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A stochastic model is presented for intermittent fluctuations in the scrape-off layer of magnetically
confined plasmas. The fluctuations in the plasma density are modeled by a super-position of uncor-
related pulses with fixed shape and duration, describing radial motion of blob-like structures. In the
case of an exponential pulse shape and exponentially distributed pulse amplitudes, predictions are
given for the lowest order moments, probability density function, auto-correlation function, level
crossings, and average times for periods spent above and below a given threshold level. Also, the
mean squared errors on estimators of sample mean and variance for realizations of the process by
finite time series are obtained. These results are discussed in the context of single-point measure-
ments of fluctuations in the scrape-off layer, broad density profiles, and implications for plasma–-
wall interactions due to the transient transport events in fusion grade plasmas. The results may also
have wide applications for modelling fluctuations in other magnetized plasmas such as basic labo-
ratory experiments and ionospheric irregularities. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4951016]

I. INTRODUCTION

Cross-field transport of particles and heat in the scrape-
off layer (SOL) of non-uniformly magnetized plasmas are
often found to be dominated by the radial motion of field-
aligned filaments with excess particles and heat compared to
the ambient plasma.1–5 These filaments appear as blobs of
plasma in the plane perpendicular to the magnetic field and
may propagate across the SOL to the main chamber
walls.6–10 The average SOL plasma density and the particle
and heat fluxes due to the radial motion of plasma filaments
depend on their velocity, amplitude, and frequency of occur-
rence.11–15 The turbulence-driven transport results in broad
plasma profiles in the SOL and enhanced levels of plasma–-
wall interactions that may be an issue for the next generation
plasma confinement experiments and future fusion power
reactors.16–33

The radial motion of blob-like structures leads to large-
amplitude bursts in single-point measurements. The statistical
properties of these bursts in the SOL of several tokamak plas-
mas have recently been elucidated by the analysis of long data
time series from probe measurements and gas puff imag-
ing.11–15 Conditional averaging has revealed exponentially
distributed burst amplitudes and waiting times, while the burst
duration is found to be constant. The wave-form for large-
amplitude bursts in the time series is well described by an ex-
ponential function.11–15,23–32 The present study incorporates
these features in a stochastic model for intermittent plasma
fluctuations in the SOL, described as a super-position of
uncorrelated pulses.34–39 This model explains many of the sa-
lient experimental findings and empirical scaling relations,
including broad plasma profiles and large fluctuation levels,

skewed and flattened probability density functions, and a par-
abolic relation between the skewness and flatness moments.
The latter has been observed in the boundary region of numer-
ous experiments on magnetized plasmas.11–14,40–44

Intermittent fluctuations in the far periphery of magneti-
cally confined plasmas can significantly amplify plasma–
wall interactions. In order to analyze the intermittent features
of the process, level crossing rates and excess time statistics
are introduced, that is, a study of the frequency of level
crossings and the duration of time intervals where a realiza-
tion of the process exceeds some prescribed threshold
level.45–49 This definition will be particularly useful for stud-
ies of confinement of hot plasmas, where it may be important
to distinguish many short plasma bursts from a few long
ones. Although the accumulated time in the bursts can be the
same, their consequences will be different as far as, for
instance, the heat load on a confining wall is concerned.49

The stochastic model is here used to derive expressions for
the average time spent above and below a prescribed refer-
ence level, and the dependence on the pulse duration and av-
erage waiting time is discussed. The analysis makes use of
some general results for synthetic time series, often called
the Rice model,35 which has been used also for modeling
plasma fluctuations.36 For completeness, the relevant ele-
ments of that analysis are summarized here.

This manuscript is organized as follows. In Sec. II, the
stochastic model based on a super-position of uncorrelated
pulses is presented and its basic predictions are derived for
general pulse shapes and amplitude distributions. The cumu-
lants and lower order moments are derived in Sec. III and
shown to predict a parabolic relation between the skewness
and flatness moments. In the case of an exponential pulse
function and exponentially distributed pulse amplitudes, the
probability density function is shown in Sec. IV to be Gammaa)odd.erik.garcia@uit.no
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distribution with the scale parameter given by the average
pulse amplitude and the shape parameter given by the ratio
of the pulse duration and average waiting time. In Sec. V, the
level crossing rate and average times spent by the process
above and below a given threshold level are considered.
The mean squared errors on estimates of the mean and var-
iance for realizations of the stochastic process are derived in
Sec. VI. Finally, a discussion of the results is presented in
Sec. VII and conclusions are given in Sec. VIII.

II. STOCHASTIC MODEL

This section begins with a motivation of the stochastic
model based on the well-known properties of blob motion in
the SOL. This is followed by a discussion of some basic
properties and predictions of the stochastic model, including
the mean, variance, auto-correlation function, and power
spectral density.

A. Super-position of pulses

Consider the case of plasma fluctuations due to a super-
position of K pulses which propagate in space without
change of shape,36

UKðx; tÞ ¼
XK

k¼1

Akukðx$ xk $ vktÞ; (1)

where for the k-th pulse Ak is the pulse amplitude and ukðxÞ
denotes the pulse shape which propagate with velocity vk

along the x-axis. At time t¼ 0, the pulse labeled k is located
at xk. A single-point measurement at some given position n
will record the pulse events at various times, giving the
signal

UKðn; tÞ ¼
XK

k¼1

Akukðvkðtk $ tÞÞ; (2)

where the reference time for pulse k is given by tk ¼ ðn$ xkÞ=
vk. As an example, consider a pulse shape with a steep front
and a trailing wake defined by

uk xð Þ ¼ H $ x

‘k

! "
exp

x

‘k

! "
; (3)

where ‘k is the pulse size and the unit step function is
defined by

HðyÞ ¼ 0; y < 0;
1; y % 0:

#
(4)

The signal recorded at position n is in this case given by

UK n; tð Þ ¼
XK

k¼1

AkH
vk t$ tkð Þ

‘k

! "
exp $

vk t$ tkð Þ
‘k

! "
: (5)

The pulse duration for event k is here given by the transit
time sd ¼ ‘k=vk. In the following, the properties of the time
series in Eq. (5) will be investigated assuming a constant

pulse duration sd. Further discussion on the filament motion
is given in Sec. VII.

Based on the foregoing discussion of pulse propagation,
it is of interest to consider a stochastic process given by the
super-position of a random sequence of K pulses34–39

UKðtÞ ¼
XKðTÞ

k¼1

Akuðt$ tkÞ; (6)

where for event k, tk is the pulse arrival time, Ak is the pulse
amplitude, and uðtÞ is some prescribed pulse shape which is
taken to be the same of all events. In Eq. (6), the sum is over
exactly K pulses present in a record of duration T. In the fol-
lowing, it is assumed that T is large compared with the range
of values of t for which uðtÞ is appreciably different from
zero, thus allowing to neglect end effects in a given realiza-
tion of the process.

The pulse duration time, in general defined by

sd ¼
ð1

$1
dt juðtÞj; (7)

is assumed to be finite and taken to be the same for all pulses
in the process. The definition in Eq. (7) is consistent with the
special example of sd discussed before. The integral of the n-
th power of the pulse shape will appear frequently in the fol-
lowing and is defined as:

In ¼
1

sd

ð1

$1
dt u tð Þ½ 'n: (8)

This integral is assumed to be finite for all integers n % 1.
Note that when the pulse shape is an odd function, I1 ¼ 0,
while if uðtÞ is non-negative I1 ¼ 1.

The pulse function described by Eq. (5) corresponds to
the one-sided exponential function

u tð Þ ¼ H
t

sd

! "
exp $ t

sd

! "
: (9)

This special case is readily generalized to a double-
exponential pulse shape with a finite rise time, but for simplic-
ity only the one-sided exponential pulse will be considered in
the following. The integral of the n-th power of the pulse
shape is then given by

In ¼
1

sd

ð1

0

dt exp $ nt

sd

! "
¼ 1

n
: (10)

Although this relation is used repeatedly in the following, it
should be noted that many of the results given below are in-
dependent of the details of the pulse shape.

The pulse arrival times tk are in the following assumed
to be uniformly distributed on a large interval T, so that any
particular pulse labeled k is just as likely to arrive at one
time as it is at any other time, that is, the pulse arrival time
probability density function is the uniform distribution
PtðtkÞ ¼ 1=T. Thus, the probability that tk lies in the interval
ðt; tþ dtÞ is dt=T, irrespective of the arrival of any other
pulse. With these assumptions, the conditional probability
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that there are exactly K pulse arrivals during any interval of
duration T is given by the Poisson distribution

PK KjTð Þ ¼ 1

K!

T

sw

! "K

exp $ T

sw

! "
; (11)

where sw is the average pulse waiting time. The average
number of pulses in a record of duration T is

hKi ¼
X1

K¼0

KPK KjTð Þ ¼ T

sw
; (12)

where here and in the following, angular brackets denote the
ensemble average of a random variable over all its argu-
ments. From the Poisson distribution, it follows that the wait-
ing time between two subsequent pulses is exponentially
distributed. From these underlying properties of the stochas-
tic model, it is possible to derive analytical predictions in a
closed form for the fundamental fluctuation statistics. This is
the main objective of the present contribution.

B. Mean and variance

The mean value of UKðtÞ is given by averaging over all
random variables. Starting with the case of exactly K events
in a realization with duration T, this gives35

hUKi ¼
ðT

0

dt1
T

ð1

$1
dA1 PA A1ð Þ ) ) )

ðT

0

dtK
T

*
ð1

$1
dAK PA AKð Þ

XK

k¼1

Aku t$ tkð Þ; (13)

using that the pulse arrival times are uniformly distributed. It
is assumed that all K pulses arrive in the interval ð0; TÞ. This
naturally leads to a non-stationary transient for small obser-
vation times t where few pulses contribute to the signal.
Similarly, for large observation times, t> T, no new pulses
arrive and the signal UKðtÞ eventually decays at the same
rate as the individual pulses. In order to quantify this non-
stationarity, the integral above is calculated by a simple
change of variables giving

ðT

0

dtk u t$ tkð Þ

¼
ðT

0

dtk H
t$ tk

sd

! "
exp $ t$ tk

sd

! "

¼ sd

0; t+ 0;

1$ exp $ t

sd

! "
; 0 < t+ T;

exp $ t$ T

sd

! "
$ exp $ t

sd

! "
; t> T;

8
>>>>>>><

>>>>>>>:

(14)

for a pulse with arrival time tk. For observation times
t< 0, the mean value of the signal evidently vanishes
since all pulses arrive in the interval ð0; TÞ. For observa-
tion times within the interval ð0; TÞ, the mean value tran-
siently increases and the process is stationary only on

temporal scales much longer than the pulse duration,
t, sd. This is due to the transient building up of the sig-
nal at small times where few pulses contribute to the
mean value. For observation times longer than the record
under consideration, t>T, the signal UKðtÞ decreases due
to the absence of new pulse arrivals and this naturally
influences the mean value.

Neglecting end effects due to the finite duration of indi-
vidual pulses by taking the integration limits in Eq. (13) to
infinity, the mean value of the signal follows directly,

hUKi ¼ hAi
K

T

ð1

$1
dt u tð Þ ¼ sdI1hAi

K

T
: (15)

Assuming that the number of pulses K is given by a Poisson
distribution, it follows that the mean value of the stationary
process is given by

hUi ¼
X1

K¼0

hUKiPK KjTð Þ ¼ sd

sw
I1hAi: (16)

For a non-negative pulse function, I1 ¼ 1, the mean value of
the process is given by the average pulse amplitude and
the ratio of the pulse duration and average waiting time.
Note that the mean value vanishes for anti-symmetric pulse
shapes, I1 ¼ 0, and for pulse amplitude distributions with
zero mean, hAi ¼ 0.

Similarly, the variance can be calculated by using the
relation U2

rms ¼ hðU$ hUiÞ
2i ¼ hU2i$ hUi2, where Urms

denotes the root mean square (rms) value of U. From the def-
inition of UKðtÞ, it follows that

U2
KðtÞ ¼

XK

k¼1

XK

‘¼1

AkA‘uðt$ tkÞuðt$ t‘Þ: (17)

Averaging this over pulse amplitudes and arrival times for
fixed t and K as above gives

hU2
Ki ¼

ðT

0

dt1

T

ð1

$1
dA1 PA A1ð Þ ) ) )

ðT

0

dtK

T

ð1

$1
dAK PA AKð Þ

*
XK

k¼1

XK

‘¼1

AkA‘u t$ tkð Þu t$ t‘ð Þ: (18)

There are two contributions to the variance from the double
sum. When k ¼ ‘, there are K terms given by the integral

ðT

0

dtk

T

ð1

$1
dAk PA Akð ÞA2

ku
2 t$ tkð Þ; (19)

while for k 6¼ ‘ there are KðK $ 1Þ terms with the value

ðT

0

dtk

T

ð1

$1
dAk PA Akð ÞAku t$ tkð Þ

*
ðT

0

dt‘
T

ð1

$1
dA‘ PA A‘ð ÞA‘u t$ t‘ð Þ: (20)

Again neglecting the end effects due to the finite duration of
individual pulses by extending the integration over tk and t‘
to infinity, the variance for large T is given by
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hU2
Ki ¼

K

T
hA2i

ð1

$1
dt u tð Þ½ '2

þ K K $ 1ð Þ
T2

hAi2
ð1

$1
dt u tð Þ

% &2

: (21)

By averaging over all realizations where the number of pulses
K is statistically distributed, using that hKðK $ 1Þi ¼ hKi2 for
a Poisson distribution gives

hU2i ¼
X1

K¼0

hU2
KiPK KjTð Þ ¼ sd

sw
I2hA2iþ hUi2: (22)

It follows that the variance is given by

U2
rms ¼

sd

sw
I2hA2i; (23)

and thus the coefficient of variation, or relative fluctuation
level for the process, for a non-zero mean is

Urms

hUi
¼ sw

sd

! "1=2 I1=2
2

I1

hA2i1=2

hAi
: (24)

The relative fluctuation level increases with increasing wait-
ing time and decreasing pulse duration. The main properties
of the stochastic process are thus given by the ratio of the
pulse duration and average waiting time,

c ¼ sd

sw
: (25)

For reasons to become clear, this will be referred to as the
intermittency parameter of the model.

The interpretation of the above results is evident. For short
waiting times and long pulse durations, c, 1, there is a sig-
nificant pulse overlap and the signal will at any time be influ-
enced by many individual pulses. This results in a large mean
value and small relative variation. In the opposite limit of long
waiting times and short pulse durations, c- 1, the signal is
dominated by the isolated pulse events, resulting in a small
mean value and large relative fluctuations. These features of
the signal are illustrated in Fig. 1, which shows realizations of

the process for different values of c based on the exponentially
distributed pulse amplitudes and waiting times and an expo-
nential pulse shape as given by Eq. (9). Here, it is clear that for
small values of c, the signal is dominated by isolated pulses
resulting in large-amplitude bursts and strongly skewed fluctu-
ations. For large values of c, there is significant overlap of
pulse structures and the fluctuations appear symmetric with
small relative amplitudes. This observation will be quantified
by the calculation of higher order moments and the probability
density function of the signal in Secs. III and IV, respectively.

C. Correlation function

Considering first the signal UKðtÞ defined by Eq. (6), the
two-point correlation is given by

hUK tð ÞUK tþ sð Þi

¼
ðT

0

dt1
T

ð1

0

dA1 PA A1ð Þ ) ) )
ðT

0

dtK

T

*
ð1

0

dAK PA AKð Þ
XK

k¼1

XK

‘¼1

Aku t$ tkð ÞA‘u t$ t‘ þ sð Þ

¼ hA2i
XK

k¼1

ðT

0

dt1

T
u t$ tkð Þu t$ tk þ sð Þ

þhAi2
XK

k; ‘ ¼ 1
k 6¼ ‘

ðT

0

dtk

T
u t$ tkð Þ

ðT

0

dt‘
T

u t$ t‘ þ sð Þ: (26)

Here again, the double sum has been divided into two parts.
The first part consists of K terms where k ¼ ‘ and the second
part consists of KðK $ 1Þ terms where k 6¼ ‘. Neglecting the
end effects due to the finite pulse duration by taking the inte-
gration limits to infinity, the convolution for the one-sided
exponential pulse function is

1

T

ð1

$1
dtk u t$ tkð Þu t$ tk þ sð Þ ¼

sd

2T
exp $ jsj

sd

! "
: (27)

Substituting this result into Eq. (26) and averaging over the
number of pulses occurring in the interval of length T, it fol-
lows that the auto-correlation function for the stationary pro-
cess UðtÞ is given by

RU sð Þ ¼ hU tð ÞU tþ sð Þi

¼
X1

K¼0

hUK tð ÞUK tþ sð ÞiPK KjTð Þ

¼ hUi2 þ U2
rms exp $ jsj

sd

! "
; (28)

which is independent of the amplitude distribution PA as far
as the mean and variance are finite. The correlation function
decreases exponentially with separation s with a rate given
by the duration of individual pulses.

The power spectral density SUðxÞ is given by the
Fourier transform of the auto-correlation function,

SU xð Þ ¼ 2phUi2d xð Þ þ U2
rms

2sd

1þ sd
2x2

; (29)
FIG. 1. Realizations of the stochastic process for exponentially distributed
pulse amplitudes and waiting times and an exponential pulse shape. The degree
of pulse overlap is determined by the intermittency parameter c ¼ sd=sw.
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where x is the angular frequency. The first term in the above
equation is the contribution from the mean value of the sig-
nal, giving a zero frequency contribution. The second term
is a Lorentzian spectrum, independent of frequency for
0 < sd

2x2 - 1, and has the asymptotic behavior 1=sd
2x2

for high frequencies sd
2x2 , 1. It is of interest to note that

the average waiting time does not appear explicitly in the
functional shape of the auto-correlation function and the
power spectral density, which is due to the assumed inde-
pendence of the pulse events.

III. CUMULANTS AND MOMENTS

In this section, a general expression is derived for the
characteristic function of the random variable U in the case
of a Poisson distribution of pulse events. From this, the
cumulants and the lowest order statistical moments are found
and shown to predict a parabolic relation between the skew-
ness and flatness moments, the result agreeing with a more
general inequality.50 Systematic skewness–flatness relations
are also found in the studies of, for instance, concentration
fluctuations in the neutral atmosphere and seem thus to be of
universal nature.51–55

A. Characteristic function

The characteristic function for a sum of independent
random variables is the product of their individual character-
istic functions. Thus, the conditional probability density
PUðUjKÞ that a sum of K pulse events /k lies in the range
between U and Uþ dU is given by

PU UjKð Þ ¼ 1

2p

ð1

$1
du exp $iUuð Þ

YK

k¼1

h exp i/kuð Þi; (30)

where the characteristic functions h expði/kuÞi are averaged
over the values of /k ¼ Akuðt$ tkÞ. For general amplitude
distribution and pulse shape,

h exp i/kuð Þi ¼
ðT

0

dtk

T

ð1

$1
dAk PA Akð Þexp iuAku t$ tkð Þ½ ';

(31)

where T is the duration of the time interval under considera-
tion. Since all the K characteristic functions in Eq. (32) are
the same, the conditional probability density is

PU UjKð Þ ¼ 1

2p

ð1

$1
du exp $iUuð Þh exp i/kuð ÞiK ; (32)

assuming the number of events K in a time interval T to be
given. The probability density function for the random vari-
able U is given by

PU Uð Þ ¼
X1

K¼0

PU UjKð ÞPK KjTð Þ

¼ 1

2p

ð1

$1
du exp $iUuþ T

sw
h exp i/kuð Þi$

T

sw

! "
;

(33)

where PKðKjTÞ is the Poisson distribution given in Eq. (11).
The stationary probability density function for U is obtained
by extending the integration limits for tk to infinity. This
leads to the desired result

PU Uð Þ ¼ 1

2p

ð1

$1
du exp

!
$iUuþ 1

sw

ð1

$1
dA PA Að Þ

*
ð1

$1
dt exp iuAu tð Þð Þ $ 1½ '

"
: (34)

According to this equation, the logarithm of the characteris-
tic function of PU is

1

sw

ð1

$1
dA PA Að Þ

ð1

$1
dt exp iuAu tð Þð Þ $ 1½ '

¼
X1

n¼1

1

sw

iuð Þn

n!

ð1

$1
dA AnPA Að Þ

ð1

$1
dt u tð Þ½ 'n; (35)

where the exponential function has been expanded in a
power series. The cumulants jn are the coefficients in the
expansion of the logarithm of the characteristic function
for PU

lnh exp iUuð Þi ¼ ln

ð1

$1
dU exp iUuð ÞPU Uð Þ ¼

X1

n¼1

jn
iuð Þn

n!
:

(36)

For the stochastic process considered here, the cumulants are
thus given by

jn ¼
1

sw

ð1

$1
dA AnPA Að Þ

ð1

$1
dt u tð Þ½ 'n ¼ cInhAni; (37)

where In is defined in Eq. (8). From the cumulants, the low-
est order moments are readily obtained. A formal power
series expansion shows that the characteristic function is
related to the raw moments of U, defined by l0n ¼ hUni

h exp iUuð Þi ¼ 1þ
X1

n¼1

hiUuin

n!
¼ 1þ

X1

n¼1

l0n
iuð Þn

n!
: (38)

Further expanding the logarithmic function in Eq. (36) and
using Eq. (38), it follows that the lowest order centred
moments ln ¼ hðU$ hUiÞ

ni are related to the cumulants by
the relations l2 ¼ j2; l3 ¼ j3 and l4 ¼ j4 þ 3j2

2. From
this, the skewness and flatness moments are readily obtained.

B. Skewness and flatness

Higher order moments are straightforward to calculate
from Eq. (37) for general pulse shapes and amplitude distri-
butions. In particular, the skewness and flatness moments are
given, respectively, by

SU ¼
h U$ hUið Þ3i

U3
rms

¼ 1

c1=2

I3

I3=2
2

hA3i
hA2i3=2

; (39a)

FU ¼
h U$ hUið Þ4i

U4
rms

¼ 3þ 1

c
I4

I2
2

hA4i
hA2i2

: (39b)
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The relative fluctuation level, skewness, and flatness all
increase with decreasing c. For large c, the skewness and
excess flatness vanish, consistent with a normal distribution
of the fluctuations. For these reasons, c is referred to as the
intermittency parameter of the model.

The relations given in Eq. (39) imply that there is a para-
bolic relation between the skewness and flatness moments37

FU ¼ 3þ I2I4

I2
3

hA2ihA4i
hA3i2

S2
U: (40)

This relation holds for any pulse shape and amplitude distri-
bution as far as the pulse function integrals given by Eq. (8)
and the amplitude moments exist.

For the exponential pulse shape given by Eq. (9), the inte-
gral in Eq. (37) is trivially calculated by the use of Eq. (10).
The cumulants are thus given by jn ¼ chAni=n. It follows
that the variance, like the mean value, depends on the ratio of
the pulse duration and average waiting time,

U2
rms ¼

c
2
hA2i: (41)

The square of the relative fluctuation level, or coefficient of
variation, is accordingly given by

U2
rms

hUi2
¼ 1

2c
hA2i
hAi2

: (42)

Similarly, the expressions for the skewness and flatness
moments simplify to become

SU ¼
8

9c

! "1=2 hA3i
hA2i3=2

; (43a)

FU ¼ 3þ 1

c
hA4i
hA2i2

: (43b)

This demonstrates that the probability density function for U
is positively skewed, SU > 0, and flattened, FU > 3, for posi-
tive definite pulse amplitudes A. Moreover, from the fore-
going expressions, it follows that the parabolic relation
between skewness and flatness simplifies to

FU ¼ 3þ 9

8

hA2ihA4i
hA3i2

S2
U: (44)

The above expressions for the lowest order moments are
further simplified in the particular case of exponentially dis-
tributed pulse amplitudes

PA ¼
1

hAi
exp $ A

hAi

! "
: (45)

The raw amplitude moments are then given by hAni ¼ n!hAin.
In this case, the relative fluctuation level can be written as

Urms

hUi
¼ 1

c1=2
; (46)

while the skewness and flatness moments for U reduce to

SU ¼
2

c1=2
; (47a)

FU ¼ 3þ 6

c
: (47b)

The parabolic relation between these moments becomes
simply FU ¼ 3þ 3S2

U=2, notably independent of the model
parameters.

IV. AMPLITUDE DISTRIBUTION

In this section, the probability density function for the
random variable U will be derived in the case of an exponen-
tial pulse shape and exponentially distributed pulse ampli-
tudes. The limits of weak and strong intermittency are
discussed in detail.

A. Normal limit

The results presented above show that the skewness and
flatness moments vanish in the limit of large c. It can be
demonstrated that the probability density function for U then
approaches a normal distribution, independent of the details
of the pulse shape and amplitude distribution. The distribu-
tion PU can be written in terms of the characteristic function
given in Eq. (36)

PU Uð Þ ¼ 1

2p

ð1

$1
du exp $iUuþ

X1

n¼1

iuð Þnjn

n!

 !
; (48)

where the cumulants are given by Eq. (37). In the limit of
large c, the exponential function can be expanded as a power
series in u. Integrating term by term then gives35

lim
c!1

Urms PU ~Uð Þ

¼ lim
c!1

1

2pð Þ1=2
exp $

~U
2

2

 !%
1þ l3

3!U3
rms 2pð Þ1=2

* ~U
3 $ 3~U

' (
þO 1=cð Þ

&
; (49)

where the last term inside the square brackets represent the
sum of the remaining terms in the expansion and the centred
and scaled amplitude is defined by

~U ¼ U$ hUi
Urms

; (50)

with the mean value hUi and fluctuation level Urms given by
Eqs. (16) and (23), respectively. The terms inside the square
brackets in Eq. (49) are of order 1, 1=c1=2, and 1=c, respec-
tively. This shows how the probability density function for U
approaches a normal distribution in the limit of large c. This
transition to normal distributed fluctuations is expected from
the central limit theorem, since in this case a large number of
uncorrelated pulses contribute to UðtÞ at any given time.
This normal limit is valid for arbitrary pulse shapes and am-
plitude distributions as far as the cumulants are finite.
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B. Strong intermittency limit

The asymptotic probability density function in the strong
intermittency limit c! 0 can be obtained for an exponential
pulse shape and exponentially distributed pulse amplitudes by
neglecting overlap of individual pulse events. Considering
first a single pulse, given by /ðtÞ ¼ AHðtÞ expð$t=sdÞ, the
time dt spent between / and /þ d/ is given by

dt

d/
¼ sd

/
: (51)

Note that due to the assumed exponential pulse shape, the pulse
amplitude A does not enter this expression. The number of
pulses with amplitude above U is given by the complementary
cumulative amplitude distribution function, expð$U=hAiÞ. The
probability density function PU is given by the proportion of
time which the process UðtÞ spends in the range from U to
Uþ dU. With the appropriate normalization, the asymptotic
probability density function in the strong intermittency limit is
thus given by37

lim
c!0

PU Uð Þ ¼ lim
c!0

1

C cð Þ
1

U
exp $ U

hAi

! "
; (52)

where the Gamma function has been introduced

CðcÞ ¼
ð1

0

du uc$1 expð$uÞ; (53)

which in the limit of small c is to lowest order given by 1=c.
The probability density function in Eq. (52) has an exponen-
tial tail for large values but is inversely proportional to U for
small values due to the long quite period between pulse
events in this strong intermittency regime. Different from the
normal limit discussed above, this result depends on both the
pulse shape and the amplitude distribution, which are both
taken to be exponential functions.

C. Gamma distribution

For the special case of exponentially distributed pulse
amplitudes, the amplitude integral in Eq. (35) is given by
hAni ¼ n!hAin, and the factorial thus cancels. Further invok-
ing the exponential pulse shape given in Eq. (9), it follows
that the characteristic function for the stationary distribution
can be written as

exp c
X1

n¼1

iuhAið Þn

n

" #
¼ 1$ ihAiuð Þ$c: (54)

This is nothing but the characteristic function for a Gamma
distribution with scale parameter hAi and shape parameter c.
Thus, the stationary probability density function for U is
given by

PU Uð Þ ¼ 1

hAiC cð Þ
U
hAi

! "c$1

exp $ U
hAi

! "
: (55)

The lowest order moments and asymptotic limits of the Gamma
distribution agree with the expressions discussed previously. In

particular, the mean value is given by hUi ¼ chAi and the
variance by U2

rms ¼ chAi2. For c > 1, the most likely amplitude
is ðc$ 1ÞhAi and the shape of the distribution function is
unimodal and skewed. When c¼ 1, PU becomes an exponential
distribution with the mean value given by the average pulse am-
plitude, expð$U=hUiÞ=hUi. Note that by writing the average
pulse amplitude as hAi ¼ hUi=c, the Gamma distribution given
in Eq. (55) can be written in terms of the mean value of U as

hUiPU Uð Þ ¼ c
C cð Þ

cU
hUi

! "c$1

exp $ cU
hUi

! "
; (56)

where the scale parameter is given by hUi=c and the shape pa-
rameter is given by c ¼ hUi2=U2

rms. Examples of this normal-
ized Gamma distribution in Eq. (56) is presented in Fig. 2 for
various values of c.

For large c, the probability density function approxi-
mates a normal distribution with non-zero mean, as pre-
dicted. Introducing the shifted and scaled variable ~U defined
in Eq. (50), the Gamma distribution for U can be written as

P~U
~Uð Þ ¼

c1=2þc$1 exp $cð Þ
UrmsC cð Þ

~U
c1=2
þ 1

 !$1

*
~U

c1=2
þ 1

 !c

exp $c1=2 ~U
' (

: (57)

Using the asymptotic limits

lim
c!1

~U
c1=2
þ 1

 !$1

¼ 1; (58a)

lim
c!1

C cð Þ
2pð Þ1=2c1=2þc$1 exp $cð Þ

¼ 1; (58b)

lim
c!1

~U
c1=2
þ 1

 !c

exp $c1=2 ~U
' (

¼ exp $
~U

2

2

 !

; (58c)

the normal distribution for ~U with vanishing mean and unit
variance follows directly from Eq. (57), although formally,
the Gamma distribution is defined only for positive values of

FIG. 2. Normalized Gamma distribution for the random variable U with
mean hUi for various shape parameters c.
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U, while the normal distribution is defined for all values of
~U. The Gamma distribution is thus in agreement with the
general result stated by Eq. (49).

V. LEVEL CROSSINGS AND EXCESS TIMES

In order to further analyze the intermittent features of
the process, level crossings and excess time statistics are
investigated, in particular, the average duration of time inter-
vals where the signal exceeds some prescribed threshold
level.

The fraction of time a signal UðtÞ spends below a partic-
ular threshold value is given by the cumulative distribution
function, CU, defined in terms of the probability density
function PUðUÞ by

CUðUÞ ¼
ðU

$1
dU0 PUðU0Þ: (59)

Similarly, the fraction of time the signal UðtÞ spends above a
particular threshold value is given by the complementary cu-
mulative distribution function, 1$ CU. This is also known as
the survival or reliability function, which is a property of any
random variable that maps a set of events, usually associated
with mortality or failure of some system, onto time. It cap-
tures the probability that the system will survive beyond a
specified time.

For the stochastic process considered here with an expo-
nential pulse shape and exponentially distributed pulse ampli-
tudes, PU is given by the Gamma distribution in Eq. (56), and
the cumulative distribution function is the regularized lower
incomplete Gamma function

CU Uð Þ ¼ Cl c; cU=hUið Þ
C cð Þ

; (60)

where Cl is the lower incomplete Gamma function

Clðc; cU=hUiÞ ¼
ðcU=hUi

0

dW Wc$1 expð$WÞ: (61)

The complementary cumulative distribution function is pre-
sented in Fig. 3 for various values of the intermittency pa-
rameter c. For low values of U, the fraction of time above

the threshold approaches unity since the entire signal ends
up above the threshold. In the normal limit, there are only
small variations around the mean value, and the complemen-
tary cumulative distribution approaches a step function.
Clearly, the fraction of time spent above large threshold
levels increases drastically as the intermittency parameter
c decreases. In the strong intermittency limit, virtually every
new pulse arrival takes the signal above a finite threshold
value.

In order to quantify the excess time statistics, the num-
ber of up-crossings XU of the level U in an interval of dura-
tion T for the process described by Eq. (6) must be derived.
For the exponential pulse shape given in Eq. (9), this can be
calculated by means of a change of variables formula in
the framework of functions of bounded variation. This gives
an explicit formula for the Fourier transform of the level
crossings function of the filtered Poisson process with jumps.
In the case of exponentially distributed pulse amplitudes, the
average frequency of up-crossings is found to be given
by39,56,57

sd

T
XU Uð Þ ¼ 1

C cð Þ
cU
hUi

! "c

exp $ cU
hUi

! "
: (62)

This function is presented in Fig. 4 for various values of c.
The number of crossings is evidently proportional to the
length of the time series T and inversely proportional to the
pulse duration sd. In the normal limit, c!1, there are no
crossings for levels much smaller or much larger than the
mean value due to the absence of large-amplitude fluctua-
tions. The rate of level crossings is therefore a narrow
Gaussian function in this limit. Indeed, the relevant limit is
straightforward to calculate and gives

lim
c!1

sd

Tc1=2
X~U

~Uð Þ ¼ 1

2pð Þ1=2
exp $

~U
2

2

 !

; (63)

where ~U ¼ ðU$ hUiÞ=Urms. In the strong intermittency limit,
c! 0, the signal spends most of the time close to zero value,
and virtually any pulse arrival will give rise to a level crossing
for finite threshold values. As seen in Fig. 4, the rate of level
crossings approaches a step function in this limit.

FIG. 3. Complementary cumulative distribution function for the stochastic
process for various intermittency parameters.

FIG. 4. Frequency of up-crossings of the threshold level U for the stochastic
process for various intermittency parameters.
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The average time spent above the threshold U is esti-
mated by the ratio of the average total time above U, given
by the cumulative distribution, and the average number of
up-crossings

1

sd
hDT"i¼

1$CU Uð Þ
sdXU Uð Þ=T

¼Cu c;cU=hUið Þexp cU=hUið Þ
cU=hUið Þc

;

(64)

where the upper incomplete Gamma function is given by
Cuðc; cU=hUiÞ ¼ CðcÞ $ Clðc; cU=hUiÞ, using Eq. (61). The
average time spent above the threshold U is presented in
Fig. 5 for various values of c. In all cases, the average excess
time decreases monotonically with the threshold level, with
a fast drop for small threshold values. This is followed by a
slow tapering off for large threshold values. For the range of
intermittency parameters considered here, the average excess
time is of the order of the pulse duration or shorter for large
threshold values. In the limit of large threshold values, the
average excess time is given by

lim
U=hUi!1

1

sd
hDT"i ¼ lim

U=hUi!1

hUi
cU

; (65)

that is, the excess time is inversely proportional to both the
intermittency parameter and the threshold value normalized
to the mean.

In addition to excess times, the average time spent
below a given threshold value, hDT#i, is also readily esti-
mated by the cumulative distribution and the average number
of level crossings

1

sd
hDT#i ¼

CU Uð Þ
sdXU Uð Þ=T

¼ Cl c; cU=hUið Þexp cU=hUið Þ
cU=hUið Þc

:

(66)

This function is presented in Fig. 6 for various values of c. As
expected, in the normal limit, the signal spends very short
times below small values and very long times below large val-
ues, resulting in a sharp variation around U=hUi. With increas-
ing c, this variation with the threshold level becomes gradually
weaker, and in the strong intermittency regime, there is a weak
dependence on the threshold level with a slow increase of the
average time below threshold with increasing U.

VI. MOMENT ESTIMATION

For the stochastic process described here, the mean
squared error on estimates of sample mean and variance can
be derived. The mean squared error on an estimator meas-
ures the difference between the estimator and what is esti-
mated through the second moment with respect to the origin
of the error. For an unbiased estimator, the mean squared
error is the variance of the estimator. The mean squared error
for the estimated mean value and variance of the process is
analyzed in this section.

A. Sample mean

Consider a realization of the stochastic process given by
Eq. (6) sampled at N equi-distant times, UðtnÞ, where tn¼nDt;
Dt¼T=N is the sampling time and n is an integer ranging
from 1 to N. The unbiased estimator of the sample mean of the
signal is given by

l̂U ¼
1

N

XN

n¼1

U tnð Þ: (67)

For an unbiased estimator the relation hl̂Ui ¼ hUi holds, and
the mean squared error for the mean of the signal is given by

MSE l̂Uð Þ ¼ h l̂U $ hUið Þ2i

¼ $hUi2 þ 1

N2

XN

n¼1

XN

m¼1

hU tnð ÞU tmð Þi: (68)

In order to evaluate the sum over the discrete correlation
function, the continuous two-point correlation function given
by Eq. (28) at the discrete sampling times is used. For an ex-
ponential pulse shape, this gives

MSE l̂Uð Þ ¼
U2

rms

N
1þ 1

N

XN

n;m ¼ 1
n 6¼ m

exp $jn$ mj Dt

sd

! "2

64

3

75;

(69)

where the first term inside the square brackets follows from
the N terms in Eq. (68) for which n¼m. Defining h ¼ Dt=sd

FIG. 5. Average duration of time intervals above the threshold level U for
the stochastic process for various intermittency parameters.

FIG. 6. Average duration of time intervals below the threshold level U for
the stochastic process for various intermittency parameters.
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as the normalized sampling time, the sum in the above equa-
tion is evaluated as a geometric series to give the mean
squared error on the estimate of the mean value of the ran-
dom variable

MSE l̂Uð Þ ¼
U2

rms

N
1þ 1

N

N þ exp $hNð Þ $ 1$ N exp $hð Þ
2sinh2 h=2ð Þ

" #

:

(70)

As expected, the dominant contribution to the mean squared
error is inversely proportional to the number of samples N.
For the process considered here, the relative mean squared
error, MSEðl̂UÞ=hUi

2, is inversely proportional to c. Thus, a
strongly intermittent process, c- 1, features a much larger
relative error on estimates of the mean than a process with
significant pulse overlap, c, 1, given the same number of
samples and sampling rate. The mean squared error as a
function of the sample size is presented in Fig. 7 for various
normalized sampling rates.

For h, 1, the obtained samples are uncorrelated and
the expression for the mean squared error simplifies by
expansion of the hyperbolic function to

lim
h!1

MSE l̂Uð Þ ¼
U2

rms

N
; (71)

which is the same as the well-known result for uncorrelated and
normal distributed samples. The mean squared error in this limit
can alternatively be written as MSEðl̂UÞ ¼ hUi

2=cN, again
showing that the relative error for the estimated mean is large
in the strong intermittency limit. The opposite limit h- 1
describes the case of high sampling frequency where the time
series is well resolved on the temporal scale of the individual
pulses. In this case, the mean squared error simplifies to

lim
h!0

MSE l̂Uð Þ ¼ lim
h!0

U2
rms

N
1þ 2

N

exp $hNð Þ $ 1$ hNð Þ
h2

% &
:

(72)

Further taking the limit hN , 1, describing the case of a
total sample time long compared to the pulse duration time,
T ¼ NDt , sd, the mean squared error on the mean is to the
lowest order given by

lim
h! 0

hN !1

MSE l̂Uð Þ ¼ lim
hN!1

2U2
rms

hN
: (73)

This clearly shows how finite correlation effects between the
samples contribute by an amplification factor 2=h to the
mean squared error on l̂U for a fixed number of samples.
Alternatively, the relative mean squared error in this limit
can be written as MSEðl̂UÞ=hUi

2 ¼ 2sw=T, showing that a
long sampling time relative to the average pulse waiting time
reduces the relative mean squared error in the case of high
sampling frequency.

Instead of evaluating the geometrical sum that leads to
Eq. (70), the sum over the two-point correlation function
can be written as a Riemann sum and approximated by an
integral

lim
h!0

XN

n;m ¼ 1
n 6¼ m

exp $hjn$ mjð Þ

¼ lim
h!0

ðN

0

dn

ðN

0

dm½Hðn$ mÞexp½hðm$ nÞ'

þHðm$ nÞexp½hðn$ mÞ''

¼ lim
h!0

2
hN þ exp $hNð Þ $ 1

h2
: (74)

This gives the same result as in Eq. (72). For this approxima-
tion to be valid, the variation of the integrand must be small,
dn=N - 1 and dm=N - 1, which corresponds to the high
sampling frequency limit h- 1.

B. Sample variance

An expression for the mean squared error on the
unbiased estimator for the variance,

r̂2
U ¼

1

N $ 1

XN

n¼1

U tnð Þ $ hUi
) *2

; (75)

may be derived using the same approach as used to obtain
Eq. (70). The mean squared error for this unbiased estimator
of the sample variance is given by

MSEðr̂2
UÞ ¼ hðr̂

2
U $ U2

rmsÞ
2i: (76)

As is clear from the above equation, calculation of the
mean squared error of the variance involves correlation
functions for the fourth power of the signal UðtÞ. While this
can in principle be calculated analytically, the resulting
expressions are lengthy and do not provide much insight.
However, the relevant asymptotic limits are readily
obtained for high and low sampling rates as discussed
above for the mean. In the case of low sampling frequency,
h, 1, the obtained samples are independent and identi-
cally distributed, and the mean squared error for the sample
variance is given by58

lim
h!1

MSE r̂2
U

' (
¼ U4

rms

N

2N

N $ 1
þ 1

c
hA4i
hA2i2

 !
; (77)FIG. 7. Mean squared error on the sample estimate of the mean value of a

realization of the stochastic process for various normalized sampling rates.
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where the last term within the parenthesis is the excess flat-
ness for the stochastic process. For exponentially distributed
pulse amplitudes, this is given by 6=c, revealing large errors
on the estimator in the strong intermittency limit.

In the case of high sampling rate, h- 1, calculation of
quadruple sums in Eq. (76) can be approximated by integrals
as in Eq. (74). A lengthy calculation gives the unbiased
mean squared error on the variance in the limit h! 0

2U4
rms

aN
1þ 3

c

! "
þ U4

rms

h2N2
$5$ 8 exp $hNð Þ þ exp $2hNð Þ
) *

þ 3U4
rms

ch2N2
exp $2hNð Þ $ 9
) *

þ 4U4
rms

h3N3
1$ 2 exp $hNð Þ þ exp $2hNð Þ
) *

þ 4U4
rms

ch3N3
14$ 9 exp $hNð Þ þ exp $3hNð Þ
) *

þ 12U4
rms

h4N4
1$ 2 exp $hNð Þ þ exp $2hNð Þ
) *

þ 4U4
rms

ch4N4
$11þ 18 exp $hNð Þ $ 9 exp $2hNð Þ þ 2 exp $3hNð Þ
) *

; (78)

here given for the case of exponentially distributed pulse
amplitudes. The mean squared error on the variance as a
function of the sample size is presented in Fig. 8 for various
values of the intermittency parameter c.

In the limit of large sample numbers or long record
length, hN ¼ T=sd , 1, the leading order terms in Eq. (78)
are inversely proportional to hN, giving the mean squared
error on the variance

lim
h! 0

hN !1

MSE r̂2
U

' (
¼ lim

hN!1

U4
rms

hN
2þ 6

c

! "
: (79)

In the normal limit, c, 1, the mean squared error simplifies
to MSEðr̂2

UÞ ¼ 2sdU4
rms=TN, analogous to the error on esti-

mates of the mean value of the signal given in Eq. (73). In the
strong intermittency regime, c- 1, the mean squared error
can be written as MSEðr̂2

UÞ ¼ 6swU4
rms=TN, again requiring

the total sample time to be much longer than the average pulse
waiting time for small relative errors. The mean squared error
on variance for h- 1 and errors on estimates of sample
skewness and flatness moments have been discussed and
investigated by use of synthetic data in Ref. 38.

VII. DISCUSSION

The results above are discussed in the context of filament
motion in magnetically confined plasmas and broad average
profiles. This is followed by a summary of the underlying
assumptions and predictions of the stochastic model and com-
parison to recent experimental measurements.

A. Exponential mean profile

Returning to the discussion of pulse propagation in
Sec. II A, the plasma density is modelled by a super-position
of pulses which is given by

UKðx; tÞ ¼
XK

k¼1

/kðx; tÞ: (80)

Neglecting interaction between pulse structures, their evolu-
tion is governed by the modified advection equation,

@/k

@t
þ vk

@/k

@x
þ /k

sk
¼ 0; (81)

where vk is the radial velocity for pulse k and the last term on
the left hand side describes B-parallel losses due to acoustic
streaming along the field lines. In the SOL, the parallel
transit time sk is typically estimated by Lk=Cs, where Lk is
the magnetic connection length and Cs is the acoustic
speed.59–61 According to Eq. (81), individual pulse structures
are thus described by

/kðx; tÞ ¼ AkðtÞukðx$ xk $ vktÞ; (82)

where ukðxÞ describes the pulse shape. At time t¼ 0, the pulse
labeled k is located at the reference position xk. The amplitude
Ak for event k now varies with time and satisfies the equation

dAk

dt
¼ $Ak

sk
: (83)

Introducing the pulse amplitude A0k for the pulse labeled k at
position x¼ 0, the solution of the amplitude equation can be
written as

FIG. 8. Mean squared error on the sample estimate of the variance of a real-
ization of the stochastic process for h ¼ 10$2 and various intermittency pa-
rameters c.
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Ak tð Þ ¼ A0k exp $ tþ xk=vk

sk

 !
: (84)

Thus, at time $xk=vk the pulse labeled k is located at x¼ 0
and the amplitude is A0k. Consider now the signal recorded
at a reference position n. Introducing the reference time tk
¼ ðn$ xkÞ=vk for pulse k to be at the position n, the signal
can be written as

UK n; tð Þ ¼
XK

k¼1

A0k exp $ n
vksk

 !

* exp $ t$ tk

sk

! "
uk $vk t$ tkð Þð Þ: (85)

Clearly, the average profile decreases exponentially with a
scale length that increases with increasing pulse velocities
and parallel loss time.

In the particular case of an exponential pulse shape,

uk xð Þ ¼ H $ x

‘k

! "
exp

x

‘k

! "
; (86)

the signal recorded at the reference position n is given by

UK n; tð Þ ¼
XK

k¼1

A0k exp $ n
vksk

 !
H

t$ tk
s?

! "
exp $ t$ tk

sd

! "
;

(87)

where s? ¼ ‘k=vk and the pulse duration is now given by the
harmonic mean of the perpendicular and parallel transit
times, sd ¼ sks?=ðsk þ s?Þ. As expected, the duration of a
pulse recorded at position n will be influenced by both per-
pendicular and parallel transport. In the absence of parallel
losses, the expression (87) reduces to Eq. (5).

For any fixed position n, Eq. (87) is just the process that
has been analysed in the present contribution. Assuming for
simplicity the same size ‘? and the velocity v? for all pulses
so that the pulse duration is constant, the mean value of the
process gives the profile

hUi nð Þ ¼ sd

sw
hA0i exp $ n

v?sk

 !
: (88)

This equation elucidates the importance of pulse size, ampli-
tude, velocity, and waiting time for broad profiles and high
average plasma densities in the SOL. In particular, the mean
value is proportional to the pulse duration and mean ampli-
tude and inversely proportional to the average waiting time.
Moreover, the profile scale length is proportional to the pulse
velocity and parallel transit time, as often assumed in heuris-
tic modelling of convective cross-field transport in the
SOL.60–64

B. Comparison with experiments

Intermittent fluctuations in the boundary region of mag-
netically confined plasmas have been modeled by a super-
position of uncorrelated pulses with fixed shape and duration.

For this stochastic process, the model parameters are the pulse
duration sd, the average waiting time sw, and the average
pulse amplitude hAi. The lowest order moments of the ran-
dom variable have been derived for general pulse shapes and
amplitude distributions. The mean value of the random vari-
able is given by the average pulse amplitude and the ratio of
the pulse duration and average waiting time, while there is a
universal parabolic relation between the skewness and flatness
moments. Such a relation has been reported from many exper-
imental investigations of intermittent fluctuations in the
plasma boundary region.11–14,40–42

In the particular case of an exponential pulse shape, the
auto-correlation function is shown to be given by an exponen-
tial function with a shape that is independent of the average
pulse waiting time, again in agreement with experimental
measurements.13,15 Using this two-point correlation, the mean
squared errors on sample mean and variance are derived and
their dependence on model parameters and the sampling rate
are elucidated. These results are particularly useful for esti-
mating the errors involved when calculating the radial profile
of the mean plasma density and its fluctuation level from
measurements in the boundary region of hot fusion plasmas.
In normal operation, reciprocating Langmuir probes move
radially through the SOL up to the last closed magnetic flux
surface to record radial profiles and fluctuations of the ion sat-
uration current and floating potential.20–22,27–30,32,40,41 In order
to prevent arcing and damage of the probe head during meas-
urements in hot plasmas, the probe moves rapidly through
the boundary region. For any given radial position, this yields
short data time series with corresponding limitations and
uncertainties in the calculation of statistical averages. For
example, consider the typical case for many tokamak plasmas
with a sampling time of 0:5 ls, time series duration of 5 ms,
pulse duration sd ¼ 15 ls, and a relative fluctuation level
Urms=hUi ¼ 0:5. This gives a relative error on estimates of
the mean values of the signal of 5% and a relative error on
estimates of the standard deviation of 10%.

In order to elucidate the statistical properties of plasma
fluctuations in the SOL, dedicated experiments were per-
formed on several confinement devices with the probe main-
tained at a fixed spatial position at the outboard mid-plane in
ohmically heated, lower single null, deuterium fuelled plas-
mas to record very long time series under stationary plasma
conditions. Analysis of such measurement data, as well as
long data time series from gas puff imaging, provides strong
evidence in support of the stochastic model presented
here.11–15 Just in front of the main chamber wall at the out-
board mid-plane region, large relative fluctuation levels are
measured, corresponding to an intermittency parameter c of
order unity. Using conditional averaging, it has been shown
that plasma density time series are dominated by large-
amplitude bursts attributed to blob-like filament structures
moving through the SOL. The average burst shape is well
described by an exponential wave-form with constant dura-
tion, while the waiting times and peak amplitudes of the
bursts both have an exponential distribution.11–15

When the pulse amplitudes are exponentially distrib-
uted, the probability density function for the random variable
is a Gamma distribution with the shape parameter given by
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the ratio of the pulse duration and average waiting time and
the scale parameter given by the average pulse amplitude. In
the case of significant pulse overlap, c, 1, the probability
density function approaches a normal distribution, as
expected from the central limit theorem, independent of the
pulse shape and amplitude distribution.35 It should be noted
that when comparing the predicted Gamma distribution to
experimental data, there are no free fit parameters since the
shape parameter is given by the sample mean and variance,
c ¼ hUi2=U2

rms. There are many reports from experimental
measurements revealing histograms of plasma fluctuations
that are well described by a Gamma distribution across a
large range of experimental control parameters and locations
in the SOL.11–15,40,41

By taking into account the loss of plasma along mag-
netic field lines in the SOL, it is here demonstrated that an
exponential mean plasma density profile is expected for the
simple case of constant pulse size and velocity. The profile
scale length is then given by the product of the radial pulse
velocity and the parallel transit time. From experiments on
magnetically confined plasmas, it is commonly found that
the average profile is indeed exponential in the far SOL with
a scale length which increases with increasing line-averaged
density.17–29,32,33 It has also been found that this profile
broadening is accompanied by larger average radial blob
velocities.29,32,33,65 The stochastic model presented here
clearly reveals how such an increase in the pulse velocity
leads to broader profiles in the SOL. Experiments also show
profile broadening with decreasing plasma current, which is
also associated with larger collisionality and blob veloc-
ities.17,29 The profile broadening due to radial motion of
blob-like structures described here is possibly linked to di-
vertor detachment and the empirical discharge density
limit.20,21,29,32,33

For any given realization of the process, or its possible
description of an experimental data time series, the model
parameters sd, sw, and hAi are not directly accessible.
However, the predictions of the model readily allow to esti-
mate them. The auto-correlation function in Eq. (28) can be
used to obtain the pulse duration, and the sample mean and
variance can be used to obtain the intermittency parameter
c and average pulse amplitude. The results presented in
Sec. VI describe the errors involved in estimating the sample
mean and variance and thereby the model parameters. This
provides a novel approach for investigating measurement
data and elucidating systematic variations with experimental
control parameters.

VIII. CONCLUSIONS

A stochastic model for intermittent fluctuations in the
plasma boundary region has been constructed by a super-
position of uncorrelated pulses which represent radial motion
of blob-like structures. Both the underlying assumptions and
the predictions of this model are consistent with recent meas-
urements in magnetically confined plasmas. The mean am-
plitude of the signal is given by the average pulse amplitude
times the ratio of pulse duration and average waiting time. In
the case of exponentially distributed pulse amplitudes, the

probability density function of the plasma density is shown
to be a Gamma distribution with the shape parameter deter-
mined by the degree of pulse overlap. This simple model
thus explains the salient fluctuation statistics found in numer-
ous experimental measurements and elucidates the role of
burst statistics for large SOL plasma densities and fluctuation
levels.

The stochastic model suggests a new approach to study
the role of fluctuations in the boundary region of fusion plas-
mas by revealing the dependence of the intermittency factor
c on plasma parameters. Universal properties and scaling
relationships can be identified by comparison of data from
various experimental devices and across a broad range of
plasma parameters. Moreover, the use of level crossing rates
and excess time statistics is a novel approach to describe
intermittency effects that promises to be particularly relevant
for plasma–wall interaction in hot fusion plasmas. Novel pre-
dictions for these statistics have been derived in the present
contribution, extending the well-known normal limit previ-
ously compared to measurements data in basic laboratory
and space plasmas.48,49

Indications are that the results obtained in the present
study can apply for some seemingly universal features of
fluctuations found in magnetized plasmas. The data dis-
cussed in Sec. VII originated from hot toroidal plasmas, but
reports from experiments in low temperature linear devices
show raw data that can also be interpreted as a random
super-position of pulses with an exponential form in some
additive random noise.66,67 In the light of these results, it is
worthwhile to analyze the data also from other types of
experiments in magnetized plasmas. More generally, the
theory presented here can be seen as a reference model for
intermittent fluctuations and is well known to be relevant for
many other applications beyond fusion plasmas.48,49,56,57
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