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Abstract ‘)\

The auto-correlation function and the frequency power spectral mue to a super-position of un-

correlated exponential pulses are considered. These are shown to be&ndependent of the degree of pulse

overlap and thereby the intermittency of the stochastic pr&css. ESr constant pulse duration and a one-sided
exponential pulse shape, the power spectral density has a‘luorentzian shape which is flat for low frequencies

and a power law at high frequencies. The algebraic tatlkis demonstrated to result from the discontinuity in

the pulse function. For a strongly asymmetrié\‘dg%:eiexponential pulse shape, the frequency spectrum
nt

is a broken power law with two scaling re 7!97[ case of a symmetric pulse shape, the power spectral
S

density is the square of a Lorentzian ion.\The steep algebraic tail at high frequencies in these cases

is demonstrated to follow from th%ul y in the derivative of the pulse function. A random distri-

bution of pulse durations is shown to result in apparently longer correlation times but has no influence on

the asymptotic power law,tailof the frequency spectrum. The effect of additional random noise is also dis-

high frequencies. The probability density function for the fluctuations

£

cussed, leading to a fl ecfrum
éﬂ; e distribution of pulse durations. The predictions of this model describe the
tion

is shown to be ind

ctions and power spectral densities reported from experimental measurements
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Publishihg INTRODUCTION

The boundary region of magnetically confined plasmas is generally found to be in an inherently
fluctuating state with order unity relative fluctuation levels of the plasma parameters.!~!? The
frequency power spectra of these fluctuations are generally found to be characterized by a flat low-
frequency region and a steep high-frequency tail.''~?7 In many previpous works, power law scaling
relationships have been inferred from experimental measurements and, the results interpreted in the
frameworks of scale-free inertial range cascade, self-similar processes and self-organized critical
behavior.!1-21 By contrast, it will in this contribution be déemonStrated that the auto-correlation
functions and frequency spectra reported from experimental measurements can be described by a

super-position of uncorrelated exponential pulses.

Large-amplitude fluctuations in the boundary, region age attributed to the radial motion of
blob-like plasma filaments through the scrape=eff layer, most clearly demonstrated by gas puff
imaging diagnostics.>>~>> During their radial propagation, the blob-like structures develop a steep
front and a trailing wake, which can also be“gbserved in numerical simulations of isolated blob

36-50 and simulations of scrapé:off tayer turbulence.’!'~®! Conditional averaging of ex-

structures
perimental measurement data have showa that large-amplitude fluctuations are well described by
an exponential wave form.®?-33 This Universal observation of front steepening in interchange mo-

tions of plasma filaments jotivates the present study of exponential pulses.

The statistical properties«@f large-amplitude fluctuations in the scrape-off layer of tokamak
plasmas have recently“béen elucidated by means of exceptionally long data time series under

stationary plasma conditions:’8-84

From single-point measurements it has been demonstrated that
there is an expenential distribution of both the peak amplitudes and the waiting times between
them. Meateovger, theaverage duration time does not depend on the amplitude and also appears to
be robfist against ¢hanges in plasma parameters.”>~8* Based on these properties, a stochastic model
for-the'plasma fluctuations has been developed by a super-position of uncorrelated exponential

85¢90

pulses. The underlying assumptions and predictions of this model have recently been found

te.conipare favorably with experimental measurements.’3-34

In this contribution, the auto-correlation function and frequency spectrum are derived and dis-
cussed in detail for one- and two-sided exponential pulses. These are shown to be independent
of the amplitude distribution of the pulses as well as the degree of pulse overlap and thereby the

intermittency of the stochastic process. For constant pulse duration and a one-sided exponential
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Publishipgse shape, the power spectral density has a Lorentzian shape, which is flat for low frequencies
and a power law spectrum at high frequencies. For a two-sided exponential pulse shape, the power
spectral density is the product of two Lorentzian functions. The power law tails at high frequen-
cies are shown to result from discontinuities in the pulse function or its derivative. A distribution
of pulse duration times is demonstrated to result in apparently longer cg@firelation times but has no
influence on the power law tail of the frequency spectrum.

This paper is organized as follows. In the following sectiongthe“stdchastic model describing
fluctuations due to a super-position of uncorrelated pulses is presented. In Sec. III the mean and
variance of the random variable are calculated and the intrinsi¢ intermittency of the process is
discussed. General expressions for the auto-correlationfunction and the power spectral density
are derived in Sec. IV. The cases of one- and two-sided exponential pulse functions with constant
pulse duration is considered in Sec. V. In Sec. VA the algebraic tail in the frequency spectra are
demonstrated to result from the discontinuity, in‘the pulse function or its derivative. A distribution
of pulse durations is in Sec. VII shown togesultan apparently longer correlation times but has no
effect on the asymptotic power law taikin the'ftequency spectrum. The contribution of additional
random noise is discussed in Sec. Cand finally-a discussion of the results and the conclusions are
given in Sec. VIII. The probability dénsity functions in the case of exponential and Laplace ampli-
tude distributions are derived in Appendix A. A discussion of the relation between discontinuities
in the pulse shape or its dérivatyies and power law spectra is given in Appendix B. Finally, the

role of additional randém noige isi/discussed in Appendix C.

II. STOCHASTIC MODEL

Considér a stochastic process given by the super-position of a random sequence of K pulses in

a time anterval.of duration 7,35-94

K t—1
i (1) = Y Ao (—T ) (1)
k=1 k

where each pulse labeled k is characterized by an amplitude Ay, arrival time #;, and duration 7, all
assumed to be uncorrelated and each of them independent and identically distributed. The pulse
arrival times #; are in the following assumed to be uniformly distributed on the time interval under
consideration, that is, their probability density function is given by 1/7. The pulse duration times

;. are assumed to be randomly distributed with probability density P;(7), and the average pulse

3
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Publishidgation time is defined by
Tq = (1) :/ dt TP (7). (2)
0
Here and in the following, angular brackets denote the average of the argument over all random
variables. The results presented here are independent of the distribution of pulse amplitudes P4 (A),
it is only assumed that the mean (A) and variance (A2) are finite. The of the pulse amplitude

distribution is discussed further in Appendix A.

The pulse shape ¢(6) is taken to be the same for all events 1n\ This function is normal-

ized such that
/ 6 (6 3)

Thus, for constant duration each pulse contributes equall the ean value of k(). The integral

of the n’th power of the pulse shape is defined as

\M; @)

for positive integers n. It is assumed tha T e ompared with the range of values of ¢ for
which ¢(z/7) is appreciably different from 0, thus allowing to neglect end effects in a given
realization of the process. Furthe t e‘normahzed auto-correlation function of the pulse

function is defined by*®

,/ ax9(x)9(x +9). )
2
and the Fourier transforngiﬁwes the frequency spectrum,
d6 py () exp(—iv6) = |<p|2<19), 6)
where the transf \ lse function is defined by
) 0(9) :/ d6 ¢(8) exp(—i06). 7)

In this co th}r the auto-correlation function and the power spectral density for the process

-
deﬁnm ) will be investigated for the case of exponential pulses. The influence of var-
iQus distributions of the pulse duration times as well as additive random noise will be explored.
ever)ﬁrst the two lowest order moments of the process will be derived.

.
I MEAN, VARIANCE AND INTERMITTENCY

The two lowest order moments of a realization of the stochastic process defined by Eq. (1) can

be calculated in a straight forward manner by averaging over all random variables.?3-93
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PublishingA. Mean value

Starting with the case of exactly K events in a time interval with duration 7', the mean value is

given by

<q>K>:/ZdAlpA(Al)/:quT(q) OT% /

--/_idAKPA(AK)/OOOdTKPT(’L' D ZAk¢( tk)» ®)

using that the pulse arrival times are uniformly distributed. ‘)eeﬂ.ng end effects by taking the
integration limits for the arrival times # in Eq. (8) to 1nﬁ%m n value of the signal follows

directly,
(Px) = ﬂ(\ 9)
Here a change of integration variable define )/ T has been made, giving
/ diPT(Tk dtkq) dty TP (T / dO¢(0) = 14;. (10)
0 _
Taking into account that the numb s K is also a random variable and averaging over this

as well gives the mean value fo‘t@n Iy process,
\ (@) = 14 (11)
W

where 7, = T /(K a }age pulse waiting time. For a non-negative pulse function, I1 = 1,
the mean value o th rocess is given by the average pulse amplitude and the ratio of the average
pulse duratiofiand a1t1ng times. The mean value vanishes both for anti-symmetric pulse shapes,

I1=0,a for})uls mplitude distributions with vanishing mean, (A) = 0. It should also be noted

that tiK ués does not depend on the distribution of pulse duration times.
V%rlance

The variance can similarly be calculated by averaging the square of the random varible. From

t—1ty t—ty
AiA . 12
e (o (51) (12)

5

the definition of @k (¢) it follows that

M=

)

k=1

~
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PublishifAgeraging this over pulse amplitudes as well as duration and arrival times for fixed # and K gives

r dny

<CD%(>:/ZdAIPA<A1)/OMdT1PT(Tl) T

o e Tdtg & & t—t t—1t
.../mdAKPA(AK)/O drKPT(TK)/O ?];;AkAggb > )¢(T—€) (13)

There are two contributions to the variance from the double sum. h%b\here are K(K—1)

terms with the value \
” ” T dr, r—t ‘)‘--..___
/ dAkPA(Ak)/ A Pr() | — Ao (_k) _&
—ee 0 o T Tr
X / dAEPA(@ a

while for k = ¢ there are K terms given by the ntegra

| aapan Owﬁ%mo % aro? (%) (15)
\ 7
duga

Neglecting end effects due to the LK‘Oti;ﬁ of individual pulses by extending the integration
limits for #; and #, to infinity, tn@ r large T in the case of exactly K pulses is given by

2 K(K—1)

K
— 2 272
% wh(A%) -+ Tl (A) = (16)
By averaging ovc?l&zati}n where the number of pulses K is statistically distributed gives

(@) = 9 1,(A2) + (@), (17)

Tw

where (K v 1)) F K)? has been assumed. This is an exact relation for a Poisson distribution of
ﬂ

the m@::)i pulses, and approximate when there is a large number of pulses in each realization
r

of the'p . It follows that the standard deviation or root mean square (rms) value of the random
variable 1§ given by

wx W= B y(a7), (18)

Thus, the absolute fluctuation level is large when there is significant overlap of pulse events, that
is, for long pulse durations and short pulse waiting times. As for the mean value given above, the

variance does not depend on the distribution of the pulse duration times.
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PublishingC. Intermittency

The ratio of the average pulse duration and waiting times,

Td
=—, 19
LS / (19
determines the degree of pulse overlap in the stochastic process. W enws small, pulses generally

appear isolated in realizations of the process, resulting in a st intermittent signal where

most of the time is spent at small values. When 7 is large, e‘rBis significant overlap of pulses
. . . -H

and realizations of the process resemble random noise. Andeed;uit can be demonstrated that the

probability density function for the random variable @K(&@) ches a normal distribution in the

limit of infinitely large 7y, independently of the puls shape.$nd amplitude distribution.3>-86

For a non-zero mean value of the process, the relative fluctuation level is given by

e D) o0

mwz
».

This is large for long pulse waiting {ime nd short pulse durations. In Appendix A it is shown
that also the skewness and flatngss m\b{s ecome large for small values of y. In the following,

the rescaled variable with zero mehunit standard deviation will be frequently considered,

® — (D)

n
\ $(r) = =% 1)
/\ (> cI)rms
AN 4
Some realizatio his

cess are presented in Fig. 1 for one-sided exponential pulses with
constant dur. 'orbnd exponentially distributed amplitudes. It is clearly seen that the signal is
strongly i terlpitt for small values of 7y, while pulse overlap for large values of Y makes the
signalssresemble tdndom noise. Further description of the intermittency effects in this process is
given Appé’ldix A and are discussed in Refs. 85-90.
Q
}? ‘CORRELATIONS AND SPECTRA
In the same way as the variance was calculated above, the auto-correlation function for Pk (7)

can be calculated by a straight forward average over all random variables and the power spectral

density is then given by a transformation to the frequency domain.

7
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FIG. 1. Realizations of the stochastic process for a one—gﬁd eﬂj)nential pulse shape with constant dura-

tion 74 and exponentially distributed pulse amplit%d’tgree of pulse overlap is determined by the

intermittency parameter Y = Tq/ Ty

A. Auto-correlation function
<
w by Eq. (1), the auto-correlation function for a time

Considering first the signal ®g(

lag r is given by a double sum,
°° T dr
d?n)ml) | anpm) [
o T
T dr —ty+r
dei Pe(z) | KZZ/W( )A¢< i ) (22)
ibutions to the double sum, comprising K(K — 1) terms when k # ¢ given
y -3 dt —t T d, —ti+r
4 diPr(Tk)/ k¢( k)/ dr P; Te)/ —¢( o >7 (23)

«A &4
and K te3 hen k = ¢,
K e dr, r—t f—ti+r

> diy 3 3

2 Y [ anpdm) [ o () e (1r). 4

N
Neglecting end effects due to the finite pulse duration by taking the integration limits for #; and ¢,

to infinity for the case of exactly K pulse events results in
K(K—1) K [
2
(@k(O)Px(t4+7)) = GIAP == b (A% /0 dr TP (T)po (/7). 25)

8
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Publishiﬁgc raging over the number of pulses occurring in the interval of duration 7', it follows that the

auto-correlation function for the stationary process is given by’

e L
Ro(r) = (@) + @ [ dTeP(2)py(r/). 26)

where py(0) is the normalized auto-correlation function for the pulse fg‘ction defined by Eq. (5).

The expression of the auto-correlation function is simplified by co ide)rin e rescaled variable

defined by Eq. (21),
1 ()
R&)(r) = T_d/o dt ’L'P»,;(’L’)pq) (r/zﬁ\ 27

It is emphasized that this expression for the auto-correlagion tion does not rely on a Poisson

distribution of the number of pulse events. The auto-c relatibP function is determined by the

pulse shape through py(0) and the probability dens@unction or the pulse duration times.
Equation (26) emphasizes the role of the puls&%&im_ etermining the auto-correlation func-

tion for the process. However, the time lag r&nte rand can be transfered to the distribution

function for the pulse durations times by the

native formulation 5
1
Rg,<r>mj—§‘grm<r|/e>p¢<e>, 28)

e pulse duration times is normalized such that

where the probability density f&qﬂ\‘r
dePy(%) = / S rP(rl/0) = 1. 29)
0 o 6

In the case of const

e of variables 6 = |r|/7, which gives the alter-

t pulse dufation, the latter is given by the degenerate distribution P:(7) =
o(t — 1q), wher{ is dflia distribution. The auto-correlation function is then Rg(r) =
Po(r/7a), tha s,\)t is Supply given by the normalized auto-correlation function of the individ-

ual pulses int the'proecss.
£

-~ V.
B. %pe tral density
—

romye auto-correlation function given above, the power spectral density follows directly by

}Fyu\rier transformation to the frequency domain,”

Qa(0) = [ o;dchp(r)exp(—iwr):27r<d>>25(w)+<l>r2ms%d A O PR e

where @ is the angular frequency and gy (¥) is the Fourier transform of the normalized auto-

correlation function defined by Eq. (6). Here the first term on the right hand side of the second

9
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Publishiﬂgl lity is a zero-frequency contribution from the mean value of the random variable. The ex-
pression for the power spectral density is simplified by considering the rescaled random variable

defined by Eq. (21),

1 [
Qz(w) = T_d/o dtT?P(7) 09 (T®). (31)

e)a}pﬁQde distribution P4

erty is evidently due to the

It should be noted that this frequency spectrum is independent of

and does not depend on the intermittency parameter y. The latter pr
assumption of uncorrelated pulses. Moreover, the above exp s?on is_not restricted to a Poisson
distribution for the number of pulses K(7'). The only assumptigiis made are that the pulse arrival
_—

times have a uniform distribution and that the two lowestiorder mso ents for the process are finite.

In the special case of constant pulse duration, the exﬁs‘sion e power spectral density become
Qg () = 74 09 (Tg®), that is, the spectrum is shmply cjlé_a'mined by that of the pulse function
¢(6).

By the simple change of variables, ¥ @q. (31) for the power spectral density can be
written in the alternative form $
AN

\ (ol

where the probability den 't)hg:tion or the pulse duration times is normalized such that
< > do
A ¢ [Saro = | T Pe(®/l) = 1. (33)
0

Equation (32 1s?5gg>ﬂ\e of a power law spectrum for sufficiently broad distributions of pulse

.
D 2
— Pc(8/]0]) 04 (), (32)

o

durations. An general, the power spectral density is determined by both the pusle shape and the

distribution functigh for pulse durations.””
-

)

-
V&WBNENTIAL PULSES
\ A

The above expressions for the auto-correlation function and the power spectral density were
derived for an arbitrary pulse function under the assumption that the two lowest order moments
exist. In this section, the properties of the stochastic process will be investigated for the case of

one- and two-sided exponential pulses with constant duration.

10
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PublishingA. One-sided exponential pulse

Consider first the standard case of an one-sided exponential pulse shape given by®>-37

9(6) = 0(6)exp(-0), (34)

where ©(0) is the unit step function defined by / \

I, 6>0,
O(6) — \ (35)
0, 6<0.
I
The integral of the n’th power of the pulse shape is infhis casesgiven by I, = 1/n. The auto-

correlation function for the pulse shape and its transfig‘m n b&ome

py(6) w(g @ (36a)
2
09 (ﬁ)i Hz (36b)

In the case of a super-position of uncorre&%,\oﬂr»sided exponential pulses with constant dura-
i

86,87

tion, it follows that the auto—correlatior&?; a symmetric exponential function,
r
xi\g,&i v exp (), (37)
\} Td
while the power spectral density is a [serentzian function,

1 1

\ —Qz(0) = ———. 38

/\ 274 5(@) 1+ 7202 %)
uen s‘p/ectrum is flat for low frequencies and has a power law tail for high

frequencies. to-comrelation function and the power spectral density for one-sided exponen-
tial pulses dre presented in Figs. 2 and 3, respectively.
£
- V.
B. Two-slsle exponential pulse
ﬁ
he c%e of a one-sided exponential pulse function is readily generalized to a pulse shape that

79,82,88

This well—knowné{

Mn{inuous by introducing a finite pulse rise time,

0(0:2) = O(—6)exp (%) +0(0)exp (—&), (39)

where the pulse asymmetry parameter A is restricted to the range 0 < A < 1. For A < 1/2 the pulse

rise time, A g, is faster that than the decay time, (1 — A )14, and the pulse shape is symmetric in the

11
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Publishiwg' A = 1/2. The integral of the n’th power of the pulse function is the same as for the one-sided
exponential pulse discussed above, I, = 1/n. Thus, while the probability density function and the
moments are the same, the auto-correlation function for the pulse function and its transform are

altered by the finite rise time,

|9|
T (40a)

2
o ) = A e \ (40b)

In the case of constant pulse duration, the auto-correlation fi c‘tbn for*a super-position of uncor-
—

po(B:1) = ——_ [(1—A)exp< _ dexp

related pulses is therefore given by?>

7]
% —7Lexp )L—Td)} . 41)

For a one-sided exponential pulse shape, the auto=eorrelation function given by Eq. (37) has an

Ry(r) = 1_121[( A)exp(— 1

exponential decay from zero time lag. WithtK\éKiter e time for a two-sided exponential pulse
shape, the correlation function is flat for txo-u;%elag. This is particularly clear in the symmetric

case A = 1/2, for which the auto-corr tion given by

\
R+ (r: 1= : 42
‘D(r ‘L'd> p( ‘L'd (42)

has a parabolic shape for small t1 + The auto-correlation function is presented in Fig. 2 for

various values of A. w
The power spectr. den51 for a super-position of two-sided exponential pulses with constant
duration is glven

1
T (-arge’] 1+ A7 ga]

(43)

’

2Td

This spectrumys ﬂa or low frequencies and has a steep power law scaling for high frequencies,
art1

which/i y clear for a symmetric pulse shape,
! Qs (w;1/2) = ! (44)
O T (i)’

‘Fb),vaer, for A < lor1—A < 1, the frequency spectrum resembles a broken power law with an
intermediate power law scaling regime given by 1/(7q®)2. When the pulse rise and fall times are
comparable, the spectrum will appear curved over a large range of frequencies when presented in a
double-logarithmic plot. This is clearly seen in Fig. 3, where the frequency spectrum is presented

for various values of the asymmetry parameter A.

12
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Publishing

R ;M)

FIG. 2. Auto-correlation function for a super-position OQ&coﬂjated, two-sided exponential pulses with

constant duration for various values for the asymmetry rafteter A. The case A =0 corresponds to a

one-sided exponential pulse shape. \
\
£
1 AN -
107§ \\
kel
& 102 \\
2 45
= 40
% ¥ A=0
9 =107 '
/ sS4 —— r=10" ]
3\0_6 — h=1P2 |
107! 1 10 10° 10°
4 T4
W/
FIG. Powes spectral density for a super-position of uncorrelated, two-sided exponential pulses with

cénstant duration for various values for the asymmetry parameter A. The case A = 0 corresponds to a
one-Si edlxponential pulse shape.

S
VI, POWER LAW SPECTRA

In this section a general relation is derived for the power spectral density of the process defined

by Eq. (1) and its derivative in the case of constant pulse duration. From this it is demonstrated

13



! I P | This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

Publishithgt the power law tails in the frequency spectra for exponential pulses are due to a discontinuity
in the pulse function or its derivative. Further discussions on the relation between discontinuities

and algebraic tails in the power spectral densities are given in Appendix B.

A. Derivatives and discontinuities /\

Consider the normalized time derivative of the stochastic progess‘given by Eq. (1) in the case

I

of constant pulse duration g,

ddy K(T) f—
\PK(Z) =CoTd —— = A s (45)
dr =i 75
where the pulse function for the process Wk (7) is elg‘«l to ¢(0) by
JE )
d
. (46)

Here a normalization constant ¢y has been intfeduced in order for the pulse shape y(6) to satisty

the requirement given by Eq. (3) f(% stoéhastic process,

\\l\zdewe) ! (7)

The constant cy clearly depends on the pulse function ¢ (0). The integral of the n’th power of the

derivative of this puls€ fupctionds defined as

4

<\ h= [ _delyo) (48)

Provided ghat 916 an value and variance exist for both the process Pk (#) and its derivative, it is
straight forw tof show that J oy (¥) = Igcéﬁz 0¢ (0). Thus, the power spectral densities for

the sto asticS)rocess and its derivative in the case of constant pulse duration are related by

KS Jz.Qq,((D) = Izcﬁ,rnggz&)(a)). (49)

\
As will be shown in the following, this relation provides an explanation of the power law tails in

the frequency spectra for the one- and two-sided exponential pulse shapes described by Eqgs. (38)
and (43), respectively. In order to demonstrate this, the frequency spectra for two elementary pulse

functions will be reviewed.

14
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PublishingB. Box pulse

Consider a pulse shape given by the unit box function on the interval |6| < 1/2, defined by

1 1
Nne)=0(6+=)-0(6-=), (50)
2 2
where ©(0) is the unit step function given by Eq. (35). The normaliz%/ wrrelation function

po (0) for this pulse shape equals the unit triangle function defined y)

1_|9|7 |9|§17
A(B) = > (51)

0, |6] > —~—
—
The Fourier transform of this function gives gy (9) = 2(1 —cog®¥)/9>. A super-position of un-

correlated box pulses gives a process with mean VQI? (®Y=H(A) and variance @2 . = y(A?),
since [, = 1 for the unit box function. In the casﬁlst;)t pulse duration, the auto-correlation

L -
function for this process is given by the unit triangle function and the power spectral density is

L o) M (52)

214 ‘IK 0?
This frequency spectrum has the sam Tgﬁb&al tail for high frequencies as the process with a
super-position of one-sided expone m%e functions given by Eq. (38).

The derivative of the box p% 0) can be calculated by means of the theory of func-

tionals and results in delta distributions associated with the two discontinuities at 6 = £1/2 for

the unit box function, Q
1dIir 1 1 1 1
uﬁ(e} - —_5(9+ )—56<9——>- (53)

( T 2d0 2 2 2
It should be note tly\kge integral J> is not defined for this pulse function. However, the unnor-

malized auto- Qation function can be calculated and gives a sum of three delta distributions,

4 / Ay w(x+6)=—8(6+1)+25(8)—5(6—1). (54)
- /i -
The @?ns orm gives a flat frequency spectrum with periodic oscillations,
-— )
) / 46 exp(—i90) [=5(0+1)+28(0) — 8(6 — 1)] = 2(1 — cos B). (55)

‘fhﬁ Q spectrum obviously arises from the transform of the delta pulses in the derivative of the
unit box function. Based on the relation between the frequency spectrum for a stationary process
and its derivative discussed above, the 1/(74®)? power law tail for the spectrum given by Eq. (38)
is attributed to the discontinuity at 8 = O for the one-sided exponential pulse function defined by

Eq. (34).
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In order to elucidate the origin of the steep power spectral density at high frequencies for a two-
sided exponential pulse function, consider the unit triangle pulse on the interval || < 1 defined by

Eq. (51). In this case the integral over the n’th power of the pulse fun?'{on is, =2/(1+n) and

the normalized auto-correlation function for the unit triangle pulse is \
1[4-3(2-10))6%], 0<|o| =L
Pe(0) =1 1(2—16])°,

0,

(56)

For a super-position of uncorrelated triangle pulses.the mean §alue and variance are given by

(®) = y(A) and P2 = 2y(A?) /3, respectively, and the freq'h)ency spectrum in the case of constant

pulse duration is =
1 '\z\sm 10/2)
— Q~ . 57
\r“a)“ G0

This has the same algebraic tail at h1 h fr encies as the power spectral density for a super-

position of two-sided exponential p Ise mn.by Eq. (43).

In order to reveal the origin of ee power law spectrum, consider the derivative of the
triangle pulse function which ha multles at 0 =0and 1,
1 dA
[O(0+1)—20(0)+06(6—1)]. (58)

The variance for th1 ulse fu jon is J, = 1/2. Tt is straight forward to calculate the normalized

auto—correlation ctlon dfits Fourier transform, which gives oy (9) = 8sin*(¥/2)/92 and

therefore a po ect densuy for a super-position of such pulses given by
4sm (Tda) /2)
— Qg — 59

confir; 1} the neral relation given by Eq. (49). Based on the relation between the frequency
or statlonary process and its derivative discussed above, the steep 1/(q a)) algebraic

tail_for tfy power spectral density in Eq. (43) is attributed to the break point at & = 0 for the
51 ed exponential pulse function given by Eq. (39). Similarly, the apparent broken power
la w1th an intermediate 1/(7q®)? scaling regime for either A < 1 or 1 — A < 1 results from
the abrupt change in the pulse shape in these cases. However, when 0 < A < 1 the frequency
spectrum eventually breaks into the steep 1/(7q®)* power law tail for sufficiently high frequencies,

as clearly seen in Fig. 3.

16
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PublishiWfl. DISTRIBUTION OF PULSE DURATIONS

In this section, some particular cases of pulse duration distributions which result in closed

analytical expressions for the auto-correlation function and power spectral density in the case of a

A. Rayleigh distribution

In the case of a Rayleigh distribution of pulse durations, K\WC /274) exp(—mt? /2‘L'd)

the power spectral density is given by
I'io 60
O

1 1 T
— Q3 (w) = 1—
214 5(®@) 7:3(02{ 412 0? @

where I here denotes the incomplete Gamma % T‘h's spectrum has the asymptotic limits
. \

| f\M\Q (012
5(0)

de e (61b)

one-sided exponential pulse shape are discussed in detail.

— 2Td

li
The latter is notably the same p‘%\%l as for the case of constant pulse duration.
B. Gamma distributio \

en{ity function for the pulse duration times is given by the Gamma

A general probabilit
distribution, 5

for small duration times. For s = 1, P; is an exponential distribution, while for s = 2 it is similar to

s T\ ST
TP (T;8) = — -, 62
y d T( S) F(S) (Td) exXp ( Td) ( )
with S(air efer 74 and shape parameter s. For small values of s, there is a high probability
aylel%h istribution except that is has an exponential tail for long duration times, 74P (7;2) =
p(—27/14). For large values of s, P; resembles a normal distribution and the limit s — oo
}onds to the case with constant pulse duration.

or the one-sided exponential pulse shape defined by Eq. (34), the auto-correlation function is

given by

. 2 s+1)/2 1/2
Ry(ris) = sy or/ 2l *™ e @lsr/ '), (63)

17
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Rg(r;s)

)

FIG. 4. Auto-correlation function for a super-position OQanonﬁlated, one-sided exponential pulses with

a Gamma distribution of pulse durations with me@}md shape parameters s. The limit s — oo

corresponds to the case with constant pulse durati

\
where .7 is the modified Bessel functi n%thxcond kind. The tail of this function is a stretched

exponential, .
li %;é\\ﬂ 2lsr/Td’1/2>R( )=1 (64)
im ~(r;s)=1.
F/Tg—voo T |sr/rd\(2”1)/4 @

The auto-correlation function«is presented in Fig. 4 for various values of the shape parameter s.
nceh

For small s, there is agro tail in the correlation function. The power spectral density is
ic fun

given by hyperge?e (yons and has the following asymptotic limits,
Q= (w;s 1
fim (@) 1+s (65)
5 o]0  2Tg s

Q= (w;s
y lim o’ 05(@5) _ (66)
Tg|@| oo 274
4
-ﬁ

This c(iearly s)ho s that the energy in the low-frequency part of the spectrum is large for small
vdlues o hape parameter, while the power law tail for high frequencies is the same as for the
ca withSconstant pulse duration.

NI

. Uniform distribution

Consider finally the case with a uniform distribution of pulse durations, tgPr(7;s) = 1/2s, for

duration times in the range 1 —s < 7/7g < 1+ s and the parameter s in the range 0 < s < 1. The

18
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FIG. 5. Realizations of the stochastic process for a or(@dedjxponential pulse shape with a uniform
distribution of pulse durations and exponentially distribu plﬁse amplitudes. The degree of pulse overlap
X

is determined by the intermittency parameter y :\BK :

limit s — O corresponds to the case wi cg%sta ulse duration. Some realizations of this process
are presented in Fig. 5 for one-sided exp éntial pulses, exponentially distributed amplitudes and
s = 1. For this distribution, the o&x
1 Xﬁw—atan[(l +5) 7] +atan[(1 — 5) T4 ]

e , 67
'&% 2573 3 ©7)

which has the asymp tic}iml

4 . >
/\ lim £al0) 3+ (68)

al density is given by

5 wlo|—-0 27 37
Q~(w;s
lim rngﬁzl, (69)
y. Tg| @] o0 274

again Showin t the power law spectrum for high frequencies is just the same as for the case
with.co antiulse duration.
The pt)wer spectral densities for a super-position of uncorrelated, one-sided exponential pulses
We\cases of exponential, uniform, Rayleigh and degenerate distributions of pulse duration times
compared in Fig. 6. The asymptotic power law tail for high frequencies is the same for all
these distributions, while there are slight variations in the spectral power at low frequencies. The

corresponding auto-correlation functions are presented in Fig. 7, showing that a broad distribu-

tion of pulse durations leads to apparently longer correlation times. An analysis of the effect of

19
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FIG. 6. Power spectral density for a super-position of uncoerrelated, one-sided exponential pulses for various

duration time distributions. The degenerate case ¢

%t&onstam pulse duration.
s

' exponential ——
\ uniforms =1 =—

Rayleigh ———

. degenerate ———
\k/ p—
ze&\
¢ I
r

£ rl/ty

w /

FIG. 7. uto—})rrelation function for a super-position of uncorrelated, one-sided exponential pulses for
ﬁ

vatious dlSation time distributions. The degenerate case corresponds to constant pulse duration.

NI

a distribution of pulse durations in the case of two-sided exponential pulses gives qualitatively

similar results as those presented above, expect for the steeper 1/(7q®)* algebraic tail for high

frequencies.

20
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PublishiWfl. DISCUSSION AND CONCLUSIONS

A reference model for intermittent fluctuations in physical systems has here been extended to
include a random distribution of pulse duration times. This is demonstrated to modify the auto-
correlation function and power spectral density, which in general aredletermined by the pulse
shape and the distribution of duration times. However, the intermittency pagameter which deter-
mines the degree of pulse overlap does not influence the auto-corrélation function nor the power
spectral density. Conversely, it has here been shown that the distribution*ef pulse durations does
not influence the probability density function for the process, andthus neither the moments. These

general results hold for arbitrary pulse amplitude distributions andpulse shapes.

In this work, particular attention has been gived to expeneftial pulses since they provide a
favorable description of large-amplitude bursts migasured injthe boundary region of magnetically
confined plasmas. In the case of a one-sided exponential pulse shape, the auto-correlation function
is an exponential and the power spectral density is“a-Lorentzian function which is flat for low
frequencies and has a 1/ (Tda))2 power lawtail for high frequencies. By considering the time
derivative of the process, this power law\ailisshere demonstrated to result from the discontinuity

in the one-sided exponential pulse shape.

For a two-sided exponential pulse“shape, the power spectral density is the product of two
Lorentzian functions and Has asteep 1/(7q a))4 algebraic tail for high frequencies. This is shown
to result from the break poing at the peak of the pulse function. For a strongly asymmetric pulse
shape, the frequengy Spectrum resembles a broken power law with an intermediate power law
scaling regime given'by 1/(73®)2. This is obviously due to the abrupt change in the pulse shape.
However, sinCe, thigs is a continuous function, the power spectral density eventually breaks into the

steep 1/ (€)% algebraic tail for sufficiently high frequencies.

A rfandom distfibution of pulse durations is shown to result in long apparent correlation times
but:has*no influence on the asymptotic power law tail in the frequency spectrum. The former
is\possibly related to the many reports on long-range dependence of plasma fluctuations in the
beundary of magnetically confined plasmas.!!~1> Under the assumption of self-similarity, the es-
timate of scaling coefficients sensitively depends on the presence of low-frequency trends and
oscillations which typically are present in measurement data. It is to be noted that the stochastic

model presented here obviously does not possess any self-similarity properties.

Additional random noise can preclude the asymptotic scaling regimes, and if sufficiently large,

21
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Publishithg frequency spectrum may appear curved over a large range of frequencies. This underlies the
crucial importance of accurate measurements and long data time series in order to reliably estimate
such scaling relationships. The predicted auto-correlation function and frequency spectrum for
two-sided exponential pulses presented here has recently been shown be in excellent agreement
with measurement data from the outboard mid-plane region of several ééiamak experiments.3>84

Finally, it is to be noted that many previous investigations of pifik.or noise in physical

systems has referred to the stochastic process with a one-sided exgl pulse shape investigated
er

»

effect of a distribution of pulse durations has commonly been in¢ltided-by performing an ensamble

—
average of the frequency spectrum derived for constant p@sﬁ
a broad uniform distribution of pulse duration timeq.his leads-to the erroneous but widely cited

conclusion that this process is capable of produci / (i)-—ppe spectra.”>~19 On the other hand,
it has been established that truncated power lw hapes may lead to pink noise, with such

here. In the literature this is well-known as shot noise or Poisson process.®' =% The

, here given by Eq. (38). For

—

Appendix A: Probability densitie& .
N

The characteristic function &\Q:n\ independent random variables is the product of their

processes commonly referred to as fractal@se.

r a super-position of exactly K uncorrelated pulses in a

individual characteristic functions.
time interval of duratio ,“:G%'\ditional probability density function for the process defined by
£

4

Eq. (1) is thus gi\7
1 (o]
K) = ﬁ/wdu exp(—iud) (exp(iugy))X, (AD)

3\

where the ahgularbrackets as usual denote an average over all random variables of ¢, =A@ ((r —

) / T . ¢ y.

<e’§)(iu¢k)> = /_idAkPA(Ak)/OOOdiPT(Tk)/OT % exp (iuAk¢ (ﬂ)) : (A2)

Tk

A minb that the number of pulses K(7') is Poisson distributed,

o Pe(KIT) = — (E)Kexp (—1> , (A3)

K!'\ 7y Tw

the probability density function for the random variable ® is given by

) e |
Po(®) = I§OP¢(¢|K)PK(K|T) - /_  duexp(—iud)Co(u) (Ad)

22
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Publishiwgere the characteristic function is defined by

Colu) =exp ( 1 (xpliug) ~ ). (a3)

W w

Taking the limit of integration for #; to infinity and making a change of integration variable defined

by 6 = (¢t —t;) /Ty results in /
nCo(u) =7 [ _d0 [ dary(a)fexp(iuao ()~ 1] =7 [ dmyM» ~1 (@)

where Cy (u) is the characteristic function for the amplitude distributign ). Thus, the probabil-

ity density function is determined by amplitude distribution thepulse shape and is not affected

by the distribution of pulse durations. This is in agree ent with
derived in Sec. IIL

For some particular cases of pulse shapes anda\ngph;;ud%distributions, the probability density
der

function can be calculated in closed form. COr\ t the case of an exponential distribution of

A
S 4

where (A) is the mean pulse amplitude wfhxis defined only for positive amplitudes A. In this
case the raw amplitude moment ar&\gsxkb (A™) = n!{A)" and the mean value for the process is
(@) = y(A) and the variance isgr%ﬂA)z /2. For both one- and two-sided exponential pulses,

1:€Sgu) =(1+1iu(A))? and the probability density function for the
d

e two lowest order moments

pulse amplitudes,

N

Py (

the characteristic functio

random variable is a Gam istribution8>-86-88

Lo y(3) (B

Thus, the ske @and flatness moments are Sg = 2/7! /2 and Fp =346 /7, revealing the strong
intermittency 9f théprocess in the case of weak pulse overlap. For large ¥ the skewness and excess

flatness moments t{oth vanish, consistent with a normal distribution of the fluctuations which arise
in this Yimit. $5§°

—
Allow{sng both positive and negative pulse amplitudes, the Laplace amplitude distribution with

mean is of particular interest,

1/2
PA(A) =~ exp (—2 'A'> , (A9)

=

T 2124, Arms

where A is the standard deviation, (A%) = A2

s For this symmetric distribution, both the mean

value and the skewness moment for the random variable vanish, (®) = 0 and S¢ = 0. For both
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Publishimg - and two-sided exponential pulses the variance of the random variable is @2, = yAZ /2 and

1/2
7/ 7| D|

: Al0
( q)rms ) ( )

. (t ows that the flatness
i@ted amplitudes discussed

the probability density function is given by??

(r-1)/2
1/2 126
PP (P) = ! (Y | |> '%/(7’*1)/2

720 (y/2) \ 2Prms

where % denotes the modified Bessel function of the second kin

moment is Fp = 3+ 6/, which is the same as for exponentially di

above.

Appendix B: Gamma pulses &3

In general, the Fourier transform of the m’th deri tlv“j)f a pulse function @(0) is given by
(i), where ¢(1) is the Fourier amplitude l‘)?‘Eq (7). Consider a pulse function that
is smooth for all 6 except at 6 = 0, where th m
due to a discontinuity in the m — 1’th deriv m /d0™ ~ 5(6). The Fourier transform of the
m’th derivative therefore gives a flat sp }tp'n,\z )"@(1) ~ 1. Thus, the power spectral density

vative is dominated by a delta distribution

for the pulse function is anticipate ave\a power law asymptote given by |g0|2 ~ 1/0%". This
is a heuristic description of the w scaling in the frequency spectra for exponential pulses
described in Sec. V.
As an illustrative e v(p% which exact results can be calculated, consider here a Gamma
ed

shaped pulse fun?o

55 es—l
I'(s)

0(6) exp(—s0), (B1)

for positiye in}ege alues of the shape parameter s. For s = 1, this is a one-sided exponential
pulse hich 1 i%ontinuous at 6 = 0. In the limit s — oo, the pulse shape approaches a smooth
Gaussi fun&ion. More generally, the pulse function has a discontinuity in the s — 1 derivative
-
and the l‘?urier transform of the s derivative will be dominated by a delta distribution. Indeed, the
-cki'e I gives the familiar result
~
d¢

de(@ 1)=46(0)—0(0)exp(—0), (B2)

and the power spectral density scales as gy (0) ~ 1/92. Similarly, for s = 2 the pulse function

has a break point at 8 = 0 and the second derivative of the pulse function is dominated by a delta
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&
de?

resulting in a power spectral density that which scales as 1/9* for high frequencies, similar to the

(6,2) =48(0)+0O(0)(6 — 1)exp(—26), (B3)

case of the unit triangle pulse discussed in Sec. VIC.

The power spectral density for a super-position of Gamma pulses withiconstant duration can be

calculated explicitly and is given by 3
1 r l/2¢2s
— Qs (0) = (s) B (B4)
274 (s —1/2) (s +47 1175 \
This frequency spectrum has the asymptotic limit
1/2 Sss; 1
lim 0> g\ , B5
Tg| 0|00 d 2Td s\17‘2 (B3)

as expected from the discontinuity in the s — 1’th¥§:@of the pulse function and the general
relation given by Eq. (49). This example clearlysdemonstrates the intimate connection between a
discontinuity in the pulse function or its d@ﬁ algebraic tail in the power spectral density
for high frequencies.

\\

Appendix C: Additive noise \
In many relevant cases will be additional noise to the stochastic process defined by Eq. (1).

hi Q(bistically independent and random noise is added to the process
83,89

Consider here the cas

comprised by a s?r— sﬁiorl/o uncorrelated pulses,

5\ Wi (1) = Pk (t) + oN(1), (C1)

where N ig‘a I}or lly distributed process with vanishing mean and unit standard deviation. It is

straightforward toAhown that the mean value and variance for the process Wk (1) are (¥) = 11 (A)

= (S—l— €)Y(A?), respectively. The signal to noise ratio is the inverse of the ratio of the

- .
variance for‘the two independent processes,
o2

€= . C2
\ 2, (2

Introducing the rescaled signals as defined by Eq. (21), it follows that the auto-correlation function

for the summed processes is given by

_ R&)(l’) + ERN(F)
g(r) = Tre , (C3)
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Publishi‘n'g< re Rﬁ(r) the auto-correlation function for the rescaled noise process.
Delta-correlated noise can be written as the integrated increments of a Wiener process,
1 -+
N = [ W), (C4)
VAVINEG)
where /\; is the assumed constant sampling time. It should be notei}/{hat for such a discretely

sampled signal, no power will be recorded for frequencies highep‘than the Nyquist frequency

which is given by ®nax = /2. The auto-correlation function fer this process is
i \
R =|1-—]0(A C5
v = (1- %) ot 4 ©s)
_—
and the power spectral density for the noise process is giyen by
1 > . —cos(/\ @)

ZAI QN((D) = /_wdr CXp(-lO)@(f = W (C6)

-
A power series expansion of the cosine functi@%srve power spectral density for the rescaled
process ‘i’K(t), \
= D) +en], (€7)

}eﬁthesis is the flat spectrum resulting from the delta-

.Qq,(a)

where the second term inside the SQze

correlated noise. For the process wi o-sided exponential pulses with constant duration, the
power spectral density is thus g%\\q

1 N 1 el
— Qg (O {[1+(1—7L) + } (C8)

2220%| [1+ 225207 279
£

This frequency spettrumiis présented in Fig. 8 for various values of the signal to noise ratio. It is

clearly seen th fercant noise levels, the power spectrum appears curved over a large range

of frequencies and‘the underlying power law asymptote may be precluded by the noise.
QD
. £
W.
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FIG. 8. Power spectral density for a super-position o@orm?ted, two-sided exponential pulses with

A =1/10 and constant duration for various values @1&1‘(0 noise ratio.
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