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We study the dynamics of seeded plasma blobs and depletions in an (effective) gravitational field.
For incompressible flows, the radial center of mass velocity of blobs and depletions is proportional to
the square root of their initial cross-field size and amplitude. If the flows are compressible, this scal-
ing holds only for ratios of amplitude to size larger than a critical value. Otherwise, the maximum
blob and depletion velocity depends linearly on the initial amplitude and is independent of size. In
both cases, the acceleration of blobs and depletions depends on their initial amplitude relative to the
background plasma density and is proportional to gravity and independent of their cross-field size.
Due to their reduced inertia plasma, depletions accelerate more quickly than the corresponding blobs.
These scaling laws are derived from the invariants of the governing drift-fluid equations for blobs
and agree excellently with numerical simulations over five orders of magnitude for both blobs and
depletions. We suggest an empirical model that unifies and correctly captures the radial acceleration
and maximum velocities of both blobs and depletions. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4985318]

Fluctuation induced transport across magnetic field lines
is ubiquitous in magnetized plasmas in various conditions. In
the scrape-off layer of tokamaks, field aligned plasma pres-
sure perturbations universally appear. These perturbations
are spatially localized when viewed in a plane perpendicular
to the magnetic field and are often referred to as blobs. They
mediate a significant amount of the radial particle and energy
flux on plasma facing components and thus critically deter-
mine their lifetime.1–9 Recent efforts in stochastic modeling
relate the radial density profiles of magnetically confined
plasmas to the amplitude, size, and radial velocity of individ-
ual uncorrelated transport events such as blobs.10 Analysis of
experimental data supports the predictions of this stochastic
model: probability density functions, auto correlation, and
power spectra as well as threshold level crossings of the tur-
bulent fields are in good agreement with theoretical
predictions.10–16

A similar transport mechanism is believed to act in the
F-layer ionosphere. Here, depletions in the plasma density,
called “bubbles,” are observed in night-side equatorial
regions. The rising plasma depletions are thought to trigger
turbulent flows in otherwise stable regions and lead to the
equatorial spread-F phenomenon, which may significantly
affect the performance and reliability of radio frequency
transmissions.17–23 Measurements of plasma depletions,
called “holes,” are reported from magnetically confined plas-
mas.4,24–26 These reports are less frequent than reports on
blobs, which are universally observed. Depletions are
believed to be created together with blobs just inside the
magnetic separatrix. From there, depletions propagate into
the confined plasma region with radial velocities smaller
than typical blob velocities.24,25 Thus, their inward propaga-
tion leads to a net radial transport out of the confined plasma,

but their total impact is believed to be smaller than transport
by blobs.

In this contribution, scrape-off layer plasmas as well as
ionospheric plasmas are modeled by drift-fluid equations
where we ignore magnetic field inhomogenity for the latter
one. This simplification results in incompressible flows.
Plasma blobs and depletions are seeded as a Gaussian pressure
perturbation on a homogeneous background, interaction with
turbulent flows is ignored. As noted in Ref. 27, compressible
drifts significantly alter the dynamics of seeded perturbations
with low peak amplitudes relative to the background level. We
further discuss the effect of the seeded perturbations’ inertial
mass on the acceleration of the structure. Using the conserva-
tion laws of the model equations, we derive an expression that
relates the acceleration of pressure perturbations to its initial
amplitude relative to the background. Our findings clarify that
there is an asymmetry between blobs and depletions in the
acceleration and not the velocity as was claimed in Ref. 28. An
empirical model is proposed that is shown to reproduce veloci-
ties and accelerations taken from numerical simulations over a
broad range of initial density amplitudes.

In drift-fluid models, the continuity equation

@n

@t
þr " nuEð Þ ¼ 0 (1)

describes the dynamics of the electron density n. Here, uE :¼
ðb̂ &r/Þ=B gives the electric drift velocity in a magnetic
field B :¼ Bb̂ and an electric potential /. We neglect contri-
butions of the diamagnetic drift.27

Equation (1) is closed by invoking quasineutrality, i.e.,
the divergence of the ion polarization, the electron diamag-
netic, and the gravitational drift currents must vanish
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Here, we denote r?/=B :¼ 'b̂ & uE, the electron diamag-
netic drift ud :¼ 'Teðb̂ &rnÞ=enB with the electron temper-
ature Te, the ion gravitational drift velocity ug :¼ mib̂ & g=B
with ion mass mi, and the ion gyro-frequency X :¼ eB/mi.

Combining Eq. (2) with Eq. (1) yields

@q
@t
þr " quEð Þ þr " n uw þ ud þ ugð Þð Þ ¼ 0 (3)

with the polarization charge density q ¼ r " ðnr?/=XBÞ
and uw :¼ b̂ &rw=B with w :¼ miu2

E=2e. We exploit this
form of Eq. (2) in our numerical simulations.

Equations (1) and (2), respectively, (3) have several
invariants. Invariants are important analytically as they pre-
sent restrictions on the possible dynamics of the system.
Also they can be used to verify numerical simulations. First,
in Eq. (1) the relative particle number MðtÞ :¼

Ð
dAðn' n0Þ

is conserved over time dMðtÞ=dt ¼ 0. Furthermore, we inte-
grate ðTeð1þ lnnÞ ' TelnðB=B0ÞÞ@tn as well as 'e/@tq'
ðmiu2

E=2þ gmix' TelnðB=B0ÞÞ@tn over the domain to get
disregarding boundary contributions

d

dt
TeS tð Þ þ H tð Þ½ ) ¼ 0; (4)

d

dt
E tð Þ ' G tð Þ ' H tð Þ½ ) ¼ 0; (5)

where we define the entropy SðtÞ :¼
Ð

dA½nlnðn=n0Þ ' ðn
'n0Þ), the kinetic energy EðtÞ :¼ mi

Ð
dAnu2

E=2, and the
potential energies GðtÞ :¼ mig

Ð
dAxðn' n0Þ and HðtÞ

:¼ Te

Ð
dAðn' n0ÞlnðB0=BÞ. Note that nlnðn=n0Þ ' nþ n0

* ðn' n0Þ2=2 for jðn' n0Þ=n0j+ 1 and S(t) thus reduces to
the local entropy form in Ref. 27.

We now set up a gravitational field g ¼ gx̂ and a con-
stant homogeneous background magnetic field B ¼ B0ẑ in a
Cartesian coordinate system. Then, the divergences of the
electric and gravitational drift velocities r " uE and r " ug

and the diamagnetic current r " ðnudÞ vanish, which makes
the flow incompressible. Furthermore, the magnetic potential
energy vanishes H(t)¼ 0.

In a second system, we model the inhomogeneous mag-
netic field present in tokamaks as B :¼ B0ð1þ x=R0Þ'1ẑ and
neglect the gravitational drift ug¼ 0. Then, the potential
energy G(t)¼ 0. Note that HðtÞ ¼ miC2

s=R0

Ð
dAxðn' n0Þ

þOðR'2
0 Þ reduces to G(t) with the effective gravity geff :¼

C2
s=R0 with C2

s :¼ Te=mi. For the rest of this letter we treat g
and geff as well as G(t) and H(t) on the same footing. The
magnetic field inhomogeneity thus entails compressible
flows, which is the only difference to the model describing
dynamics in a homogeneous magnetic field introduced
above. Since both S(t), 0 and E(t), 0 we further derive
from Eqs. (4) and (5) that the kinetic energy is bounded by
E(t)- TeS(t)þE(t)¼ TeS(0); a feature absent from the gravi-
tational system with incompressible flows, where S(t)¼ S(0).
Note here that we identify the compressional term as the sole
difference between the ionospherical model and the scrape-
off layer plasma.

We now show that the invariants Eqs. (4) and (5) present
restrictions on the velocity and acceleration of plasma blobs.

First, we define the blobs’ center of mass (COM) via XðtÞ :¼Ð
dAxðn' n0Þ=M and its COM velocity as VðtÞ :¼ dXðtÞ=dt.

The latter is proportional to the total radial particle flux.6,29

We assume that n> n0 and ðn' n0Þ2=2 - ½nlnðn=n0Þ ' ðn'
n0Þ)n to show for both systems

ðMVÞ2 ¼
ð

dAn/y=B

! "2

¼
ð

dAðn' n0Þ/y=B

! "2

- 2

ð
dA nlnðn=n0Þ ' ðn' n0Þ½ )1=2 ffiffiffi

n
p

/y=B

! "2

- 4Sð0ÞEðtÞ=mi: (6)

Here, we use the Cauchy-Schwartz inequality and
/y :¼ @/=@y. Note that although we derive the inequality
Eq. (6) only for amplitudes !n > 0 we assume that the
results also hold for depletions. This is justified by our
numerical results later in this letter. If we initialize our den-
sity field with a seeded blob of radius ‘ and amplitude !n as

n x; 0ð Þ ¼ n0 þ!n exp ' x2

2‘2

! "
; (7)

and /ðx; 0Þ ¼ 0, we immediately have M :¼ Mð0Þ ¼
2p‘2!n; Eð0Þ ¼ Gð0Þ ¼ 0 and Sð0Þ ¼ 2p‘2f ð!nÞ, where
f ð!nÞ captures the amplitude dependence of the integral for
S(0).

The acceleration for both incompressible and compress-
ible flows can be estimated by assuming a linear acceleration
V¼A0t and X ¼ A0t2=2 (Ref. 29) and using EðtÞ ¼ GðtÞ ¼
migMXðtÞ in Eq. (6)

A0

g
¼ Q 2S 0ð Þ

M
* Q

2

!n

n0 þ 2!n=9
: (8)

Here, we use the Pad"e approximation30 of order (1/1) of
2 S(0)/M and define a model parameter Q with 0 < Q - 1 to
be determined by numerical simulations. Note that the Pad"e
approximation is a better approximation than a simple trun-
cated Taylor expansion especially for large relative ampli-
tudes of order unity. We are the first to derive an analytical
expression for the blob acceleration. Equation (8) predicts
that A0=g . !n=n0 for small amplitudes j!n=n0j < 1 and
A0 . g for very large amplitudes !n=n0 / 1, which con-
firms the predictions in Ref. 31 and reproduces the limits dis-
cussed in Ref. 32.

As pointed out earlier for compressible flows TeSðtÞ
þEðtÞ ¼ TeSð0Þ and thus, the kinetic energy in Eq. (6) can
be further estimated

ðMVÞ2 - 4TeSð0Þ2=mi: (9)

We therefore have a restriction on the maximum COM veloc-
ity for compressible flows, which is absent for incompressible
flows (where E(t)¼G(t) is unbound and S(t)¼ S(0))

maxjVj
Cs

¼ Q 2S 0ð Þ
M
* Q

2

j!nj
n0 þ 2=9!n

* Q
2

j!nj
n0

: (10)

For j!n=n0j < 1, Eq. (10) reduces to the linear scaling
derived in Ref. 27. Note that contrary to Ref. 27 we only
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need one fit parameter Q for both the velocity (10) and the
acceleration (8). Finally, a scale analysis of Eq. (3) shows
that5,19,29

maxjVj
Cs

¼ R ‘

R0

j!nj
n0

! "1=2

: (11)

This equation predicts a square root dependence of the center
of mass velocity on amplitude and size. Unfortunately, we
were also not able to derive this scaling from the invariants.

We now propose a simple phenomenological model that
captures the essential dynamics of blobs and depletions in
the previously stated systems. More specifically, the model
reproduces the acceleration Eq. (8) with and without
Boussinesq approximation, the square root scaling for the
COM velocity Eq. (11) for incompressible flows as well as
the relation between the square root scaling Eq. (11) and the
linear scaling Eq. (10) for compressible flows. The basic
idea is that the COM of blobs behaves like the one of an infi-
nitely long plasma column immersed in an ambient plasma.
The dynamics of this column reduces to the one of a two-
dimensional ball. This idea is similar to the analytical “top
hat” density solution for blob dynamics recently studied in
Ref. 31. The ball is subject to buoyancy as well as linear and
nonlinear friction

Mi
dV

dt
¼ Mg 'Mpð Þg' c1V ' sgn Vð Þ 1

2
c2V2: (12)

The one-dimensional coordinate system is aligned to the
gravitational field such that gravity g has a positive sign;
sgn(f) is the sign function. The first term on the right hand
side is the buoyancy, where Mg :¼ p‘2ðn0 þQ!n=2Þ is the
gravitational mass of the ball with radius ‘ and Mp :¼ n0p‘2

is the mass of the displaced ambient plasma. Note that if
!n < 0 the ball represents a depletion and the buoyancy
term has a negative sign, i.e., the depletion will rise. We
introduce an inertial mass Mi :¼ p‘2ðn0 þ 2!n=9Þ different
from the gravitational mass Mg in order to recover the initial
acceleration in Eq. (8). We interpret the parameters Q and
2/9 as geometrical factors that capture the difference of the
actual blob form from the idealized “top hat” solution. Also
note that the Boussinesq approximation appears in the model
as a neglect of inertia. The inertial mass is replaced with the
one of the displaced plasma Mi ¼ p‘2n0.

The second term is the linear friction term with coeffi-
cient c1(‘), which depends on the size of the ball. If we disre-
gard the nonlinear friction, c2¼ 0, Eq. (12) directly yields a
maximum velocity c1V0 ¼ p‘2ngQ!n=2. From our previous
considerations maxV=Cs ¼ Q!n=2n0, we thus identify

c1 ¼ p‘2n0g=Cs: (13)

The linear friction coefficient thus depends on the gravity
and the size of the ball.

The last term in (12) is the nonlinear friction. The sign
of the force depends on whether the ball rises or falls in the
ambient plasma. If we disregard linear friction c1¼ 0, we
have the maximum velocity V0 ¼ rð!nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p‘2j!njgQ=c2

p
,

which must equal maxV ¼ rð!nÞR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g‘j!n=n0j

p
and thus

c2 ¼ Qpn0‘=R2: (14)

Inserting c1 and c2 into Eq. (12), we can derive the maximum
absolute velocity in the form

maxjVj
Cs

¼ R2

Q

! "
‘

R0
1þ Q

R

! "2 j!nj=n0

‘=R0

 !1=2

' 1

0

@

1

A

(15)

and thus have a concise expression for maxjVj that captures
both the linear scaling (10) as well as the square root scaling
(11). With Eqs. (8) and (11), respectively, Eq. (15) we finally
arrive at an analytical expression for the time at which the
maximum velocity is reached via tmaxV . maxV=A0. Its
inverse c :¼ t'1

maxV gives the global interchange growth rate,
for which an empirical expression was presented in Ref. 29.

We use the open source library FELTOR to simulate
Eqs. (1) and (3) with and without drift compression. For
numerical stability, we added small diffusive terms on
the right hand sides of the equations. The discontinuous
Galerkin methods employ three polynomial coefficients and
a minimum of Nx¼Ny¼ 768 grid cells. The box size is 50‘
in order to mitigate influences of the finite box size on the
blob dynamics. Moreover, we used the invariants in Eqs. (4)
and (5) as consistency tests to verify the code and repeated
simulations also in a gyrofluid model. No differences to the
results presented here were found. Initial perturbations on
the particle density field are given by Eq. (7), where the per-
turbation amplitude !n=n0 was chosen between 10'3 and 20
for blobs and –100 and –10'3 for depletions. Due to compu-
tational reasons, we show results only for !n=n0 - 20.
For compressible flows, we consider two different cases
‘/R0¼ 10'2 and ‘/R0¼ 10'3. For incompressible flows, Eqs.
(1) and (3) can be normalized such that the blob radius is
absent from the equations.19,33 The simulations of incom-
pressible flows can thus be used for both sizes. The numeri-
cal code as well as input parameters and output data can be
found in the supplemental dataset to this contribution.34

In Fig. 1, we plot the maximum COM velocity for blobs
with and without drift compression. For incompressible
flows blobs, follow the square root scaling almost perfectly.

FIG. 1. The maximum radial COM velocities of blobs for compressible and
incompressible flows are shown. The continuous lines show Eq. (15), while
the dashed line shows the square root scaling Eq. (11) with Q ¼ 0:32 and
R ¼ 0:85.
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Only at very large amplitudes, velocities are slightly below
the predicted values. For small amplitudes, we observe that
the compressible blobs follow a linear scaling. When the
amplitudes increase, there is a transition to the square
root scaling at around !n=n0 ’ 0:5 for ‘/R0¼ 10'2 and
!n=n0 ’ 0:05 for ‘/R0¼ 10'3, which is consistent with Eq.
(15) and Ref. 27. In the transition regions, the simulated
velocities are slightly larger than the predicted ones from Eq.
(15). Beyond these amplitudes, the velocities of compress-
ible and incompressible blobs align.

In Fig. 2, we show the maximum radial COM velocity
for depletions instead of blobs. For relative amplitudes below
j!nj=n0 ’ 0:5 (right of unity in the plot) the velocities coin-
cide with the corresponding blob velocities in Fig. 1. For
amplitudes larger than j!nj=n0 ’ 0:5, the velocities follow
the square root scaling. We observe that for plasma deple-
tions beyond 90 percent the velocities in both systems reach
a constant value that is very well predicted by the square
root scaling.

In Fig. 3, we show the average acceleration of blobs for
compressible and incompressible flows computed by dividing
the maximum velocity maxV by the time to reach this veloc-
ity tmaxV . We compare the simulation results to the theoretical

predictions Eq. (8) of our model with and without inertia. The
results of the compressible and incompressible systems coin-
cide and fit very well to our theoretical values. For amplitudes
larger than unity, the acceleration deviates significantly from
the prediction with Boussinesq approximation.

In Fig. 4, we show the simulated acceleration of deple-
tions in the compressible and the incompressible systems. We
compare the simulation results to the theoretical predictions
Eq. (8) of our model with and without inertia. Deviations
from our theoretical prediction Eq. (8) are visible for ampli-
tudes smaller than !n/n0 ’ –0.5 (left of unity in the plot).
The relative deviations are small at around 20 percent. As in
Fig. 2, the acceleration reaches a constant value for plasma
depletions of more than 90 percent. Comparing Fig. 4 and
Fig. 3, the asymmetry between blobs and depletions becomes
apparent. While the acceleration of blobs is reduced for large
amplitudes compared to a linear dependence, the acceleration
of depletions is increased. In the language of our simple buoy-
ancy model, the inertia of depletions is reduced but increased
for blobs.

In conclusion, we discuss the dynamics of seeded blobs
and depletions in a compressible and an incompressible sys-
tem. With only two fit parameters, our theoretical results
reproduce the numerical COM velocities and accelerations
over five orders of magnitude. We derive the amplitude
dependence of the acceleration of blobs and depletions from
the conservation laws of our systems in Eq. (8). From the
same inequality, a linear regime is derived in the compress-
ible system for ratios of amplitudes to sizes smaller than a
critical value. In this regime, the blob and depletion velocity
depends linearly on the initial amplitude and is independent
of size. The regime is absent from the system with incom-
pressible flows. Our theoretical results are verified by numer-
ical simulations for all amplitudes that are relevant in
magnetic fusion devices. Finally, we suggest a new empirical
blob model that captures the detailed dynamics of more com-
plicated models. The Boussinesq approximation is clarified
as the absence of inertia and a thus altered acceleration of
blobs and depletions. The maximum blob velocity is not
altered by the Boussinesq approximation.

FIG. 2. The maximum radial COM velocities of depletions for compressible
and incompressible flows are shown. The continuous lines show Eq. (15),
while the dashed line shows the square root scaling Eq. (11) with Q ¼ 0:32
and R ¼ 0:85. Note that small amplitudes are on the right and amplitudes
close to unity are on the left side.

FIG. 3. Average acceleration of blobs for compressible and incompressible
flows is shown. The continuous line shows the acceleration in Eq. (8) with
Q ¼ 0:32, while the dashed line is a linear reference line, which corresponds
to the Boussinesq approximation.

FIG. 4. Average acceleration of depletions for compressible and incom-
pressible flows is shown. The continuous line shows the acceleration in Eq.
(8) with Q ¼ 0:32, while the dashed line is a linear reference line, which
corresponds to the Boussinesq approximation.
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