receptor (C5aR). C5b	
  together	
  with	
  C6-­‐C9	
  

form	
  the	
  terminal	
  C5b-­‐9	
  complex	
  (TCC),	
  which,	
  when	
  activated	
  on	
  a	
  surface	
  form	
  the	
  

membrane	
  attack	
  complex	
  and	
  might	
  lyse	
  bacteria	
  or	
  cells,	
  or	
  in	
  sub-­‐lytic	
  doses	
  activate	
  

cells	
  to	
  produce	
  inflammatory	
  mediators.	
  In	
  the	
  fluid	
  phase,	
  the	
  TCC	
  forms	
  a	
  soluble	
  

complex	
  (sC5b-­‐9)	
  which	
  can	
  be	
  detected	
  as	
  a	
  complement	
  activation	
  product	
  in	
  body	
  fluids	
  

indicating	
  ongoing	
  complement	
  activation	
  (Ricklin et al., 2010; Sarma and Ward, 2011). 

Endothelial cells (EC) are known as well to play a role in inflammation, both being 

crucial for the recruitment of inflammatory cells and active producers of chemokines and 

cytokines. They are also for the same reasons central in atherosclerosis development. EC 

activation is a necessary prerequisite for leukocyte recruitment to the plaque (Guardamagna et 

al., 2009; Mai et al., 2013; Mestas and Ley, 2008; Pate et al., 2010). There are a long range of 

mediators that are shown to activate endothelial cells in vitro, among others TNF, IL-1β, sub-

lytic TCC and C5a (Pate et al., 2010), which all might be relevant in EC activation in 

atherosclerosis. 

Despite the presence of CC in the plaque, and the known role of inflammation in 

atherosclerosis there are limited data on the inflammatory potential of CC. Several groups have 

demonstrated the strong complement-activating potential of CC (Hasselbacher and Hahn, 1980; 

Seifert and Kazatchkine, 1987; Vogt et al., 1985). Two seminal studies also demonstrated that 

CC caused inflammasome activation in primed monocytes linking CC to Il-1β production, which 

is thought of as a central player in atherosclerosis development (Duewell et al., 2010; Rajamäki 

et al., 2010). In a recent study from our group, we have taken this one step further, showing that 



	
  

	
   5	
  

CC-induced inflammation in whole blood is complement-dependent and that C5a combined with 

TNF are potent primers for CC induced inflammasome activation (Samstad et al., 2014).  

In this study we aimed to examine to what extent CC could activate EC. We developed a 

novel EC activation assay, co-incubating whole blood with monolayers of human umbilical vein 

endothelial cells (HUVEC) measuring the expression of adhesion molecules on the HUVEC 

surface post-exposure as a marker of activation. Using this model we found that when CC were 

incubated with whole blood there was a potent, complement-dependent EC activation, which was 

mainly mediated by TNF. 
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Materials and methods 

Reagents 

Sterile phosphate buffered saline (PBS) with and without Ca2+ and Mg2+ and 

Ethylenediaminetetraacetic acid (EDTA) were purchased from Sigma–Aldrich (St. Louis, MO). 

CryoTubesTM (polypropylene) was purchased from Nunc AS (Roskilde, Denmark). Lepirudin 

(Refludan®) was purchased from Pharmion (Copenhagen, Denmark) and used at a final 

concentration of 50 µg/ml in whole blood. A 4% stock solution made of paraformaldehyde 

(PFA) was purchased from Sigma-Aldrich (St. Louis, MN). BSA 30% was purchased from 

Biotest (Dreieich, Germany) and Trypsin/EDTA was from Invitrogen (Carlsbad, CA). 

Recombinant human C5 were purchased from Quidel (San Diego, CA). Recombinant human 

TNF and recombinant human IL-1β were purchased from R&D systems (Minneapolis, MN). 

 

Antibodies used were FITC-conjugated mouse anti human ICAM-1 (CD54, Clone BBIG-I1), 

PerCP conjugated mouse anti-human MCAM (CD146, clone 128018) and iso-type controls 

(R&D Systems, Minneapolis, MN), PE conjugated mouse anti-human E-selectin (CD62E, clone 

1.2B6) and iso-type control (Southern Biotech, Birminham, AL), C5 antibody 

(eculizumab/Soliris®, Alexion), TNF antibody (infliximab/Remicade®, Janssen Biologics), anti- 

IL-1β (canakinumab/Ilaris®, Novartis) and anti-CD20 (rituximab/Mabthera®, Roche). C3-

inhibitor compstatin analog CP40 (Ac-Ile-[Cys-Val-Trp(Me)-Gln-Asp-Trp-Sar-Ala-His-Arg-

Cys]-mIle-NH2) and its control scrambled peptide (Qu et al., 2013) were a kind gift from 

Professor John D. Lambris, as was the the specific C5a-receptor antagonist (AcF[OPdChaWR]), 

synthesized as previously described (Finch et al., 1999). 
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Cholesterol crystals 

CC were produced as previously described (Samstad et al., 2014). Briefly, ultra-pure cholesterol 

(Sigma–Aldrich, St. Louis, MO) was dissolved in 1-propanol and aggregated by addition of 

sterile water. CC were then air-dried and tested for LPS which was below the detection limit in 

the limulus amebocyte lysate assay (0.3 pg/ml). CC were used at a final concentration of 2 

mg/ml (3 x 10^7 particles/ml) if not otherwise specified.  

Whole blood and HUVEC 

A modified version of an ex vivo whole blood model which was described in detail previously 

(Mollnes et al., 2002) was used. HUVEC (ECACC, Salisbury, UK) were seeded in 48-wells 

plates (Costar, Corning, New York) coated with 1% gelatin (Sigma, St. Louis, MO) and grown 

until confluence (2-4 days) in DMEM 199 medium (Invitrogen, Carlsbad, CA) with growth 

supplements and 7.5% fetal calf serum. All cells were used in passage 2-5. On the day of the 

experiment, fresh human whole blood was obtained from healthy donors and anticoagulated with 

lepirudin. Confluent HUVEC layers were washed once with sterile, 37°C PBS before the 

addition of 100 µl whole blood, growth medium, growth medium supplemented with 50% 

pooled human serum (NHS) or plasma from whole blood experiments to each well. The 

inhibitors compstatin (20 µM), eculizumab (100 µg/ml), C5aR-antagonist (10 µM), infliximab 

(100 µg/ml), canakinumab (100 µg/ml), rituximab as a control antibody (100 µg/ml) or PBS 

were added in a total volume of 20 µl and incubated for 4 minutes at 37∘C prior to stimulation 

with PBS, CC, recombinant TNF (0.1 - 10 ng/ml) or recombinant IL-1β (0.1 - 10 ng/ml). 

Samples were then incubated at 37°C with 5% CO2 for 4 hours with gentle shaking. Thereafter, 

whole blood or medium was removed and EDTA (20 mM) was added before centrifugation for 

15 min at 3000 x g at 4°C. Plasma or supernatant were stored at −70°C until analysis.  



	
  

	
   8	
  

Endothelial cell activation markers 

After removal of medium, plasma or whole blood, HUVEC layers were gently washed twice 

with ice-cold PBS, and fixed with 0.5% PFA and incubated at 4°C for 2.5 minutes, according to 

a modified protocol from Gräbner et al. (Gräbner et al., 2000). After gentle washing with PBS, 

anti-ICAM-1-FITC, anti-E-selectin-PE or their iso-type controls, and anti-MCAM-PerCP were 

added and plates were incubated for 30 minutes at 4°C. Cells were washed twice with PBS, 

briefly trypsinated and transferred to 5 ml polypropylene tubes (Sarstedt, Nuernbrecht, 

Germany), washed with PBS with 0.1% BSA and run on a FACSCalibur or FACS LSRII flow 

cytometer (BD Bioscience, San Jose, CA). HUVEC were gated as MCAM positive cells. Median 

values were used for fluorescense intensity values (MFI). Data were analyzed either in 

FacsDIVA (BD Bioscience, San Jose, CA) or FlowJo X (Tree Star Inc, Ashland, OR).  

C5-deficient patient 

The C5-deficient (C5D) patient used for this study is previously described in details (Lappegård 

et al., 2009). In experiments with the C5D patients, C5D blood, C5D blood reconstituted with 

recombinant C5 (50 µg/ml), and two healthy controls were all run simultaneously on the same 

plate.  

Cytokine and complement measurements 

Analysis of plasma concentrations of IL-1β, IL-6, IL-8 and TNF were done using multiplex 

technology. Single-plex beads were purchased from Bio-Rad (Bio-Rad Laboratories Inc., 

Hercules, CA) and used according to manufacturer’s recommendations. The C5b-9 complex 

(TCC) was measured using a specific antibody aE11 which targets a C9 neo-epitope in an in-

house ELISA which was previously described in detail (Bergseth et al., 2013). 
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Statistics and ethical approval 

All data were compiled in Prism (GraphPad Inc. Version 5, San Diego, CA, USA). Groups were 

compared using one-way ANOVA for repeated measurements with Bonferroni’s post-test for 

comparisons of specific groups if not otherwise specified. Informed written consent was obtained 

from each donor, and the local ethics committee approved the study. 
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Results 

HUVEC incubated with whole blood 

As we already know that CC activate leukocytes and cause both the expression of leukocyte 

adhesion molecules and cytokine release in whole blood (Samstad et al., 2014), we here 

investigated to which extent CC incubated in whole blood would activate EC. In order to 

examine this, we developed a novel model, where we co-cultured lepirudin anti-coagulated 

whole blood with monolayers of HUVEC. Whole blood alone did not cause any visual 

alterations of the HUVEC layer as examined by light microscopy, and there were only minimal 

EC activation by whole blood compared to medium controls. Notably, the addition of CC to 

whole blood caused a dose-dependent increase in both E-selectin and ICAM-1 on the EC 

surface, with some donor-dependent differences. Two mg/ml was chosen as the optimal dose 

causing a robust activation compared to unstimulated samples (Figure 1).  

Effect of complement activation by CC on EC activation 

We next evaluated the role of complement inhibition on the EC surface expression of the 

adhesion molecules E-selectin and ICAM-1. These were significantly inhibited both at the C3 

level (compstatin) and at the C5 level (eculizumab and C5aR-antagonist), where E-selectin was 

attenuated by 70-89% (Figure 1A) and ICAM-1 by 61-82% (Figure 1B). We confirmed these 

finding using a C5-deficient patient, where incubation of CC in C5-deficient whole blood did not 

cause EC activation, however reconstitution with recombinant C5 increased activation to the 

level of healthy controls (Figure 2).  
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HUVEC incubated with CC in human serum 

To examine if the previously documented complement activation induced by CC could cause EC 

activation directly, we incubated CC with EC in medium containing 50% pooled human serum. 

Despite a robust production of TCC in the supernatant post-incubation, indicating substantial 

complement activation, no up-regulation of the adhesion molecules were observed (Figure 3).  

The role of TNF in EC activation 

Both TNF and IL-1β are regarded as early mediators in the cytokine response that are known to 

cause HUVEC activation in vitro, and	
  we	
  have	
  previously	
  demonstrated	
  that	
  TNF	
  participate	
  

in	
  the	
  release	
  of	
  cytokines	
  that	
  are	
  induced	
  by	
  CC	
  in	
  whole	
  blood (Samstad et al., 2014). We 

therefore examined if either of these cytokines was important for CC-induced EC-activation. 

Using a specific inhibitor towards TNF (infliximab) or IL-1β (canakinumab) we evaluated the 

impact of these cytokines on HUVEC activation. Whereas IL-1β inhibition did not affect E-

selectin or ICAM-1 expression, inhibiting TNF completely attenuated these responses (Figure 4), 

demonstrating that TNF plays a central role in CC induced EC activation.  

 To explore the role of TNF further, we evaluated to what extent other cytokines in CC- 

activated whole blood would participate in EC activation. In order to do this, we pre-activated 

whole blood with CC to generate all relevant cytokines, then activated EC using plasma from 

these experiments (Figure 5 A and B). Where indicated infliximab, canakinumab or a control 

antibody was added prior to stimulation of EC. As whole blood incubated without activators also 

caused a moderate activation of EC, we included plasma isolated from whole blood at the point 

of blood sampling (T0) as an additional control. The TNF inhibitor infliximab reduced EC 

activation to under the level of plasma from unstimulated whole blood experiments and towards 

background (T0) activation, demonstrating the key role of TNF (Figure 5 A and B). We also 
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found a dose-dependent response of HUVEC to TNF and IL-1β (Figure 5 C and D), as well as 

full inhibition of this activation by infliximab and canakinumab demonstrating the efficacy of the 

inhibitors (Figure 5 C and D). 

 

Complement and TNF 

The cytokine responses to CC are to a large extent dependent on complement activation as we 

have earlier demonstrated that complement inhibition attenuated these responses in whole blood 

(Samstad et al., 2014). Since TNF-inhibition completely attenuated the CC-induced EC 

activation, we addressed whether complement inhibition reduces TNF release in plasma from 

CC-activated whole blood and EC. Inhibition at the C5-level completely abrogated CC induced 

IL-1β, IL-6, IL-8 and TNF release, supporting the central role of TNF in EC-activation in this 

model and that TNF release occurs down-stream to complement activation (Figure 6).  
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Discussion 

In this study we have established a novel model of HUVEC activation allowing us to study the 

complex interaction between EC and both cellular and humoral immune-components in fresh 

whole blood. Using this model, we found that CC were not able to activated EC directly, or in 

serum alone, but indirectly through whole blood, and that this activation was complement-

dependent. Surprisingly, we also found that TNF single handedly seems to mediate this 

activation.  

HUVEC have for a long time been used as a model system for EC activation. However, 

the activation of HUVEC with addition of activating substances to medium does not capture the 

complexity of EC activation, nor does it allow examination of the relative contribution of 

different mediators towards EC activation in more complex systems. To more accurately model 

this complexity, some have used conditioned media to activate EC (Nooteboom et al., 2006; 

2005; 2004; 2002; Schildberger et al., 2011), that is medium from activated leukocytes or 

immortalized monocyte cell lines as well as medium mixed with plasma from heparin anti-

coagulated whole blood. However there are limitations to these models as well, as molecules 

with short half-life, for instance C5a, the role of cell-cell interaction between EC and leukocytes, 

as well as the modulating role of EC on leukocyte and complement activation cannot be 

captured. Therefore we developed a novel model of HUVEC activation, where we co-incubated 

monolayers of HUVEC with lepirudin anticoagulated whole blood to examine the complex 

interaction of EC, leukocytes, platelets, the complement system, and other lesser known players 

in the inflammatory network. This allowed us not only to look at EC activation in a more 

physiologically complex system, but also attempt to dissect the relative importance of EC-

activating mediators in this system. 
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The role of CC in inducing inflammation is not well elucidated, but we have previously 

shown that CC occur early on in atherosclerotic lesions (Duewell et al., 2010) and that CC cause 

inflammasome activation in LPS primed macrophages (Duewell et al., 2010). Recently, we 

linked complement to CC-induced inflammasome activation in a human whole blood system 

(Samstad et al., 2014), and found that C5a and TNF in combination act as a potent priming signal 

in isolated monocytes for CC induced inflammasome activation (Samstad et al., 2014). As 

endothelial activation is central in leukocyte recruitment to atherosclerotic plaques, we examined 

to what extent CC can participate in EC activation. Our data demonstrate that CC are potent 

activators of the whole blood system, and that this activation causes up-regulation of EC 

adhesion receptors thus supporting the inflammatory potential of CC in atherosclerosis. 

We found earlier that in CC-induced inflammation in whole blood, both cytokine 

production as well as leukocyte activation, were dependent on complement activation (Samstad 

et al., 2014). In the present study inhibition of the complement system completely abolished CC-

induced activation of EC by whole blood, strengthening our hypothesis that complement is 

central in CC-induced inflammation. This was the case both with inhibitors at the C3 and C5 

level and as an antagonist directed at the C5 receptor had similar effects as the other inhibitors, 

our study indicates that C5a is the major player. Using a patient with a well-established C5-

deficiency we confirmed the findings as reconstitution with recombinant C5 caused a clear 

increase in CC induced EC activation. A recent study found that sublytic TCC and not C3a/C5a 

caused IL-1β production in murine dendritic cells (Laudisi et al., 2013), but our study does not 

indicate that the sublytic TCC is of importance in neither human whole blood activation 

(Samstad et al., 2014), nor whole blood induced EC activation. 
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There are a some studies indicating that activation of the complement system itself can 

cause activation of HUVEC by increased adhesion molecule expression both through C5a and 

sublytic TCC (Foreman et al., 1994; Tedesco et al., 1997), as well as cytokine production, 

mainly IL-8 and MCP-1, and NFκB activation (Albrecht et al., 2004; Kilgore et al., 1996; 1997; 

Monsinjon et al., 2003; Selvan et al., 1998) . However, other studies have not been able to 

reproduce findings on C5a and sublytic TCC-induced increase of EC adhesion molecule 

expression (Jagels et al., 2000; Kilgore et al., 1995; Monsinjon et al., 2003). Our study support 

the latter findings, as directly stimulating HUVEC with CC in pooled human serum did not cause 

activation of the cells, despite potent complement activation in the serum. Although we cannot 

exclude the possibility that the observed increase in adhesion molecule expression is modulated 

by complement interaction with EC (Kilgore et al., 1995), our study indicates that complement 

activation products do not activate EC directly, but EC activation is caused by mediators 

dependent on complement activation in whole blood.  

In vitro studies have found a large number of activators of HUVEC, but TNF and IL-1β 

are singled out as central in causing EC activation (Haraldsen et al., 1996; Mantovani et al., 

1997; Nooteboom et al., 2002). Particularly, Nooteboom et al. found that upon activating EC 

with plasma from LPS activated whole blood, the increase of E-selectin and ICAM-1 seen were 

completely abolished when a combination of IL-1β and TNF inhibitors were used (Nooteboom et 

al., 2004). We have also established that CC cause both IL-1β and TNF production in whole 

blood	
  (Samstad et al., 2014), and thus we here examined if inhibiting these cytokines also would 

reduce CC-induced EC activation. We used clinically available antibodies, namely infliximab 

(anti-TNF) and canakinumab (anti- IL-1β) to evaluate the role of these cytokines in our model. 

We found that both inhibitors completely inhibited activation by recombinant TNF and IL-1β 
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when used at 10 ng/ml demonstrating the efficacy of the inhibitors. However, when whole blood 

was incubated with CC and the inhibitors, infliximab completely abolished EC activation, 

whereas canakinumab had no effect on EC adhesion molecule expression, indicating that TNF 

plays the main role in EC activation caused by CC. Testing the dose-response curve of HUVEC 

for both TNF and IL-1β we found that both cytokines dose-dependently caused activation. 

Nevertheless within the time frame of our experiment, there was only a limited IL-1β production, 

which did not reach the activating levels found in the dose-response curves. Furthermore, we 

have shown earlier that CC also induce IL-1ra in whole blood, known to inhibit IL-1β activity 

(Samstad et al., 2014), thus a combination of these factors could explain the lack of effect of IL-

1β inhibition. Therefore we cannot exclude the possibility that IL-1β can play an important role 

in EC activation in the long run as we know that monocytes have a robust IL-1β response to CC 

after 10-16 hours (Samstad et al., 2014). 

We have shown earlier that TNF inhibition also reduces the overall cytokine response to 

CC in whole blood (Samstad et al., 2014). To examine to what extent the effect of the TNF 

inhibitor was due to direct interaction between TNF and HUVEC or whether TNF inhibition 

modulated either leukocyte activation or the general inflammatory reaction to CC, we incubated 

whole blood with CC without HUVEC for 4 hours, and used the plasma from these experiments 

to activate HUVEC. CC-induced activation could then run its course, without TNF inhibition of 

leukocyte activation or cytokine production. When we added the TNF inhibitor to the plasma 

prior to activation of HUVEC, the inhibitor still caused an almost complete attenuation of the 

induced EC activation, indicating that the main effect of TNF inhibition in our model is directly 

through reducing TNF-EC interaction.  
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To investigate if the effect of the complement inhibitors could be due to their role in 

reducing TNF release, we measured cytokine production in plasma from the whole blood and 

HUVEC experiments. We found that the complement inhibitors reduced the production of all 

four cytokines measured, reducing TNF almost to background levels. This indicates that reduced 

TNF production is one of the mechanisms behind the effect of complement inhibition, and again 

support the central role of TNF in CC-induced EC activation. 

Thus, somewhat surprisingly, despite the large number of potential EC-activating factors 

produced in whole blood inflammation, we found that TNF singlehandedly was responsible for 

the activation seen in our model. Although TNF has been suggested as an important mediator in 

simpler EC activation models, our study confirms these findings in a more complex system, and 

demonstrate that other activators shown to activate in vitro, such as sub-lytic TCC and C5a play 

a minor role, if any role at all in our model. This warrants further research into the relative 

importance of TNF and other mediators with other sources of inflammation, as one cannot 

assume that factors shown to cause EC activation in vitro necessarily play a significant role as 

the complexity of the system increases. 

 With our novel HUVEC activation model using whole blood, we have shown that CC 

contribute to the inflammatory state of EC, which could be relevant in atherosclerotic diseases. 

Although, CC did not cause direct activation of EC, they did cause a potent activation of EC 

when co-incubated with whole blood, an activation which was complement-dependent. 

Interestingly, we also demonstrate that in our model, this complement-dependent activation is 

nearly completely mediated by TNF.  

  



	
  

	
   18	
  

Disclosures 

The authors have no conflict of interest.  



	
  

	
   19	
  

References 

Abela, G.S., Aziz, K., Vedre, A., Pathak, D.R., Talbott, J.D., Dejong, J., 2009. Effect of 

cholesterol crystals on plaques and intima in arteries of patients with acute coronary and 

cerebrovascular syndromes. Am. J. Cardiol. 103, 959–968. 

Abela, G.S., Shamoun, F., Vedre, A., 2010. Extent of cholesterol crystals in coronary artery 

aspirates during acute myocardial infarction. J. Am. Coll. Cardiol. 55. 

Albrecht, E.A., Chinnaiyan, A.M., Varambally, S., Kumar-Sinha, C., Barrette, T.R., Sarma, J.V., 

Ward, P.A., 2004. C5a-induced gene expression in human umbilical vein endothelial cells. 

Am J Pathol 164, 849–859. 

Bergseth, G., Ludviksen, J.K., Kirschfink, M., Giclas, P.C., Nilsson, B., Mollnes, T.E., 2013. An 

international serum standard for application in assays to detect human complement 

activation products. Mol Immunol 56, 232–239. 

Duewell, P., Kono, H., Rayner, K.J., Sirois, C.M., Vladimer, G., Bauernfeind, F.G., Abela, G.S., 

Franchi, L., Núñez, G., Schnurr, M., Espevik, T., Lien, E., Fitzgerald, K.A., Rock, K.L., 

Moore, K.J., Wright, S.D., Hornung, V., Latz, E., 2010. NLRP3 inflammasomes are required 

for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361. 

Finch, A.M., Wong, A.K., Paczkowski, N.J., Wadi, S.K., Craik, D.J., Fairlie, D.P., Taylor, S.M., 

1999. Low-Molecular-Weight Peptidic and Cyclic Antagonists of the Receptor for the 

Complement Factor C5a. Journal of Medicinal Chemistry 42, 1965–1974. 

Foreman, K.E., Vaporciyan, A.A., Bonish, B.K., Jones, M.L., Johnson, K.J., Glovsky, M.M., 

Eddy, S.M., Ward, P.A., 1994. C5a-induced expression of P-selectin in endothelial cells. J 

Clin Invest 94, 1147–1155. 

Francescut, L., Steiner, T., Byrne, S., Cianflone, K., Francis, S., Stover, C., 2012. The role of 



	
  

	
   20	
  

complement in the development and manifestation of murine atherogenic inflammation: 

novel avenues. J Innate Immun 4, 260–272. 

Gräbner, R., Till, U., Heller, R., 2000. Flow cytometric determination of E-selectin, vascular cell 

adhesion molecule-1, and intercellular cell adhesion molecule-1 in formaldehyde-fixed 

endothelial cell monolayers. Cytometry 40, 238–244. 

Guardamagna, O., Abello, F., Saracco, P., Baracco, V., Rolfo, E., Pirro, M., 2009. Endothelial 

activation, inflammation and premature atherosclerosis in children with familial 

dyslipidemia. Atherosclerosis 207, 471–475. 

Hansson, G.K., Hermansson, A., 2011. The immune system in atherosclerosis. Nat Immunol 12, 

204–212. 

Hansson, G.K., Libby, P., Schönbeck, U., Yan, Z.-Q., 2002. Innate and adaptive immunity in the 

pathogenesis of atherosclerosis. Circ Res 91, 281–291. 

Haraldsen, G., Kvale, D., Lien, B., Farstad, I.N., Brandtzaeg, P., 1996. Cytokine-regulated 

expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell 

adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. J Immunol 156, 

2558–2565. 

Haskard, D.O., Boyle, J.J., Mason, J.C., 2008. The role of complement in atherosclerosis. Curr 

Opin Lipidol 19, 478–482. 

Hasselbacher, P., Hahn, J.L., 1980. Activation of the alternative pathway of complement by 

microcrystalline cholesterol. Atherosclerosis 37, 239–245. 

Jagels, M.A., Daffern, P.J., Hugli, T.E., 2000. C3a and C5a enhance granulocyte adhesion to 

endothelial and epithelial cell monolayers: epithelial and endothelial priming is required for 

C3a-induced eosinophil adhesion. Immunopharmacology 46, 209–222. 



	
  

	
   21	
  

Kilgore, K.S., Flory, C.M., Miller, B.F., Evans, V.M., Warren, J.S., 1996. The membrane attack 

complex of complement induces interleukin-8 and monocyte chemoattractant protein-1 

secretion from human umbilical vein endothelial cells. Am J Pathol 149, 953–961. 

Kilgore, K.S., Schmid, E., Shanley, T.P., Flory, C.M., Maheswari, V., Tramontini, N.L., Cohen, 

H., Ward, P.A., Friedl, H.P., Warren, J.S., 1997. Sublytic concentrations of the membrane 

attack complex of complement induce endothelial interleukin-8 and monocyte 

chemoattractant protein-1 through nuclear factor-kappa B activation. Am J Pathol 150, 

2019–2031. 

Kilgore, K.S., Shen, J.P., Miller, B.F., Ward, P.A., Warren, J.S., 1995. Enhancement by the 

complement membrane attack complex of tumor necrosis factor-alpha-induced endothelial 

cell expression of E-selectin and ICAM-1. J Immunol 155, 1434–1441. 

Klos, A., Tenner, A.J., Johswich, K.-O., Ager, R.R., Reis, E.S., Köhl, J., 2009. The role of the 

anaphylatoxins in health and disease. Mol Immunol 46, 2753–2766. 

Lappegård, K.T., Christiansen, D., Pharo, A., Thorgersen, E.B., Hellerud, B.C., Lindstad, J., 

Nielsen, E.W., Bergseth, G., Fadnes, D., Abrahamsen, T.G., Høiby, E.A., Schejbel, L., 

Garred, P., Lambris, J.D., Harboe, M., Mollnes, T.E., 2009. Human genetic deficiencies 

reveal the roles of complement in the inflammatory network: lessons from nature. Proc Natl 

Acad Sci USA 106, 15861–15866. 

Laudisi, F., Spreafico, R., Evrard, M., Hughes, T.R., Mandriani, B., Kandasamy, M., Morgan, 

B.P., Sivasankar, B., Mortellaro, A., 2013. Cutting edge: the NLRP3 inflammasome links 

complement-mediated inflammation and IL-1β release. J Immunol 191, 1006–1010. 

Libby, P., Ridker, P.M., Hansson, G.K., 2009. Inflammation in atherosclerosis: from 

pathophysiology to practice. J. Am. Coll. Cardiol. 54, 2129–2138. 



	
  

	
   22	
  

Mai, J., Virtue, A., Shen, J., Wang, H., Yang, X.-F., 2013. An evolving new paradigm: 

endothelial cells--conditional innate immune cells. J Hematol Oncol 6, 61. 

Manthey, H.D., Thomas, A.C., Shiels, I.A., Zernecke, A., Woodruff, T.M., Rolfe, B., Taylor, 

S.M., 2011. Complement C5a inhibition reduces atherosclerosis in ApoE-/- mice. FASEB J 

25, 2447–2455. 

Mantovani, A., Bussolino, F., Introna, M., 1997. Cytokine regulation of endothelial cell function: 

from molecular level to the bedside. Immunol Today 18, 231–240. 

Mestas, J., Ley, K., 2008. Monocyte-endothelial cell interactions in the development of 

atherosclerosis. Trends Cardiovasc Med 18, 228–232. 

Mollnes, T.E., Brekke, O.-L., Fung, M., Fure, H., Christiansen, D., Bergseth, G., Videm, V., 

Lappegård, K.T., Köhl, J., Lambris, J.D., 2002. Essential role of the C5a receptor in E coli-

induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole 

blood model of inflammation. Blood 100, 1869–1877. 

Monsinjon, T., Gasque, P., Chan, P., Ischenko, A., Brady, J.J., Fontaine, M.C., 2003. Regulation 

by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein 

endothelial cells. FASEB J 17, 1003–1014. 

Niculescu, F., Rus, H., 1999. Complement activation and atherosclerosis. Mol Immunol 36, 949–

955. 

Nooteboom, A., Bleichrodt, R.P., Hendriks, T., 2006. Modulation of endothelial monolayer 

permeability induced by plasma obtained from lipopolysaccharide-stimulated whole blood. 

Clin Exp Immunol 144, 362–369. 

Nooteboom, A., van der Linden, C.J., Hendriks, T., 2002. Tumor necrosis factor-alpha and 

interleukin-1beta mediate endothelial permeability induced by lipopolysaccharide-stimulated 



	
  

	
   23	
  

whole blood. Crit Care Med 30, 2063–2068. 

Nooteboom, A., van der Linden, C.J., Hendriks, T., 2004. Modulation of adhesion molecule 

expression on endothelial cells after induction by lipopolysaccharide-stimulated whole 

blood. Scand J Immunol 59, 440–448. 

Nooteboom, A., van der Linden, C.J., Hendriks, T., 2005. Whole blood-mediated endothelial 

permeability and adhesion molecule expression: a model study into the effects of bacteria 

and antibiotics. J. Antimicrob. Chemother. 55, 150–156. 

Pate, M., Damarla, V., Chi, D.S., Negi, S., Krishnaswamy, G., 2010. Endothelial cell biology: 

role in the inflammatory response. Adv Clin Chem 52, 109–130. 

Qu, H., Ricklin, D., Bai, H., Chen, H., Reis, E.S., Maciejewski, M., Tzekou, A., DeAngelis, 

R.A., Resuello, R.R.G., Lupu, F., Barlow, P.N., Lambris, J.D., 2013. New analogs of the 

clinical complement inhibitor compstatin with subnanomolar affinity and enhanced 

pharmacokinetic properties. Immunobiology 218, 496–505. 

Rajamäki, K., Lappalainen, J., Oörni, K., Välimäki, E., Matikainen, S., Kovanen, P.T., Eklund, 

K.K., 2010. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: 

a novel link between cholesterol metabolism and inflammation. PLoS ONE 5, e11765. 

Ricklin, D., Hajishengallis, G., Yang, K., Lambris, J.D., 2010. Complement: a key system for 

immune surveillance and homeostasis. Nat Immunol 11, 785–797. 

Samstad, E.O., Niyonzima, N., Nymo, S., Aune, M.H., Ryan, L., Bakke, S.S., Lappegard, K.T., 

Brekke, O.L., Lambris, J.D., Damas, J.K., Latz, E., Mollnes, T.E., Espevik, T., 2014. 

Cholesterol Crystals Induce Complement-Dependent Inflammasome Activation and 

Cytokine Release. J Immunol. 

Sarma, J.V., Ward, P.A., 2011. The complement system. Cell Tissue Res 343, 227–235. 



	
  

	
   24	
  

Schildberger, A., Buchacher, T., Weber, V., Falkenhagen, D., 2011. Adsorptive Modulation of 

Inflammatory Mediators Dampens Endothelial Cell Activation. Blood Purif 32, 286–295. 

Seifert, P.S., Kazatchkine, M.D., 1987. Generation of complement anaphylatoxins and C5b-9 by 

crystalline cholesterol oxidation derivatives depends on hydroxyl group number and 

position. Mol Immunol 24, 1303–1308. 

Selvan, R.S., Kapadia, H.B., Platt, J.L., 1998. Complement-induced expression of chemokine 

genes in endothelium: regulation by IL-1-dependent and -independent mechanisms. J 

Immunol 161, 4388–4395. 

Speidl, W.S., Kastl, S.P., Huber, K., Wojta, J., 2011a. Complement in atherosclerosis: friend or 

foe? J Thromb Haemost 9, 428–440. 

Speidl, W.S., Kastl, S.P., Hutter, R., Katsaros, K.M., Kaun, C., Bauriedel, G., Maurer, G., Huber, 

K., Badimon, J.J., Wojta, J., 2011b. The complement component C5a is present in human 

coronary lesions in vivo and induces the expression of MMP-1 and MMP-9 in human 

macrophages in vitro. FASEB J 25, 35–44. 

Tedesco, F., Pausa, M., Nardon, E., Introna, M., Mantovani, A., Dobrina, A., 1997. The 

cytolytically inactive terminal complement complex activates endothelial cells to express 

adhesion molecules and tissue factor procoagulant activity. J Exp Med 185, 1619–1627. 

Torzewski, M., Bhakdi, S., 2013. Complement and atherosclerosis-united to the point of no 

return? Clin. Biochem. 46, 20–25. 

Vogt, W., Zabern, von, I., Damerau, B., Hesse, D., Lühmann, B., Nolte, R., 1985. Mechanisms 

of complement activation by crystalline cholesterol. Mol Immunol 22, 101–106. 

 

  



	
  

	
   25	
  

Figure Legends 

Figure 1: CC-induced EC-activation is complement dependent 

EC were incubated with whole blood and complement inhibitors or control antibody prior to the 

addition of 2 mg/ml CC. (A) E-selectin expression and (B) ICAM-1 expression given as mean ± 

SEM for 5 healthy donors. ns = non significant, * p < 0.05, ** p< 0.01, *** p < 0.001 as 

compared to CC stimulation. 

 

Figure 2: CC induced EC activation is attenuated in C5-deficient patient 

EC were incubated with whole blood from a confirmed C5-deficient patient with or without 

reconstitution with 50 µg/ml recombinant C5 or with whole blood from healthy controls. (A) E-

selectin expression and (B) ICAM-1 expression on EC were measured. Four separate 

experiments were performed for the C5-deficient patient, with in total eight separate healthy 

controls. Data are given as mean ± SEM. 

 

Figure 3: CC incubated in 50% serum induce robust complement activation but no EC 

activation 

Expression of E-selectin and ICAM-1 on EC after incubation with 50% NHS in EC medium 

(both on right axis) as well as TCC production in supernatant (left axis) after stimulation with an 

increasing dose of CC. Data given as mean of n=3 ± SEM. 

 

Figure 4: EC activation is mediated by TNF 

EC were incubated with whole blood and the TNF antibody infliximab, the IL-1β antibody 

canakinumab or control antibody prior to the addition of 2 mg/ml CC. (A) E-selectin expression 
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and (B) ICAM-1 expression given as mean ± SEM of n=6 donors for all groups except 

canakinumab with n=4. ns = non significant, * p < 0.05, *** p < 0.001 as compared to CC 

stimulation. 

 

Figure 5: TNF-EC interaction is the main cause of EC activation 

Whole blood was incubated with or without 2 mg/ml CC for 4 hours after which plasma was 

separated and frozen immediately at − 80°C. Plasma was also separated from same donor but 

without incubation (T0). After thawing plasma on ice, EC were incubated with plasma from T0 

(white), without CC (light gray) or with CC (dark gray), and where stated, infliximab, 

canakinumab or a control antibody was added to the plasma. (A) E-selectin and (B) ICAM-1 

were measured. HUVEC was also incubated in medium with increasing doses of TNF (C) or IL-

1β (D) which dose-dependently increased expression of E-selectin and ICAM-1 which were 

inhibited by their respective inhibitors infliximab (anti-TNF) and canakinumab (anti-IL-1β). All 

data given for mean ± SEM of n=3 donors, except the lowest dose in panel C and D where n=2. 

ns = non significant, **** p < 0.0001 as compared to CC stimulated plasma 

 

Figure 6: Complement inhibition attenuates cytokine release in whole blood 

Plasma from whole blood incubated with EC, CC and inhibitors was analyzed for (A) IL-1β, (B) 

IL-6, (C) IL-8 and (D) TNF. Data are given as mean ± SEM for n=6 donors. ns = non significant, 

** p < 0.01, *** p < 0.001 as compared to CC stimulation. 
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