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ABSTRACT

This paper studies regional climate variability for the time period 1900–2013 using parsimonious stochastic

models. Instrumental data records on 58 3 58, 28 3 28, and equal-area grids are examined. A long-range

dependent (LRD) stochastic process is used as a simplified description of the multitude of response times in

the climate system. Fitting a linear trend to the global mean surface temperature (GMST) implies a warming

of 0.08 decade21, which is highly significant under an LRDnull hypothesis (p, 1024). The regional trends are

distributed around the global mean trend, while the fluctuation levels increases when going from global to

regional scale. The temperature fluctuations of the tropical oceans are observed to be strongly influenced by

El Niño–SouthernOscillation (ENSO) and, therefore, more consistent with autoregressive processes of order

1 [AR(1)]. A likelihood-ratio test is used to systematically determine the best null model [AR(1) or LRD].

About 80% of the regional warming trends are found to be significant (with a 5% significance level).

1. Introduction

Given the extensive evidence of global warming, there

is now an increased attention to whether trends can be

detected on local and/or regional scales and also to the

spatiotemporal pattern of climate variability. Stott et al.

(2010) and Knutson et al. (2013) have presented such an

analysis using control runs of climate models as a null

hypothesis for trend detection. An alternative and

complementary approach, which we pursue in this paper,

is to use stochastic models. The main objective is to test

the hypothesis of a linear trend versus the null hypothesis

of ‘‘stationary climate.’’ That is, we assume that temper-

ature time seriesY(t) can bemodeled as superpositions of

deterministic trend signalsm(t) and stationary, stochastic

processes (climate noise) X(t):

Y(t)5m(t)1X(t) , (1)

with m(t) 5 a0 1 a1t. The choice of a linear trend is

mainly used to test the hypothesis that stationary

climate can explain the last 110 years of warming,

without assuming the correctness of this model

(Bloomfield 1992).

For the regional surface temperature series analyzed

in this paper we find, except for a small part of the

land area, significant positive serial correlation (after

detrending) of the residuals, with higher persistence

over oceans compared to land. Thus, the stochastic part

of the model X(t) should have built-in memory, con-

sistent with the serial correlations of the observa-

tions. For the global mean surface temperature

(GMST) there is evidence of long-range dependence

(LRD) (Bloomfield 1992; Rypdal et al. 2013). Similar

statistics are found in some grid cells, and it is

therefore reasonable to choose stochastic models that

exhibit scaling and slowly decaying autocorrelation

functions (ACFs).

For the GMST, Cohn and Lins (2005) and

Koutsoyiannis and Montanari (2007) have raised

doubt about the statistical significance of a warming
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trend under an LRD null hypothesis, while Bunde and

Lennartz (2012) find that a linear trend is significant at

the 5% but not the 1% significance level. We have

conducted our own analysis (this is presented in section

4) using standard statistical methods, which shows that a

linear trend for the GMST is highly significant (p ,
1024). We note that a second-order polynomial trend

(with linear term set to zero) is a bettermodel in terms of

the explained variation R2 reflecting that global warm-

ing has been accelerating.

On regional scales, the question of statistical sig-

nificance of trends is not as clear-cut because of the

much lower signal-to-noise ratio. This is illustrated in

Fig. 1, where we have plotted monthly deseasonalized

temperature data for the city of Moscow, Russia, to-

gether with the global mean temperature anomaly.

While the trend estimates (slopes) are distributed

around the GMST trend estimate, the fluctuation level

is much higher. However, for many grid cells the per-

sistence parameter (e.g., Hurst exponent in the LRD

model) is lower than for the GMST. Thus the result

of a detection analysis is not given a priori. A com-

plicating factor is that regions strongly influenced by

El Niño–Southern Oscillation (ENSO) have stronger

persistence on time scales of 2–5 yr than predicted by

an LRD process (Huybers and Curry 2006) and lower

persistence than is predicted from an LRD model on

time scales longer than a decade. In fact, the estimated

power spectral densities (PSDs) of the temperature

fluctuations in regions strongly influenced by ENSO

are inconsistent with a power law, but fit better with

the Lorentzian-shaped PSDs that characterize an

autoregressive process of order 1, the so-called AR(1)

model.1

We note that in some aspects it is unsatisfactory to use

AR(1) models to describe ENSO dynamics, since we

know that ENSO is an oscillatory mode in the climate

system. The AR(1) models, which can be seen as dis-

cretizations of the Ornstein–Uhlenbeck processes, take

shape from simple linear first-order equations with dis-

sipation and random forcing, and hence they are in-

capable of describing oscillating modes. On the other

hand, we are not seeking an accurate physical model of

ENSO; rather, we need to quantify how the fluctuation

levels in the climate noise vary with time scales. More

specifically, we need to make an estimate of the natural

climate variability on centennial time scales based on

the statistical properties of the climate variability on the

shorter time scales. The role of the models in trend de-

tection is therefore to correctly prescribe the fluctuation

levels on the long time scales using parameters estimated

from the statistics on the shorter time scales. If we apply an

LRD model in the ENSO regions, we will estimate very

large Hurst exponents, which in turn will overestimate the

natural variability on the centennial time scales.

For many grid cells it is not clear whether to choose an

AR(1) or LRD process. This is an inherent statistical

problem given the available sample length of about

110 years of data (Percival et al. 2001). Vyushin et al.

(2012) find that climate variability appears to be more

FIG. 1. (a) The black curve is the monthly temperature data for Moscow, Russia. (b) The blue curve is the

monthly reconstructed temperature for the 58 3 58 grid centered at 2.58S, 142.58W. (c) The red curve is the global

mean temperature anomaly plotted with monthly resolution. (d) The PSD of the three time series in (a)–(c). The

smooth curves are obtained by averaging over logarithmic bins. The colors of the PSDs are the same as used for the

signals in (a)–(c).

1 AR(1) models are commonly used to model climate noise [e.g.,

Fig. SPM.1(b) in IPCC (2013)].
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persistent than an AR(1) process and less persistent

than a power-law process, and conclude that both rep-

resentations are potentially useful for statistical applica-

tions. Thus, in a first attempt we compute the statistical

significance against both null models. A similar approach

is taken by Franzke (2012), who classifies the degree of

significance based on the fraction of a set of null models

that are rejected by the observations. We advance this

approach further by selecting the ‘‘best’’ null model

based on likelihood-ratio (LR) criteria. The LR test

classifies the ENSO regions as significantly (significance

level 5%) better described by an AR(1) than the LRD

model fractional Gaussian noise (fGn). This is consistent

with our empirical analysis and also with the findings of

Huybers and Curry (2006). We also observe examples of

the opposite [fGn better than AR(1)], while many grid

cells are classified as undecided in the sense that the test is

unable to discriminate between the two models. By as-

sessing trend significance against the best null model we

find that about 80% of the grid points have significant

warming trends at the 5% significance level.

The remainder of this paper is organized as follows: In

section 2 we review the stochastic models used in this

study.An outline of the statisticalmethods used is given in

section 3. In particular, we review the trend detection

methodology used in this paper. The main results are

presented in section 4.Wediscuss our findings in section 5.

2. Stochastic models

a. Hurst exponent

As noticed by Hurst (1957), many signals in nature satisfy

scaling in the sense that thefluctuations levels of their coarse-

grained versions vary as power-law functions of the aggre-

gation scale. For a time seriesXt, thismeans that the standard

deviation of the runningmeanYk5 t21(Xk2t111 . . .1Xk)

scales as}tH21, so if the signal is stationarywe candefine the

Hurst exponentH 2 (0, 1) by the relation

E

 
�
t

k51

X
k

!2

} t2H . (2)

From stationarity and Eq. (2) it follows that the auto-

covariance function g(t) ofXt decays asymptotically as a

power law:

g(t)5
s2

2
(jt1 1j2H 2 2jtj2H 1 jt2 1j2H)

;s2H(2H21)t2H22 . (3)

The parameter s. 0 is the standard deviation, while the

Hurst exponent H 2 (0, 1) determines the correlation

structure. ForH5 1/2, the stochastic processXt is white

noise, while H . 1/2 gives persistent (positive corre-

lated) random variables. The case H , 1/2 corresponds

to negative correlation and is not relevant here [see

Rypdal and Løvsletten (2013) for application of

antipersistent stochastic processes with power-law

statistics].

One can extend the definition of the Hurst exponent

to also include certain nonstationary processes. For in-

stance, if X(t) is nonstationary with a power-law vario-

gram but has stationary increments, then one can define

the Hurst exponent by

EX(t)2 } t2(H21) . (4)

With this (extended) definition a Brownian motion has

Hurst exponentH5 3/2 while Gaussian white noise has

H 5 1/2.

Two classes of stochastic processes with well-defined

Hurst exponents are the self-similar (Embrechts and

Maejima 2002) and the multifractal processes (e.g.,

Løvsletten and Rypdal 2012) with finite second mo-

ments. The Ornstein–Uhlenbeck process, defined as

the solution to the stochastic differential equation

(SDE)

dX(t)52
1

t
X(t)dt1 dB(t) , (5)

where B(t) is a Brownian motion and t . 0, does not

satisfy the scaling relation Eq. (2). However, anOrnstein–

Uhlenbeck process scales asymptotically. When t / ‘,
X(t) converges to a Brownian motion and as t / 0

the process X(t) is a Gaussian white noise.

b. Fractional Gaussian noise

The LRD model adopted in this paper is the fGn.

If we assume that Xt is a Gaussian and stationary sto-

chastic processes that satisfies the scaling property of

Eq. (2), then these properties define the class of fGn. In

discrete time fGn can be defined as the increments of

a continuous time fractional Brownian motion (fBm)

(Mandelbrot and Van Ness 1968):

B
H
(t)5

ðt
0

(t2 s)H21/2
dB

s

2

ðt
2‘

[(t2 s)H21/2 2 (2s)H21/2] dB
s
.

In continuous time fGn is not well defined as a (finite

variance) process, but rather as a randomsignedmeasure.

However, using the definition of fBm one can write a

formal (but divergent) integral representation of fGn:
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X
t
5

ðt
2‘

(t2 s)H23/2
dB

s
. (6)

c. Ornstein–Uhlenbeck and AR(1) processes

An Ornstein–Uhlenbeck (OU) process is defined by

replacing the power law (t 2 s)H23/2 in Eq. (6) with an

exponential kernel }e2(t2s)/t. This introduces a charac-

teristic time scale t. 0, and the formulation is equivalent

to the SDE in Eq. (5). Straightforward discretization of

this equation gives an AR(1) process:

X
t11

5fX
t
1 «

t
, (7)

wheref5 12Dt/t, and «t are independent and identically
distributed Gaussian random variables. The power spec-

tral density of an OU process is Lorentzian, with S(f) ;
f22 for f � 1/t and S(f); f 0 for f� 1/t. Hence we have

two scaling regimes, one corresponding to Brownian mo-

tion (i.e., H 5 3/2) on short time scales, and one corre-

sponding to white noise (i.e.,H5 1/2) on long time scales.

The transition between these time scales is given by the

characteristic time t, which is also the e-folding time for

the ACF.

3. Statistical methods

In this section we present theory for trend significance

testing for linear models where the noise is an LRD

process. Many of these results can be found in Ko et al.

(2008) and the references therein, but we will also

present some extensions and modifications of the ex-

isting theory. We note that the statistical methods used

in this paper have been tested and validated in the

supplementary material.

Consider n observations from the linear trend model

in Eq. (1) where the climate variabilityXt is represented

by an fGn with scale parameter var(X1)5 s2 and Hurst

exponentH. From the definition of an fGn it follows that

the random vector X 5 (X1, . . . , Xn)
T is multivariate

normal distributed

X;N (0,G),

where the n 3 n covariance matrix G is the Toeplitz

matrix of the autocovariances [g(0), . . . , g(n 2 1)]; that

is, elements (i, j) of G are in the form g(ji2 jj), with g(�)
defined in Eq. (3). Denote by RH the correlation matrix

of X and note that G5s2RH . It is convenient to write

the linear trend model in vector form:

Y5BTa1X , (8)

where a5 (a0, a1)
T andB is the 23 n design matrix with

ones on the first row and the sampling times (1, 2, . . . , n)

as the second row. The ordinary least squares (OLS)

estimator of a can then be written as

Â5
def
(cA

0
,cA

1
)T 5 (BBT)21BY . (9)

This estimator has a bivariate normal distribution with

mean a and covariance matrix

Cov(Â)5C(H)s2 , (10)

with

C(H)5 (BBT)21BR
H
BT(BBT)21 .

If we define c(H) to be element (2, 2) of the correlation

matrix C(H), then the estimator for the slope is dis-

tributed as cA1 ;N [a1, s
2c(H)]; that is,

T
a1
(H,s,cA

1
)5
def

cA
1
2 a

1

sc(H)1/2
;N (0, 1), (11)

where c(H)1/2 ; nH22. A closed-form expression for the

variance factor c(H) can be found in Lee andLund (2004).

By setting a1 5 0, Eq. (11) gives the distribution of trend

estimates under the null hypothesis of no trend. It follows

that a (1 2 a) 3 100% confidence interval is given by

â
1
6 sd(Â

1
js,H)z

a/2
, (12)

with â1 the (OLS) estimated slope and za the a upper

quantile of the standard normal distribution. The cor-

responding p value (probability of an fGn producing

a larger trend estimate than the observed estimate) is

given by

p
asym

5 2

(
12F

"����� â
1

sd(Â
1
js,H)

�����
#)

, (13)

where F is the cumulative distribution function of a

standard normal random variable. Equations (12) and

(13) come with the tacit assumption of known noise

parameters. For most practical applications, one only

has access to a set of parameter estimates. To assess

trend significance, in a first attempt, one can just plug in

the estimates of the noise parameters. For consistent

estimators this approach results in an asymptotically

(i.e., as the sample size goes to infinity) valid significance

test. The advantage of this approach is that analytical

formulas are available.

To estimate the Hurst exponent we use the maximum

likelihood (ML) method (e.g., McLeod et al. 2007). As

noted byKoutsoyiannis andMontanari (2007), the usual

white-noise estimator for the scale parameter s is
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severely biased for LRD processes. A better alternative

is to use theML estimator, adjusted such that the sample

length n in the denominator is replaced with n 2 2:

ŝ2 5
1

n2 2
xTR21

ĥ
x , (14)

where ĥ is the maximum likelihood estimate (MLE) of

the Hurst exponent, and Rĥ the corresponding Toeplitz

matrix formed from the ACF of n observations. In Eq.

(14) the matrix Rĥ has the effect of decorrelating an fGn

vector X, in the sense that L21
H X, with RH 5LHL

T
H , is

independent, standard normal variables.

The noise parameters are estimated from the residuals

x, found by subtracting the OLS linear trend. Several

authors (e.g., Koutsoyiannis and Montanari 2007;

Franzke 2012) have argued that, to reflect the null hy-

pothesis, these estimates should be calculated directly

from the data. This gives a very weak significance test,

since only the null hypothesis, and not the null and al-

ternative hypothesis, is taken into account. Indeed, if we

have a trend, this approach will lead to an erroneous

high estimate of the scale parameter and also the Hurst

exponent. If we instead subtract an estimated trend,

given the null hypothesis, we introduce a small bias in

the estimates. A similar bias is also introduced by just

subtracting the sample mean (see Table S2 in the sup-

plementary material). However, this inherent bias can

be accounted for by adopting the small-sample correc-

tion proposed by Ko et al. (2008), and the details of this

procedure can be found in the supplementary material.

While uncertainties in the estimates of the Hurst ex-

ponent and the scale parameter are taken into account

with this small-sample correctionmethod, the significance

test still depends crucially on the estimated Hurst expo-

nent. To add robustness to our results, we consider ML

estimates on several time scales, and also detrended

fluctuation analysis of order 2 and simple variograms. The

advantage of thesemethods is that one can visually inspect

the scaling properties (taking into account the well-known

error bars). In addition we have inspected the ACFs for

detrended data. From these nonparametric methods we

identify a lack of scaling for the temperature fluctuations

in some grid cells, most notably in the ENSO region.

Trend detection under an AR(1) model follows along

the same lines with an explicit description given by Lee

and Lund (2008).

4. Analysis of surface temperature data

a. Data

Four datasets are analyzed in this project. These

are the HadCRUT4 surface temperature anomalies

(Morice et al. 2012), which combine the land tempera-

tures from the CRU surface temperature data version 4

(CRUTEM4; Jones et al. 2012) and the sea surface

temperatures (SSTs) from the Hadley Centre SST data

version 3 (HadSST3; Kennedy et al. 2011). We also use

the NOAA Merged Land–Ocean Surface Temperature

Analysis (MLOST, V3.5.4) data developed by Smith

and Reynolds (2005). In both of these datasets the mean

temperature in 58 3 58 grids are provided with monthly

time resolution. In addition to these we use Berkeley

Earth’s 15984 equal-area dataset, and the GISS Surface

Temperature Analysis (hereafter GISS; Hansen et al.

2010), with 1200-km smoothing, which is given on 28 3 28
grids. Possible sources of differences between the GISS,

HadCRUT4, and NOAA MLOST data products have

been briefly discussed by Libardoni and Forest (2011).

Themajority of land surface data [which comes from the

Global Historical Climatology Network (GHCN)] are

treated differently in construction of the different data-

sets. For instance, in the construction of the HadCRUT4

data there is a requirement that stations should have

a certain number of observations in their normal pe-

riod 1960–90, while in the construction of the GISS

data (with 1200-km smoothing) a station is only included

if there are other stations within a 1200-km radius with a

period of overlap that is at least 20 years. In addition,

each data product uses different SSTs, and there are

differences in the way that data are extrapolated, or not

extrapolated. The Berkeley land temperatures are con-

structed from 16 preexisting data archives. The current

archive uses over 39 000 unique stations which is roughly

5 times the number of stations used in GHCN. The

Berkeley SST is a modified version of the HadSST3.

All four datasets were downloaded on 1 October

2015 from the web pages listed in the supplementary

material. The time period analyzed is January 1900–

December 2013.

b. Sampling scale

For the regional surface temperature series we ob-

serve that direct application of the ML method tends to

give higher estimates of the Hurst exponent compared

with the detrended fluctuation analysis of order 2

(DFA2). For the latter we have control over which time

scales contribute to the estimate. We also observe that

the discrepancy between the two methods disappears if

the signals are coarse grained over 4-month windows

prior to the ML estimation (i.e., if a new, coarser time

series is produced by dividing the series into 4-month

segments and averaging the data points within each

segment). Which time scales that should be emphasized

in the parameter estimation is always a trade-off be-

tween the improved statistics achieved when focusing on
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the shorter scales and the increased relevance and im-

portance of the longer scales. The choice to apply a

4-month coarse graining is based on this type of con-

sideration, and it is meant to ensure that distinctive

features of the month-to-month fluctuations do not have

too large an impact on the predicted centennial-scale

fluctuation level.

c. GMST trend significance

In Table 1 we present the results of a trend detection

analysis for the four GMST time series. We see that

there is very little variation between the four data

products, with linear trends ’0.08 K decade21 and

fluctuation levels swn ’ 0.15K (4 months)21. Here swn

denotes the white-noise estimator, which is defined in

Eq. (14), with Rĥ replaced by the identity matrix. The

MLEs of the Hurst exponents areH5 0.97 for the GISS

data andH5 0.98 for the other three GMST time series

(not shown in the table). Since the methods we apply are

restricted to the case H , 1, we should be attentive to

the fact that the high estimates for H could simply be a

result of the upper boundH5 1. This would be the case if

the GMST scales with an exponentH. 1. However, this

can be tested using the DFA2 estimator, which can be

used both in the casesH, 1 andH. 1. The results of the

DFA2 estimator to the GMST data are in the range from

H 5 0.87 to H 5 0.96 for all the four data products. The

bias-corrected ML estimates are HBC 5 0.99, and the

resulting adjusted ML estimator for the fluctuation level

[seeEq. (14)] iss’ 0.45K (4months)21. The rather large

discrepancy between the estimates for the fluctuation

level is caused by Hurst exponents close to one.

The statistical significance of the trend estimates are

computed using HBC and s with the small-sample cor-

rection outlined in section 3 (details of this method are

given in the supplementary material). The p values for

the OLS slopes are less than 1024 and thus highly sig-

nificant. The 95% confidence intervals for the trends are

’0.08 6 0.03Kdecade21.

d. Regional results

We start the discussion of regional statistics by first

considering the GISS dataset. Figure 2a shows the

TABLE 1. Linear trend model with fGn errors. The first column

labeled ‘‘trend’’ is the OLS estimate of the slope, with standard

deviation in parentheses. The bias-corrected ML estimate of the

Hurst exponent is HBC; s and swn are estimates, adjusted by ML

[Eq. (14) with HBC] and OLS, respectively, of the standard de-

viation around the slope. The p value of the trend and standard

deviation of â1 are computed from the small-sample correction

explained in section 3.

Trend (K decade21) p value trend HBC sBC swn

GISS

0.083 (0.015) ,1026 0.99 0.44 0.14

Berkeley Earth

0.079 (0.016) ,1025 0.99 0.45 0.15

HadCRUT4

0.075 (0.016) ,1024 0.99 0.45 0.15

NOAA MLOST

0.081 (0.014) ,1026 0.99 0.40 0.13

FIG. 2. (a) Linear trend for the period 1900–2013 in each 28 3 28 grid of the GISS dataset. (b) Standard deviation

s around the regression line. (c) Hurst exponents in the fGnmodel. (d) Correlation time t in theAR(1) process. All

estimates are preformed subsequent to a 4-month coarse graining.
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estimated trends, and as can be seen in Table 2, the re-

gional trends are distributed around the GMST trend.

We observe warming over all of Earth’s surface, except

for a small region in the North Atlantic. The warming

trends are generally weaker in the SST compared to

surface air temperature (SAT) over land; in particular,

we observe weaker trends in the Pacific Ocean.

Figure 2b shows the (white noise) fluctuation levels of

the temperature signal (i.e., standard deviation around

the regression line). A summary of these estimates can

be found in Table 2. The MLEs of the fluctuation levels

based on an AR(1) model and a fGn model yield similar

results. Very large fluctuation levels are observed over

land compared to the oceans, and hence it is not a priori

clear that the stronger trend over land is more significant

than the weaker trend in the oceans. There are also large

fluctuation levels around the equator in the Pacific

Ocean. This is a region that is colder than average during

the La Niña cold phase and warmer than average in the

El Niño warm phase. In this region, the standard de-

viations are influenced by the ENSO, and not only the

year-to-year variability. As discussed in the introduc-

tion, this is one of the reasons why an AR(1) process is a

better null model in this region.

The estimated Hurst exponents are shown in Fig. 2c,

and we observe stronger persistence in SST than in land

temperatures. In North America and in Eurasia the es-

timatedmodel is close to a white-noise process (i.e.,H’
0.5), while we apparently have strong LRD in the

oceans, in particular in the tropical Pacific. A similar

picture is seen in Fig. 2d. Here we have plotted the es-

timated correlation length in an AR(1) process. We

observe that the estimated correlation time varies

from a few months over much of Earth’s land areas to a

TABLE 2. Summary of regional trends and standard deviations, with GMST values in the last column.

Min 1st quartile Median Mean 3rd quartile Max Global

Trends (K decade21)

GISS 20.04 0.06 0.08 0.09 0.11 0.28 0.08

Berkeley Earth 20.25 0.05 0.08 0.08 0.10 0.52 0.08

HadCRUT4 20.13 0.05 0.07 0.08 0.10 0.36 0.08

NOAA MLOST 20.04 0.06 0.08 0.08 0.10 0.24 0.08

Standard deviation [K (4 months)21]

GISS 0.16 0.35 0.47 0.69 0.93 2.04 0.14

Berkeley Earth 0.20 0.41 0.50 0.63 0.69 2.69 0.15

HadCRUT4 0.25 0.50 0.64 0.77 0.87 2.44 0.15

NOAA MLOST 0.16 0.33 0.41 0.56 0.65 2.19 0.13

FIG. 3. GISS dataset: (a) The distribution of p values based on an fGn null model. (b) The distribution of p values

based on anAR(1) null model. (c) The results of the likelihood ratio model selection test. In the grid points marked

as red the data are more consistent with a fGn error model, and in the grid points marked as blue the data are more

consistent with an AR(1) error model. In the grid points marked as light blue, one model is not significantly

preferred over the other. (d) The distribution of p values when themodel with the highest likelihood is chosen as the

null model in each grid point. The p values are adjusted for multiple testing using the false discovery rate

(FDR) method.
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couple of years in the tropical Pacific and tropical

Atlantic.

Based on the parameter estimates presented in Fig. 2

we can compute the p values for the estimated trends. As

illustrated in Figs. 3a and 3b, these p values depend

crucially on the chosen null model. In Fig. 3a we have

shown a map of the p values computed with respect to

the fGn model, and in Fig. 3b we have shown the cor-

responding p values computedwith respect to theAR(1)

model. A striking feature in these plots is that the SST

trends for cell points in the Pacific Ocean are de-

termined as significant with respect to an AR(1) model,

but cannot be concluded as significant if we apply an

LRD model. Hence, our interpretation of the signifi-

cance of the local warming trends in the Pacific Ocean

depends on which model is best suited to describe the

correlation structure in these data.

As discussed in the introduction, we observe that

many of the time series in this region (see, e.g., Figs. 1b,d)

have statistical properties that are strongly influenced

by ENSO. That is, the PSDs are not power laws, but

rather have strong persistence on the shortest time

scales and white-noise characteristics on longer scales.

In contrast, many of the SST series in the North Atlantic

basin, the statistical properties of which are influenced

by the Atlantic multidecadal oscillation (AMO), are

consistent with a scaling model. It is important to realize

that a persistent (H . 0.5) scaling description of the

climate noise is a parsimonious way of stating that there

are natural oscillations on all scales, and the parameter

H determines the relative fluctuation levels of the slow

oscillations compared to the faster modes. However, as

the PSD reveals, the ENSO is too strong to be consistent

with an LRD model and must be seen as an anomalous

oscillation in this description. Whether or not the AMO

is anomalous with respect to an LRD description is

difficult to determine from the instrumental record due

to insufficient statistics. In any case, it is evident that the

persistent multidecadal SST variability in the North

Atlantic and SAT variability over adjacent continents is

related to the AMO and the North Atlantic Oscillation

(NAO) (Li et al. 2013).

To systematically determine if anAR(1) null model or

LRD null model is best suited at a given geographic

FIG. 4. (a)–(c) Linear trend for the period 1900–2013. (d)–(f) Standard deviation s around the regression line. All

estimates are preformed subsequent to a 4-month coarse graining. Data product shown in the titles.
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location, we apply the likelihood ratio (LR) model se-

lection test (see Fig. 3c). We observe that AR(1) pro-

cesses are preferred over an fGn in much of the Pacific

Ocean, while fGn models are preferred in the North

Atlantic and over the adjacent continents.

In Fig. 3d we have combined Figs. 3a and 3b so that

the p value for the preferred model is plotted in each

grid point. When combining the two models we have

more grid points with significant warming than what is

obtained using the fGn null hypothesis, but less than

inferred from the AR(1) null model.

e. Comparisons of the datasets

To add robustness to the results presented in the

previous section, we have repeated the same regional

statistical analysis on the datasets from HadCRUT4,

Berkeley Earth, and NOAA MLOST. The trends and

standard deviations are shown in Fig. 4 and summarized

in Table 2. The persistence parameters are shown in

Fig. 5. For the GISS dataset, these estimates are shown

in Fig. 2. The most notable difference between the four

data products is in the southern oceans. This can be seen

by comparing the persistence parameters, and also the

standard deviations.

In Fig. 6d the statistical significance of the trends,

based on the best null model, are shown for HadCRUT4,

Berkeley Earth, andNOAAMLOST data. The patterns

are similar to what we found for the GISS data, where

the largest domains of insignificant trends are found

in the Pacific and North Atlantic Oceans. Table 3

shows the percentages of trends that are significant. The

relative frequency of significant trends, at the 5%

significance level tested against the best null model,

is approximately 80% for all the data products. The

HadCRUT4 data shows the smallest percentage (70%)

of significant trends, but this can be understood from the

difference in spatial coverage. See Fig. 6d.

5. Summary and discussion

This paper studies climate variability after 1900 using

simple stochastic models and four different data

FIG. 5. (a)–(c) Hurst exponents in the fGnmodel. (d)–(f) Correlation time t in theAR(1) process. All estimates are

preformed subsequent to a 4-month coarse graining. Data product shown in the titles.
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products. The results are in many respects similar for the

four data products, although there are some differences

that are discussed in section 4e.

One of our main focuses has been statistical signifi-

cance testing of regional temperature trends in this time

period with an LRD representation of the internal cli-

mate variability. Several studies have presented such

detection analysis for a few selected locations, and an

advantage of this study is that we get a global overview

of local and regional climate variability.

Bloomfield (1992) has shown that the GMST trend is

significantly different from zero. Our study confirms this

conclusion with an updated estimate of the GMST trend

of 0.08 6 0.03Kdecade21. Here, the error bars indicate

the 95% confidence interval under the assumption of a

linear trend superposed on long-range dependent

(LRD) stationary fluctuations, which in this work is

represented by the fGn model. Under the same as-

sumption we have shown that the p value (the proba-

bility of a fGn producing pseudotrends larger than the

observed warming) is less than 1024.

For regional surface temperatures we find that ap-

proximately 80% of the analyzed grid cells have signif-

icant warming trends. This number is obtained from first

choosing the best null model [fGn or AR(1)] based on a

likelihood-ratio criteria, and subsequently applying a

FIG. 6. (a),(c),(e) The results of the likelihood ratio model selection test. In the grid points marked as red (blue)

the data are more consistent with an fGn error model [AR(1) error model]. In the grid points marked as light blue,

one model is not significantly preferred over the other. (b),(d),(f) The distribution of p values when the model with

the highest likelihood is chosen as the null model in each grid point. The p values are adjusted for multiple testing

using the FDR method. Data product shown in the titles.

TABLE 3. Percentage significant trends at the 1% (p, 0.01) and 5% (p, 0.05) significance level assuming an fGn null hypothesis and

AR(1) null hypothesis. In the last column (preferred model) the trend significance is tested against the model selected by the likelihood-

ratio criteria. The p values are adjusted for multiple testing using the FDR method.

fGn AR(1) Preferred model

p , 0.01 p , 0.05 p , 0.01 p , 0.05 p , 0.01 p , 0.05

GISS 47% 67% 85% 92% 68% 81%

Berkeley Earth 51% 68% 88% 92% 73% 84%

HadCRUT4 36% 55% 78% 85% 56% 70%

NOAA MLOST 47% 67% 89% 94% 72% 85%
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trend detection using the most appropriate model. This

approach is preferable compared to the standard

method, which is to restrict the analysis to a single class

of models (e.g., fGn). The main reason for this is that

some regions, in particular those strongly influenced by

ENSO, show a lack of scaling, while other regions are

more consistent with LRD processes.

A similar fraction of grid cells with significant warm-

ing trends (about 80%) was also found by Karoly and

Wu (2005) for trends over 1903–2002, although a one-

sided test was used there. The results of our study, as

well as those of Karoly and Wu (2005), Stott et al.

(2010), and Knutson et al. (2013), are evidence that

global warming is observable on regional scales.

The regions where we do not have warming trends, or

where we cannot establish significance of the warming

trends, can be identified with feedback mechanisms in

the ocean dynamics. In fact, the lack of warming trends

in the North Atlantic basin can partly be explained by

the 60-yr periodicity in the AMO. The AMO began a

negative phase around the year 1900, and in the time

period 1900–2013 (the period we have analyzed) it had

not quite completed two full cycles. Consequently, the

AMOhas a negative contribution to the SST trends over

the period.

Another region where we cannot establish significant

warming trends is the in the equatorial Pacific Ocean,

specifically its eastern part (see, e.g., Fig. 3d). This is

related to the so-called Pacific cold tongue, which is a

region around the equator west of South America that

experiences cooling relative to the other regions of the

Pacific Ocean. The phenomenon is produced by up-

welling of cold water in the eastern Pacific and its am-

plification by the trade winds. Our results for this region

are consistent with a study of Zhang et al. (2010), where

principal component analysis is used to discern a spatial

pattern for the variations in the SST over the last cen-

tury, and where the Pacific cold tongue is identified in

the second orthogonal function mode. Climate models

show that the cooling mode is not observed in the pre-

industrial period, and therefore it might be seen as a

negative dynamical feedback to global warming (Zhang

et al. 2010).

In a wider perspective, this paper presents a simple

methodology for accurately quantifying the local and

regional temperature variability on centennial time

scales. Several authors have used climate models to

determine the relative role of natural variations to the

overall uncertainty in the climate predictions for the

next century (see, e.g., Monier et al. 2015; Deser et al.

2012, 2014). In these studies, the natural variability is

defined as the variations of the individual runs around

the ensemble means. The obvious advantage of climate

models in this respect is the availability of a large

number of runs, which makes it possible to construct

ensemble means. When analyzing the instrumental

temperature records, we only have a single realization at

each location, and we have to apply different methods in

order to separate internal climate variability from the

climate system’s response to the anthropogenic changes

in radiative forcing. This separation of signals into noise

terms (internal variability) and trends is exactly what is

done in trend significance testing, and hence this paper

contains a description of natural climate variability, in-

cluding its dependence on geographic location and how

its fluctuation levels depend on time scale. Our study can

be seen as a complement to the ongoing efforts of using

climate models to quantify uncertainty in future climate

projections.
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