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Abstract 14 

Germline mutations in BRCA1 and BRCA2 cause hereditary breast and ovarian cancer (HBOC). Molecular 15 

screening of these two genes in patients with a family history of breast or ovarian cancer has revealed pathogenic 16 

variants as well as genetic variants of unknown significance (VUS). These VUS may cause a challenge in the 17 

genetic counseling process regarding clinical management of the patient and the family. In this study, we further 18 

characterized 32 variants previously detected in 33 samples from patients with a family history of breast or ovarian 19 

cancer. cDNA was analyzed for alternative transcripts and selected missense variants located in the BRCT domains 20 

of BRCA1 were assessed for their trans-activation ability. 21 

Although an extensive cDNA analysis was done, only three of the 32 variants appeared to affect the splice-process 22 

(BRCA1 c.213-5T>A, BRCA1 c.5434C>G and BRCA2 c.68-7T>A). In addition, two variants located in the BRCT 23 

domains of BRCA1 (c.5075A>C p.Asp1692Ala and c.5513T>G p.Val1838Gly) were shown to abolish the BRCT 24 

domain trans-activation ability, whereas BRCA1 c.5125G>A (p.Gly1709Arg) exhibited equal trans-activation 25 

capability as the WT domain. These functional studies may offer further insights into the pathogenicity of certain 26 

identified variants; however, this assay is only applicable for a subset of missense variants. 27 
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Introduction 31 

The BRCA1 gene consists of 23 exons and encodes a 208 kDa protein encompassing 1863 amino acids (aa) [1]. 32 

N-terminally, BRCA1 has a RING-domain (aa 8-96) and two nuclear localization signals (aa 200-300) [2]. It also 33 

contains a phosphorylation site for Checkpoint Kinase 2 (CHEK2) protein at Ser988, a coiled coil domain (aa 34 

1364-1437), followed by several phosphorylation sites for Ataxia Telangiectasia Mutated protein (ATM) (between 35 

aa 1280-1524) and two trans-activating BRCT-domains (aa 1646-1859) [2]. BRCA1 has several interactions 36 

partners, for instance BRCA1 associated RING domain 1 (BARD1) protein, which interacts with the RING-37 

domain during homologous recombination repair (HRR) [2]. 38 

The BRCA2 gene consists of 27 exons and encodes a 384 kDa protein encompassing 3418 aa [1]. BRCA2 has 39 

eight BRC-repeats spaced evenly from aa 1009-2083, a helical domain, three oligonucleotide binding folds and a 40 

tower domain [2]. C-terminally, BRCA2 has two nuclear localization signals and a Cyclin Dependent Kinase 2 41 

(CDK2) phosphorylation site at Ser3291 [2].  N-terminally, BRCA2 has the ability to interact with Partner And 42 

Localizer of BRCA2 (PALB2) at aa 21-39, overlapping with exon 3 (aa 23-106) [3]. The physical connection 43 

between BRCA2 and PALB2 is important because PALB2 links BRCA2 and BRCA1 during HRR, at the coiled 44 

coil domain of BRCA1 [2].   45 

Together, mutated BRCA1 and BRCA2 are responsible for about 15-25% of familial breast and ovarian cancer 46 

cases [4, 5]. Pathogenic variants in BRCA1 and BRCA2 are estimated to give a 40-87% risk of breast cancer and a 47 

11-68% risk of ovarian cancer by age 70 [6]. Since the identification of BRCA1 and BRCA2, many pathogenic 48 

variants have been reported in these two genes. The Breast cancer information core (BIC) database includes over 49 

1700 distinct variants in BRCA1 and approximately 2000 in BRCA2 (https://research.nhgri.nih.gov/projects/bic/). 50 

However, many of these variants are classified as variants of unknown significance (VUS) and include 51 

synonymous, missense, intronic and in-frame deletions/insertions. Missense mutations have the capacity to affect 52 

protein function; additionally they may also disturb mRNA splicing. Similarly, synonymous variants, intronic 53 

variants outside the consensus splice sites (ss) and deletions/insertions may also cause aberrant splicing. This has 54 

been reported for several genes including BRCA1 and BRCA2 [7-9]. 55 

Several normal alternative transcripts have been reported both for BRCA1 and BRCA2 [10-13]. The Evidence 56 

based Network for the Interpretation of Germline Mutation Alleles (ENIGMA) consortium reported 63 splicing 57 

events in BRCA1 and 24 in BRCA2 [11, 13]. Ten of the 63 BRCA1 alternative splicing events and four of the 58 

BRCA2 alternative splicing events were considered major splicing events, thus complicating the investigation of 59 

https://research.nhgri.nih.gov/projects/bic/
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aberrant splicing [11, 13]. In this study we assessed the consequences of some of the variants detected in a 60 

Norwegian breast and ovarian cancer cohort, both by performing cDNA analysis, as well as evaluating the 61 

functional consequences of  variants located in the BRCA1 C-Terminal (BRCT) domains (aa 1646-1859) using a 62 

trans-activation assay [14, 15]. 63 

Materials and Methods 64 

Patients and samples 65 

Thirty-three whole-blood samples collected in RNA preserving tubes (PAXgene tubes) were obtained from the 66 

University Hospital of Oslo, Norway. The samples were collected from unrelated patients who were carriers of 67 

sequence variants in BRCA1 or BRCA2 (Table 1). All patients had a family history of breast or ovarian cancer. 68 

Complete sequencing of the coding regions, corresponding exon-intron borders and parts of the 5’and 3’ 69 

untranslated regions in BRCA1 and BRCA2 and multiplex ligation-dependent probe amplification (MLPA) were 70 

previously performed for all patients.  In total, these patients carried 18 variants in BRCA1 and 14 variants in 71 

BRCA2 (Table 1). As controls, samples from individuals without a family history of breast- and ovarian cancer 72 

were used.  73 

RNA isolation and cDNA synthesis 74 

RNA was isolated from the PAXgene tubes using the PAXgene Blood RNA Kit (PreAnalytiX, Hombrechtikon, 75 

Switzerland) according to the manufacturer’s protocol. cDNA was synthesized using the SuperScript® VILO™ 76 

cDNA Synthesis Kit (Invitrogen, Waltham, MA USA).  77 

Nomenclature 78 

Variants were named following Human Genome Variation Society (HGVS) nomenclature [16]. Reference 79 

sequences for BRCA1 and BRCA2 were NM_007294.3 and NM_000059.3, respectively. Custom numbering was 80 

used for BRCA1.   81 

Bioinformatic tools 82 

Primers were designed using the Primer 3 software (http://bioinfo.ut.ee/primer3-0.4.0/) [17, 18]. In silico 83 

evaluation of the variants was done with Alamut Visual version 2.7 (Interactive Biosoftware, Rouen, France), 84 

which includes the missense prediction programs Align GVGD, SIFT, MutationTaster and PolyPhen-2. Alamut 85 

also contains the splice prediction tools SpliceSiteFinder-like (SSF), MaxEntScan (MES), NNSPLICE, 86 

GeneSplicer (GS) and Human Splicing Finder (HSF), where the thresholds were set to zero for all prediction tools. 87 
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Alamut also includes results and/or links to the following databases investigated in this study: the Exome 88 

Aggregation Consortium (ExAC), the Exome Variant Server (EVS), the Single Nucleotide Polymorphism 89 

Database (dbSNP), ClinVar, Human Gene Mutation Database (HGMD) and Breast Cancer Information Core 90 

(BIC). 91 

Compliance with Ethical Standards 92 

All participants gave written informed consent for diagnostical testing. The project was submitted to the 93 

appropriate regional ethics committee, however, since the samples were tested with a diagnostically purpose the 94 

regional ethical committee waved the need for ethical approval based on the Norwegian regional health 95 

organization law § 2 and § 9 and the Norwegian research ethical law § 4. 96 

cDNA analysis 97 

The variants were investigated for their effect on splicing. Primers were positioned in flanking exons, preferentially 98 

so PCR-products covered at least one exon on either side of the exon containing the variant of interest (Table 2). 99 

Due to the size of the large exons 11 of BRCA1 and BRCA2, alternative strategies were used. For these exons, the 100 

corresponding PCR-products did not contain the entire exon 11, as one of the primers in each set was located in 101 

exon 11 (Table 2). The PCR-products were visualized on agarose gels, sequenced using Sanger sequencing and 102 

evaluated in Sequencher® version 5.3 (Gene Codes Inc. [19]).  All exonically located variants were used as 103 

markers for biallelic expression. All PCR-reactions were repeated using a second cDNA preparation as template 104 

(prepared from the same RNA sample). 105 

Trans-activation (TA) assay  106 

Plasmids, mutagenesis and transformation. A fusion construct containing GAL4 DBD:BRCA1 (amino acids 107 

1396-1863) WT and the known neutral variant c.4837A>G (p.Ser1613Gly) sub-cloned into pcDNA3 were kindly 108 

provided by Alvaro N.A. Monteiro [15]. As an internal transfection control, the phRG-TK vector was used. The 109 

phRG-TK contains a Renilla-luciferase gene under the control of a constitutive TK-promoter. The pGAL4-e1b-110 

Luc containing the Firefly-luciferase gene was used as a reporter for measuring the trans-activating ability (Figure 111 

2a). Variants c.5075A>C (p.Asp1692Ala), c.5125G>A (p.Gly1709Arg), c.5513T>G (p.Val1838Gly), and the 112 

pathogenic control c.5324T>G (p.Met1775Arg)[15], were introduced in pcDNA3 GAL4 DBD:BRCA1 (amino 113 

acid 1396-1863) WT using the QuikChange XL Site-directed mutagenesis kit (Agilent Technologies, Santa Clara, 114 

CA USA) according to the manufacturer’s protocol. Mutant plasmids were transformed into XL-10 Gold or Top10 115 

competent cells and successful mutagenesis was verified by Sanger sequencing.  116 
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Transfection and harvesting. Both BHK-21 and HEK293 cells (ATCC, www.atcc.org) were grown in 117 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Life Technologies, Waltham, MA USA) with 10% Fetal Bovine 118 

Serum (Life Technologies) and 60 U/ml Penicillin-Streptomycin  (Life Technologies). Approximately 150 000 119 

BHK-21 and 300 000 HEK293 cells were transferred to each well of a 6-well plate and grown overnight before 120 

transfection. One µg of pcDNA3 GAL4 DBD:BRCA1 was co-transfected with one µg of pGAL4-e1b-Luc and 121 

100 ng phRG-TK (internal transfection control). Fugene® HD Transfection Reagent (Promega, Madison, WI 122 

USA) was used as transfecting agent according to the protocol recommended by the supplier. Untransfected cells, 123 

cells transfected exclusively with the reporter plasmids (pGAL4-e1b-Luc and phRG-TK) and cells transfected 124 

with the plasmid containing the BRCA1 WT, the p.Ser1613Gly (neutral) and p.Met1775Arg (pathogenic) variants, 125 

were used as controls. Cells were harvested 24 hours post-transfection. The transfection experiments were repeated 126 

three times. 127 

Luciferase measurements. The Dual-Luciferase Assay System (Promega) was used to measure the trans-128 

activation activity. In short, 50µl Luciferase Assay Reagent II (LARII) was injected into wells containing 20µl 129 

cell lysate. The amount of light produced was measured and subsequently 50µl Stop & Glo Reagent was injected. 130 

A CLARIOstar (BMG LABTECH, Ortenberg, Germany) was used for injections and recordings. For each lysate, 131 

both Renilla- and Firefly-luciferase activities were measured in triplicates. The data are presented as ratios of 132 

Firefly- to Renilla-excitation values. The activity-ratios obtained from cells transfected with only the reporter 133 

plasmid were defined as background and thus subtracted from the activity-ratios obtained from the BRCT 134 

containing plasmids. For each WT lysate/triplicates, the average was calculated. All luciferase measurements 135 

within the same transfection set-up were then calculated as the percentage of the corresponding WT average. 136 

Values were combined, before the average and standard deviations were calculated.  137 

Western blot. Lysates from one of the HEK293 transfections and one of the BHK-21 transfections were used for 138 

western blot analysis to confirm the presence of fusion proteins. The amount of light produced by the internal 139 

transfection control (Renilla luciferase) was used for normalization of samples. Samples were loaded on NuPAGE 140 

4-12% Bis-Tris pre cast gels (Life Technologies) and the proteins were separated for 1.5 hours at 200V and 141 

120mA. Proteins were subsequently transferred to polyvinylidene difluoride (PVDF) membranes (Life 142 

Technologies) (1.5 hours at 25V and 160mA), blocked for one hour in phosphate buffered saline (PBS) with 5% 143 

nonfat dried milk powder (PanReac AppliChem, Darmstadt, Germany) and incubated overnight with 1:200 144 

dilution of BRCA1 (C-20) primary antibodies (Santa Cruz Biotechnology, Dallas, Texas USA). Membranes were 145 

incubated for one hour with HRP-Chicken anti-rabbit secondary antibodies (1:50 000) (Santa Cruz Biotechnology) 146 
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followed by treatment with Signal® West Dura Extended Duration Substrate (Thermo Scientific, Waltham, MA 147 

USA). The ImageQuant Las4000 (GE Healthcare Life Sciences, Buckinghamshire, U.K.) was used to capture 148 

images. 149 

Results  150 

cDNA analysis 151 

Eighteen BRCA1 variants, comprising three intronic and 15 exonic variants, and 14 BRCA2 variants, comprising 152 

one intronic variant and 13 exonic variants were investigated (Table 1 and 3).  All variants, except BRCA1 153 

c.3418A>G and BRCA2 c.4068G>A (which were earlier identified as benign variants [20, 21]), were screened for 154 

their effect on splicing. In addition, all exonic variants (including BRCA1 c.3418A>G and BRCA2 c. 4068G>A) 155 

were used as markers to investigate biallelic expression. 156 

In the performed cDNA analysis, three variants appeared to cause alterations in the normal splicing. BRCA1 c.213-157 

5T>A (intron 5) resulted in inclusion of 59 nucleotides of the 3’-end of intron 5, leading to a frame-shift 158 

introducing an early stop-codon (r.212_213ins213-59_213-1 p.Arg71Serfs*11) (Figure 1a). BRCA1 c.5434C>G 159 

(exon 23) induced skipping of exon 23, also leading to a frame-shift and subsequently an early stop-codon 160 

(r.5407_5467del p.Gly1803Glnfs*11) (Figure 1b). BRCA2 c.68-7T>A (intron 2) appeared to increase skipping of 161 

exon 3 (Figure 1c). Skipping of exon 3 is an in-frame deletion (r.68_316del p.Asp23_Leu105del) which was also 162 

detected in controls. Splice site predictions for these three variants can be seen in Table 4. 163 

Heterozygous positions identified in gDNA that appear homozygous when cDNA is investigated suggest the loss 164 

of expression from one of the alleles or alternative splicing in the investigated region. The majority of patients 165 

with an exonic variant were confirmed to have both alleles transcribed (exception marked in Table 1). 166 

Trans-activation assay 167 

Seven patients were carriers of variants in the BRCT domains of BRCA1 (c.5075A>C, c.5096G>A, c.5117G>C, 168 

c.5123C>T, c.5125G>A, c.5434C>G and c.5513T>G). Of these, three variants were novel (c.5075A>C 169 

p.Asp1692Ala, c.5125G>A p.Gly1709Arg and c.5513T>G p.Val1838Gly). The consequences of these three 170 

variants were further investigated for their trans-activation ability. For the remaining variants c.5434C>G, 171 

c.5096G>A, c.5117G>C and c.5123C>T, we were able to confirm that the sequence variant c.5434C>G caused 172 

aberrant splicing, hence this variant was not included in the TA assay. Variants c.5096G>A (p.Arg1699Gln), 173 
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c.5117G>C (p.Gly1706Ala) and c.5123C>T (p.Ala1708Val) had previously been evaluated by trans-activation 174 

assays and were also not included in the TA assay [22-24].  175 

BRCA1 p.Asp1692Ala and p.Val1838Gly were unable to induce transcription of the firefly luciferase, equal to 176 

the known pathogenic variant p.Met1775Arg, which was apparent in both BHK-21 and HEK293 cells (Figure 2b). 177 

BRCA1 p.Gly1709Arg however, showed trans-activation activity similar to the WT and the known benign variant 178 

p.Ser1613Gly (Figure 2b). 179 

Western blot results indicated an equal expression of the plasmid constructs in the BHK-21 cells, but showed some 180 

variation in HEK293 cells despite adjusting the protein concentrations according to the transfection control, 181 

Renilla luciferase (Figure 2c). However, the BRCT mutants were expressed in both cell types, indicating that the 182 

reduced values were due to reduced trans-activation ability and not due to variations in expression/stability. 183 

Discussion 184 

Prophylactic mastectomy and salphingo-oophorectomy are potent, but invasive risk reducing managements for 185 

carriers of pathogenic BRCA1/2 variants. Accordingly, identifying a VUS pose a considerable challenge for genetic 186 

counsellors and medical geneticists in advising clinical management. In this study, we characterized some of the 187 

variants detected in a Norwegian breast and ovarian cancer cohort, both by cDNA analysis and analysis of the 188 

trans-activation ability of variants located in the BRCT domains. 189 

cDNA analysis 190 

Alternative splicing allows for a more diverse expression of mRNA, and can regulate localization, enzymatic 191 

properties and different interaction properties of proteins [25].  The majority of variants located in the consensus 192 

ss (GT-AG in position +/- 1, 2) lead to abnormal splicing [26], but the effects of variants at positions further away 193 

from the exon-intron border are more difficult to predict. In addition, both missense variants and silent exonic 194 

variants might affect splicing [27], both by creating cryptic ss, remove binding sites for exonic splicing enhancers 195 

(ESE) or create binding sites for exonic splicing silencers (ESS). However, normal alternative splicing can 196 

counteract the effect of some variants leading to aberrant splicing[28]. De La Hoya  et al. (2016) recently reported 197 

a variant leading to BRCA1 Δex10 (out-of-frame), that were rescued by in-frame Δex9,10 [28]. 198 

In the current study, three of the 32 variants had a consequence on pre-mRNA splicing.  199 
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BRCA1 c.213-5T>A, a novel variant located in intron 5, resulted in usage of a cryptic ss 59 nucleotides upstream 200 

of the original site. Three splice prediction tools, SSF, MES and HSF anticipated a 3’ss at the original position. 201 

The variant led to reduced predictions of the original ss (Table 4) and the cryptic ss 59 bases upstream was strongly 202 

predicted by all prediction programs (also in the WT sequence). Inclusion of 59 nucleotides causes a frame-shift, 203 

introducing a premature stop-codon after 75 codons. Another variant in this region, BRCA1 c.213-11T>G, has 204 

previously been shown to lead to the use of the same cryptic ss [8]. The presence of a premature stop-codon likely 205 

activates the nonsense-mediated mRNA decay pathway [29]. However, variants in BRCA1, which introduce a 206 

stop-codon before position c.297, are presumed to allow re-initiation of translation at the AUG at this position 207 

[30]. A re-initiation at c.297 would lead to BRCA1 proteins lacking the RING-finger motif located at the N-termini 208 

(amino acids 8-96)[14]. Binding of the BRCA1 RING-domain to BARD1 protein seems to be essential for tumor 209 

suppression [31], accordingly, variants lacking this domain are expected to be of clinical importance.  210 

BRCA1 c.5434C>G is located in exon 23 and was previously reported by Gaildrat et al. (2010) to cause skipping 211 

of exon 23 [7]. It has been experimentally demonstrated that the variant most likely affects a splice regulatory 212 

element (SRE), either by removal of an ESE or introducing an ESS [7]. This demonstrates  the importance of 213 

experimentally assessing the effect of exonic variants on splicing. BRCA2 c.68-7T>A in intron 2 had previously 214 

been reported by Vreeswijk et. al. (2009) and Sanz et. al. (2010), who performed mini-gene assays that revealed 215 

partial skipping of exon 3 (p.Asp23_Leu105del) [32, 33]. Prediction programs suggested a reduced strength of the 216 

downstream original 3’ss in the presence of the variant (Table 4). The cDNA analysis indicated that the variant 217 

led to increased exon 3 skipping. However, the skipping of exon 3 gives an in-frame alternative transcript, also 218 

present in normal controls (albeit at lower levels). Exon 3 in BRCA2 encodes the part of BRCA2 that interacts with 219 

PALB2 [ 34], however, the consequence (if any) of reduced interaction with PALB2 is currently unknown. Santos 220 

and colleagues have shown that in two families, BRCA2 c.68-7T>A did not segregate with the disease, suggesting 221 

the variant is neutral [35].    222 

Recently, De La Hoya  et al. (2016) [28] suggested that variants in BRCA1 not leading to more than 70-80% loss 223 

of functional transcripts from one of the alleles still can show tumor suppressor haplosufficiency, implicating the 224 

importance of knowing normal alternative splicing events in the genes investigated.  225 

Splice predictions as cDNA analysis inclusion criteria 226 

In 2012, Houdayer et al. introduced specific criteria for selection of variants which should be tested for splicing 227 

[36]. They concluded that as long as the original splice site in BRCA1 or BRCA2 has a prediction value over three 228 
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for the MES prediction tool and over 60 for the SSF prediction tool, a reduction of 15% and 5%, respectively, was 229 

sufficient to include variants for cDNA analysis. Both BRCA1 c.213-5T>A and BRCA2 c.68-7T>A would have 230 

been included using these criteria. However, BRCA1 c.5434C>G would have been omitted from cDNA analysis, 231 

since this variant most likely affects an SRE. Splicing regulatory element predictions were assumed to be unreliable 232 

and therefore not used [36]. In summary, although prediction programs can indicate that some variants can cause 233 

aberrant splicing, the true outcome can only be identified experimentally. 234 

Trans-activation assay 235 

We investigated three novel BRCA1 variants for their effect on BRCA1’s trans-activation activity (Table 1). Two 236 

of the three variants (BRCA1 c.5075A>C p.Asp1692Ala and c.5513T>G p.Val1838Gly) showed a clear loss of 237 

activity (Figure 2b). BRCA1  p.Asp1692Ala exchanging the highly conserved aspartate to an alanine and 238 

BRCA1p.Val1838Gly, substituting the highly conserved valine to a glycine, are both predicted to be pathogenic 239 

by the missense prediction tools Align GVGD, SIFT and mutationTaster. However, PolyPhen-2 only predicts 240 

p.Val1838Gly to be damaging. Both these variants result in changes in the BRCT domains and our functional 241 

study indicated their pathogenicity by loss of trans-activation activity (Figure 2b). Other variants have been 242 

reported at the same positions; p.Asp1692His, p.Asp1692Asn, p.Asp1692Tyr and p.Val1838Glu have all 243 

previously been shown to have a functional impact using the TA-assay, indicating the importance of the conserved 244 

amino acids at these positions [37, 38]. BRCA1 c.5125G>A p.Gly1709Arg however, substituting the highly 245 

conserved glycine with arginine, is predicted differently by Align GVGD, SIFT, Mutation taster and PolyPhen2 246 

(Table 3). Even though some of the prediction programs indicated pathogenicity, p.Gly1709Arg displayed normal 247 

trans-activation activity.  248 

Although the in vitro trans-activation studies suggest the pathogenicity of BRCA1 c.5075A>C and c.5513T>G, we 249 

only investigated a limited part and the BRCA1 protein. Further assessment including segregation studies in 250 

families with these variants are needed to establish their classification. 251 

Several BRCA1 variants in our cohort are classified as either likely pathogenic, likely benign or benign based on 252 

cDNA analysis, functional studies, segregation analysis, frequency in control populations, among others (Table 1 253 

and 3). However, some remain classified as VUS. Two variants identified in our cohort (BRCA1 c.734A>T and 254 

c.1419C>T) have not been previously reported in the literature and both are reported with a low frequency in the 255 

ExAC database [39], accordingly, the clinical significance is uncertain (Table 1). BRCA1 c.3708T>G and 256 

c.5123C>T were previously reported in both the literature and with low frequencies in databases (Table 3).  257 
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In BRCA2 none of the variants identified in our cohort were classified as likely pathogenic. One variant 258 

(c.4068G>A) was classified as benign and five variants (c.750G>A, c.2680 G>A, c.3568C>T, c.6100C>T and 259 

c.6821G>T) were classified as likely benign (Table 1). Eight variants remained classified as VUS; The BRCA2 260 

c.40A>G has not been reported in the investigated databases nor in the literature (Table 3), while the 261 

BRCA2c.8323A>G have not been reported in the literature and only with low frequency in the ExAC database 262 

(Table 3). The five remaining variants, c.4828G>A, c.5272_5274delAAT, c.7301A>C, c.8177A>G and 263 

c.9116C>T, have been reported in the literature, but with low frequencies in the investigated databases (Table 3). 264 

BRCA2 c.8177A>G is however not reported in the ExAC database (Table 3). Our current study was unable to 265 

disclose new variants located in regulatory sequences, affecting the expression of one of the alleles. 266 

Conclusion 267 

In the current study, we identified three variants leading to abnormal splicing of pre-mRNA; Two variants located 268 

intronically, BRCA1 c.213-5T>A and BRCA2 c.68-7T>A and one exonic variant, BRCA1 c.5434C>G. In addition, 269 

functional studies assessing the trans-activation activity of the BRCT domains resulted in identification of two 270 

variants, c.5075A>C p.Asp1692Ala and c.5513T>G p.Val1838Gly, which lacked trans-activation activity. The 271 

use of partial proteins can lead to further understanding of how variants may affect protein function, however, the 272 

use of full-length proteins would be preferable in functional studies. 273 

Acknowledgements  274 

We thank Alvaro N.A. Monteiro for kindly providing us with the BRCT containing plasmids necessary for the 275 

trans-activation assay. We also thank “Helse Nord” for providing the necessary funding for this study (Grant # 276 

SFP1161-14).  277 

Funding and conflict of interest 278 

This study was funded by Helse Nord (grant number SFP1161-14). The authors declare that they have no conflict 279 

of interest.  280 



12 

 

References 281 

1. Safran M, Dalah I, Alexander J, et al. (2010) GeneCards Version 3: the human gene integrator. 282 

Database (Oxford) 2010: baq020 DOI 10.1093/database/baq020 283 

2. Roy R, Chun J, Powell SN (2012) BRCA1 and BRCA2: different roles in a common pathway of 284 

genome protection. Nat Rev Cancer 12(1): 68-78 DOI 10.1038/nrc3181 285 

3. Oliver AW, Swift S, Lord CJ, Ashworth A, Pearl LH (2009) Structural basis for recruitment of 286 

BRCA2 by PALB2. EMBO Rep 10(9): 990-6 DOI 10.1038/embor.2009.126 287 

4. Kast K, Rhiem K, Wappenschmidt B, et al. (2016) Prevalence of BRCA1/2 germline mutations in 288 

21 401 families with breast and ovarian cancer. J Med Genet 53(7): 465-71 DOI 10.1136/jmedgenet-289 

2015-103672 290 

5. Frank TS, Deffenbaugh AM, Reid JE, et al. (2002) Clinical characteristics of individuals with 291 

germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol 20(6): 1480-90  292 

6. Barnes DR, Antoniou AC (2012) Unravelling modifiers of breast and ovarian cancer risk for 293 

BRCA1 and BRCA2 mutation carriers: update on genetic modifiers. J Intern Med 271(4): 331-43 DOI 294 

10.1111/j.1365-2796.2011.02502.x 295 

7. Gaildrat P, Krieger S, Thery JC, et al. (2010) The BRCA1 c.5434C->G (p.Pro1812Ala) variant 296 

induces a deleterious exon 23 skipping by affecting exonic splicing regulatory elements. J Med Genet 297 

47(6): 398-403 DOI 10.1136/jmg.2009.074047 298 

8. Friedman LS, Ostermeyer EA, Szabo CI, et al. (1994) Confirmation of BRCA1 by analysis of 299 

germline mutations linked to breast and ovarian cancer in ten families. Nat Genet 8(4): 399-404 DOI 300 

10.1038/ng1294-399 301 

9. Hoffman JD, Hallam SE, Venne VL, Lyon E, Ward K (1998) Implications of a novel cryptic splice 302 

site in the BRCA1 gene. Am J Med Genet 80(2): 140-4  303 

10. Fetzer S, Tworek HA, Piver MS, Dicioccio RA (1998) An alternative splice site junction in exon 304 

1a of the BRCA1 gene. Cancer Genet Cytogenet 105(1): 90-2  305 



13 

 

11. Colombo M, Blok MJ, Whiley P, et al. (2014) Comprehensive annotation of splice junctions 306 

supports pervasive alternative splicing at the BRCA1 locus: a report from the ENIGMA consortium. Hum 307 

Mol Genet 23(14): 3666-80 DOI 10.1093/hmg/ddu075 308 

12. Jakubowska A, Gorski B, Byrski T, et al. (2001) Detection of germline mutations in the BRCA1 309 

gene by RNA-based sequencing. Hum Mutat 18(2): 149-56 DOI 10.1002/humu.1164 310 

13. Fackenthal JD, Yoshimatsu T, Zhang B, et al. (2016) Naturally occurring BRCA2 alternative 311 

mRNA splicing events in clinically relevant samples. J Med Genet:  DOI 10.1136/jmedgenet-2015-312 

103570 313 

14. Narod SA, Foulkes WD (2004) BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4(9): 665-314 

76 DOI 10.1038/nrc1431 315 

15. Carvalho MA, Marsillac SM, Karchin R, et al. (2007) Determination of cancer risk associated 316 

with germ line BRCA1 missense variants by functional analysis. Cancer Res 67(4): 1494-501 DOI 317 

10.1158/0008-5472.CAN-06-3297 318 

16. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to 319 

describe complex mutations: a discussion. Hum Mutat 15(1): 7-12 DOI 10.1002/(SICI)1098-320 

1004(200001)15:1<7::AID-HUMU4>3.0.CO;2-N 321 

17. Untergasser A, Cutcutache I, Koressaar T, et al. (2012) Primer3--new capabilities and 322 

interfaces. Nucleic Acids Res 40(15): e115 DOI 10.1093/nar/gks596 323 

18. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program 324 

Primer3. Bioinformatics 23(10): 1289-91 DOI 10.1093/bioinformatics/btm091 325 

19. Sequencher® version 5.3  sequence analysis software. Gene Codes Corporation, Ann Arbor, MI 326 

USA http://www.genecodes.com,  327 

20. Lindor NM, Guidugli L, Wang X, et al. (2012) A review of a multifactorial probability-based 328 

model for classification of BRCA1 and BRCA2 variants of uncertain significance (VUS). Hum Mutat 33(1): 329 

8-21 DOI 10.1002/humu.21627 330 

http://www.genecodes.com/


14 

 

21. Cherbal F, Salhi N, Bakour R, Adane S, Boualga K, Maillet P (2012) BRCA1 and BRCA2 331 

unclassified variants and missense polymorphisms in Algerian breast/ovarian cancer families. Dis 332 

Markers 32(6): 343-53 DOI 10.3233/DMA-2012-0893 333 

22. Spurdle AB, Whiley PJ, Thompson B, et al. (2012) BRCA1 R1699Q variant displaying ambiguous 334 

functional abrogation confers intermediate breast and ovarian cancer risk. J Med Genet 49(8): 525-32 335 

DOI 10.1136/jmedgenet-2012-101037 336 

23. Bouwman P, van der Gulden H, van der Heijden I, et al. (2013) A high-throughput functional 337 

complementation assay for classification of BRCA1 missense variants. Cancer Discov 3(10): 1142-55 338 

DOI 10.1158/2159-8290.CD-13-0094 339 

24. Lovelock PK, Spurdle AB, Mok MT, et al. (2007) Identification of BRCA1 missense substitutions 340 

that confer partial functional activity: potential moderate risk variants? Breast Cancer Res 9(6): R82 341 

DOI 10.1186/bcr1826 342 

25. Kelemen O, Convertini P, Zhang Z, et al. (2013) Function of alternative splicing. Gene 514(1): 343 

1-30 DOI 10.1016/j.gene.2012.07.083 344 

26. Easton DF, Deffenbaugh AM, Pruss D, et al. (2007) A systematic genetic assessment of 1,433 345 

sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-346 

predisposition genes. Am J Hum Genet 81(5): 873-83 DOI 10.1086/521032 347 

27. Cooper TA, Mattox W (1997) The regulation of splice-site selection, and its role in human 348 

disease. Am J Hum Genet 61(2): 259-66 DOI 10.1086/514856 349 

28. de la Hoya M, Soukarieh O, Lopez-Perolio I, et al. (2016) Combined genetic and splicing analysis 350 

of BRCA1 c.[594-2A>C; 641A>G] highlights the relevance of naturally occurring in-frame transcripts for 351 

developing disease gene variant classification algorithms. Hum Mol Genet:  DOI 10.1093/hmg/ddw094 352 

29. Palacios IM (2013) Nonsense-mediated mRNA decay: from mechanistic insights to impacts on 353 

human health. Brief Funct Genomics 12(1): 25-36 DOI 10.1093/bfgp/els051 354 



15 

 

30. Buisson M, Anczukow O, Zetoune AB, Ware MD, Mazoyer S (2006) The 185delAG mutation 355 

(c.68_69delAG) in the BRCA1 gene triggers translation reinitiation at a downstream AUG codon. Hum 356 

Mutat 27(10): 1024-9 DOI 10.1002/humu.20384 357 

31. Shakya R, Reid LJ, Reczek CR, et al. (2011) BRCA1 tumor suppression depends on BRCT 358 

phosphoprotein binding, but not its E3 ligase activity. Science 334(6055): 525-8 DOI 359 

10.1126/science.1209909 360 

32. Sanz DJ, Acedo A, Infante M, et al. (2010) A high proportion of DNA variants of BRCA1 and 361 

BRCA2 is associated with aberrant splicing in breast/ovarian cancer patients. Clin Cancer Res 16(6): 362 

1957-67 DOI 10.1158/1078-0432.CCR-09-2564 363 

33. Vreeswijk MP, Kraan JN, van der Klift HM, et al. (2009) Intronic variants in BRCA1 and BRCA2 364 

that affect RNA splicing can be reliably selected by splice-site prediction programs. Hum Mutat 30(1): 365 

107-14 DOI 10.1002/humu.20811 366 

34. Xia B, Sheng Q, Nakanishi K, et al. (2006) Control of BRCA2 cellular and clinical functions by a 367 

nuclear partner, PALB2. Mol Cell 22(6): 719-29 DOI 10.1016/j.molcel.2006.05.022 368 

35. Santos C, Peixoto A, Rocha P, et al. (2014) Pathogenicity evaluation of BRCA1 and BRCA2 369 

unclassified variants identified in Portuguese breast/ovarian cancer families. J Mol Diagn 16(3): 324-370 

34 DOI 10.1016/j.jmoldx.2014.01.005 371 

36. Houdayer C, Caux-Moncoutier V, Krieger S, et al. (2012) Guidelines for splicing analysis in 372 

molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 373 

variants. Hum Mutat 33(8): 1228-38 DOI 10.1002/humu.22101 374 

37. Lee MS, Green R, Marsillac SM, et al. (2010) Comprehensive analysis of missense variations in 375 

the BRCT domain of BRCA1 by structural and functional assays. Cancer Res 70(12): 4880-90 DOI 376 

10.1158/0008-5472.CAN-09-4563 377 

38. Jhuraney A, Velkova A, Johnson RC, et al. (2015) BRCA1 Circos: a visualisation resource for 378 

functional analysis of missense variants. J Med Genet 52(4): 224-30 DOI 10.1136/jmedgenet-2014-379 

102766 380 



16 

 

39. Lek M, Karczewski K, Minikel E, et al. (2015) Analysis of protein-coding genetic variation in 381 

60,706 humans. bioRxiv:  DOI http://dx.doi.org/10.1101/030338 382 

40. Millot GA, Berger A, Lejour V, et al. (2011) Assessment of human Nter and Cter BRCA1 383 

mutations using growth and localization assays in yeast. Hum Mutat 32(12): 1470-80 DOI 384 

10.1002/humu.21608 385 

41. Scottish/Northern Irish BBC (2003) BRCA1 and BRCA2 mutations in Scotland and Northern 386 

Ireland. Br J Cancer 88(8): 1256-62 DOI 10.1038/sj.bjc.6600840 387 

42. Bonnet C, Krieger S, Vezain M, et al. (2008) Screening BRCA1 and BRCA2 unclassified variants 388 

for splicing mutations using reverse transcription PCR on patient RNA and an ex vivo assay based on a 389 

splicing reporter minigene. J Med Genet 45(7): 438-46 DOI 10.1136/jmg.2007.056895 390 

43. Schoumacher F, Glaus A, Mueller H, Eppenberger U, Bolliger B, Senn HJ (2001) BRCA1/2 391 

mutations in Swiss patients with familial or early-onset breast and ovarian cancer. Swiss Med Wkly 392 

131(15-16): 223-6 DOI 2001/15/smw-09677 393 

44. Barker DF, Almeida ER, Casey G, et al. (1996) BRCA1 R841W: a strong candidate for a common 394 

mutation with moderate phenotype. Genet Epidemiol 13(6): 595-604 DOI 10.1002/(SICI)1098-395 

2272(1996)13:6&lt;595::AID-GEPI5&gt;3.0.CO;2-# 396 

45. Durocher F, Shattuck-Eidens D, McClure M, et al. (1996) Comparison of BRCA1 polymorphisms, 397 

rare sequence variants and/or missense mutations in unaffected and breast/ovarian cancer 398 

populations. Hum Mol Genet 5(6): 835-42  399 

46. Goldgar DE, Easton DF, Deffenbaugh AM, et al. (2004) Integrated evaluation of DNA sequence 400 

variants of unknown clinical significance: application to BRCA1 and BRCA2. Am J Hum Genet 75(4): 535-401 

44 DOI 10.1086/424388 402 

47. Panguluri RC, Brody LC, Modali R, et al. (1999) BRCA1 mutations in African Americans. Hum 403 

Genet 105(1-2): 28-31  404 

48. van Orsouw NJ, Dhanda RK, Elhaji Y, et al. (1999) A highly accurate, low cost test for BRCA1 405 

mutations. J Med Genet 36(10): 747-53  406 

http://dx.doi.org/10.1101/030338


17 

 

49. Vallon-Christersson J, Cayanan C, Haraldsson K, et al. (2001) Functional analysis of BRCA1 C-407 

terminal missense mutations identified in breast and ovarian cancer families. Hum Mol Genet 10(4): 408 

353-60  409 

50. Scott CL, Jenkins MA, Southey MC, et al. (2003) Average age-specific cumulative risk of breast 410 

cancer according to type and site of germline mutations in BRCA1 and BRCA2 estimated from multiple-411 

case breast cancer families attending Australian family cancer clinics. Hum Genet 112(5-6): 542-51 DOI 412 

10.1007/s00439-003-0908-6 413 

51. Laraqui A, Uhrhammer N, Lahlou-Amine I, et al. (2013) Mutation screening of the BRCA1 gene 414 

in early onset and familial breast/ovarian cancer in Moroccan population. Int J Med Sci 10(1): 60-7 DOI 415 

10.7150/ijms.5014 416 

52. Chenevix-Trench G, Healey S, Lakhani S, et al. (2006) Genetic and histopathologic evaluation 417 

of BRCA1 and BRCA2 DNA sequence variants of unknown clinical significance. Cancer Res 66(4): 2019-418 

27 DOI 10.1158/0008-5472.CAN-05-3546 419 

53. Martinez-Ferrandis JI, Vega A, Chirivella I, et al. (2003) Mutational analysis of BRCA1 and BRCA2 420 

in Mediterranean Spanish women with early-onset breast cancer: identification of three novel 421 

pathogenic mutations. Hum Mutat 22(5): 417-8 DOI 10.1002/humu.9188 422 

54. Hilton JL, Geisler JP, Rathe JA, Hattermann-Zogg MA, DeYoung B, Buller RE (2002) Inactivation 423 

of BRCA1 and BRCA2 in ovarian cancer. J Natl Cancer Inst 94(18): 1396-406  424 

55. Thery JC, Krieger S, Gaildrat P, et al. (2011) Contribution of bioinformatics predictions and 425 

functional splicing assays to the interpretation of unclassified variants of the BRCA genes. Eur J Hum 426 

Genet 19(10): 1052-8 DOI 10.1038/ejhg.2011.100 427 

56. Guidugli L, Carreira A, Caputo SM, et al. (2014) Functional assays for analysis of variants of 428 

uncertain significance in BRCA2. Hum Mutat 35(2): 151-64 DOI 10.1002/humu.22478 429 

57. Stegel V, Krajc M, Zgajnar J, et al. (2011) The occurrence of germline BRCA1 and BRCA2 430 

sequence alterations in Slovenian population. BMC Med Genet 12: 9 DOI 10.1186/1471-2350-12-9 431 



18 

 

58. Simard J, Dumont M, Moisan AM, et al. (2007) Evaluation of BRCA1 and BRCA2 mutation 432 

prevalence, risk prediction models and a multistep testing approach in French-Canadian families with 433 

high risk of breast and ovarian cancer. J Med Genet 44(2): 107-21 DOI 10.1136/jmg.2006.044388 434 

59. Castera L, Krieger S, Rousselin A, et al. (2014) Next-generation sequencing for the diagnosis of 435 

hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur J 436 

Hum Genet 22(11): 1305-13 DOI 10.1038/ejhg.2014.16 437 

60. Wagner TM, Hirtenlehner K, Shen P, et al. (1999) Global sequence diversity of BRCA2: analysis 438 

of 71 breast cancer families and 95 control individuals of worldwide populations. Hum Mol Genet 8(3): 439 

413-23  440 

61. Kanchi KL, Johnson KJ, Lu C, et al. (2014) Integrated analysis of germline and somatic variants 441 

in ovarian cancer. Nat Commun 5: 3156 DOI 10.1038/ncomms4156 442 

62. Karchin R, Agarwal M, Sali A, Couch F, Beattie MS (2008) Classifying Variants of Undetermined 443 

Significance in BRCA2 with protein likelihood ratios. Cancer Inform 6: 203-16  444 

63. Guidugli L, Pankratz VS, Singh N, et al. (2013) A classification model for BRCA2 DNA binding 445 

domain missense variants based on homology-directed repair activity. Cancer Res 73(1): 265-75 DOI 446 

10.1158/0008-5472.CAN-12-2081 447 

64. Llort G, Munoz CY, Tuser MP, et al. (2002) Low frequency of recurrent BRCA1 and BRCA2 448 

mutations in Spain. Hum Mutat 19(3): 307 DOI 10.1002/humu.9014 449 

65. Menendez M, Castellsague J, Mirete M, et al. (2012) Assessing the RNA effect of 26 DNA 450 

variants in the BRCA1 and BRCA2 genes. Breast Cancer Res Treat 132(3): 979-92 DOI 10.1007/s10549-451 

011-1661-5 452 

453 



19 

 

Figure and table legends: 454 

Figure 1 cDNA analysis.  At the top of each image the wild type (WT) sequence is shown, followed by the 455 

alternative sequences observed in the patient samples. At the bottom the electropherograms are displayed. (a) 456 

BRCA1 c.213-5T>A resulted in an inclusion of 59 nucleotides from the 3’end of intron 5 (r.212_213ins213-457 

59_213-1 p.Arg71Serfs*11). (b) BRCA1 c.5434C>G resulted in skipping of exon 23 (r.5407_5467del 458 

p.Gly1803Glnfs*11). Electropherogram displayed with sequences from the reverse primer. (c) BRCA2 c.68-7T>A 459 

resulted in increased skipping of exon 3 (r.68_316del p.Asp23_Leu105del), which is a normal alternative splicing 460 

event. 461 

Figure 2 Trans-activation assay. a) A simplified view of the assay set-up; Plasmids with constructs encoding a 462 

DNA binding domain (DBD) and the C-terminal of BRCA1 (amino acids 1396-1863) were co-transfected into 463 

HEK293 and BHK-21 cells with a reporter plasmid containing firefly luciferase. If the plasmids with the C-464 

terminal part of BRCA1 have trans-activation activity, they will activate transcription of firefly luciferase, 465 

luciferase activity is measured and quantitated. b) The dual luciferase reporter assay (Promega) was used to 466 

evaluate the trans-activation activity of BRCA1 BRCT variants in BHK-21 cells and HEK293 cells. The first three 467 

columns represent controls: wild type (WT) BRCA1, a neutral polymorphism (p.Ser1613Gly) and a pathogenic 468 

variant (p.Met1775Arg), respectively.  p.Asp1692Ala (BRCA1 c.5075A>C) and p.Val1838Gly (BRCA1 469 

c.5513T>G) had no trans-activation activity, whereas p.Gly1709Arg (BRCA1 c.5125G>A) showed normal 470 

activity. c) Western blot results from proteins isolated from one of the transfections in BHK-21 cells and HEK293 471 

cells. Samples were normalized according to renilla expression measured by CLARIOstar (BMG 472 

LABTECH).Table 1. The variants/samples investigated in this study. VUS = Variant of unknown clinical 473 

significance. Variants marked in bold have not previously been reported in the literature. 474 

Table 2. List of primers for each sequence variant and the size of the PCR-products without alternative splicing. 475 

Table 3. Predictions, database results and literature for each variant included in the study. Six databases were 476 

explored, the Exome Aggregation Consortium (ExAC), the Exome Variant Server (EVS), the Single Nucleotide 477 

Polymorphism Database (dbSNP), ClinVar, the Human Gene Mutation Database (HGMD) and the Breast Cancer 478 

Information Core (BIC). HD=HumDiv, HV=HumVar, NFE=European (non-Finnish), EA=European American, 479 

AA=African American, DM=Disease-causing Mutation, DM?=Conflicting evidence for Disease-causing 480 

Mutation. 481 
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Table 4. Splice prediction information for variants with abnormal splicing. Predictions were gathered from the 482 

nearest predicted splice site (ss) change where predictions from several programs (at least two) were made, for 483 

these three variants, only 3’ss were identified. An exception was made for c.213-5T>A, where also the ss at c.213-484 

59 was included in the table. Threshold was set to zero for all four programs. “Pos. ss”= Position of splice site in 485 

regards to sequence variant. Numbers are nucleotides to the splice junction, meaning -0 is right upstream of the 486 

variant, while +0 is right downstream. “NP”=Not predicted, “-“=No change in prediction, “New”=not predicted 487 

in the WT sequence and “Lost”=Not predicted in the variant sequence. 488 

  489 
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Table 1Mutation Location Protein Patient Final Classification 

BRCA1     

c.-20+521_-20+525delAAAAA Intron 1 - 1 2 – likely benign 

c.140G>T Exon 5 p.Cys47Phe 2 4 – likely pathogenic 

c.213-5T>A a Intron 5 - 3 4 – likely pathogenic 

c.486G>T Exon 8 p.= (p.Val162Val) 4 2 – likely benign 

c.548-17G>T Intron 8 - 5 2 – likely benign 

c.734A>T Exon 11 p.Asp245Val 6 3 – VUS 

c.1419C>T Exon 11 p.= (p.Asn473Asn) 7 3 –VUS 

c.1487G>A Exon 11 p.Arg496His 8 2 – likely benign 

c.2521C>T Exon 11 p.Arg841Trp 9 2 – likely benign 

c.3418A>G b Exon 11 p.Ser1140Gly 10 1 – benign 

c.3708T>G Exon 11 p.Asn1236Lys 11 3 – VUS 

c.5075A>C c Exon 18 p.Asp1692Ala 12 3 – VUS 

c.5096G>A Exon 18 p.Arg1699Gln 13 4 – Likely pathogenic 

c.5117G>C Exon 18 p.Gly1706Ala 9 2 – likely benign 

c.5123C>T Exon 18 p.Ala1708Val 14 3 – VUS 

c.5125G>A c Exon 18 p.Gly1709Arg 15 3 – VUS 

c.5434C>G a Exon 23 p.Pro1812Ala 16 4 – likely pathogenic 

c.5513T>G c Exon 24 p.Val1838Gly 17 3 – VUS 

BRCA2     

c.40A>G Exon 2 p.Ile14Val 18 3 – VUS 

c.68-7T>A a Intron 2 - 19 2 – likely benign 

c.750G>A Exon 9 p.= (p.Val250Val) 20, 33 2 – likely benign 

c.2680G>A Exon 11 p.Val894Ile 21 2 – likely benign 

c.3568C>T d Exon 11 p.Arg1190Trp 22 2 – likely benign 

c.4068G>A b,  Exon 11 p.= (p.Leu1356Leu) 23, 10 1 – benign 

c.4828G>A Exon 11 p.Val1610Met 24 3 – VUS 

c.5272_5274delAAT Exon 11 p.Asn1758del 25 3 – VUS 

c.6100C>T Exon 11 p.Arg2034Cys 26 2 – likely benign 

c.6821G>T Exon 11 p.Gly2274Val 27 2 – likely benign 

c.7301A>C Exon 14 p.Lys2434Thr 28 3 – VUS 

c.8177A>G Exon 18 p.Tyr2726Cys 29 3 – VUS 

c.8323A>G Exon 18 p.Met2775Val 30 3 – VUS 

c.9116C>T Exon 23 p.Pro3039Leu 31, 32 3 – VUS 

a Affects pre-mRNA splicing 520 

b Reported homozygote in ExAC 521 

c Part of the BRCT dual luciferase reporter assay 522 

d Not able to confirm biallelic expression  523 
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Table 2. 

 Mutation Location Forward primer 5’  3’ Reverse primer 5’  3’ Amplicon size (bp) 

BRCA1 c.-20+521_-20+525delAAAAA Intron 1 BRCA1 ex1.F CTCGCTGAGACTTCCTGGAC  BRCA1 ex3.R TGTGGAGACAGGTTCCTTGA 227 

c.140G>T Exon 5 BRCA1 ex2.F GCTCTTCGCGTTGAAGAAGT  BRCA1 ex7.R GAAGTCTTTTGGCACGGTTT 400 

c.213-5T>A Intron 5 BRCA1 ex2.F GCTCTTCGCGTTGAAGAAGT  BRCA1 ex7.R GAAGTCTTTTGGCACGGTTT 400 

c.486G>T Exon 8 BRCA1 ex6.F CAGCTTGACACAGGTTTGGA BRCA1 ex11a.R TTTCTGGATGCCTCTCAGCT 499 

c.548-17G>T Intron 8 BRCA1 ex6.F CAGCTTGACACAGGTTTGGA BRCA1 ex11a.R TTTCTGGATGCCTCTCAGCT 499 

c.734A>T Exon 11 BRCA1 ex8.F GAGGACAAAGCAGCGGATAC BRCA1 ex11.1R GCTGTAATGAGCTGGCATGA  359 

c.1419C>T Exon 11 BRCA1 ex8.F GAGGACAAAGCAGCGGATAC BRCA1 ex11.2R CCGTTTGGTTAGTTCCCTGA 1,124 

c.1487G>A Exon 11 BRCA1 ex8.F GAGGACAAAGCAGCGGATAC BRCA1 ex11.2R CCGTTTGGTTAGTTCCCTGA 1,124 

c.2521C>T Exon 11 BRCA1 ex11.F CAGCATTTGAAAACCCCAAG BRCA1 ex13.R ATGGAAGGGTAGCTGTTAGAAGG 1,879 

c.3418A>G Exon 11 BRCA1 ex11.1F TAGGGGTTTTGCAACCTGAG BRCA1 ex13.R ATGGAAGGGTAGCTGTTAGAAGG 1,039 

c.3708T>G Exon 11 BRCA1 ex11.1F TAGGGGTTTTGCAACCTGAG BRCA1 ex13.R ATGGAAGGGTAGCTGTTAGAAGG 1,039 

c.5075A>C Exon 18 BRCA1 ex16.F GGGAGAAGCCAGAATTGACA  BRCA1 ex20.R CTCGCTTTGGACCTTGGTG 354 

c.5096G>A Exon 18 BRCA1 ex16.F GGGAGAAGCCAGAATTGACA  BRCA1 ex20.R CTCGCTTTGGACCTTGGTG 354 

c.5117G>C Exon 18 BRCA1 ex16.F GGGAGAAGCCAGAATTGACA  BRCA1 ex20.R CTCGCTTTGGACCTTGGTG 354 

c.5123C>T Exon 18 BRCA1 ex16.F GGGAGAAGCCAGAATTGACA  BRCA1 ex20.R CTCGCTTTGGACCTTGGTG 354 

c.5125G>A Exon 18 BRCA1 ex16.F GGGAGAAGCCAGAATTGACA  BRCA1 ex20.R CTCGCTTTGGACCTTGGTG 354 

c.5434C>G Exon 23 BRCA1 ex21.F TTCAGGGGGCTAGAAATCTG  BRCA1 ex24.R AAGCTCATTCTTGGGGTCCT 289 

c.5513T>G Exon 24 BRCA1 ex21.F TTCAGGGGGCTAGAAATCTG  BRCA1 ex24.R GGGGTATCAGGTAGGTGTCC 289 

BRCA2 c.40A>G Exon 2 BRCA2 ex1.F AGCGTGAGGGGACAGATTTG BRCA2 ex4.R GTGGACAGGAAACATCATCTGC 519 

c.68-7T>A Intron 2 BRCA2 ex1.F AGCGTGAGGGGACAGATTTG BRCA2 ex4.R GTGGACAGGAAACATCATCTGC 519 

c.750G>A Exon 9 BRCA2 ex7.F AGGAGCTGAGGTGGATCCTG  BRCA2 ex11.R1 TCAGAATTGTCCCAAAAGAGCT 1,451 

c.2680G>A Exon 11 BRCA2 ex10.F GTTCAGCCCAGTTTGAAGCA BRCA2 ex11.R2 TGACACTTGGGTTGCTTGTT 980 

c.3568C>T Exon 11 BRCA2 ex10.F GTTCAGCCCAGTTTGAAGCA BRCA2 ex11.R3 CTTGAGCTTTCGCAACTTCC 2,343 

c.4068G>A Exon 11 BRCA2 ex10.F GTTCAGCCCAGTTTGAAGCA BRCA2 ex11.R3 CTTGAGCTTTCGCAACTTCC 2,343 

c.4828G>A Exon 11 BRCA2 ex11.F1 CAATGGGCAAAGACCCTAAA  BRCA2 ex13.R CGAAAGGGTACACAGGTAATCG 2,324 

c.5272_5274delAAT Exon 11 BRCA2 ex11.F2 TTTGATGGTCAACCAGAAAGAA BRCA2 ex13.R CGAAAGGGTACACAGGTAATCG 1,916 

c.6100C>T Exon 11 BRCA2 ex11.F3 CGCAAGACAAGTGTTTTCTGA  BRCA2 ex13.R CGAAAGGGTACACAGGTAATCG 1,023 

c.6821G>T Exon 11 BRCA2 ex11.F3 CGCAAGACAAGTGTTTTCTGA  BRCA2 ex13.R CGAAAGGGTACACAGGTAATCG 1,023 

c.7301A>C Exon 14 BRCA2 ex11.F4 TGTCCCGAAAATGAGGAAATGG BRCA2 ex16.R TGTGAAACTGAAAAGACTCTGCA 925 

c.8177A>G Exon 18 BRCA2 ex16.F GGTGGATGGCTCATACCCTC BRCA2 ex20.R TTTGCTGCTTCCTTTTCTTCC 809 

c.8323A>G Exon 18 BRCA2 ex16.F GGTGGATGGCTCATACCCTC BRCA2 ex20.R TTTGCTGCTTCCTTTTCTTCC 809 

c.9116C>T Exon 23 BRCA2 ex21.F GAAGAATGCAGCAGACCCAG BRCA2 ex25.R TGTCTCTTGAAAGTGGCCCT 751 

 

  



25 

 

Table 3. 

Mutation Location Protein Prediction programs Databases Ref. 

Align 

GVGD  

SIFT  Mutation taster  PolyPhen2  ExAC ESP/EVS dbSNP ClinVar HGMD BIC 

BRCA1 
             

c.-20+521_-

20+525del 

AAAAA 

Intron 1 -  - - - - - - -  - - - - 

c.140G>T Exon 5 p.Cys47Phe C65  Deleterious Disease causing  HD: POSSIBLY 

DAMAGING  

HV: BENIGN 

- - rs80357150 RCV000111876.1 

RCV000047469.2 

CM032549 

(DM) 

x2 

VUS 

[36, 40, 

41] 

c.213-5T>A Intron 5 -  - - - - - - -  - - - - 

c.486G>T Exon 8 p.= (p.Val162Val)  - - - - - - -  - - - - 

c.548-17G>T Intron 8 -  - - - - ALL:T=0.017%N

FE:0.023% 

- rs80358014 RCV000197647.2 

RCV000123884.2 

RCV000031256.6a 

- x31 

VUS 

[20, 26, 

42] 

c.734A>T Exon 11 p.Asp245Val  C0  Deleterious Disease causing HD: PROBABLY 

DAMAGING 

HV: POSSIBLY 

DAMAGING 

ALL:T=0.00084% 

NFE:0.0015% 

- rs80356865 RCV000049112.4 

RCV000129392.2 

RCV000112778.1 

- x1 

VUS 

- 

c.1419C>T Exon 11 p.= 

(p.Asn473Asn) 

 - - - - ALL:T=0.0025% 

NFE:0.0045% 

- - RCV000165155.1 - - - 

c.1487G>A Exon 11 p.Arg496His  C0  Tolerated Polymorphism HD: BENIGN  

HV: BENIGN 

ALL:A=0.047% 

NFE:0.077% 

EA: T=0.09% 

AA: T=0.00% 

rs28897677 RCV000120286.3 

RCV000111630.5a 

RCV000034727.3 

RCV000047494.5 

RCV000162601.1 

CM014323 

(DM?) 

x86 

VUS 

[20, 43] 

c.2521C>T Exon 11 p.Arg841Trp  C15 Deleterious  Polymorphism HD: BENIGN  

HV: BENIGN 

ALL:T=0.17%NF

E:0.22% 

EA: A=0.31% 

AA: A=0.09% 

rs1800709 RCV000120283.3 

RCV000034733.3 

RCV000047867.5 

RCV000019251.10a 

RCV000162566.1 

CM004236 

(DM?) 

x119 

VUS 

[20, 44-

46] 

c.3418A>G Exon 11 p.Ser1140Gly  C0 Tolerated Polymorphism HD: BENIGN  

HV: BENIGN 

ALL:G=0.31%NF

E:0.013% 

EA: C=0.01% 

AA: C=3.09% 

rs2227945 RCV000112092.5a 

RCV000048187.5 

RCV000157733.1 

RCV000162594.1 

RCV000034741.3 

RCV000120277.6 

- x29 

VUS 

[20, 47] 

c.3708T>G Exon 11 p.Asn1236Lys  C0 Tolerated Polymorphism HD: BENIGN  

HV: BENIGN 

ALL:G=0.024% 

NFE:0.027% 

EA: C=0.03% 

AA: C=0.00% 

rs28897687 RCV000120300.3 

RCV000083197.5 

RCV000131695.3 

RCV000048292.6 

RCV000148395.2 

CM994631 

(DM?) 

x35 

VUS 

[23, 48] 

c.5075A>C Exon 18 p.Asp1692Ala  C65 Deleterious Disease causing HD: BENIGN  

HV: BENIGN 

- - -  - - - - 

c.5096G>A Exon 18 p.Arg1699Gln C35 Deleterious Disease causing HD: PROBABLY 

DAMAGING  

HV: PROBABLY 

DAMAGING 

ALL:A=0.0025% 

NFE:0.0045% 

- rs41293459 RCV000195350.2 

RCV000131564.2 

RCV000048790.4 

RCV000031217.11 

CM034007 

(DM) 

x11 

VUS 

[20, 22, 

23, 36, 

49] 

http://www.ncbi.nlm.nih.gov/clinvar/RCV000111876.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000047469.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000197647.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000123884.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000031256.6
http://www.ncbi.nlm.nih.gov/clinvar/RCV000049112.4
http://www.ncbi.nlm.nih.gov/clinvar/RCV000129392.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000112778.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000165155.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000120286.3
http://www.ncbi.nlm.nih.gov/clinvar/RCV000111630.5
http://www.ncbi.nlm.nih.gov/clinvar/RCV000034727.3
http://www.ncbi.nlm.nih.gov/clinvar/RCV000047494.5
http://www.ncbi.nlm.nih.gov/clinvar/RCV000162601.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000120283.3
http://www.ncbi.nlm.nih.gov/clinvar/RCV000034733.3
http://www.ncbi.nlm.nih.gov/clinvar/RCV000047867.5
http://www.ncbi.nlm.nih.gov/clinvar/RCV000019251.10
http://www.ncbi.nlm.nih.gov/clinvar/RCV000162566.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000112092.5
http://www.ncbi.nlm.nih.gov/clinvar/RCV000048187.5
http://www.ncbi.nlm.nih.gov/clinvar/RCV000157733.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000162594.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000034741.3
http://www.ncbi.nlm.nih.gov/clinvar/RCV000120277.6
http://www.ncbi.nlm.nih.gov/clinvar/RCV000120300.3
http://www.ncbi.nlm.nih.gov/clinvar/RCV000083197.5
http://www.ncbi.nlm.nih.gov/clinvar/RCV000131695.3
http://www.ncbi.nlm.nih.gov/clinvar/RCV000048292.6
http://www.ncbi.nlm.nih.gov/clinvar/RCV000148395.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000195350.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000131564.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000048790.4
http://www.ncbi.nlm.nih.gov/clinvar/RCV000031217.11
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c.5117G>C Exon 18 p.Gly1706Ala  C55 Deleterious Disease causing HD: POSSIBLY 

DAMAGING 

HV: BENIGN 

ALL:C=0.0041% 

NFE:0.0030% 

EA: G=0.01% 

AA: G=0.00% 

rs80356860 RCV000195322.1 

RCV000048801.5 

RCV000077598.8a 

RCV000162991.1 

CM030790 

(DM?) 

x6 

VUS 

[20, 23, 

50, 51] 

c.5123C>T Exon 18 p.Ala1708Val  C65 Deleterious Disease causing HD: PROBABLY 

DAMAGING  

HV: POSSIBLY 

DAMAGING 

ALL:T=0.0033% 

NFE:0% 

EA: A=0.01% 

AA: A=0.05% 

rs28897696 RCV000048803.4 

RCV000031221.4 

RCV000148393.1 

RCV000131166.2 

CM065004 

(DM) 

- [24, 52] 

c.5125G>A Exon 18 p.Gly1709Arg  C15  Deleterious Disease causing HD: POSSIBLY 

DAMAGING 

HV: BENIGN 

- - - - - - - 

c.5434C>G Exon 23 p.Pro1812Ala  C0 Tolerated Disease causing HD: BENIGN  

HV: BENIGN 

- - rs1800751 RCV000031251.5 

RCV000048994.2 

CM032862 

(DM) 

X2 

VUS 

[7, 36, 

53] 

c.5513T>G Exon 24 p.Val1838Gly C35  Deleterious Disease causing HD: PROBABLY 

DAMAGING 

HV: PROBABLY 

DAMAGING 

- - - - - - - 

BRCA2 
             

c.40A>G Exon 2 p.Ile14Val  C0 Tolerated Polymorphism HD: BENIGN  

HV: BENIGN 

- - -  - - - - 

c.68-7T>A Intron 2 -  - - - - ALL:A=0.24% 

NFE:0.30% 

EA: A=0.15% 

AA: A=0.02% 

rs81002830 RCV000074550.4 

RCV000045051.5 

RCV000077384.6 

RCV000168529.2 

CS033491 

(DM?) 

x7 

VUS 

[35, 36, 

54, 55] 

c.750G>A Exon 9 p.= (p.Val250Val) - - - - ALL:A=0.0052% 

NFE:0.0096% 

EA: A=0.01% 

AA: A=0.00% 

rs143214959 RCV000144219.1 

RCV000123940.3 

RCV000122928.3 

RCV000162788.1 

- - - 

c.2680G>A Exon 11 p.Val894Ile  C0 Tolerated Polymorphism HD: BENIGN  

HV: BENIGN 

ALL:A=0.0042% 

NFE:0.0060% 

EA: A=0.05% 

AA: A=0.02% 

rs28897715 RCV000160217.2 

RCV000077283.6a 

RCV000044037.6 

RCV000162506.1 

- x17 

VUS 

[20, 26] 

c.3568C>T Exon 11 p.Arg1190Trp  C15 Deleterious Polymorphism HD: POSSIBLY 

DAMAGING  

HV: BENIGN 

ALL:T=0.011% 

NFE:0.0015% 

- rs80358604 RCV000160220.2 

RCV000113191.2a 

RCV000044223.4 

RCV000162698.1 

- x12 

VUS 

[26, 56] 

c.4068G>A Exon 11 p.= 

(p.Leu1356Leu) 

- - - - ALL:A=0.30% 

NFE:0.47% 

EA: A=0.47% 

AA: A=0.02% 

rs28897724 RCV000044340.5 

RCV000168569.2 

RCV000162367.1 

RCV000123968.2 

RCV000113269.4 

- x9 

VUS 

[21, 57] 

c.4828G>A Exon 11 p.Val1610Met  C0 Tolerated Polymorphism HD: BENIGN  

HV: BENIGN 

ALL:A=0.013% 

NFE:0.023% 

EA: A=0.02% 

AA: A=0.00% 

rs80358705 RCV000074530.5 

RCV000044498.3 

RCV000130783.2 

RCV000031508.5 

- x7 

VUS 

[58] 

c.5272_5274del

AAT 

Exon 11 p.Asn1758del  - - - - ALL:0.0050% 

NFE:0.0091% 

- - RCV000165160.1 

RCV000122916.2 

CD1410479 

(DM) 

- [59] 

c.6100C>T Exon 11 p.Arg2034Cys  C0 Tolerated Polymorphism HD: POSSIBLY 

DAMAGING  

HV: BENIGN 

ALL:T=0.32% 

NFE:0.49% 

EA: T=0.51% 

AA: T=0.18% 

rs1799954 RCV000120331.4 

RCV000113532.6a 

RCV000044844.5 

RCV000034452.3 

RCV000162509.1 

CM994286 

(DM?) 

x104 

VUS 

[20, 60] 

c.6821G>T Exon 11 p.Gly2274Val  C0 Tolerated Disease causing HD: PROBABLY 

DAMAGING 

HV: POSSIBLY 

DAMAGING 

ALL:T=0.14% 

NFE:0.12% 

- rs55712212 RCV000077387.6 

RCV000074551.6 

RCV000131679.2 

RCV000045064.3 

- x15 

VUS 

[20, 52] 

http://www.ncbi.nlm.nih.gov/clinvar/RCV000195322.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000048801.5
http://www.ncbi.nlm.nih.gov/clinvar/RCV000077598.8
http://www.ncbi.nlm.nih.gov/clinvar/RCV000162991.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000048803.4
http://www.ncbi.nlm.nih.gov/clinvar/RCV000031221.4
http://www.ncbi.nlm.nih.gov/clinvar/RCV000148393.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000131166.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000031251.5
http://www.ncbi.nlm.nih.gov/clinvar/RCV000048994.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000074550.4
http://www.ncbi.nlm.nih.gov/clinvar/RCV000045051.5
http://www.ncbi.nlm.nih.gov/clinvar/RCV000077384.6
http://www.ncbi.nlm.nih.gov/clinvar/RCV000168529.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000144219.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000123940.3
http://www.ncbi.nlm.nih.gov/clinvar/RCV000122928.3
http://www.ncbi.nlm.nih.gov/clinvar/RCV000162788.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000160217.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000077283.6
http://www.ncbi.nlm.nih.gov/clinvar/RCV000044037.6
http://www.ncbi.nlm.nih.gov/clinvar/RCV000162506.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000160220.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000113191.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000044223.4
http://www.ncbi.nlm.nih.gov/clinvar/RCV000162698.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000044340.5
http://www.ncbi.nlm.nih.gov/clinvar/RCV000168569.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000162367.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000123968.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000113269.4
http://www.ncbi.nlm.nih.gov/clinvar/RCV000074530.5
http://www.ncbi.nlm.nih.gov/clinvar/RCV000044498.3
http://www.ncbi.nlm.nih.gov/clinvar/RCV000130783.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000031508.5
http://www.ncbi.nlm.nih.gov/clinvar/RCV000165160.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000122916.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000120331.4
http://www.ncbi.nlm.nih.gov/clinvar/RCV000113532.6
http://www.ncbi.nlm.nih.gov/clinvar/RCV000044844.5
http://www.ncbi.nlm.nih.gov/clinvar/RCV000034452.3
http://www.ncbi.nlm.nih.gov/clinvar/RCV000162509.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000077387.6
http://www.ncbi.nlm.nih.gov/clinvar/RCV000074551.6
http://www.ncbi.nlm.nih.gov/clinvar/RCV000131679.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000045064.3
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c.7301A>C Exon 14 p.Lys2434Thr   C0 Tolerated Polymorphism HD: BENIGN  

HV: BENIGN 

ALL:C=0.0049% 

NFE:0% 

- rs80358954 RCV000045182.4 

RCV000113743.1 

CM142736 

(DM?) 

x2 

VUS 

[61] 

c.8177A>G Exon 18 p.Tyr2726Cys  C65 Deleterious Disease causing HD: PROBABLY 

DAMAGING 

HV: PROBABLY 

DAMAGING 

- EA: G=0.01% 

AA: G=0.00% 

rs80359064 RCV000077430.4 

RCV000130671.2 

RCV000045442.4 

- x1 

VUS 

[62, 63] 

c.8323A>G Exon 18 p.Met2775Val  C0 Tolerated Disease causing HD: POSSIBLY 

DAMAGING  

HV: POSSIBLY 

DAMAGING 

ALL:G=0.00084% 

NFE:0.0015% 

- - - - - - 

c.9116C>T Exon 23 p.Pro3039Leu  C0 Deleterious Disease causing HD: POSSIBLY 

DAMAGING 

HV: BENIGN 

ALL:T=0.0086% 

NFE:0.0048% 

EA: T=0.01% 

AA: T=0.00% 

rs80359167 RCV000083154.4 

RCV000045720.3 

RCV000131718.2 

CS020529 

(DM?) 

x6 

VUS 

[36, 64, 

65] 

a Classified by the ENIGMA expert panel as benign 

 

  

http://www.ncbi.nlm.nih.gov/clinvar/RCV000045182.4
http://www.ncbi.nlm.nih.gov/clinvar/RCV000113743.1
http://www.ncbi.nlm.nih.gov/clinvar/RCV000077430.4
http://www.ncbi.nlm.nih.gov/clinvar/RCV000130671.2
http://www.ncbi.nlm.nih.gov/clinvar/RCV000045442.4
http://www.ncbi.nlm.nih.gov/clinvar/RCV000083154.4
http://www.ncbi.nlm.nih.gov/clinvar/RCV000045720.3
http://www.ncbi.nlm.nih.gov/clinvar/RCV000131718.2
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Table 4. 

BRCA1 Location Patient  

number 

Pos.  

ss 

Splice predictions 

SSF [0-100] MES [0-16] NNSPLICE [0-1] GS [0-15] HSF [0-100] 

BRCA1 c.213-5T>A Intron 5 3 +4 -7.6% -52.1% Lost 0.1 NP -4.0% 

   -54 - - - +3.3% - 

BRCA1 c.5434C>G Exon 23 16 -0 / +7.1% +20.9% New 0.6 -  +5.2%  

   +3 NP 200% NP NP 0.7% 

BRCA2 c.68-7T>A Intron 2 19 +6 -5.7% -23.9 % -27.3% - -2.7% 

 


