
A simplified method to estimate Diphyllobothrium spp. infection in salmonids 

 

Jesper A. Kuhn, Rune Knudsen, Roar Kristoffersen and Per-Arne Amundsen 

 

Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, 

UiT The Arctic University of Norway, 9037 Tromsø, Norway 

 

Correspondence: P-A Amundsen, Department of Arctic and Marine Biology, Faculty of 

Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsø, 

Norway (e-mail: per-arne.amundsen@uit.no) 

 

Keywords 

brown trout and Arctic charr, cestode larvae, management, parasite count, sampling 

techniques.  

 

 

 

 

 

 

 

Published in Journal of Fish Diseases (2017) 40, 863-871.   doi:10.1111/jfd.12566  



Abstract 

 

Some fish parasites constitute severe management problems as they may cause mortality of 

their fish host or are important zoonoses of humans. Parasite assessments are therefore 

critical in order to keep track of infections. If conventional sampling techniques can be 

simplified, parasite assessments might be easier to obtain, less time consuming and more 

extensive. In this study, we compare the assessed number of Diphyllobothrium spp. cysts 

(CYST) with the counted number of Diphyllobothrium spp. plerocercoid larvae recovered 

using a conventional digestive technique (LARV). The aim was to determine the potential of 

using CYST as a simplified methodology for assessing Diphyllobothrium spp. infection in 

salmonids. In total, 365 brown trout and 424 Arctic charr were sampled from nine lakes in 

subarctic Norway. Strong correlation, significant linear relationship and large amount of 

explained variation were found between log10CYST and log10LARV in both fish species. The 

method had a slight, but not significant tendency to work better in charr compared to trout. 

In addition, absolute difference between CYST and LARV increased at parasite intensities > 

100 indicating that the method have reduced functionality when estimating parasite 

intensity in heavily infected salmonid populations. However, overall, by using this simplified 

and less time-consuming methodology, a good indication of Diphyllobothrium spp. intensity, 

abundance and prevalence was obtained. We suggest that this method provides a sound 

proxy of the Diphyllobothrium spp. burden and have the potential to be used in parasite 

assessment during fish monitoring and fisheries management surveys, particularly if the time 

and resources for detailed parasite studies are not available. 

  



Introduction 

 

Many fish parasites are ecologically important as they may affect the fitness of the host and 

induce host mortality (Esch 1994; Marcogliese 2004). Additionally, some might also be 

zoonotic and hamper the recreational value of their fish hosts, emphasizing the need for 

management initiatives (Knudsen, Amundsen & Klemetsen 2002; Torres et al. 2002; Chai, 

Darwin Murrell & Lymbery 2005; Dick 2007). Effective sampling methods and parasite 

assessment procedures are therefore needed in order to study such parasite populations, 

especially for management purposes. Parasite sampling and analysis is often a very time 

consuming and labor-intensive process. Large sample sizes might also be necessary as the 

distribution of these organisms can be strongly aggregated. In an effort to circumvent these 

issues, simplified sampling procedures might be a potential solution. 

 

The endoparasitic cestode genus Diphyllobothrium has a cosmopolitan distribution and 

includes important zoonoses, emphasizing the need for distributional assessments (Dick, 

Nelson & Choudhury 2001; Chai et al. 2005; Scholz et al. 2009). In northern Europe, 

Diphyllobothrium ditremum and D. dendriticum commonly infect several salmonid species 

such as brown trout (Salmo trutta L.) and Arctic charr (Salvelinus alpinus (L.)), hereafter 

referred to as trout and charr, respectively. The infections of D. ditremum and D. 

dendriticum both result in the formation of large and easily detectable cysts on the stomach 

wall, within the viscera and sometimes also in the flesh of trout and charr. Diphyllobothrium 

spp. is transmitted to the salmonids through copepods as first intermediate host, or through 

fish as paratenic hosts (Vik 1964; Halvorsen 1970; Henricson 1977; Rahkonen & Koski 1997; 

Knudsen et al. 2008; Henriksen et al. 2016). When a salmonid fish eats an infected host (i.e. 



copepod or fish), the parasite larvae penetrates the stomach of the predatory host and 

become encysted primarily on the stomach and intestine (Torres, Leyán & Puga 2012). In 

large piscivorous fish, these parasites can accumulate and reach very high intensities as 

infected fish may function as paratenic hosts (Curtis 1984; Knudsen & Klemetsen 1994; Kuhn 

et al. 2016; Siwertsson et al. 2016). High intensities of Diphyllobothrium spp. can cause 

fibrosis, necrosis, atrophy and inflammatory reactions in salmonids, causing them to lose 

their value for human consumption (Torres et al. 2002). Diphyllobothrium spp. infections 

might also induce host mortality, making knowledge and information about these parasites 

highly relevant in the management of salmonid populations (Bylund 1972; Henricson 1977; 

Halvorsen & Andersen 1984; Rahkonen et al. 1996; Hammar 2000). 

 

The initial procedure of determining Diphyllobothrium spp. intensity in a fish host involved 

manually teasing every single plerocercoid larvae out from their cysts by the use of small 

needles (Meyer & Vik 1961). This technique, besides being extremely time consuming, was 

found to be unreliable as it ultimately underestimated the parasite infection (Meyer & Vik 

1961). The current conventional procedure of quantifying Diphyllobothrium spp. infection in 

trout and charr involves an artificial digestion of infected tissue in order to excyst the live 

parasite larvae (Meyer & Vik 1961; Romeis 1968). Usually the stomach is dissected out from 

the host, emptied for content, and then placed, together with other cyst-containing tissues, 

in a digestive fluid mimicking the acidic stomach environment of the parasites´ avian final 

host. By keeping the sample at room temperatures for several hours, the live plerocercoids 

are excysted and can then be collected (Romeis 1968). The digestive technique is believed to 

recover close to 100 % of the actual number of live parasite and can therefore be seen as a 

very good indicator of the total Diphyllobothrium spp. infection in the host (Meyer & Vik 



1961). However, when many fish are to be processed, even this technique becomes very 

time-consuming and labor intense, especially in heavily infected fish populations. 

 

In this study, we explore the relationship between the assessed number of Diphyllobothrium 

spp. cysts and the counted number of Diphyllobothrium spp. plerocercoid larvae recovered 

using a conventional digestive technique. Brown trout and Arctic charr were sampled from 

several lake localities in northern Norway. The main objective was to explore whether an 

assessed number of Diphyllobothrium spp. cysts can be used as a simplified methodology for 

fish management surveys and certain scientific studies, where traditional sampling 

procedures are not feasible due to time and/or labor constrains. Hence, the principal 

hypothesis tested was that there is a strong and significant correlation between assessed 

number of Diphyllobothrium cysts and counted number of plerocercoid larvae in trout and 

charr. 

 

 

Materials and methods 

 

Sampled lakes 

 

During August 2010-15, the salmonid populations of nine lakes in Northern Norway were 

sampled. The lakes included six lakes from Nordland county and three lakes from Troms 

county (see Table 1 for lake physical parameters and catch data). Knudsen et al. (2008), 

Sánchez-Hernández & Amundsen (2015) and Kuhn et al. (2015) provide additional 

information about the lakes. A diverse range of Diphyllobothrium spp. infections as well as 



feeding ecology and piscivorous behavior in brown trout and Arctic charr is found among 

these sampling sites (Eloranta, Knudsen & Amundsen 2013, Sánchez-Hernández & 

Amundsen 2015, Henriksen et al. 2016, Kuhn et al. 2016). 

 

Fish sampling and parasite recordings 

 

Fish were caught by deploying multimesh survey gillnets (10 to 45 mm mesh size from knot 

to knot) overnight for approximately 12 h in the littoral (1–10 m depth), profundal (>20 m 

depth) and pelagic zones (0–6 m) in each lake. With an opened body cavity, the total number 

of Diphyllobothrium spp. cysts on the stomach, viscera and in the fish flesh was quickly 

visually assessed and recorded (CYST). In practice, this was done by counting the number of 

cysts from 0 to 50 and giving an estimate for intensities > 50. The stomach was emptied and 

then, together with other possible cyst-containing viscera and tissue, placed in digestive fluid 

(2% HCL with 5 gr/L pepsin and 9 gr/L NaCl) at room temperature to extract encysted 

pleroceroid larvae (Romeis 1968). This procedure also included fish that appeared to have 

no cysts and were assumed to be uninfected. After approximately 12 and 24 h, excysted 

plerocercoid larvae were collected and preserved in 4 % formaldehyde. They were later 

identified as D. ditremum or D. dendriticum following the morphological descriptions of 

Andersen, Ching & Vik (1987) and Andersen & Gibson (1989) using a disection scope with 

40x to 400x magnification. In this way, a counted number of Diphyllobothrium spp. 

plerocercoid larvae recovered using the conventional digestive technique (LARV) was 

obtained. 

 

Statistical analyses 



 

Generalized linear modelling (GLM). A GLM was performed to analyze the overall association 

between CYST and LARV. The model also tested if the simplified methodology performed 

different on trout compared to charr. The GLM was based on Poisson distribution using 

log10CYST as explanatory variable, and log10LARV plus fish species (trout and charr) as 

response variables. 

 

Linear modelling (LM). LMs were fitted to the fish species specific data, as the GLM indicated 

a difference between the two fish species. The two LMs used log10CYST as explanatory 

variable and log10LARV as response variable with an intercept adjusted to zero. The obtained 

log-transformed equations (based on log-transformed data) were back-transformed using 

the logarithm power rule (log (y) = m × log (x) = log (xm)  which gives  y = xm) and used to 

acquire the calculated number of Diphyllobothrium spp. plerocercoid larvae (CALC) from 

CYST. Potential bias during back transformation of the log-transformed equations was 

ignored as the standard error of estimate of the regressions resulted in correction factors ≈ 1 

for both fish species (Wood 1986).  

 

The above models were validated by checking diagnostic plots. Only infected fish were used 

in the modelling approaches to avoid strong non-normality. Additional statistical analyses 

used the full dataset. 

 

Correlation coefficients. To analyze the correlation between log10CYST and log10LARV, 

Pearson´s product-moment correlation coefficient was calculated for both fish species. As 

this test ignores potential skewness in the data, we supplemented with the non-parametric 



Spearman´s rank correlation coefficient to test for correlations between the ranks of the two 

variables (Fowler, Cohen & Jarvis 1998). 

 

Permutation testing: In order to evaluate the simplified method further, we analyzed if mean 

intensity, mean abundance and prevalence were significantly different whether based on 

CYST, CALC or LARV data. For this, we used the three lakes with the largest fish sample sizes 

among the sampled lakes (Lake Fjellfrøsvatn, Sagelvvatn and Takvatn). Due to skewed data, 

10 000 cycled permutation testing was used (Greenacre & Primicerio 2014). In the case of 

mean intensity and mean abundance, three extreme cases were disregarded (two trout in 

Sagelvvatn and one trout in Takvatn) as they caused extreme bimodality in the permutated 

distribution. 

 

 

Results 

 

In total, 365 trout and 424 charr were sampled. Of these, 196 trout and 221 charr were used 

in the modelling approaches as they were infected with Diphyllobothrium spp. 

 

According to the GLM, log10CYST was a significant explanatory variable for log10LARV 

(p<0.001). A near significant impact of fish species was also detected (p=0.069), indicating 

that the simplified methodology possibly works even better in charr compared to trout (see 

linear modelling results below). 

 



Based on the Pearson´s product-moment correlation coefficient there was a strong 

correlation between log10CYST and log10LARV in both trout (r(363) = 0.85, p < 0.001) and charr 

(r(422) = 0.90, p < 0.001). The Spearman´s rank correlation coefficient also indicated a strong 

correlation in both trout (rs = 0.79, p < 0.001) and charr (rs = 0.89, p < 0.001). 

 

Strong positive linear relationships between log10CYST and log10LARV were found in both 

trout (y = 0.80x, r2 = 0.90, F1,195 = 1689, p < 0.001; Fig.1) and charr (y = 0.94x, r2 = 0.94, F1,220 = 

3402, p < 0.001; Fig. 1). For both fish species, almost all variation in log10LARV was explained 

by the variation in log10CYST. From the linear regressions, the following equations were 

established by back transformations using the logarithm power rule to estimate CALC for 

individual fish based on CYST: 

Brown trout: CALC = (CYST)0.80 

Arctic charr: CALC = (CYST)0.94 

 

From the 365 trout caught, 109 were found to have no observable cysts. Of these, seven fish 

turned out to be infected (LARV: mean = 2, max = 6), giving 6 % false negatives. The number 

of trout recorded to have cysts were 256. In 60 of these, no larvae were retrieved (CYST: 

mean = 4, max = 30) giving 23 % false positives. From the 424 charr caught, 172 were 

recorded to have no observable cysts. Of these, 8 were infected (LARV: mean = 2, max = 3) 

giving 5 % false negatives. The number of charr estimated to have cysts were 252. In 31 of 

these, no larvae were retrieved (CYST: mean = 3, max = 30) giving 12 % false positives. False 

positives were not present when CYST > 30. However, when CYST > 100, considerable 

variation in the absolute difference between CYST and LARV occurred in both fish species 



(Fig. 2). Most frequently, this was caused by higher CYST than LARV values, especially for 

trout (Fig. 1) 

 

The practical functionality-test of the simplified methodology produced similar estimates of 

mean intensity and mean abundance of Diphyllobothrium spp. when based on CYST, and in 

particular the adjusted CALC data, compared to the LARV data (Table 2). This was generally 

true for both fish species and all three lakes (Lake Fjellfrøsvatn, Sagelvvatn and Takvatn) 

(Table 2). Concerning prevalence, there were also no significant differences between the 

calculations based on CYST and LARV data. This was true for both trout and charr in all three 

lakes. Except for trout in Sagelvvatn, the difference between the two estimations of 

prevalence was always below 10 percentage points (Table 2). 

 

 

Discussion 

 

Overall, the simplified methodology of using CYST as an indication of the total number of 

Diphyllobothrium spp. larvae in salmonids appeared as a functional alternative to the 

conventional and more laborious and time-consuming technique of excysting, collecting and 

counting all individual plerocercoid larvae. We found that log10CYST worked as a highly 

significant explanatory variable for log10LARV and a high species-specific correlation 

coefficient (Pearson´s product-moment) were also found between the two measures both 

for trout and  charr. Additionally, almost all variation in log10LARV was explained by 

log10CYST in both salmonids. Despite providing a somewhat more coarse-grained estimate of 

the total number of Diphyllobothrium spp. larvae, we propose that this is a technique that is 



well suited to be used in management surveys of salmonid fish populations for an 

assessment of the abundance of these parasites when time and/or resources are not 

available for more detailed parasitological studies. The correlation between CYST and LARV, 

plus the similarity between the CALC and LARV values, suggest that the cyst assessment 

methodology may also be applicable for certain scientific studies where a discrimination 

between the two Diphyllobothrium species is not required. 

 

Our findings suggest that the simplified methodology might work slightly better for charr 

than for trout. This is possibly caused by the overall tendency of charr mostly to become 

infected with D. ditremum through heavy zooplankton feeding, whereas trout can have high 

intensities of D. dendriticum mainly aggregated through piscivory (Henriksen et al. 2016; 

Kuhn et al. 2016). The plerocercoid larvae of D. dendriticum are significantly larger than 

those of D. ditremum in the fish host, and hence have larger cysts that are also more 

irregular in shape. In the visual assessment, what potentially is thought to be multiple D. 

ditremum cysts might be a single D. dendriticum cyst, causing an overestimation of CYST, 

which may explain the lower fit of the simplified methodology in trout. Unfortunately, cyst 

counts does not work at the parasite species level, so any specific difference in the cyst 

estimation of the two parasite species cannot be explored. 

 

In both fish species, considerable variation in the absolute difference between CYST and 

LARV was observed for CYST > 100, most commonly with the CYST-values being higher than 

the LARV-values. There are several potential explanations. For instance, at CYST > 100, the 

number of cysts becomes visually assessed rather than actually counted, and with high 

infection levels, the number of cysts may likely be overestimated. Furthermore, when 



performing the digestion technique in the field, very heavily infected fish may also cause the 

sampler to compromise on parasite retrieval, as there usually is limited time to search for 

every single excysted larvae in the digestive fluid. Additionally, high parasite intensities may 

involve high intra- and interspecific competition between the parasites, potentially leading 

to enhanced mortality rates resulting in many empty cysts, which again will increase the 

mismatch between CYST and LARV. However, if the assessment of parasite abundance does 

not require a very precise count of the intensities in the most heavily infected individuals, 

the increased variation observed between CYST and LARV for the higher intensities, appears 

acceptable. 

 

The occurrence of false negatives was low for both fish species, meaning that the CYST 

method successfully identifies uninfected individuals. The most plausible reason for the false 

negatives that did occur is that not all plerocercoids are encysted. Some might be in the 

process of migrating through the stomach wall, while others might be free (i.e. not encysted) 

in the viscera and muscle, especially in heavily parasitized individuals (Torres et al. 2010). 

Further, cysts mistaken as fat tissue or located in areas where they are hard to detect would 

also produce false negatives. False positives were more common but only occurred in fish 

with low infections. Several possible explanations may apply. One is that there is always 

some mortality among the plerocercoids within the cysts. Dead larvae will not withstand the 

digestive fluid, causing the CYST method to register an infection, whereas the LARV counts 

will not. False positives might also be due to difficulties in locating just one or a few excysted 

larvae in the murky digestive fluids, given the often limited time available for the search. 

Overall, however, the simplified methodology appeared sufficiently precise when it came to 

estimating the prevalence of Diphyllobothrium spp. in the salmonid community of a lake. 



Contrary to estimating parasite abundance, the accuracy of the method in detecting 

infection versus no infection increased with increasing parasite intensity in the fish 

populations. The simplified methodology therefore seems highly useful in fish population 

management where obtaining the prevalence measure might be a quick way to assess the 

parasite burden of a host population. However, our study also reveals that reliable estimates 

of intensity and abundance are retrieved through this labor-efficient approach, providing 

data that are highly useful for management decisions. It should also be pointed out that a 

number of field workers with variable sampling experiences (including researchers, research 

technicians and students) have contributed in gathering the data used in this study, so a 

successful outcome of such studies does apparently not rely upon specific skills or extensive 

experience with this methodology. 

 

For management purposes, a reduction of the parasite infection of a fish population may be 

highly desirable and beneficial. In the case of Diphyllobothrium spp., this genus has a global 

distribution and contains some of the most important fish-borne zoonoses among cestode 

parasites (Dick et al. 2001; Chair et al. 2005; Scholz et al. 2009). Transmission to humans 

might result in diphyllobothriasis, and reported cases of this condition are probably 

underdiagnosed (Kuchta et al. 2013). Traditions with eating raw fish in northern Europe, and 

the increasing popularity of sushi from salmonid species, certainly makes this a relevant 

subject concerning management of infected fish populations (Cabello 2007; Wicht et al. 

2008; Jenkins et al. 2013). The Diphyllobothrium spp. plerocercoids, and particularly D. 

dendriticum, typically encyst in the muscle of the fish host at high intensities. It is especially 

at this site of infection that larvae are likely to be transmitted to humans where they have a 

prepatent period of a few weeks, but symptoms might stretch for significantly longer (Wicht 



et al. 2008; Kuchta et al. 2013). As the simplified methodology presented in the current 

paper showed no false negatives at high parasite intensities, this suggests that the method is 

suitable when assessing the potential of a fish population as source of human infection and 

diphyllobothriasis. As cysts located in the muscle are detectable when dissecting the fish, the 

cyst assessment method might furthermore be a useful approach in respect to quantifying 

the amount of parasites located in fish muscle tissue. 

 

High Diphyllobothrium spp. infections are unappetizing and leaves the fish unattractive and 

often unsuitable for human consumption. Additionally, Diphyllobothrium spp. can reach 

intensities that possibly also induce fish host mortality (Henricson 1977; Rahkonen et al. 

1996; Hammar 2000). This is especially true for large and piscivorous individuals of trout and 

charr, which can be heavily infected (Kuhn et al. 2016; Henriksen et al. 2016; Siwertsson et 

al. 2016). Management efforts have been initiated to alleviate such parasite problems in fish 

populations, and have in cases such as e.g. reported by Amundsen & Kristoffersen (1990) 

and Klemetsen et al. (2002) been successful (see also Wood, Lafferty & Micheli 2010 for a 

review on the impact of fishing on rates of parasitism). However, the initiation of suitable 

management efforts requires good knowledge of the parasite infection of the fish 

population, and the simplified methodology to explore Diphyllobothrium spp. infections by 

assessing the number of cysts can in this respect be highly cost-efficient and useful. 

 

In conclusion, our study reveals that an assessment of the number of Diphyllobothrium spp. 

cysts provides a reliable estimate of the total number of Diphyllobothrium spp. plerocercoid 

larvae in salmonids. Our findings thus suggest that this simplified methodology provides a 

sound proxy of the Diphyllobothrium spp. burden and have the potential to be used in e.g. 



parasite assessment during fish management surveys, particularly if the time and resources 

for detailed parasite sampling and analysis are not available. An important downside of this 

simplified approach is the fact that it is not possible to discriminate between the two 

different Diphyllobothrium species known to be present in these salmonids (D. ditremum 

and D. dendriticum), but this may partly be compensated for by implementing the 

conventional methodology for a subsample of hosts. Nevertheless, for specific and detailed 

research objectives concerning the Diphyllobothrium species and their fish hosts, the 

conventional digestive technique is still to be preferred. For more simplified studies 

however, the cysts assessment method should be highly useful. 
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Table 1 Physical parameters and catch data from the nine lakes sampled in northern Norway. 
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Fjellfrøsvatn 69°05' 19°20' 6.5 125 88 13.-14.08.10 29 229 114-545 73 171 78-412 
Fjerdevatn 67°46' 15°58' 2.3 79 35 07.08.13 37 265 135-447 0 - - 
Forsanvatn 67°54' 15°42' 4.8 257  03.08.13 33 275 125-356 0 - - 
Makkvatn 67°50' 15°49' 3.0 123  05.08.13 60 221 138-310 17 230 162-252 
Rekvatn 67°56' 16°04' 7.4 297  05.-06.08.13 18 183 124-310 18 182 108-270 
Sagelvvatn 69°11' 19°06' 5.1 91 80 10.-12.08.10 95 215 85-543 95 202 83-340 
Skilvatn 68°04' 15°53' 3.3 35 53 02.-04.08.13 7 245 175-303 95 203 133-328 
Storvatn 67°56' 16°00' 2.6 157 48 31.07.13 7 249 167-365 0 - - 
Takvatn 69°07' 19°05' 15 214 80 11.-13.08.15 79 215 83-711 126 205 80-405 

 



Table 2 Mean intensity, mean abundance and prevalence of Diphyllobothrium spp. infecting 

brown trout and Arctic charr in three Norwegian lakes, based on either CYST, CALC or LARV. 

(CYST) assessed number of Diphyllobothrium spp. cysts. (CALC) calculated number of 

Diphyllobothrium spp. plerocercoid larvae (brown trout: CALC = (CYST)0.80, Arctic charr: CALC 

= (CYST)0.94). (LARV) counted number of Diphyllobothrium spp. plerocercoid larvae recovered 

using a conventional digestive technique. 

 Brown trout Arctic charr 
       CYST CALC LARV CYST CALC LARV 
   Mean intensity   
      Fjellfrøsvatn 57.7 23.8 20.4 19.4 15.9 11.2 
      Sagelvvatn a10.5* b6.0 c4.2* 22.1 17.9 16.9 
      Takvatn d10.5 e5.7 f9.5 8.1 8.5 6.9 
   Mean abundance   
      Fjellfrøsvatn 11.9 4.9 4.9 2.1 1.7 2.0 
      Sagelvvatn g4.7** h2.7* i1.2*(**) 13.7 11.1 10.5 
      Takvatn j5.8 k3.2 l4.6 3.5 3.0 2.9 
   Prevalence   
      Fjellfrøsvatn 20.7 -- 24.1 11.0 -- 17.8 
      Sagelvvatn 46.3 -- 29.5 62.1 -- 62.1 
      Takvatn 55.7 -- 49.4 43.7 -- 34.1 
   Permutation test between CYST or CALC and LARV: *p < 0.05,** p < 0.001, no mark p > 0.05 

Including omitted fish: mean intensity = a78.2, b21.3, c19.1, d55.7, e15.5, f42.1; mean abundance = g36.2, h9.9, 
i5.6, j31.0, k8.7, l20.8 

  



Legends 

 

Figure 1 Linear regression between assessed number of Diphyllobothrium spp. cysts (CYST) 

and counted number of Diphyllobothrium spp. plerocercoid larvae recovered using a 

conventional digestive technique (LARV), for brown trout (a) and Arctic charr (b). Solid lines 

indicates fitted linear models. Dashed lines indicate identity lines 1:1. The points light grey—

black tone denotes frequency of observation. Fish with zero values for CYST and/or LARV are 

included in the plot. Note that all axes are logarithmic. 

 

Figure 2 Variation in absolute difference between assessed number of Diphyllobothrium spp. 

cysts (CYST) and counted number of Diphyllobothrium spp. plerocercoid larvae recovered 

using a conventional digestive technique (LARV), for brown trout (a) and Arctic charr (b). 

Boxplots show median (bold lines), upper, and lower quartiles (top and bottom borders of 

the boxes), minimum and maximum (top and bottom endings of the vertical lines) as well as 

outliers (black dots). N of each group is given in the top. Note the different scales in the axes. 

  



Fig 1 

 

 

   

 

 

  



Fig 2  

 


