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Abstract  

Recent studies regarding mucosal drug delivery indicate that nanosystems with surface-available 

polyethylene glycol (PEG) are able to penetrate mucus barrier, assure closer contact with the 

epithelium, and improve drug delivery to vagina. In the present work, we developed the mucus-

penetrating PEGylated liposomes containing interferon alpha-2b (IFN α-2b), destined to provide 

localized therapy for human papilloma virus (HPV) vaginal infections. The PEGylated liposomes 

were of a mean size of 181 ± 8 nm, bearing a negative zeta potential of – 13 mV and an 

entrapment efficiency of 81 ± 10 %. In vitro release experiments on model membrane showed a 

nearly non-existent IFN α-2b release from both the control and liposomally-associated IFN α-2b. 

However, the ex vivo penetration studies performed on the vaginal tissue obtained from pregnant 

sheep, showed the clear elevated IFN α-2b penetration from PEGylated liposomes as compared to 

the control. Furthermore, mucin studies confirmed the absence of interaction between the PEG-

modified liposomes and mucin, confirming their ability to penetrate mucus and reach the deeper 

epithelium. The system holds a promise in improving topical delivery of IFN α-2b through 

enhanced efficacy of local anti-viral therapy.  

 

Key words: vaginal therapy; PEGylated liposomes; mucus-penetrating liposomes; interferon; 

human papilloma virus  
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Abbreviations:  

HPV: human papilloma virus, IFN α-2b: interferon alpha-2b, PC: phosphatidylcholine, PEG: 

polyethylene glycol, STDs: sexually transmitted diseases, VFS: vaginal fluid simulant 
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1. Introduction 

Human papilloma virus (HPV) infections, which are responsible for genital warts and transmitted 

via mucosal surfaces, are one of the most common sexually transmitted diseases (STDs) [1]. 

Although HPV infections are common in both genders, due to the physiology and anatomy of 

vagina, women are more prone to the infections and the efficacy of the treatment remains limited. 

It is estimated that 80 % of all sexually active women will acquire HPV infection by the age of 50 

[2]. Some of the HPV infections may spontaneously resolve in younger women; however, the 

high-risk HPV infections are persistent among women over the age of 30 and often lead to 

cervical pre-cancerous lesions. Cervical cancer is the second most common cancer in women and 

the fifth most common cancer overall [1].  

Currently available anti-viral therapies mainly target the visible lesions failing to eliminate the 

virus with the recurrence rate of up to 90 % [3]. For treatment of visible lesions, intralesional 

injections of interferon alpha-2b (IFN α-2b) have been an optional treatment; however, in this 

treatment option the patients suffer from the pain due to direct injections into each region and 

severe side effects due to systemic exposure. Moreover, only five visible lesions can be treated in 

a single session [1]. The treatment is not suitable for latent or subclinical infections and a more 

sophisticated non-invasive approach is desirable.  

The potential of topical treatment of genital warts was one of the first studies reporting vaginal 

applications of liposomal drugs. In a preliminary clinical testing, topical treatment with liposomal 

IFN α-2b achieved complete resolution of cervical lesions in a female patient at the end of 

therapy [4]. PEGylation of IFN α-2b can provide a prolonged half-life and a shift of distribution 

towards infected tissues due to increased capillary permeability, thereby improving efficacy and 

reducing toxicity [5]. Additionally, incorporating IFN α-2b in liposomal formulations may 
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increase its stability and alter its pharmacokinetics, two issues which often limit the success of 

IFN therapy [6,7]. 

To achieve an efficient local delivery to mucosal tissue, the penetration into/through the mucus 

mesh, uniform distribution of drug into the underlying tissue and sufficiently high drug 

concentration are required. Mucus, a physical barrier in the form of an adhesive gel that stick to 

most particles, prevents most of the foreign particles from penetrating into the epithelium surface. 

Moreover, mucus exhibits the ability to form an unstirred layer of mucus adjacent to epithelial 

surfaces not affected by the shearing actions [8]. To penetrate this unstirred layer, nanosystems 

should be able to diffuse through it in a manner similar to viruses. Viruses can overcome this 

barrier and cause infection rather easily [9]. Therefore, biomimicking the viral properties might 

be a promising approach. 

 

Polyethylene glycol (PEG) is an uncharged hydrophilic polymer widely applied in 

pharmaceutical formulations, including those for topical vaginal therapy. When used as a coating 

material, PEG enables nanoparticles to diffuse through vaginal mucus by eliminating the 

adhesive interactions between the nanoparticles and mucus [9,10], assuring a closer contact to the 

vaginal epithelium, and enabling improved drug effectiveness. The synergy between the 

properties of liposomes as a protective carrier for sensitive biologicals and the mucus-penetrating 

properties of PEG available on liposomal surface, enables the development of a vaginal drug 

delivery system providing the controlled drug release in a close proximity to the vaginal 

epithelium.  
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In the present study, we developed liposomal carriers containing IFN α-2b with surface-available 

low molecular weight PEG (MW of 2000) as a mucus-penetrating delivery system able to 

distribute IFN α-2b to vaginal mucosa assuring improved localized therapy. 

 

2. Materials and Methods 

2.1. Materials 

Lipoid S 100 (PC, soybean lecithin, > 94 % phosphatidylcholine) was a gift from Lipoid GmbH, 

Ludwigshafen, Germany; methoxy poly (ethylene glycol)-modified lipids (mPEG 2000) was 

from the same manufacturer. IntronA® 50 MIU/mL injection fluid in multiple dose pen was the 

product of MSD AS, Drammen, Norway. Acetic acid, bovine serum albumin, calcium hydroxide, 

chitosan (low MW, Brookfield viscosity 20.000 cps, degree of deacetylation 92 %), cholesterol, 

fructose, glycerol, mucin from porcine stomach (type III, bound sialic acid 0.5 % - 1.5 %, 

partially purified), potassium phosphate monobasic, Sephadex® G-50, Triton® X-100 and zinc 

chloride were all purchased from Sigma-Aldrich Chemie GMbH, Steinheim, Germany. Di-

sodium hydrogen phosphate, sodium dihydrogen phosphate monohydrate, potassium chloride and 

titriplex (ethylenedinitrilotetraacetic acid disodium salt dihydrate) were obtained from Merck 

KGaA, Darmstadt, Germany. Glucose, lactic acid, polysorbatum, potassium hydroxide, sodium 

citrate dihydrate and urea were the products of NMD, Oslo, Norway. Ammonium acetate, 

magnesium chloride and potassium chloride was the product of VWR International BHD Prolab, 

Leuven, Belgium. ELISA kit was purchased from Bio-Techne, Abingdon, UK. 

 

2.2. Preparation of PEGylated liposomes 
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The PEGylated liposomes were prepared by the conventional film method as previously 

described [11]. Briefly, cholesterol (10 mg), mPEG 2000 (36.3 mg) and PC (200 mg) were 

dissolved in methanol and chloroform (1:1, v/v) in a round bottom flask. Solvents were removed 

through evaporation (Büchi rotavapor R-124 with vacuum controller B-721, Büchi Vac® V-500, 

Büchi Labortechnik, Flawil, Switzerland) for 2 hours at 50 mm Hg and 50 °C. The remaining 

film was flushed with nitrogen to assure no residual solvents. The lipid film was then re-

suspended in 5 mL of IFN α-2b solution from IntronA® 50 million IU/mL (MIU/mL) injection 

fluid and Intron A buffer (pH 7.4; 7.5 g/L NaCl, 1.8 g/L NaH2PO4, 1.3 g/L Na2HPO4, 0.1 g/L 

EDTA and 0.1 g/L Polysorbate 80) resulting in a final IFN α-2b concentration of 2 MIU/mL. 

Similar procedure was applied in the preparation of empty liposomes; the lipid film was re-

suspended in Intron A buffer free of IFN α-2b. Liposomal suspensions were kept in a refrigerator 

(4 - 8˚C) for at least 12 hours prior to further use. 

 

2.3. Vesicle size reduction 

Extrusion through polycarbonate membranes (Nuclepore Track-Etch Membran, Whatman House, 

Maidstone, UK) [12] was employed in the reduction of liposomal size. The extrusion was 

performed stepwise through 0.8, 0.4 and 0.2 µm pore size filters, respectively. Three extrusions 

were performed on each pore size filters. Extruded liposomes were kept in a refrigerator (4-8 °C) 

for at least 6 hours prior to characterization and further experiments. 

 

2.4. Particle size analysis 
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The particle size distribution of liposomal samples was measured by photon correlation 

spectroscopy (Submicron particle sizer model 370, Nicomp, Santa Barbara, California, USA) 

according to Jøraholmen et al. [11]. Analyses were run in a vesicle mode and the particle 

intensity of approximately 200-350 kHz. The data were calculated as intensity weighted 

distribution from three measuring cycles (each with a run time of 10 min).  

 

2.5. Zeta potential measurements 

Zeta potential determinations were performed on a Malvern Zetasizer Nano ZS (Malvern, 

Oxford, UK). Prior to measurement, the measurement cells were properly cleaned with ethanol 

and filtrated water, respectively. To obtain a suitable count rate, the liposomal suspensions 

samples were diluted in filtrated water to adequate concentrations (typically 1:20, v/v) before 

loading the sample into the cells [12]. Three parallels were determined for each sample 

measurement. 

 

2.6. IFN α-2b entrapment 

Liposomally-entrapped IFN α-2b and free drug were separated by the size-exclusion gel 

chromatography. Sephadex® G-50 in Intron A buffer (75 mg/mL) was left to swell overnight (at 

4-8 °C). The gel was packed in a column (50 mL) and flushed with Intron A buffer. The 

stationary phase measured 65 cm
3
. Liposomal sample containing IFN α-2b (1.2 mL) was applied 

on top of the column and 100 fractions of 1 mL was collected. Eluate time was 1.8 mL/min. The 

column was properly rinsed with Intron A buffer (150 ml) before and after each sample. 



  

9 
 

An enzyme-linked immunoassay kit (VeriKine™ Human IFN α-2b Multi-Subtype ELISA kit) 

was used for the quantification of IFN α-2b. Aliquots of the samples were diluted in 0.1 % Triton 

(Triton X-100 in Intron A buffer) to disintegrate liposomes and further diluted to suitable 

concentrations with Intron A buffer. The procedure was performed according to manufacturer’s 

instructions. In brief, standards and diluted samples were added to microplate coated with IFN α-

2b antibodies. Diluted antibody solution, diluted horseradish peroxidase and tetramethyl-

benzidine substrate were added step-wise after 1 hour incubation. Finally, the reaction-

terminating solution was added after 15 min incubation. Amount of liposomally-associated IFN 

α-2b was determined by UV spectrophotometry at 450 nm (Microtitre plate reader; Spectra Max 

190 Microplate, Spectrophotometer Molecular devices, Sunnyvale, California, USA). 

 

2.7. In vitro mucin-binding 

The binding of PEGylated liposomes to mucin was determined to confirm that the delivery 

system is not mucoadhesive. The test was performed as previously described [12]. Briefly, 

aliquots (1 mL) of empty PEGylated, non-coated and 0.1 % (w/v) chitosan-coated liposomes 

(prepared according to Jøraholmen et al. [11]) were added to an equal volume of mucin 

suspension (400 μg/mL) in phosphate buffer (pH 7.4) and acetate buffer (pH 4.6), respectively. 

Incubation at room temperature for 2 hours was followed by ultracentrifugation at 216 000 g for 

1 hour, at 10 °C (Optima LE-80; Beckman Instruments, Palo Alto, California, USA). Free mucin 

and four aliquots (200 μL) from the supernatant were transferred to a microtitre plate (Costar® 

UV 96-well plate with UV transparent flat bottom, Acrylic, Costar®, Corning, New York, USA) 

and measured spectroscopically at 251 nm (Microtitre plate reader; Spectra Max 190 Microplate, 
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Spectrophotometer Molecular devices, Sunnyvale, California, USA). Mucin-binding capacity 

was calculated based on Naderkhani and colleagues [13]. The experiments were performed in 

triplicates. 

 

2.8. In vitro release 

The in vitro IFN α-2b release experiment was performed on the Franz cell manual diffusion 

system (Perme Gear Ink, Diffusion cells and Systems, Hellertown, USA) as previously described 

[11]. The system and accessories were thoroughly cleaned with methanol, demineralized water 

and distilled water, respectively, prior to experiment. The heating circulator (Julabo 

Laboratechnik, F12-ED, Seelback, Germany) was set to maintain a temperature of 37 °C. The 

acceptor chambers with a volume of 12.1 mL were completely filled with acetate buffer (pH 4.6; 

77.1 g CH3COONH4, 70 mL glacial acetic acid and distilled water up to 1000 mL). Polyamide 

membrane (Sartorius polyamide membrane, 0.2 μm pore size, Sartorius AG, Gröttingen, 

Germany) was cut to a suitable size (diffusion area of 1.77 cm
2
) and fixed between the donor and 

acceptor chambers. The IFN α-2b content in all included samples was determined (ELISA) prior 

to the experiment to prepare a control solution (IFN α-2b in Intron A buffer) containing similar 

drug concentration. Liposomal samples and controls (550 µL), as well as vaginal fluid simulant 

(VFS) (pH 4.6; 3.51 g/L NaCl, 1.40 g/L KOH, 0.222g/L Ca(OH)2, 0.018 g/L bovine serum 

albumin; 2 g/L lactic acid, 1g/L acetic acid, 0.16 g/L glycerol, 0.4 g/L urea and 5 g/L glucose; 50 

µL) [14] were added in the donor cells and the system was closely sealed. Sampling from 

acceptor chamber (500 µL) was done after 1, 2, 4, 6 and 8 hours and the samples withdrawn from 

the acceptor chamber were replaced by an equal volume of acetate buffer. IFN α-2b 
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concentrations in the withdrawn samples, remaining in the donor cells and retained in the 

polyamide membrane were determined with ELISA kit and UV spectrophotometry as described 

above. The experiments were performed in triplicates. 

 

2.9. Preparation of vaginal tissue 

Vaginal tissue from pregnant sheep was acquired from the Laboratory Animal Centre, University 

of Oulu, Finland. The experiments were performed according to the guidelines of the National 

Animal Experiment Board in Finland. The vaginal tissue was cautiously dissected and removed 

from the underlying tissue, cleaned and moistened with physiological solution (pH 7.4), then 

packed in a clinging film before the tissues were frozen (-20 °C). Prior to the experiments, the 

tissue was left to defrost in phosphate buffer (pH 7.4) at room temperature for at least 1 hour. We 

have earlier reported that no significant differences were observed in using fresh or snap-frozen 

vaginal tissue samples and that the barrier properties of the fresh vaginal tissue and frozen and 

thawed tissue are similar [11]. 

 

2.10. Ex vivo penetration 

The experiment was performed on the Franz cell manual diffusion system as described above. 

Briefly, the acceptor chambers were filled up with phosphate buffer (pH 7.4, 8 g/L NaCl, 0.19 

g/L KH2PO4, and 2.38 g/L Na2HPO4). Sheep vaginal tissue was defrosted, cut to appropriate size 

(1.77 cm
2
) and fixed between donor cell and acceptor chamber. Samples and controls (550 µL), 

with similar amount of IFN α-2b, as well as VFS (50 µL) were added in the donor cells and the 

system was thoroughly sealed. Sampling from acceptor chamber (500 µL) was done after 1, 2, 4, 
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6 and 8 hours and withdrawn volumes replaced by an equal volume of phosphate buffer. Amount 

of IFN α-2b in the collected samples, remaining in the donor cells and retained in the vaginal 

tissue were determined with ELISA kit and UV spectrophotometry as described above. The 

experiments were performed in triplicates. 

 

 

2.11. Stability of PEGylated liposomes in the presence of biological fluids 

Human semen simulant was prepared according to Owen and Katz [15]. Briefly, the solution 2 

(101 mg CaCl2 x 2H2O, 15.13 mL H2O), the solution 3 (92 mg MgCl2 x 6H2O, 15.13 mL) and 

solution 4 (34.4 mg ZnCl2, 15.13 mL H2O) were added into the solution 1 (5.6 mL 0.123 M 

NaH2PO4 x H2O, 49.14 mL 0.123 M Na2HPO4, 813 mg sodium citrate dehydrate, 90.8 mg KCl, 

88.1 mg KOH, 272 mg fructose, 102 mg glucose anhydrase, 62 mg lactic acid, 45 mg urea, 5.04 

mg bovine serum albumin). The solutions were mixed and pH was adjusted to 7.7 with sodium 

hydroxide solution. 

Aliquots (500 µL) of liposomal suspensions containing IFN α-2b (free of unentrapped IFN) were 

mixed with human semen simulant (500 µL) and VFS (50 µL), and incubated at room 

temperature for 2 hours. The leaked (free) IFN α-2b was separated from liposomally-associated 

IFN α-2b by size-exclusion gel chromatography (as described in 2.6). Quantification of IFN α-2b 

in the fractions was performed with ELISA kit and UV spectrophotometry as described above. 

 

2.12. Statistical analyses 
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For the comparison of two means, statistical significance was determined using the student's t-

test. A p-value less than 0.05 was considered statistically significant. 

 

3. Results and Discussion 

Interferons are widely used clinically relevant biologicals. Their anti-viral, anti-proliferative and 

immunomodulatory effects have been confirmed and several subtypes are already clinically 

approved for various indications [16]. IFN exhibits anti-viral effect on HPV-infected cells, and is 

of a great interest in the search for therapeutic use in the treatment of HPV infections [1]. The 

short circulation time and unwanted effects on the non-target tissues following systemic 

administration limit its wider utilization as biological. Topical treatment option assures drug 

delivery directly to the site of infection and increased efficiency at lower doses, reduced adverse 

effects due to decreased systemic levels and a more adequate treatment even for non-visible 

lesions. Currently, the lack of suitable delivery systems is the main challenge to successful HPV 

infection treatment. With an optimized formulation, that enables an efficient local delivery to 

mucosal tissue and provides increased stability of IFN, these limitations can be overcome [17]. 

 

3.1. Liposomal characteristics 

The effectiveness of local drug delivery at the vaginal site is determined by the physicochemical 

characteristics of the delivery system. The vesicle size affects the ability to fit within the mucin 

pores, while the particles surface charge and properties establish the potential attraction or 

repulsion towards mucus [18]. Thus, the main focus in the development of a delivery system 
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aiming for local therapy at the mucosal site is controlling the surface properties, particle size and 

surface charge [19]. The protective mucus layer traps the foreign particulates and acts on their 

removal [20]. Biomimetic approach in design of novel delivery systems for IFN can offer the 

necessary improvements in the efficacy of localized vaginal therapy. Polyethylene glycol (PEG) 

shields the nanoparticles from adhesive interactions with mucus [21]. Sufficient number of PEG 

molecules available on the vesicle surface effectively minimizes the adhesive interactions 

between vesicles and mucus, creating the mucus-penetrating particles that can efficiently 

penetrate the human mucus [10,22]. The optimal PEG content and density on the particle’s 

surface were studied to optimize the penetration potential and system’s stability in vaginal 

environment. Xu and colleagues [20] suggested that at least 5 % PEG (wt) was required to assure 

complete shielding and avoid mucoadhesion. The surface density and molecular weight of PEG 

directly affect the particle transport, and literature indicates that dense coating with low 

molecular weight PEG increases the transport rate through the mucus significantly [23]. We used 

targeted PEG content of 14 % (wt), which is expected to provide surface PEG content of over 7 

% (wt), as reported by Hanes group [20] for biodegradable poly(lactic-co-glycolic acid) 

nanoparticles-bearing PEG. PEG in this concentration is expected to be in the dense brush 

conformation [20]. The same group [24] further examined the diffusion of liposome-based 

mucus-penetrating particles in human cervicovaginal mucus by magnetic resonance imaging and 

suggested that 7 % (molar) was an optimal coating concentration for theranostic purposes. By 

modifying liposomal surface with low molecular weight PEG we aimed to develop an advanced 

carrier for IFN α-2b for the local therapy at vaginal site.  

Uniform distribution deep into the folded vaginal epithelium over the cervicovaginal mucosa is a 

prerequisite for efficient drug delivery [9].  
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Although there is no consensus regarding the effect of nanocarrier size on the mucosal targeting 

at vaginal site, it is known that small particles will easily be trapped in the mucus mesh while 

larger particles will be retained on the mucus surface. Viruses with diameters between 30 and 200 

nm are able to reach and infect the vaginal mucosa efficiently [18]. However, Lai and colleagues 

[23] showed that larger particles (200-500 nm) densely coated with PEG are more rapidly 

transported through fresh undiluted human mucus than the corresponding particles of smaller size 

(100 nm). Based on the above, in our study, we aimed for vesicles in size range of around 200 

nm. The vesicle size of our PEGylated liposomes was close to the targeted size range (Table 1). 

We reported earlier [12] that the extrusion as a size reduction method can be readily applied to 

obtain vesicles in desired size range with favourable polydispersity. Our liposomes exhibited 

rather narrow size distribution with low PI (Table 1). 

 

Table 1: Characteristics of PEGylated liposomes containing IFN α-2b (n = 3). 

 

Considering optimal mucus-penetration, a nearly neutral vesicle surface charge is desirable to 

assure mucus-penetrating properties [23]. However, it is also suggested that a negatively charged 

component present in the liposomal bilayer responsible for negative charge on the vesicle surface 

is beneficial for a stable association and will improve IFN α-2b entrapment and prevent drug 

leakage from the liposomes [6]. The optimized formulation should be a balance between the drug 

load and surface characteristics of the vesicles. Our PEGylated liposomes exhibited a slightly 

negative zeta potential (Table 1).  
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Even if the carrier system exhibits desired mucus-penetrating properties, it is very important that 

the drug load is sufficient to achieve desired therapeutic response. We were able to achieve rather 

high entrapment efficiency of 81 % (Table 1). This is in accordance with literature data [7,25-27]. 

Compared to other lipid-based delivery systems, such as the biphasic IFN-containing vesicles for 

topical therapy of HPV infections, the entrapment efficiency in our vesicles was in the same 

range [28]. However, both the vesicle size and size distribution of the biphasic vesicles were 

considerably larger (1000-1100 nm) compared to our PEGylated liposomes (181 ± 8 nm), 

suggesting that even vesicles of smaller sizes can carry sufficient drug load. In addition, it is 

known that by incorporating IFN α-2b in liposomal formulations, an increase in its stability and 

positive alteration of its pharmacokinetics can be obtained [6,7]. The size and size distributions of 

our vesicles, as well as the presence of PEG on vesicle surfaces indicate that the vesicles should 

remain stable in respect to both aggregation and potential loss of originally encapsulated IFN α-

2b.  

 

3.2. Mucus-penetrating properties 

Mucus immobilizes particles by hydrophobic and electrostatic interactions as well as hydrogen 

bonding [29]. Mucin fibers in the healthy human vaginal mucus are negatively charged and 

reported to have a diameter of approximately 340 nm [10]. Mucus properties are affected by the 

environmental changes, such as the changes in pH due to vaginal infections and the viscosity of 

vaginal fluid. When exposed to bacterial vaginosis, a reduction in the viscosity of vaginal fluid 

causes the reduced barrier properties and increased risk of infection [30]. It is further suggested 

that mucoadhesive nanoparticles may disrupt the protective microstructure of mucus by 
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increasing the average pore size of mucin fibers. This can provide easier access for foreign 

particles to vaginal mucosa, including the pathogens and other potentially toxic nanomaterials, 

due to the impaired mucus barrier. However, the limited literature data indicate that the mucus-

penetrating particles did not exhibit similar effect on the cervicovaginal mucus [21]. 

 

It was originally proposed that PEGylation of nanoparticles leads to increased mucoadhesiveness, 

and that PEG exhibits mucoadhesive properties that are expressed by the interpenetrating 

polymer network effects between PEG chains and the mucus mesh [31-33]. Recent studies, 

however, have demonstrated that PEG-surface modified nanoparticles minimize mucoadhesion 

and are able to effectively penetrate the mucus enabling closer contact between the nanosystem 

and the underlying epithelium [9,10,22,34]. To achieve the mucoinert surfaces a fine-tuning of 

the interactions between particles and mucus is required. Coating of particles with a dense layer 

of low molecular weight PEG effectively reduces the hydrophobic interactions, hydrogen 

bonding interpenetrating polymer network effects below the threshold required to actually slow 

and immobilize nanosystems [34]. In addition, incorporation of PEG into nanosystems also 

reduces the interactions of the systems with other proteins and biomacromolecules. It was 

suggested that the molecular weight of PEG is the determining factor whether PEG will exhibit 

mucoadhesive or mucus-penetrating characteristics and recent findings indicate that when 

densely coated with low molecular weight PEG, nanoparticles avoid adhesive interactions with 

mucus [9,18]. 

To confirm that PEG on the liposomal surface indeed exhibits a mucus-penetrating effect and 

contributes to a reduced association between liposomes and mucus, the binding between mucin 
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and liposomal preparations was determined. Commercially available pig mucin is commonly 

used as a mucus substitute due to its similarity in the structure and molecular weight to human 

mucus [35]. Based on the fact that the vaginal pH varies in the healthy and infected, as well as 

pre- and post-menopausal women, the experiments were performed both at the conditions of 

healthy vaginal environment (pH 4.6) and those expected to occur during the vaginal bacterial 

infection and post-menopause (pH 7.4). As expected, the PEGylated liposomes did not exhibit 

mucin-binding activity (Table 2). The results indicate a significantly reduced binding efficiency 

at the different pH conditions for the PEGylated liposomes compared to both the conventional 

non-coated liposomes and the 0.1 % (w/v) chitosan-coated liposomes (p < 0.001). 

 

Table 2: Mucin-binding of PEGylated, non-coated and chitosan-coated liposomes (n=3). 

 

The lack of mucin-binding activity coincides with the expected mucus-penetrating properties of 

PEG-modified liposomes [20]. The results indicate that the PEGylated liposomes might be able 

to penetrate the mucus and assure closer contact with the epithelium, thus, enhance mucosal 

delivery of incorporated drug and improve its localized therapeutic outcome.  

 

3.3. In vitro IFN α-2b release 

When evaluating in vitro drug release from topical formulations, including those intended for 

vaginal use, the Franz cell diffusion system is generally considered one of the most appropriate 

methods [36]. Liposomes are expected to provide controlled release of incorporated drug; 



  

19 
 

therefore we followed the release of liposomally-associated IFN α-2b over 8 hours and compared 

the release to the IFN α-2b release from a control solution. The experimental setup was designed 

to mimic the human conditions; the pH of acceptor medium mimicked the healthy human vaginal 

environment (4.6) and a temperature was set at 37 °C. Further, the experiment was performed in 

the presence of vaginal fluid simulant (VFS), since it is known that the flow, retention, drug 

delivery kinetics and bioactivity of vaginal formulations are influenced by the compounds present 

in the vaginal fluid [13]. The VFS is commonly used in in vitro evaluations of contraceptive and 

prophylactic vaginal drug delivery systems [37]. 

 

Figure 1: A) In vitro IFN α-2b release. Results are expressed as percentage mean ± SD (n = 

3). B) IFN α-2b partitioning after 8 hours. Results are expressed as percentage mean ± SD 

(n = 3). 

Both the PEGylated liposomes and control solution seem to sustain the release of IFN α-2b 

(Figure 1A). Even though the release of liposomally-associated IFN α-2b increased significantly 

(p < 0.001) compared to the control solution after 8 hours, the release was very limited. In a 

preliminary experiment, we have tested three types of membranes, namely cellophane, polyamide 

and cellulose acetate membrane. All three membranes allowed for very limited penetration of 

IFN (data not shown). The pore size of the membrane used in testing should be sufficiently large 

to allow the passage of IFN molecules through; however, it seems that IFN α-2b was mostly 

retained in the membrane, or stayed in the liposomes retained on the membrane surface (Figure 

1B). The significant retention of IFN α-2b in the membrane could be attributed to possible 

surface adsorption; at least in the case of IFN α-2b solution. However, we used marketed IFN α-
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2b solution (IntronA®) in the buffer containing polysorbate. Polysorbate is expected to reduce 

the protein adsorption onto the surfaces [38]. Moreover, the concentration of IFN α-2b applied 

onto the diffusion cells was well below the manufacturer’s specification regarding protein 

adsorption onto the membrane. The sustained IFN α-2b release from liposomal formulation was 

in agreement with previously published literature [39]. The release profile observed for our 

system also corresponds to the IFN release profiles from other lipid-based delivery systems [40]. 

A prolonged release is of great importance considering vaginal administration, as reduced 

administration frequency is coherent with better patient compliance and the success of mucosal 

drug delivery is highly dependent on a suitable drug carrier able to remain at the vaginal site over 

prolonged period of time [19].  

 

 

3.4. Ex vivo penetration 

Franz cell diffusion system is also suitable for determination of ex vivo tissue penetration [41-43]. 

Sheep vaginal epithelium is a stratified squamous tissue, similar to that of human, and is used in 

ex vivo testing of vaginal formulations [11,44]. The tissue used in this experiment was from 

pregnant animals [11] and the thickness was 750 µm. In contrast to the strongly sustained release 

of IFN α-2b from liposomes through the artificial membrane, the IFN α-2b penetration through 

the sheep vaginal tissue was prominent, and a distinct increase in IFN α-2b release from the 

PEGylated liposomes was seen (Figure 2A). This demonstrates that the PEGylated liposomal 

formulation enables IFN α-2b to penetrate the vaginal mucus to a higher extent compared to the 
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solution formulation used as a control. This indicates the potential of PEGylated liposomal 

formulation of IFN α-2b in efficient local vaginal therapy of HPV-infected areas. 

 

Figure 2:  A) Ex vivo IFN α-2b penetration. Results are expressed as percentage mean ± SD 

(n = 3). B) IFN α-2b partitioning after 8 hours ex vivo penetration experiment. Results are 

expressed as percentage mean ± SD (n = 3). 

 

Majority of IFN α-2b from control solution appeared to be retained within or on top of the tissue 

and only a minor amount of drug was able to penetrate through the tissue after 8 hours (Figure 

2B). This limitation of the IFN α-2b in solution form, not in delivery system, is the reason that 

the current IFN α-2b therapy involves direct injections in the affected lesions and is limited by 

both the patient acceptance and efficacy [1]. 

 

3.5. Stability 

Very early work on lipid-based formulations for interferons suggested that the formulations 

remain stable over a period of at least 1 month [45]. It is known that the physical and chemical 

properties of the environment and the presence of semen, might affect the stability and 

performance of the drug delivery system destined for the administration at the vaginal site [15]. 

The composition, volume, pH and rheological properties of vaginal fluids are affected by the age, 

the menstrual cycle or sexual arousal. Some studies suggest that on average 0.5 – 0.75 g of 

vaginal fluid is contemporary present in the vagina [14]. Moreover, the presence of semen will 
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increase the acidic pH (4-5) to levels closer to neutral range, which might also affect the stability 

and performance of some vaginal drug delivery systems. The average volume of human ejaculate 

is found to be 3.4 mL [15]; it is expected that the effect of the semen presence on the vaginal pH 

can last for several hours [46]. 

Table 3: Stability of PEGylated liposomes containing IFN α-2b (n=3). 

 

PEGylated liposomes were diluted 1:10 (v/v) with VFS and 1:1 (v/v) with semen fluid simulant 

to determine possible IFN α-2b leakage from the delivery system once exposed to the vaginal 

environment. An incubation time of 2 hours was selected as an appropriate challenge. Only a 

minor leakage of 5.1 % IFN α-2b was detected after 2 hours, indicating the stability of PEGylated 

liposomes in a simulated vaginal environment and in the presence of semen fluid simulant (Table 

3). Considering the high drug load in PEGylated liposomes, the leakage can be considered 

negligible. 

 

We have proven ex vivo that the mucus-penetrating liposomes can assure superior drug 

penetration. However, one has to consider that the retention time at vaginal site might be 

insufficient to assure that an adequate amount of drug can actually penetrate the mucus due to 

rather rapid clearance of foreign particles by the vaginal discharge. Therefore, it might be that 

both mucoadhesive and mucus-penetrating properties of vaginal delivery systems hold promise in 

improved vaginal drug delivery. Very recently, the approach based on combining both the 

mucoadhesive and mucus-penetrating properties within the single delivery system has been 

proposed [47]. To confirm that our mucus-penetrating delivery system can stay in a closer contact 
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with the vaginal epithelium and assure penetration of drug in the deeper epithelial layers, in vivo 

testing in infected animals would be required.  

 

4. Conclusions 

Our findings suggest a lack of interactions between mucin and PEGylated liposomes confirming 

the mucus-penetrating properties of PEG. The ability of the IFN α-2b entrapped in PEGylated 

liposomes to penetrate through the vaginal tissue was distinctively increased for the PEGylated 

liposomal formulations as compared to IFN α-2b in solution. This indicates that PEGylated 

liposomal formulation represents a promising approach to assure drug delivery in the close 

proximity to the vaginal epithelium for therapeutic use. Furthermore, the PEGylated liposomes 

were shown to be stable in the simulated vaginal environment.  
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Table 1: Characteristics of PEGylated liposomes containing IFN α-2b (n = 3). 

 Vesicle size (nm) PI* Zeta potential (mV) Entrapment (%) 

PEGylated liposomes 

containing IFN α-2b 
181 ± 8 0.129 - 13.33 ± 0.81 81 ± 10 

*Polydispersity index 

 

Table 2: Mucin-binding of PEGylated, non-coated and chitosan-coated liposomes (n = 3). 

Liposomal samples* 
Mucin-binding (%) 

pH 7.4 pH 4.6 

PEGylated  3.8 ± 2.6 7.0 ± 14.6 

Non-coated  22.1 ± 3.3 36.0 ± 3.2 

0.1 % chitosan-coated  65.1 ± 0.1 64.5 ± 2.9 

 

*Empty liposomes 

 

Table 3: Stability of PEGylated liposomes containing IFN α-2b (n=3). 
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* Polydispersity index, 
a 
Freshly made liposomal formulation, 

b
 After storage in a fridge (4 °C) 

for 1 month, 
c
 After exposure to simulated vaginal environment for 2 hours. 

  

  

Time of 

measurement  

Size Zeta potential Entrapment 

(nm) PI* (mV) (%) 

Fresh a 181 ± 8 0.129 - 13.33 ± 0.81 81.0 ± 9.8 

After storage b  182 ± 7 0.098 - 13.00 ± 0.45 - 

After exposure c  184 ± 8 0.132 - 13.27 ± 0.37 75.9 ± 6.2 
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Graphical abstract 

 

Schematic drawing of PEGylated liposome and the IFN α-2b partitioning after 8 hours ex vivo 

penetration experiment. 

*IFN α-2b in Intron A buffer 

 

 

 


