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ABSTRACT

The climate system approaches a tipping point if the prevailing climate state loses stability, making a

transition to a different state possible. A result from the theory of randomly driven dynamical systems is that

the reduced stability in the vicinity of a tipping point is accompanied by increasing fluctuation levels and

longer correlation times (critical slowing down) and can in principle serve as early-warning signals of an

upcoming tipping point. This study demonstrates that the high-frequency band of the d18O variations in the

North Greenland Ice Core Project displays fluctuation levels that increase as one approaches the onset of an

interstadial (warm) period. Similar results are found for the locally estimated Hurst exponent for the high-

frequency fluctuations, signaling longer correlation times. The observed slowing down is found to be even

stronger in the Younger Dryas, suggesting that both the Younger Dryas–Preboreal transition and the onsets

of the Greenland interstadials are preceded by decreasing stability of the climate state. It is also verified that

the temperature fluctuations during the stadial periods can be approximately modeled as a scale-invariant

persistent noise, which can be approximated as an aggregation of processes that respond to perturbations on

certain characteristic time scales. The results are consistent with the hypothesis that both the onsets of the

Greenland interstadials and the Younger Dryas–Preboreal transition are caused by tipping points in dy-

namical processes with characteristic time scales on the order of decades and that the variability of other

processes on longer time scales masks the early-warning signatures in the d18O signal.

1. Introduction

Analysis of the relative variations of the 18O isotope in

Greenland ice cores shows that there was a sequence of

large and abrupt temperature changes during the most

recent ice age. The most prominent of these changes are

the transitions between the cold stadial periods and the

warmer interstadial periods, during which the temper-

ature typically increased by about 108C within a couple

of decades. The onset of the Greenland interstadials

(GIs) were often followed by a slow cooling, which in

some cases persisted for millennia, before there were

more rapid transitions back into the stadial state. These

cycles are called Dansgaard–Oeschger (DO) events

(Dansgaard et al. 1984, 1993). In this paper we analyze

the ice-core record from the North Greenland Ice Core

Project (NGRIP) for the time period from 60kyr before

present (BP)1 to the commencement of theHolocene, in

which previous studies have identified 17 DO events

(Svensson et al. 2008). The termination of the Younger

Dryas (YD), the last stadial period seen in the Green-

land ice cores, marks the end of the last glacial period,

but this event does not define the onset of a DO cycle.

However, there is little agreement in the scientific lit-

erature as to what the mechanisms for the YD were

(Broecker et al. 2010), and since the YD–Preboreal

transition is as abrupt as the onsets of the interstadials, it

is natural to include this event in this investigation.

It is widely accepted that the onset of an interstadial

period is associated with an abrupt loss of sea ice in the

North Atlantic as a response to a change in the meridi-

onal overturning circulation (MOC) (Bond et al. 2013;

Li et al. 2010). Positive feedback effects, such as the sea

ice–albedo feedback (Curry et al. 1995) and the sea ice–

insulation feedback (Manabe and Stouffer 1980), can
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accelerate the effect of a changing ocean circulation and

cause rapid warming as a nonlinear response.

The mechanisms of the MOC variations during the

last ice age and their relation to the DO events are not

well understood (Broecker et al. 2010). It is believed

that the MOC was subject to rapid changes in response

to freshwater perturbations, but it is not clear which

forcing agent is responsible for these changes. Grootes

and Stuiver (1997) have reported a spectral peak in the

d18O records from the Greenland Ice Core Project

(GRIP) at a frequency corresponding to a period of

about 1470 yr, and it has been suggested that this peri-

odicity is produced by the de Vries/Suess and Gleissberg

solar cycles (Suess 2006; Sonett 1984) (which have ob-

served periods of 208 and 88 yr, respectively). The

mechanism by which the spectral peak in the d18O re-

cords could be linked to the shorter solar cycles is the

phenomenon known as ghost resonance (Balenzuela

et al. 2012), and the plausibility of this explanation has

been established by demonstrating that a 1470-yr peri-

odicity in temperature can be produced from climate

models if one explicitly introduces the periodicities of

208 and 88 yr in the salinity perturbations of the MOC

(Braun et al. 2005). Ditlevsen et al. (2007) have pointed

out that it is difficult to establish statistical significance of

the 1470-yr periodicity in the ice-core data and that the

DO events may be triggered randomly by noise-like

fluctuations in the climate system. Other authors have

suggested that the DO oscillation is linked to a limit

cycle in a low-dimensional dynamical system describing

the MOC (Sakai and Peltier 1999).

Whether the DO cycles are noise induced is of course

not a closed-ended question, and the answer depends to

some extent on the modeling framework. Temperature

variations in general have unpredictable (or random)

components on all the relevant time scales, and the high-

frequency temperature fluctuations inGreenland during

the last glacial period had a magnitude only a few times

smaller than the typical temperature difference between

the stadial and interstadial states. This suggests that

random fluctuations may be important triggers of the

DO events, but it does not exclude the possibility that

there are slow changes in the climate conditions, per-

haps forced by the sun, that influence the probability of a

regime-shifting event. If it is possible to detect ‘‘critical

slowing down’’ prior to the onset of the GIs, then this

would serve as evidence that there are such slow varia-

tions in system stability and that these changes are im-

portant components in the dynamics of the DO cycles.

Thus, the hypothesis is as follows: in the stadial periods

of the last glaciation, there were slow changes to dy-

namical processes operating on decadal time scales, and

these changes were associated with a weakening of the

stability of the stadial climate states in Greenland and

thereby increased the probability of the onset of

interstadials.

An equilibrium climate state is stable if the systemwill

return to this state subsequent to a small perturbation. If

the state is weakly stable, then the effect of a perturba-

tion will be larger and more long lasting than it would be

if the equilibrium state is strongly stable. Hence, if an

equilibrium climate state experiences reduced stability,

the effects of random perturbations will grow in ampli-

tude and become more persistent.

Within a dynamical systems framework, these ques-

tions can be discussed in terms of the stability of fixed

points, and one can use a very simple scalar model to

illustrate the effect of stability weakening:

dx(t)5F[x(t)] dt1s dB(t) . (1)

Here x can be thought of as the climate variable we seek

to model (e.g., the d18O ratio2), dB(t) is a white noise

forcing of the system, and F(x) 5 2U0(x) is a nonlinear

function corresponding to a potentialU(x). An example

of such a model is shown in Fig. 1 The system has two

stable fixed points, xs and xis, corresponding to the sta-

dial and interstadial states. These two stable states are

separated by a potential barrier with an unstable fixed

point. If the noise term sdB(t) is sufficiently strong

compared to the potential barrier, there is a non-

negligible probability of a spontaneous transition be-

tween the two stable states. Such transitions are

completely noise induced.

On the other hand, we can also have a transition from

the state xs to the state xis, even in the absence of any

noise, if the system goes through a bifurcation point.

This means that the system depends on a slowly

changing parameter r in such a way that xs becomes

unstable when a critical parameter value rc is attained—

that is, F 0
r(xs)/ 0 as r / rc. The dotted line in Fig. 1a

shows how the stable fixed point xs is lost under a so-

called fold bifurcation. The linearization of Eq. (1)

around xs,

dx(t)52u[x(t)2 x
s
] dt1sdB(t) , (2)

is known as the Langevin stochastic differential equa-

tion, and its solutions define a stochastic process called

the Ornstein–Uhlenbeck (OU) process, which in dis-

crete time is a first-order autoregressive [AR(1)] pro-

cess. The standard deviation of x(t) in an OU process

is s(2u)20.5 and the autocorrelation is e2ut. Since

2 This time series is shown in Fig. 3.
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u52F 0
r(xs), we expect increased fluctuation levels and

longer correlation times of the signal x(t) as the bi-

furcation approaches. These signatures are called early-

warning signals (EWS) of the tipping point, or critical

slowing down (Lenton et al. 2012; Dakos et al. 2008).

There is a key difference between a bifurcation in a

completely deterministic low-dimensional dynamical

system and a tipping point in a randomly forced system,

since in the latter we need not actually reach a bi-

furcation point in order to see a shift between two stable

states. All tipping points in randomly driven systems are

to some extent noise induced, and the interesting ques-

tion is whether the random fluctuations are sufficient to

cause a shift between the two states or whether we can

observe slow changes (perhaps forced) in the stability of

the climate state. Even if EWS are not prominent fea-

tures in the temperature records, observation of such

structural changes may provide important insight into

the mechanisms of climate tipping points.

A few authors have already attempted to identify

EWS for DO events. Ditlevsen and Johnsen (2010) have

demonstrated that it is very difficult to observe any such

signatures in the Greenland ice-core data and that the

ice-core data are inconsistent with what we observe in

typical tipping point models. On the other hand,

Cimatoribus et al. (2013) have suggested using the re-

peatedDOevents to construct an ensemble analysis that

could uncover EWS that are not easily observable in the

individual events. However, one must be very careful

with how these ensembles are constructed. If we wish to

look for EWS to the onsets of the interstadial warm

periods, then the time intervals of interest are the stadial

periods preceding these events. If the ensembles are

constructed in such a way that the rapid cooling that

marks the beginning of a stadial period is included in the

ensemble members, then because of the particular tim-

ing of DO events, one is led to the false conclusion that

the fluctuation levels increase significantly as the onset

of an interstadial period is approaching. On the other

hand, if the ensemble is constructed in such a way that

only stadial periods (defined as the cold periods fol-

lowing the rapid cooling that mark the end of the in-

terstadials) are included, then no significant EWS is seen

in a standard analysis.

It appears that these results support the findings of

Ditlevsen and Johnsen (2010), but perhaps one can-

not expect to see EWS without analyzing individual

frequency bands separately. In section 2, it will be

shown that there are anomalous fluctuation levels on

decadal time scales in the NGRIP data and that this is

an indication that one should focus on these time

scales when looking for EWS. In section 3, the NGRIP

data are filtered to remove low-frequency variabil-

ity, and then there is a slow increase in the fluctua-

tion levels as the onsets of the interstadial periods

are approached. This result is obtained by averag-

ing over the sequence of events to obtain statistical

significance, using the continuous wavelet transform

(CWT):

W(t,Dt)5
1ffiffiffiffiffi
Dt

p
ð
x(t0)c

�
t2 t0

Dt

�
dt0 , (3)

where c(t) is the so-called mother wavelet. The CWT

measures the fluctuations in the NGRIP signal x(t) at

various different time scales Dt and is hence a useful tool

for discerning changes in the statistical properties of the

signal in specific frequency bands.

The local high-frequency fluctuation levels are com-

puted by taking the standard deviation of the wavelet

FIG. 1. (a) The function F(x) in the example model. The dotted

line shows F(x) after a fold bifurcation. (b) The corresponding

potential U(x). The blue curve is the d18O signal prior to the onset

of GI-12, and the red curve is the d18O signal during GI-12. (c) A

realization of the model in Eq. (1) with F(x) as shown (as the solid

line) in (a).
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coefficients corresponding to the short time scales Dt,
and the time evolution of these are analyzed. For several

of the events a significant increase in the standard de-

viations through the stadial periods is observed. Similar

results are obtained for the wavelet estimates of the

local Hurst exponent, implying that the characteristic

correlation time in the high-frequency band increases as

the onset of an interstadial is approached. The motiva-

tion for using Hurst exponents is explained toward the

end of section 2, and the details of the wavelet-based

analysis are presented in section 3. To optimize the time

resolution a Paul mother wavelet is used in estimating

the high-frequency fluctuation levels. For the estimation

of the local Hurst exponent the scale resolution is im-

portant, and therefore the best choice is to use the

Morlet mother wavelet (De Moortel et al. 2004).

2. Anomalies with respect to the 1/f b climate noise

In this section it is shown that during the stadial pe-

riods of the NGRIP record there are deviations from the

so-called 1/f law for temporal temperature variability.

The anomaly is observed for the high frequencies, and

this is consistent with the hypothesis that there are in-

stabilities related to dynamical processes operating on

decadal time scales. This will serve as a motivation for

focusing specifically on the high-frequency band of the

NGRIP record when analyzing critical slowing down.

Evidence of reduced stability on the decadal time

scales during the last ice age can be observed in the es-

timated power spectral density (PSD) function of ice-

core temperature proxies. In Rypdal and Rypdal (2016)

it is shown that if the stadial and interstadial periods in

the NGRIP data are analyzed separately, then fluctua-

tions scale approximately as a 1/f noise, meaning that the

PSD has the form S( f); f2b, with b’ 1. The 1/f scaling

observed in ice-core temperature variability is similar to

what is observed in other temperature records, such as

the instrumental global surface temperature and the

Northern Hemisphere temperature reconstructions for

the last twomillennia (Rypdal andRypdal 2016). In fact,

the (1/f b)-type climate noise is what is typically observed

for both global temperatures and for local temperatures,

and deviations from this property can be seen as anoma-

lous. One well-known example is El Niño–Southern Os-

cillation (ENSO), which places larger fluctuation levels on

FIG. 2. Double-logarithmic plots of the PSD S( f ). The analysis of the 20-yr mean NGRIP

data is shown as the blue diamonds, the purple triangles, and the red diamonds. The blue

diamonds show the results of the analysis of the entire dataset dating back to 60 kyr BP. The red

diamonds are the results of the analysis performed on the stadial periods only, and the purple

triangles are the results of the analysis of the interstadial periods only. For comparison, the

green triangles represent the HadCRUT4 monthly global mean surface temperatures and the

black squares are the analysis of the Moberg Northern Hemisphere temperature re-

construction. (The PSDs of the NGRIP data have been shifted to make it easier to compare

with the PSDs of the two other datasets.) The black curve is obtained from the expression in Eq.

(4) (with b5 1.15) by increasing the parameters tk corresponding to time scales between a decade

and a century. The shaded area represents the confidence region (in this case taken as two

standard deviations) of the PSD estimate for a 1/f b noise with 3000 data points (as in the

NGRIP record).
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the time scales of a few years thanwhat is expected from a

1/fb law (Løvsletten and Rypdal 2016). Another example

is the large temperature variability on the decadal time

scales observed in the Greenland ice cores. It must be

noted that in the instrumental temperature records it is

found that local land temperatures scale with a lower

b exponent compared to global surface temperature and

local sea surface temperatures (Rypdal et al. 2015;

Løvsletten and Rypdal 2016; Fredriksen and Rypdal

2016), but on sufficiently long time scales we expect

local and global temperatures to scale with the same

exponent (Rypdal and Rypdal 2016). Figure 2 shows the

estimated PSD of the d18O variations in the NGRIP ice

core. The blue diamonds are the periodogram estimate

for the entire time series, whereas the red diamonds and

the purple triangles are estimated using only the stadial

and interstadial periods separately. This can be done

using the Lomb–Scargle periodogram (Lomb 1976),

which is an estimation technique for the PSD that does

not require the signal to be sampled at equal time in-

tervals. As we see from the figure, the PSD deviates

from the 1/f b law for frequencies corresponding to time

scales shorter than a few centuries. This effect can be

taken as an indication that the processes that dominate

the temperature signal on these time scales have weaker

stability than what is predicted from a 1/f b assumption.

The argument behind this claim is that the scaling of the

climate noise is a reflection of the fact that the climate

system consists of many components that respond to

perturbations on different time scales, and it is difficult to

identify any characteristic time scales in the temperature

records. As a simple explanatory model, we can think of

the temperature signal as an aggregation of processes:

T(t)5 �
k

T
k
(t) ,

where each term Tk(t) is a (possibly) nonlinear and sto-

chastic description of the temperature variations at the

time scale tk. As linearized descriptions of the components

Tk(t) we can write the stochastic differential equations:

dT
k
(t)1 u

k
T

k
(t) dt5 c

k
dB

k
(t), with u

k
5

1

t
k

,

and from this (assuming independence if the noise

processes dBk) the PSD of the aggregated signal T(t)

becomes

S( f )5 �
k

jc
k
j2

t22
k 1 (2pf )2

. (4)

The aggregated process T(t) can be made to approxi-

mate a 1/f b noise if we choose the time scales tk to be

exponentially spaced (i.e., tk5 akt0 for some parameter

a . 0). Here t0 is some reference time scale (e.g., t0 5
1 yr). In addition we need to require that jckj2 5
a22bjck11j2. If this is the case we have the approximate

relation S(af) ’ a2bS( f), so if b ’ 1 the signal T(t) will

be consistent with the scaling observed in ice-core

temperature records.

This model is clearly constructed to produce the (1/fb)-

type scaling observed in temperature records. However,

the superposition of OU processes can be motivated by

simple physical considerations. One way is to use a very

simple N-box model for the vertical heat transport in the

oceans. In such a model, which is a straightforward gen-

eralization of the two-boxmodel introduced byHeld et al.

(2010), it can be shown that the surface temperature is a

convolution on the following form:

T(t)5

ð
t

"
�
N

k51

c
k
e2uk(t2s)

#
dF(s) ,

where the parameters ck and the system eigenvalues

uk . 0 depend on the heat conductivities and the heat

capacities of the boxes. If the forcing F(t) is taken to be a

white-noise process—that is, dF(t) 5 dB(t)—then the

temperature is a linear combination of dependent OU

processes, and if we have a clear separation of scales so

that each characteristic times scale tk 5 u21
k is much

longer than the correlation time tk21 5 u21
k21 of the sub-

sequently faster mode, then the cross covariance be-

tween the processes is small and the expression in

Eq. (4) is a good approximation of the PSD.

Using this description we can now explore the effect of

reducing the stability of some of the components Tk. For

instance, if one of the components Tk(k) is well described

by a nonlinear model that approaches a tipping point, then

in the linearized model we will see uk / 0, corresponding

to a strong increase in the characteristic time scale tk. This

will lead to a deviation from the (approximate) 1/fb law. In

fact, this effect is completely consistent with our observa-

tions for the NGRIP data. The black curve in Fig. 2 is

obtained from the expression in Eq. (4) (with b5 1.15) by

increasing the parameters tk corresponding to time scales

between adecade and a century (using a5 2 and t05 1yr).

The effect is a ‘‘flattening’’ of the PSD on time scales

shorter than a few centuries, similar to what is esti-

mated in the NGRIP data.

From Fig. 2 one can also observe that if the entire

NGRIP record is analyzed (the blue diamonds), then

there is an apparent ‘‘scale break,’’ with 1/f b and b’ 1,

for the frequencies corresponding to time scales longer

than about 500 yr. The increased b value is actually not a

characterization of the variability in the stadial or in-

terstadial states but an effect of the shifts between the

1 JUNE 2016 RYPDAL 4051



two states. What is relevant for this paper is the scaling

under stadial conditions (the red diamonds). This is

close to a 1/f noise except for the high-frequency band.A

detailed analysis of the scaling properties in the NGRIP

data is given in Rypdal and Rypdal (2016).

In Rypdal and Rypdal (2016) the scaling analysis

is also carried out using a wavelet-based approach. If

the PSD is a power law—that is, S( f ) ; f2b—then the

variance of the wavelet transforms scales according to

hW(t, Dt)2i ; Dt b, as a function of the time scale Dt.
A white-noise process corresponds to b 5 0 and a

Brownian motion has b 5 2. An OU process, which

has a Lorentzian PSD, will have a scaling regime

b 5 0 for time scales much larger than the correlation

time and a scaling regime b 5 2 on time scales much

shorter than the correlation time.A commondefinition of

the Hurst exponent isH5 (b1 1)/2, and for a stationary

(zero mean) process with b, 1 the temporal correlations

in the signal are related to the Hurst exponent via the

following formula:

hx(t)x(t1Dt)i; 2H(2H2 1)Dt2H22 .

For b. 0 the covariance is not well defined, but a similar

formula can be written for the increment process. If the

signal is not scaling, it is still possible to estimate a local

Hurst exponent by interpreting the relation hW(t, Dt)2i;
Dt b as the high-frequency limit Dt / 0, similar to how

one defines a fractal dimension. In this case the Hurst

exponent does not quantify the autocorrelation decay of

the signal x(t) but rather the roughness of the signal. It can

also be taken as a measurement of the correlation decay

for the high-frequency component for the signal. Note

that an OU process has H 5 1.5 (b 5 2) in the high-

frequency limit, so if the signal x(t) is the superposition

of OU processes with distinct characteristic time scales

tk and the PSD of the aggregated signal is a 1/f b law

with b ’ 1, then the locally estimated Hurst exponent

will increase toward H 5 1.5 if the signal is modified

so that the terms corresponding to short correlation

times tk become more dominant. A thorough account

of wavelet-based techniques and Hurst analysis for

scaling processes is given by Malamud and Turcotte

(1999).

The main conclusion of this section is that there is a

deviation from the 1/f b law for high frequencies during

the stadial periods in the NGRIP record. This observa-

tion indicates that the high-frequency fluctuations in the

NGRIP data are of interest when searching for EWS,

but in itself this observation does not present any EWS,

since it does not uncover any temporal changes in the

stability of the stadial climate state. Such changes will be

discussed in the next section.

3. Analysis and results

As discussed in the introduction, if one attempts to

model the NGRIP d18O times series as a single ran-

domly forced scalar dynamical system with two stable

states, then any parameter choice that corresponds to

realistic fluctuation levels in the stadial and interstadial

states will lead to spontaneous ‘‘jumps’’ between the two

states. This is a simple consequence of the ratios be-

tween the fluctuation level and the temperature differ-

ence between the stadial and interstadial states. This is

illustrated in Fig. 1, which shows an example of such a

model. Here the parameters are chosen so that the OU

models (which are obtained by linearization around the

stadial and interstadial states) have standard deviations

equal to the sample standard deviations of the stadial

and interstadial periods in the NGRIP time series. The

fixed points are chosen according to the averages of d18O

in the stadial and interstadial periods before and after the

onset GI-12.3 Figure 1c shows a realization of this model

with fixed parameters, and it is observed that there are

transitions between the two states even in the absence of

any slowly varying parameter changes (i.e., completely

noise-induced shifts). For a model of this kind, the onset

times of the GIs would have no periodic component.

However, as discussed in section 2, it is reasonable to

model the d18O signal as an aggregation of signals. It is

then possible that the shifts do require reduced stability

of the stadial climate state. If this is the case, we should

in principle observe EWS, but these may be masked by

low-frequency variability. A natural approach for un-

covering EWS is then to filter the NGRIP data and an-

alyze certain frequency bands. As also discussed in

section 2, there are indications that the dynamical pro-

cesses associated with reduced stability have character-

istic time scales shorter than a century, suggesting

analysis of the high-frequency band of the NGRIP data.

The first step of this analysis is to identify stadial pe-

riods and the onset times for the interstadial periods. In

total 18 climate events are analyzed. These include the

onsets of GIs 1–17 as well as the YD–Preboreal transi-

tion, using the onset dates for the interstadial periods

(and the date for the YD–Preboreal transition) as given

by Svensson et al. (2008). These dates determine the end

of the cold periods that are investigated for EWS. The

start dates for the cold periods are chosen such that they

do not include the very sudden temperature declines

that often occur in the DO cycles. These sudden tem-

perature changes (which are believed to be linked to

3We refer to Svensson et al. (2008) for the enumeration of

the GIs.
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slowdowns of the thermohaline circulation coupled with

sea ice formation) can themselves be seen as tipping points

(Lenton et al. 2012) and should not be viewed as a part of

the destabilization of the cold state. The cold periods we

have chosen to analyze are drawn as blue curves in Fig. 3.

Figure 4 shows the results of an analysis where each

cold period is considered as an ensemble member. The

d18O time series is filtered by subtracting a 100-yr

moving average, and for the filtered signal the stan-

dard deviation is computed in running 100-yr windows.

For the cold periods (those drawn in blue in Fig. 3), the

results are organized by averaging the standard deviation

over all 100-yr time windows that precede the onset of an

interstadial period by a certain number of years. This

yields an ensemble estimate of the fluctuation level in the

d18O signal as a function of the time before the sudden

onset of the warm period. Figure 4b shows the fluctua-

tion level when all cold periods (except the YD) with

duration longer than 300 yr are included. The dotted

line is a linear fit with a slope âs 5 0.08& kyr21.

This increasing slope is significantly larger than zero,

with a p value of 0.04. The significance is tested by con-

structing signals that have the same PSD as the cold-

period signals but where the phases are randomized. For

each of the cold periods the discrete Fourier transform

(DFT) of the d18O signal is computed, and for each fre-

quency the square root of its modulus is multiplied by a

factor eif, where f is a random angle chosen with respect

to the uniform distribution on the interval [0, 2p). The

inverse DFT is applied to the resulting time series, before

taking the real parts and adjusting the standard deviations

by a factor
ffiffiffi
2

p
.4 The thin curves in Fig. 4b show how the

standard deviations in 100-yr windows of the (filtered)

synthetic realizations depend on the time before the onset

of the interstadial periods. In a large ensemble of re-

alizations the pseudoslopes âs are computed, and the

distribution function P(âs) of these is obtained using a

smooth kernel estimator (Rosenblatt 1956). The estimated

distribution function is shown in Fig. 4d. The arrow in this

figure shows the value âs 5 0.08&kyr21 estimated from

the d18O signal, and the gray area under the curve marks

the 95% confidence interval for âs under the null model.

The p value is computed as p 5 1 2 P(0.08&kyr21).

Figures 4a,c show the results of the same analysis, but in

this case the YD–Preboreal transition is included in the

analysis, which in practice means that the YD is included

as one of the cold periods under investigation. When the

YD is included the estimate becomes âs 5 0.11&kyr21,

whereas the distribution P(âs) changes very little, and the

statistical significance is improved to p 5 0.005.

The results presented above show that if we view the

sequence of DO events as a statistical ensemble, there is

on average a tendency for the fluctuation levels to in-

crease toward the sudden termination of the Greenland

stadials. However, it does not tell us whether these EWS

are observable in the individual climate events. The in-

dividual events are analyzed using the CWT defined in

Eq. (3), and the local high-frequency fluctuation levels

are computed by taking the standard deviation of the

wavelet coefficients corresponding to the short time

scales. Then the time evolution of these are analyzed; that

is, the wavelet coefficients are averaged over the time

scales 0 , t , tc and over time windows of length Dt:

s2(t)5
1

Dt

ðtc
0

ðt1Dt/2

t2Dt/2

jW(t0, t)j2 dt0 dt . (5)

I have used tc 5 50 yr and Dt 5 200 yr, and the time

variation of s(t) for each cold period is shown in Fig. 5a.

Linear fits to s(t) in each cold period are drawn in red,

and realizations of s(t) for the synthetic signals (using

the same null model as described above) are plotted as

the thin curves. The distribution function for the linear

pseudotrends in the null model is obtained via a smooth

kernel estimator, and using this p values for the linear

increases in s(t) are computed. These p values are shown

in Fig. 5a. We have p , 1024 prior to the onset of the

FIG. 3. TheNGRIP d18O record. The parts of the curve that are drawn in blue are defined as the cold periods, and it

is these data that are analyzed for EWS. The parts of the curve that are drawn in red are defined as the warm periods,

and these are used to compute the PSD for the interstadial periods that is shown in Fig. 2.

4 Since we disregard the imaginary part of the constructed signal,

this adjustment is needed in order for the synthetic signals to have

the same standard deviations as the cold periods in the d18O signal.
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YD–Preboreal transition and prior to the onsets of GI-1

and GI-8. Prior to GI-12 we have significance at the 0.1

level, and in a majority of the cold periods we have in-

creasing trends in s(t). From Fig. 5a one can also observe

that the fluctuation level during the YD is higher than for

the preceding stadial periods in theNGRIP record, and in

Fig. 3 one observes that this period is significantlywarmer

compared to most of the other stadial periods. These are

climate conditions closer to what is experienced in the

Holocene, and indeed, the YD period can be viewed as a

part of the termination of the ice age.

Figure 4b shows the time dependence of the locally

estimated Hurst exponent H. This is estimated via the

following relation:

hjW(t, t)j2i; t 2H21 ;

that is, a linear fit is made to loghjW(t, tj2i as a function

of log t. The fluctuations hjW(t, tj2i are estimated in

200-yr windows and only the time scales shorter than

60 yr are used. Since only the high-frequency fluctuations

are used to estimateH it is more appropriate to think of

it as a local smoothness exponent than as a scaling

exponent. Nevertheless, a time-varying Hurst exponent

estimate that increases in time is consistent with an in-

crease in correlation time in the high-frequency band, and

it is thus expected in association with stability loss. As

with the high-frequency wavelet fluctuation level, there

are strongly significant increases inH before the onsets of

GI-1 and the YD–Preboreal transition. Strong increases

are also seen before GI-8 and GI-4.

4. Discussion and concluding remarks

This paper presents both new results and newmethods.

The new methods include combining high-pass filtering

with the ensemble construction presented by Cimatoribus

et al. (2013), as well as using the wavelet transform to

discern time-varying fluctuations in the high-frequency

band. Another important aspect is the statistical signifi-

cance testing, which is based on a nonparametric null

model with randomphases. Because of the ‘‘flattening’’ of

the PSD at high frequencies, the application of a para-

metric model such as a fractional Gaussian noise (fGn)

will lead to a misrepresentation of the fluctuation levels

either on the short time scales or on the long time scales

FIG. 4. (a) The fluctuation level in 100-yr windows of the filtered d18O signal as a function of the time before the

sudden onset of thewarmperiod. The dotted line is a linear fit âs 5 0.11& kyr21. The thin curves are the corresponding

fluctuation levels in a null model, which is constructed by taking the PSD of each cold period and randomizing the

phases. (b)As in (a), but in this case theYD is not included as one of the coldperiods. The dotted line has the slope âs 5
0.07& kyr21. (c) The distribution function of the linear fits âs under the null model. The shaded area represents the

95% confidence of âs under the nullmodel and the arrowmarks the observation âs 5 0.11& kyr21. (d)As in (c), but in

this case for the analysis that does not include the YD. The arrow marks the estimate âs 5 0.08& kyr21.
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(depending on which time scales are emphasized in the

parameter estimation). In either case it will provide an

inaccurate model for the distribution of pseudotrends in

the local fluctuation levels. For instance, if one were to

apply an fGn null model using standard parameter esti-

mation methods, then this model would underestimate the

high-frequency fluctuation levels, and as a consequence

one would obtain much lower p values for the EWS.

The methods described above are different from those

used by Lenton et al. (2012) and Dakos et al. (2008), who

focus on the lag-1 autocorrelation and theHurst exponent

estimated using detrended fluctuation analysis (DFA).

While these approaches are very robust, they have some

disadvantages.Aproblemwith the lag-1 autocorrelation is

its sensitivity to trends and to low-frequency variability

that is not easily removed by standard detrending

methods, and theDFA estimator is known to resolve time

scales poorly. The filtering applied in Lenton et al. (2012)

and Dakos et al. (2008) is meant as a detrending, and care

is made not to filter out the low-frequency variability in

the signal, while in this paper it is a point to remove the

slow fluctuations that are masking the EWS.

The EWS we find for the YD–Preboreal transition

are consistent with results of Lenton et al. (2012) and

Dakos et al. (2008). We also find strong EWS for the

onset of GI-1 (the so-called Bølling–Allerød warming)

and GI-8, and seen as an ensemble, we find significant

EWS for the onsets of the interstadial periods. The

results show that there are dynamical structures related

to some of the DO cycles that experience reduced

stability prior to the onset of a sudden warming. This is

in contradiction to Ditlevsen and Ditlevsen (2009) and

Ditlevsen and Johnsen (2010), who conclude that the

onsets of GIs must be seen as random and unpredict-

able events. However, even though it is demonstrated

that there are EWS for the onsets of the GIs, it is also

recognized that these are difficult to observe in the

climate noise and that it is necessary to filter out the

low-frequency fluctuations in order to obtain statistically

significant results. This implies that any probabilistic

predictionmethod of DO events based on the EWSwill

have low sharpness, and in this sense, the results of this

study only partly contradict the main message of

Ditlevsen and Johnsen (2010).

FIG. 5. (a) The wavelet fluctuation level s(t) defined by Eq. (5). The red curves are linear fits to s(t) in each cold

period, and the p values are obtained by estimating the distribution function for the linear slopes using a Monte

Carlo simulation (with the null model that is constructed by randomizing the phases). (b) As in (a), but for the

locally estimated Hurst exponent.
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The observation that the stadial climate in Greenland

experiences reduced stability prior to the onsets of the

interstadials is complementary to the findings of Livina

et al. (2010), who have made similar observations (using

very different methods) for the interstadial climate

states. The study of Livina et al. (2010) is consistent with

the observation of EWS in climate models forced

through a shutdown of the Atlantic thermohaline cir-

culation (Lenton et al. 2012).
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