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HOMOGENIZATION OF BIOMECHANICAL MODELS FOR PLANT
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Abstract. In this paper homogenization of a mathematical model for plant tissue biomechanics
is presented. The microscopic model constitutes a strongly coupled system of reaction-diffusion-
convection equations for chemical processes in plant cells, the equations of poroelasticity for elastic
deformations of plant cell walls and middle lamella, and Stokes equations for fluid flow inside the
cells. The chemical process in cells and the elastic properties of cell walls and middle lamella are
coupled because elastic moduli depend on densities involved in chemical reactions, whereas chemical
reactions depend on mechanical stresses. Using homogenization techniques, we derive rigorously a
macroscopic model for plant biomechanics. To pass to the limit in the nonlinear reaction terms, which
depend on elastic strain, we prove the strong two-scale convergence of the displacement gradient and
velocity field.
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1. Introduction. Analysis of interactions between mechanical properties and
chemical processes, which influence the elasticity and extensibility of plant cell tissues,
is important for better understanding of plant growth and development, as well as their
response to environmental changes. Plant tissues are composed of cells surrounded
by cell walls and connected by a cross-linked pectin network of middle lamella. Plant
cell walls must be very strong to resist high internal hydrostatic pressure and at the
same time flexible to permit growth. It is supposed that calcium-pectin cross-linking
chemistry is one of the main regulators of plant cell wall elasticity and extension [51].
Pectin is deposited to cell walls in a methylesterified form. In cell walls and middle
lamella, pectin can be modified by the enzyme pectin methylesterase (PME), which
removes methyl groups by breaking ester bonds. The de-esterified pectin is able to
form calcium-pectin cross-links, and thus stiffen the cell wall and reduce its expansion;
see, e.g., [50]. On the other hand, mechanical stresses can break calcium-pectin cross-
links and hence increase the extensibility of plant cell walls and middle lamella. It
has been shown that chemical properties of pectin and the control of the density of
calcium-pectin cross-links greatly influence the mechanical deformations of plant cell
walls [34], and the interference with PME activity causes dramatic changes in growth
behavior of plant tissues [50].

To analyze the interactions between calcium-pectin dynamics and deformations
of a plant tissue, we derive a mathematical model for plant tissue biomechanics at the
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length scale of plant cells. In the microscopic model we consider a system of reaction-
diffusion-convection equations describing the dynamics of the methylesterified pectin,
demethylesterified pectin, calcium ions, and calcium-pectin cross-links. Elastic defor-
mations and water flow are modelled by the equations of poroelasticity for cell walls
and middle lamella coupled with the Stokes system for the flow velocity inside cells.
The interplay between the mechanics and the chemistry comes in by assuming that
the elastic properties of cell walls and middle lamella depend on the density of the
calcium-pectin cross-links and that the stress within cell walls and middle lamella
can break the cross-links. Thus the microscopic problem is a strongly coupled system
of the Stokes equations, reaction-diffusion-convection equations, with reaction terms
depending on the displacement gradient, and equations of poroelasticity, with elastic
moduli depending on the density of cross-links. To address the situations when a
plant tissue is completely and not completely saturated by water, we consider both
evolutional and quasi-stationary equations of poroelasticity.

To show the existence of a weak solution of the microscopic equations, we use
a classical approach and apply the Banach fixed-point theorem. However, due to
quadratic nonlinearities of reaction terms, the proof of the contraction inequality is
not standard and relies on delicate a priori estimates for the L°°-norm of a solution
of the reaction-diffusion-convection system in terms of the L?-norm of displacement
gradient and flow velocity. The Alikakos iteration technique [2] is applied to show the
uniform boundedness of some components of solutions of the microscopic equations.

To analyze effective mechanical properties of plant tissues, we derive rigorously
a macroscopic model for plant biomechanics using homogenization techniques. The
two-scale convergence, e.g., [3, 31], and the periodic unfolding method, e.g., [15], are
applied to obtain the macroscopic equations. The main mathematical difficulty in the
derivation of the macroscopic problem arises from the strong coupling between the
equations of poroelasticity and the system of reaction-diffusion-convection equations.
In order to pass to the limit in the nonlinear reaction terms, we prove the strong two-
scale convergence for the displacement gradient and fluid flow velocity, essential for
the homogenization of the coupled problem considered here. Due to the dependence
of the elasticity tensor on the time variable, in the proof of the strong two-scale
convergence a specific form of the energy functional is considered.

Similar to the microscopic problem, to prove uniqueness of a solution of the
macroscopic equations, we derive a contraction inequality involving the L°°-norm of
the difference of two solutions of the reaction-diffusion-convection equations. This
contraction inequality also ensures the well-posedness of the limit system.

The poroelasticity equations, modelling interactions between fluid flow and elastic
stresses in porous media, were first obtained by Biot using a phenomenological ap-
proach [10, 9, 8] and subsequently derived by applying techniques of homogenization
theory. Formal asymptotic expansion was undertaken by the authors of [5, 13, 23, 42]
to derive Biot equations from microscopic description of elastic deformations of a solid
matrix and fluid flow in porous space. The rigorous homogenization of the coupled
system of equations of linear elasticity for a solid matrix combined with the Stokes or
Navier—Stokes equations for the fluid part was conducted in [17, 19, 24, 32] by using
the two-scale convergence method. Depending on the ratios between the physical
parameters, different macroscopic equations were obtained, e.g., Biot’s equations of
poroelasticity, the system consisting of the anisotropic Lamé equations for the solid
component, and the acoustic equations for the fluid component, the equations of vis-
coelasticity. The homogenization of a mathematical model for elastic deformations,
fluid flow, and chemical processes in a cell tissue was considered in [20]. In contrast
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to the problem considered in the present paper, in [20] the coupling between the
equations of linear elasticity and reaction-diffusion-convection equations for a concen-
tration was given only through the dependence of the elasticity tensor on the chemical
concentration. The existence and uniqueness of a solution for equations of poroelas-
ticity were studied in [45, 53].

Compared to the many results for the equations of poroelasticity, there exist only
a few studies of interactions between a free fluid and a deformable porous medium. In
[46] a nonlinear semigroup method was used for mathematical analysis of a system of
poroelastic equations coupled with the Stokes equations for free fluid flow. A rigorous
derivation of interface conditions between a poroelastic medium and an elastic body
was considered in [26]. Numerical methods for a coupled Biot poroelastic system
and Navier-Stokes equations were derived in [6]. The Nitsche method for enforcing
interface conditions was applied in [12] for numerical simulation of the Stokes-Biot
coupled system.

Several results on homogenization of equations of linear elasticity can be found
in [7, 21, 33, 42] (and the references therein). Homogenization of the microscopic
model for plant cell wall biomechanics, composed of equations of linear elasticity and
reaction-diffusion equations for chemical processes, has been studied in [39].

This paper is organized as follows. In section 2 we derive the microscopic model for
plant tissue biomechanics. A priori estimates as well as the existence and uniqueness
of a weak solution of the microscopic problem are obtained in section 3. In section 4 we
prove the convergence results for solutions of the microscopic problem. The multiscale
analysis of the coupled poroelastic and Stokes problem is conducted in section 5. In
section 6 we show strong two-scale convergence of the displacement gradient and flow
velocity. The macroscopic equations for the system of reaction-diffusion-convection
equations are derived in section 7. The well-posedness and uniqueness of a solution
of the macroscopic problem are proved in section 8. In section 9 we consider the
incompressible and quasi-stationary cases for the equations of poroelasticity.

2. Microscopic model. In the mathematical model for plant tissue biomechan-
ics we consider interactions between the mechanical properties of a plant tissue and
the chemical processes in plant cells. A plant tissue is composed of the cell inte-
rior (intracellular space), the plasma membrane, plant cell walls, and the cross-linked
pectin network of the middle lamella joining individual cells together. Primary plant
cell walls consist mainly of oriented cellulose microfibrils (that strongly influence the
cell wall stiffness), pectin, hemicellulose, proteins, and water. It is supposed that
calcium-pectin chemistry, given by the de-esterification of pectin and creation and
breakage of calcium-pectin cross-links, is one of the main regulators of cell wall elas-
ticity; see, e.g., [51]. Hence in our mathematical model we consider the interactions
and two-way coupling between calcium-pectin chemistry and elastic deformations of
a plant tissue. To describe the coupling between the mechanics and chemistry, we
consider the dynamics of pectins, calcium, and calcium-pectin cross-links, water flow
in a plant tissue, and the poroelastic nature of cell walls and middle lamella.

To derive a mathematical model for plant tissue biomechanics, we denote a do-
main occupied by a plant tissue by Q C R3, where © is a bounded domain with C1:*
boundary for some a > 0. Notice that all results also hold for a two-dimensional
domain. Then the time-independent domains Qy C  and Q. C , with Q = Q. UQy
and Q.NQy = 0, represent the reference (Lagrangian) configurations of the intracellu-
lar (cell interior) and intercellular (cell walls and middle lamella) spaces, respectively,
and I' denotes the boundaries between the cell interior and cell walls and corresponds
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to the plasma membrane. Since I' represents the interface between elastic material
and fluid in the Lagrangian configuration, it is also independent of time.

Pectin is deposited into the cell wall in a highly methylesterified state and is
modified by the wall enzyme PME, which removes methyl groups [50]. It was observed
experimentally that pectins can diffuse in a plant cell wall matrix; see, e.g., [18, 35, 48].
Thus in the balance equation for the density of the methylesterified pectin b.; and
demethylesterified pectin be 2,

8tbe7j + diVJbJ =gp; in Q., 7=12,

we assume the flux to be determined by Fick’s law, i.e., Jy ; = —Dy_ ;Vbe ;, with
j = 1,2 and Dy, ; > 0. The term g5 ; models chemical reactions that correspond
to the demethylesterification processes and creation and breakage of calcium-pectin
cross-links. In general, diffusion coefficients for pectins and calcium depend on the
microscopic structure of the cell wall given by the cell wall microfibrils and hemicel-
lulose network, which is assumed to be given and not to change in time, as well as on
the density of pectins and calcium-pectin cross-links. For presentation simplicity we
assume here that the diffusion coefficient does not depend on the dynamics of pectin
and calcium-pectin cross-link densities. However, the analysis can be conducted in
the same way for the generalized model in which the diffusion of pectin, calcium, and
cross-links depends on pectin and cross-link densities, assuming that diffusion coef-
ficients are uniformly bounded from below and above, which is biologically sensible.
The modification of methylesterified pectin by PME is modelled by the reaction term
gv1 = —p1be,1 with some p; > 0. For simplicity we assume that there is a constant
concentration of PME enzyme in the cell wall. By simple modifications of the analysis
considered here, the same results can be obtained for a generalized model including
the dynamics of PME and chemical reactions between PME and pectin; see [39] for
the derivation of the corresponding system of equations.

The deposition of the methylesterified pectin is described by the inflow boundary
condition on the cell plasma membrane. We also assume that the demethylesterified
pectin cannot move back into the cell interior:

DbeJVbCJ n= Pl (be,h be,?a be,3)7 Dbe,QVbeQ -n=20 on .

To account for mechanisms controlling the amount of pectin in the cell wall, we assume
that the inflow of new methylesterified pectin depends on the density of methylester-
ified and demethylesterified pectin, i.e., be;1 and be 2, and calcium-pectin cross-links
be,3-

We consider the diffusion and transport by water flow of calcium molecules in the
symplast (in the cell interior) and diffusion of calcium in the apoplast (cell walls and
middle lamella); see, e.g., [49]. Then the balance equations for calcium densities cy
and c. in 1y and €., respectively, are given by

ath - diV(DfVCf - g(ath)Cf) =gy in Qf,
Orce — div(D.Vee) = ge in Q.,

where the chemical reaction term gy = g¢(cy) in Qf describes the decay and/or
buffering of calcium inside the plant cells (see, e.g., [52]), g. models the interactions
between calcium and demethylesterified pectin in cell walls and middle lamella and
the creation and breakage of calcium-pectin cross-links, and G is a bounded function
of the intracellular flow velocity 0;uy. The condition that G is bounded is natural from
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the biological and physical point of view, because the flow velocity in plant tissues
is bounded. This condition is also essential for a rigorous mathematical analysis of
the model. We assume that as the result of the breakage of a calcium-pectin cross-
link by mechanical stresses we obtain one calcium molecule and two galacturonic acid
monomers of demethylesterified pectin. A detailed derivation of the chemical reaction
term g. is given in [39]. See also Remark 2.3 for the detailed form of the reaction
terms. We assume a passive flow of calcium between cell walls and cell interior and
assume that the exchange of calcium between cell interior and cell walls is facilitated
only on parts of the cell membrane I'\ T, i.e.,

Cf = Ce, (DyVep —G(Byug)es) -n=DVee-n on T\T,
D.Vc.-n=0, (DsVey—GOQwus)es)-n=0 on T.

The regulation of calcium flow by mechanical properties of the cell wall will be con-
sidered in future studies.

Calcium-pectin cross-links b, 3 are created by electrostatic and ionic binding be-
tween two galacturonic acid monomers of pectin chains and calcium molecules. It
is also known that these cross-links are very stable and can be disturbed mainly by
thermal treatments and/or mechanical forces; see, e.g., [38, 37]. Thus assuming a
constant temperature, the calcium-pectin chemistry can be described as a reaction
between calcium molecules and pectins, where the breakage of cross-links depends
on the deformation gradient of the cell walls. Hence we assume that the cross-links
are disturbed by the mechanical stresses in cell walls and middle lamella; see [39] for
a detailed description of the modelling of the calcium-pectin chemistry. A similar
approach was used in [41] to model a chemically mediated mechanical expansion of
the cell wall of a pollen tube. There are no experimental observations of diffusion of
calcium-pectin cross-links b, 3; however, since most calcium-pectin cross-links are not
attached to cell wall microfibrils [18], it is possible that cross-links can move inside
the cell wall matrix by a very slow diffusion

Obe s — div(Dyp, 3Vbe3) = gp3  in Q,

where Dy_3 > 0 and the reaction term gy 3 models the creation and breakage by
mechanical stresses of calcium-pectin cross-links (see Remark 2.3 for a detailed form of
gb,3). For the analysis presented here the diffusion term in the equations for calcium-
pectin cross-link density is important. However, the same results can be obtained
if one assumes that calcium-pectin cross-links do not diffuse and that the reaction
terms in equations for pectin, calcium, and calcium-pectin cross-links depend on a
local average of the deformation gradient, reflecting the fact that in a dense pectin
network mechanical forces have a nonlocal effect on the calcium-pectin chemistry; see
[39].

To describe elastic deformations of plant cell walls and middle lamella, we consider
the equations of poroelasticity reflecting the microscopic structure of cell walls and
middle lamella permeable to fluid flow:

pe02ue — div(E(be 3)e(u.)) + aVp, = 0 in Q.,
ppOipe — div(K,Vpe — aOpue) =0 in Q..

Here u, denotes the displacement from the equilibrium position, e(u,) stands for the
symmetrized gradient of u., and p. denotes the poroelastic wall density. Since we
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consider the equations of poroelasticity, one more unknown function that should be
determined is the pressure, denoted by p.. The mass storativity coefficient is denoted
by pp, and K, denotes the hydraulic conductivity of cell walls and middle lamella. In
what follows, we assume that the Biot—Willis constant is ov = 1.

It is observed experimentally that the load-bearing calcium-pectin cross-links re-
duce cell wall expansion; see, e.g., [51]. Hence elastic properties of cell walls and middle
lamella depend on the chemical configuration of pectin and density of calcium-pectin
cross-links; see, e.g., [55]. This is reflected in the dependence of the elasticity tensor
E of the cell wall and middle lamella on the density of calcium-pectin cross-links b, 3.
The differences in the elastic properties of cell walls and middle lamella result in the
dependence of the elasticity tensor E on the spatial variables. Since the properties
of calcium-pectin cross-links are changing during the deformation and the stretched
cross-links have different impact (stress drive hardening) on the elastic properties of
the cell wall matrix from that of newly created cross-links (see, e.g., [11, 36, 43]), we
consider a nonlocal-in-time dependence of the Young modulus of the cell wall matrix
on the density of calcium-pectin cross-links; see Assumption A1l. A similar approach
was used in [20] to model the dependence of cell deformations on the concentration
of a chemical substance. We assume that the hydraulic conductivity tensor varies
between cell wall and middle lamella and, hence, K, depends on the spacial variables.

In the cell interior, that is, in Qy, the water flow is modelled by the Stokes system

prOiuy — pdiv(e(duy)) + Vps = 0, divoyuy =0 in Qy,

where J;uy denotes the fluid velocity, py the fluid pressure, u the fluid viscosity, and
py the fluid density.

As transmission conditions between free fluid and poroelastic domains we consider
the continuity of normal flux, which corresponds to mass conservation, and the conti-
nuity of the normal component of total stress on the interface I'; i.e., the total stress
of the poroelastic medium is balanced by the total stress of the fluid, representing the
conservation of momentum,

(—KpVpe + Oue) - n = Oyuy - n onT,
(E(be3) e(ue) —pel)n = (pe(Qwur) —psl)n on T

Also taking into account the channel structure of a cell membrane separating cell
interior and cell wall, given by the presence of aquaporins (see, e.g., [14]), we assume
that the water flow between the poroelastic cell wall and cell interior is in the direction
normal to the interface between the free fluid and the poroelastic medium. Hence we
assume the no-slip interface condition, which is appropriate for problems where at the
interface the fluid flow in the tangential direction is not allowed (see, e.g., [12]),

(1)

HTatUe = HTatU,f on I'.

By II,w we define the tangential projection of a vector w, i.e., Il,w = w — (w - n)n,
where n is a normal vector and 7 indicates the tangential subspace to the boundary.
The balance of the normal components of the stress in the fluid phase across the
interphase is given by

(2) n-(pe(Ous) —prl)n = —pe on I'.

Notice that the transmission conditions (1) and (2) imply E(b 3) €(ue)n-n=0onT.
The transmission conditions are motivated by the models describing coupling between
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Biot and Navier—Stokes or Stokes equations considered in, e.g., [6, 12, 27, 28, 46]. The
coupling between elastic deformations and fluid flow is described in the Lagrangian
configuration, and hence I' is a fixed interface between the fluid domain and elastic
material. Since in our model we consider only the linear elastic nature of the solid
skeleton of the cell walls, the transmission conditions (1) and (2) are the corresponding
linearizations of the fluid-solid interface conditions; i.e., | det(I+Vu,)|(ne(Qyuy(t, z+
ue)) — ps(t,x + ue)I)(I + Vue)~T'n is approximated by (ne(Owuy(t,z)) —ps(t,x))n
on I'; and the first Piola—Kirchhoff stress tensor is equal to the Cauchy stress tensor
in the first order approximation.

Then the model for the densities of calcium, pectins, and calcium-pectin cross-
links reads as

Otbe = div(DyVbe) + gp(ce, be, €(ue)) inQ., t>0
Orce = div(D.Vee) + ge(Ce, be, €(ue)) in Q, t>0,
Orcy = div(DyVer — G(Owuyr)cey) + gr(cy) in Qy, t >0,
DyVb -n = P(b,) onI', t>0,
®) Ce = Cf, D.Vce-n= (DsVey — G(Owus)ey) - n onT\T, t>0,

D.Ve¢.-n=0, (DyVep —G(Owuy)er) -n=0 onT, t>0,
be(0,2) = beo(x), ce(0,2) = co(x) in Q.,

cr(0,2) = co(x) in Qy,

where b, = (be,1,be,2,be,3), Dy > 0, Do > 0, and Dy, = diag(D, ,, Dy, ,, Dy, ,) with
Dy, ; >0, j =1,2,3, stands for the diagonal matrix of diffusion coefficients for b 1,
be,2, and b 3.

For elastic deformations of cell walls and middle lamella and fluid flow inside the
cells we have a coupled system of Stokes equations and poroelastic (Biot) equations:

peOiue — div(E(be,3)e(ue)) + Vpe =0 in Q, t>0,
PpOipe — div(K,Vpe — Opue) =0 in Q, t >0,
prOius — pdiv(e(duys)) + Vpr =0 in Qp, t>0,
divOuy =0 in Qy, t>0,
(4)  (E(bez)e(ue) —pel)n = (ne(wuy) —prl)n onl, t>0,
I, Opue = 110y, n-(pe(Owuy) —prl)n=—pe onI', t >0,
(—K,Vpe + Oiue) -n = Oy -n onl, t>0,
Ue(0,2) = ueo (),  Opue(0,7) = uly(x), pe(0,2) = peo(z) in Q,
Oyus(0,x) = u}o(:c) in Q.

For multiscale analysis of the mathematical model (3)—(4) we derive the nondimen-
sionalized equations from the dimensional model by considering ¢ = tt*, © = da*,
be fbb , Cj fbc , Uj = Uuj, pj fppj,wrch] =e f,E= EE* K, KK* W= jap*,
Po = bopy. P = ppj. with j = e, f, D; = DD; for j = be. f. P(be) = RBP*(bZ),
gj(ce,be,e(ue)) = gbgj (ct,b%,e(ul)) for j= b,e, and gs(cy) = gfbgf(c;). The di-
mensionless small parameter € = [/ L represents the ratio between the representative
size of a plant cell [ and the considered size of a plant tissue L and reflects the size

of the microstructure. For a plant root cell we can consider [ = 10pum and L = 1m,
and, hence, ¢ is of order 107°. We consider # = L, p = Ae, with A = 1MPa, and
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Fic. 1. Schematic diagram of the geometry of a plant tissue and unit cell.

@ = . For the time scale we take { = fi/(Ac?), which together with i = 10~ ?Pa-s
corresponds approximately to 1.7min. We also consider £ = A, K = #%¢/(pt) = 12/,
p=(A#?)/2% = p2/(Ae*L?), p, = 1/A, D = 22 /i = 1?A/j1, and R = ie/i = e3LA/ji.
Hydraulic conductivity K, is of order 1079-107% m?. s7!- Pa~!, and the minimal
value of the elasticity tensor is of order 10MPa [55]. Hence the minimal value of the
nondimensionalized elasticity tensor E* is approximately 10, and K ~ 0.01 —0.1.
The parameters in the inflow boundary condition, i.e., in P(b.), are of order 10~ "m/s,
and with R = 10~ "m/s we obtain the nondimensional parameters in the boundary
condition for b, to be of order 1. Here we assume that p; > 0, with j = e,p, f, are
fixed. The case when the density p. and/or p, is of order £ can be analyzed in the
same way as the case when p. = 0 and p, = 0, considered in section 9.

To describe the microscopic structure of a plant tissue, we assume that cells in
the tissue are distributed periodically and have a diameter of order €. The stochastic
case will be analyzed in a future paper. We consider a unit cell Y =Y, UY ¢, with
Y = [0,a1] x [0,a2] x [0,a3], for a; > 0 with j = 1,2,3, where Y, represents the cell
wall and a part of the middle lamella, and Y}, with ?f C Y, defines the inner part of
a cell. We denote 0Yy =1I" and let I be an open on I' regular subset of T'.

Then the time-independent domains €23 and €2, representing the reference (La-
grangian) configuration of the intracellular (cell interior) and intercellular (cell walls
and middle lamella) spaces, are defined by

(5) = Int( U e(Yy+ §)> and QF =Q\Q,
3

=8

respectively, where Z° = {{ = (a1, a2, asnz), 1 = (n1,m2,7m3) € Z% : (Y +§) C
Q}, and I'* = [Jeeg. e(I' + €) defines the boundaries between cell interior and cell

walls, T'® = Ugez- e(I' +€); see Figure 1.

We shall use the following notation for time-space domains: Qg = (0,s) x Q,
(09)s = (0,8) x99, Q5 . = (0,5) x Q5 for j =e, f, T'; = (0,s) xI'?, and I'; = (0, s)x
I< for s € (0,7).

Neglecting *, we obtain the nondimensionalized microscopic model for plant tissue
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biomechanics
Oute = div(DyVbE) + gy (<5, b, o(u)) in 02,
Orcs = div(D V) + ge(cE, b, e(us)) in QF 7,
Orcy = div(DyVe — G(OpuF)cs) + gr(cF) in Q% 7,
DyVbE -n=¢eP(b) on I',

©) ce =5, D.Veg -n = (DfVe; — G(OuG)ct) - n on 5\ 5,
D. Ve -n =0, (DyVct —G(OpuF)cs) -n =0 on I,
b5(0,z) = beo(x), 5(0,2) = ¢o(x) in QF,
c3(0,z) = co(x) in Q%

and
peORus — div(EF (5 5)e(u2)) + Vi = 0 in 02,
ppOip; — div(K;Vp; — Oyug) =0 in QF 1,
pfafu‘; —&%u div(e(dsu})) + Vp3 =0 in QF 7,
div atujc =0 in Q?T7

(1) (BE(f) o) — piT) n = (Spe(dus) — p5 ) on T,
I, Opug = 11 0uf, n- (% e(@tujc) — pfcl) n=—p on I'Y,
(=K, Vp; + Oug) - n = dyuf - n on I'z,
us(0,7) = uSy(x), Ow(0,7) =uly(x), pS(0,2) =pie(z) in QF,
Opu3(0,7) = u}o(x) in Q5.

On the external boundaries we prescribe the following force and flux conditions:

DyVbs - n = Fy(b), D.Vc -n=Fc) on (0Q)r,
(8) E°(b 3)e(ug)n = F, on (0Q)r,
(K,Vp; — Opug) -n = I on (0Q)r.
The elasticity and permeability tensors are defined by Y-periodic functions
E*(7,§) = E(z/e,§) and K (v) = Kp(x,z/¢),

where E(-,§) and K,(z,-) are Y-periodic for a.a. £ € R and = € Q.

We emphasize that the diffusion coefficients Dy, D,, and Dy in (6) are supposed
to be constant just for presentation simplicity. The method developed in this paper
also applies to the case of nonconstant uniformly elliptic diffusion coefficients.

We suppose the following conditions hold:

A1l. Elasticity tensor E(y,C) = (Eijkl(y,C))lgi,j,k,lgs satisfies Eijri = Eruij =
Ejiti = Eiji, and aq|A]? <E(y,()A- A < as|A|* for all symmetric matrices
AcR3>3, ¢(eRy, and y € Y, and for some o; and ay such that 0 < a; <
g < 00.

E(?/v Q)=E; (yv]:(C»’ where

E; € Cpor(Y;C2(R)) and F(¢) = /O k(t — 7)¢(T, x)dT,

with a smooth function  : Ry — R4 such that x(0) =0, and z € Q.
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A2. K, € C(Q; L, (Y)) and Kp(z,y)n-n > ki|n|? for n € R?, a.a. y € Y and
z €, and k; > 0.

A3. G is a Lipschitz continuous function on R? such that |G(r)| < R for some
R >0 and all r € R3.

A4. For functions gy, ge, gf, P, Fp, and F, we assume that
g € C(R x R* xR%R?), g¢.€ C(RxR*xR%, F, PcC(R*R?),

and F, and gy are Lipschitz continuous. Moreover, the following estimates

hold:
|96(s, 7, )| < Cr (1 + [s] + [r]) + Cofr[[¢],

|9e (8,7, &) < Ca(L + [s] + [7]) + Cu([s] + [7])[E],
[Eb(r)| + [P(r)] < C(1 + [r]),
[Fe(s)] + g7 (s)| < C(1 + [s]),

where s € Ry, r € R, and £ is a symmetric 3 x 3 matrix. Here and in what
follows we identify the space of symmetric 3 x 3 matrices with RS.

It is also assumed that for any symmetric 3 x 3 matrix £ we have that
9b,;(8,7,€), Fy;(r), and Pj(r) are nonnegative for r; =0, s > 0, and r; > 0,
with i = 1,2,3 and j # ¢, and g(s, 7, ), g7(s), and F.(s) are nonnegative for
s=0and r; >0, with j =1,2,3.

We assume also that gy(+, -, £), ge(+, -, &), Fp, and P are locally Lipschitz con-
tinuous and

l96(51,71,€1) — gb(s2,72,82)| < Cr(|r1] + |r2)[s1 — s2]
+ Ca([s1] + |s2| + [§1] + [&2]) |1 — r2| + C3(|r1] + [r2])[€1 — &,

19e(51,71,81) — ge(S2,72,&)| < Cr(|ri| + |ra| + || + [£2])|s1 — 52|
+ Ca([s1] + |s2| + [§1] + [&2]) |1 — r2| + C3(|r1] + |ro| + [s1] + [s2])[§1 — &2

for s1,50 € Ry, 11,10 € Ri, and &, &1, & are symmetric 3 x 3 matrices.

A5. by € L®(Q)3, co € L>®(Q), and beoj > 0, ¢o > 0 a.e. in Q, where j = 1,2, 3.
uyy € H'()?, ufy € H*(Q)?, and divujy = 0 in Q5.
usy € HY(QE)3, psy € HY(Q) are defined as solutions of

div(E" (beo,3)e(uco)) = fu in QF,
T (B (beo,s e (ugo) n) = eIl (e(ugg)n) on I,
n - E(beo,3)e(usy)n =0 onI*, wui, =0 on 09,
div(KEVpsy) = fp in €,  pgr=0 ondQ,

for given f, € L*(Q)% and f, € L*(Q2).
F, € HY(0,T; L*(09)), F, € H*(0,T; L*(99))3.

Remark 2.1. Under the assumptions on u$, and p$, by the standard homogeniza-
tion results, we obtain

ULy — Uens DPip — Peo  strongly in L2 (),
e(ugy) — e(ueo) + €y (lieg) strongly two-scale, Geo € L2(% Hl(Ye)/]R)37

where @S, is an extension of u$,, and ueo € H'(2)? and p.o € H'(Q) are solutions of
the corresponding macroscopic (homogenized) equations.
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Remark 2.2. Our approach also applies to the case when the initial velocity u}o
has the form u}oe(x) = Ujy(x,x/e), where the vector function Uy (x,y) is periodic in
y, sufficiently regular, and such that div, U}O(m, y) =0, divy U}O(x, y) =0.

Remark 2.3. The reaction terms for ¢%, bg 1, b 5, bZ 3, and cg can be considered
in the following form:

95(c) = —pach,  goa(bGs gy e(ug)) = —p by,

e,2Ce
26V O(u)) = b = 2 2 202 ) (O o) i
€ 1€ € bg»QCg 5 €(1E e\\+
gb,3(ce’be’e(ue)) = rdCK—FCE - Rb(be,S)(trE (be,S)e(ue)) 5
£ 1€ € b‘;zci € e(1E £\\+
ge(ce’beve(ue)) = _Tdcﬁ 4ocE + Rb( e,3)(trE’ (be,3)e(ue)) )

where p1, p2, 74c, 4, k£ > 0, and Rb(bi’?,) is a Lipschitz continuous function of calcium-
pectin cross-links density, e.g., Ry(b; 3) = 755 3 with some constant r, > 0. We
assume that the concentration of the enzyme PME is constant, and hence methylester-
ified pectin is de-esterified at a constant rate. The demethylesterified pectin is pro-
duced through the de-esterification of methylesterified pectin by PME, demethylester-
ified pectin can decay, and through the interaction between two galacturonic acid
groups of pectin chains and a calcium molecule a calcium-pectin cross-link is pro-
duced. If a cross-link breaks due to mechanical forces, we regain two acid groups of
demethylesterified pectin and one calcium molecule. We consider the decay of calcium
inside the cells. The positive part of the trace of the elastic stress reflects the fact that
extension rather than compression causes the breakage of calcium-pectin cross-links.
See [39] for more details on the derivation of a microscopic model for the biomechanics
of a plant cell wall.

In what follows we use the notation (-, -) g1 ¢4y g1 for the duality product between
L2(0,s; (HY(A))") and L?(0,s; H*(A)), and
($9)a, = / / ¢vdedt  for ¢ € LU0, 5 LP(A)) and v € LY (0, 5; L (A)),
0o Ja

where 1/¢+1/¢' =1 and 1/p+1/p’ = 1 for any s > 0 and domain A C R3.
We also use the notation

c {Cg in Q 7,
g in QF 1.
Next we define a weak solution of the coupled system (6)—(8).
DEFINITION 2.4. Functions
ug € [L2(0,T5 H'(95) N HA (0,75 L2(9))],
pe € L*(0,T; H'()) N H' (0, T3 L*(95)),
Opus € [L*(0,T; HY(Q5)) N H(0,T; LQ(Qjc))]S, pF € L*((0,T) x QF),
11, 0puf = HTatu‘jc on I'%, div 6tu§ =0 in Q?T,

and
b € [L2(0,T; H'(Q5)) N L>=(0,T; L2(92))]°,

€ € L2(0,T; HY(Q\ T)) N L>(0,T; L2(Q))
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are a weak solution of (6)—(8) if
(1) (ug,pt, 5‘tu§c,p§) satisfy the integral relation

(0o 020z, G, + (B2 )e(u2).e(6) . + (V5. O,
9)  +(op Oz, V)as , + (K;Vp: — O, V7//>szs s (Opu§ - n,¥)rs, — (pe,m - n)rs,

+ps OFuf,mas , + e (e(duy), e(ﬂ)>9; L= (Fu, )00y + (Fp, ) (90) 1

for ally € L2(0,T; HY(Q%)), ¢ € L*(0,T; H'(Q))?, and n € L*(0,T; H'(Q5))?, with
;¢ =1L:m on I'z and divy = 0 in (0,T) x QF,
(ii) (bE,c®) satisfy the integral relations

(002, 1) 0z, 1t + (Do VG, Vior)as - — (gn (e, G, e(ue)), p1)q:

(10)
= e(P(b2), p1)rs. + (Fp(b3), 1) (90 1

and
(Occes pa)mn gyt +(DeVeg, Vipr)as 1 = (ge(eg, UG, e(ug)), p2)qr
(1) +(0uc, p2) sy m + (DpVeh — G(OwF)ch, Vea)as . — (gr(ch), w2)as .
= <FC(CZ)7<P2>(6Q)T

for all 1 € L2(0,T; HY(Q5))3 and oy € L2(0,T; H (2 \ I9)),

(iil) the corresponding initial conditions are satisfied. Namely, ast — 0,

W(t, ) = Sy () and Buus(t, ) — ulo() in LA, pE(t,-) — pip(-) in L2(Q),
atuj”(tv ) - U}O() in LQ(Q?)Ba
ba(t, ) — beo(+) in L2(022)3, and c*(t,-) — co(-) in L3(9).

3. A priori estimates, existence and uniqueness of a solution of the
microscopic problem. We begin by proving the existence of a weak solution of the
microscopic model (6)—(8) and uniform in € a priori estimates. In order to obtain
uniform in ¢ estimates, we shall extend H'-functions from a perforated domain into
the whole domain.

LEMMA 3.1. B
e There exist extensions b, and & of b and £, respectively, from L2(0,T; H'(Q2))
to L?(0,T; HY(Q)) such that

7€ 5 7€ e
(12) [bellz22r) < ClVElI 20z 1) [IVEellL2@r) < ClIVOEN L2 (0

)’

(13)  lleliezen < Clleclieas )s - IVElL2@r) < CIVEl 2@z -

e There exists an extension ¢ of ¢ from L*(0,T; Hl(ﬁzf)) to L2(0,T; H'(2))
such that

1) 1Fhaon < ClE @,y IVE 20 < CIVE g, -

Here the constant C' is independent of €, and (Nlif = Q\ (NZE, with QF =
UfEEE 5(f‘sﬁYe+§), where I'% is a d-neighborhood of T such that T9N8Y = ()

and Y \T® NY, is a connected set.
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Sketch of proof. The assumptions on the geometry of 2 and §~2§ 7 and a standard
extension operator (see, e.g., [1, 16]) ensure the existence of extensions of b, ¢Z, and
c® satisfying estimates (12), (13), and (14), respectively. ad

Remark. Notice that we have a jump in ¢ across . Thus in order to construct
an extension of ¢ in H!(Q2) we have to consider ¢® outside a §-neighborhood of T.
Also since we would like to have an extension of 5 from Q;i to 2, we have to consider

rn Y,; see Figure 1.
Notice that, since Yy C Y with 0Y; N9Y = 0 and I = Y}, for 6 > 0 sufficiently

small T% will satisfy the assumption of the lemma.

LEMMA 3.2. Under assumptions A1-AS5, solutions of the microscopic problem
(6)—(8) satisfy the following a priori estimates:
For elastic deformation, pressures, and flow velocity we have
el Low 0,1 (2g)) + 10k oo 0.7517 (02)) + ||<9f,2UZ||L°°(o,T;L2(Qg)) <C,
||piHL2(O,T;H1(Q§)) + ||atpz||L°°(O,T;L2(Q§)) + HatPZHL2(O,T;H1(Qg)) <C,
18suf || o< (0,7522(02)) + 107U | Lo (0,7522(05) + €l VOuG [ m1(0,:22(02))

+ IpFll 203 ) < C-
For the densities we have

be;i >0, cc>0 ae inQp, ¢;>0 ae inQfr, 1=1,2,3,
(16) (1Bl 20,73 () + €2 I1BE I L e ) + 10 Lo 0,73 () < €

520,501 (05)) + 5L 0,m302(02)) + I€fll e o, mia0s)) < €, G =e, f,
and
(A7) 10n0C = ell L2 ((0,7)x2e) F 10n€5 = €Gll 20,7 x2s) < Ch'/*, j=e/,

for T € (0,T — h], where Opv(t,x) = v(t + h,z) for (t,z) € (0,T — h] x Q5, with
j=¢e, f, and the constant C is independent of €.

Proof. The nonnegativity of cg, ¢%, and bg is justified in the proof of Theorem 3.3
on the existence and uniqueness of a weak solution of the microscopic problem (6)—(8).

To derive the estimates in (15), we first take (Opug, pZ, 9u}) as test functions in
(9) and obtain

PellOsu (5)[|72 sy + (B (0 5)e(ug(5)), e(ug(s)))as — (0B (b 5)e(us), e(uf))a: ,
+2(VL, )z, + ppllpE(s)lI7(ey + 20K VDL, VE) s, — 2(0hug, VbE)os |
+Pf||3tuff(8)||%2(g;) + 2€2N||e(5tufv)||2m(9;)s)
= 2(Fu, 0u) (o0), + 2(Fp, 07) (00, + Pell0rug (0)[172(qe)
+ppllpE(0)][72(0z) + Pf”atU?‘(O)H%?(Q;) + (E*(b 3)e(uc(0)), e(uc(0)))az

for s € (0,T]. As was defined just after formula (5), Q5 ; := (0,s) x Q5 for j =, f.
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Using assumptions A1, A2, and A5 yields
Hatui(S)HQL?(Qg) + He(uZ(s))”i?(Qg) + ||8tu§(3)||%2(9;) + 52He(5tu§)”%2(gg,s)
+ ||P§(5)H2L2(Q;) + ||VP§H2L2(Q;S)
< O[llug(9)I1Z2 o) + I1PENT2 0,8y 00 ] + CrUOE (B 3)le(ug), e(ug)) oz ,
+C§[||Fu||%x(07s;L2(6Q)) + ||8tFu||2L2((0,s)><é)Q) + HFp||2L2((o,s)xaQ)] + O
for s € (0,T]. Under our standing assumptions A1 on E, we have
10 (b )l Lo ((0,17)x02) < C.

Applying the trace and Korn inequalities [33] and using extension properties of ug,
we obtain

(19) lug(s)llL2(a0) < Cllue(s)llz2(0z) + lle(ug(s))llz2z)]-
Our assumptions A5 on the initial conditions ensure
(20) [ue(s)llL2(0s) < 0uclir2(o: ) + llucollz2s) < C + [|Orucl|r2(o: )

for s € (0,T). Then applying the trace and Gronwall inequalities in (18) yields the
following estimate:
(21) ||3tui||L°°(0,T;L2(Qz)) + ||e(U§)HLoc(o,T;L2(Qg)) + ||P§||Loo(o,T;L2(Q;))

+ Vel 2oz ) + ||5tuff||Lm(o,T;L2(Q;)) + €||e(8f,uff)||Lz(07T;L2(Q?)) < C,

where the constant C' is independent of e. Using the Korn inequality [33] for defor-
mation and velocity, together with a scaling argument, we obtain

gl o 0,7:02(Q2)) + IVugll oo (0,752 (022))

< Cl(He(uz)HLOO(O,T;L?(Qg)) + ||U2HL°°(0,T;L2(Q§,))) <C,
(22)
10cuFllL2(0s ) +elVOuTlLa(as )

< O (elle(@nuf) 2oz ) + 103l L2 0z ) < C.

Differentiating all equations in (7) with respect to time ¢ and taking (9?ug, 9;pg, 6?1[})
as test functions in the resulting equations, we obtain

pellOFug ()1 720z ) + (B (0 5)e(8rug(5)), e(Bug(s))) oz — pellOFug (0)]|72qr)

+ PP”atpi(S)”%Z(Qg) + 2(K; VO, VOipg)a: | — ppHath(O)”zL?(Qg)

+ sl 07 us ()12 () + 22 plle(07uf) |12 os ) — PrIOFuF (01720

= (E° (b 5(0))e(9rug(0)), e(9rug (0)) )y + 2(OE (b 5)e(uc(s)), e(rug(s)))
— 20 (b 5(0))e(ug(0)), e(9rug(0)) . + 2(0eFu, 07 ug) (o).

— (0 (0 ) e(us) + O (b ) () (D) e+ 200 Fy, ) o,

)

(23)

for s € (0,T]. Here we used the following equality:

(OB (b ) (), e(0FuE) ), = (DU (B ()l (). e
— (OB (1 5 (0))e (5 (0

— <8t2E€(bZ’3) e(ul) + 0. E5(b 73) e(0rul), e(dru
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Assumptions A5 on the initial conditions together with the microscopic equations in
(7) ensure that

(24) 107 g (0)172(qz) + 110605 (0)]|72(0z) + ||at2u§f(0)||2L2(Q;) <C,

where the constant C' is independent of . To justify (24), first we consider the
Galerkin approximations of ug and dyu} and a function @" in the corresponding finite

dimensional subspace, with ¢¥ = 0 on 9Q and div ¢* = 0 in Qjc,
(pe OFug™*, %) s + (E°( i,g)e(U?k),ekaQg + (VP ) a:
+ (pr OFuT™, 0oz + 2 (e(Oru7"), e(0*))as + (i, ¢* - n)r- = 0.

Taking ¢t — 0 and using the regularity of uS*, 8tuf;k, and bZ 5 with respect to the
time variable, we obtain

(pe OFuz(0), %) 0z + (B (beoa)e(us*(0)), (@) o, + (VPEH(0), 6"
+ (pr OuT*(0), 6" )0s + 2% (e(Dru™(0)), e(6"))as + (p5*(0), 6" - n)r- = 0.

Then the integration by parts in the last two terms and the assumptions on the initial
values ensure

(D7 uz(0), M) | + [(OFuF"(0), %)z | < | (fus 6. | + (V'S 0"l
+e2pl(dive(dusy), 6" )as | + €2 | V20uty | 120 16* (1 2(05) < Cll" | L2 ()

and hence
&
107ug* () L2 2y + [0FuF" (0) | 205y < C,

where the constant C is independent of k£ and div afu‘;’k(O) =0in Q5. In a similar

way, we also obtain the boundedness of [|9;p*(0)||2(qs) uniformly in .

Then the estimates similar to (23) for the Galerkin approximations of ug, pg,
and dyuj imply that p; € C([0,T]; L*(27)), Vpg, dwug € C([0,T]; L*(97))%, e(uf) €
C([0,T]; L*(52))>*?, dpu§ € C([0,T]; L*(Q5))?, e(duf) € C([0, T]; L*(927))**.

Then from the equations for ut and pt and the continuity of e(ut), dus, and
VpS with respect to the time variable, we obtain the continuity of d7ug and d;pS with
respect to the time variable. Then the assumptions on S, ul,, and pS, ensure the
boundedness of [|07ug(0)||L2(qs) and [|9;pg(0)]| 2 (qe) uniformly in e.

For ¢ € Hj(Q), with div¢ = 0 in Q3, we have

(pe OFug, d)a: + (EF(b; 5)e(u;), e(9)) . + (VDL $o:
+(ps0fuf, d)as + 2 (e(duf), e())as + (b5, ¢ - n)re = 0.

Considering the continuity of e(ug), d?us, Vpg, and e(0yuf) with respect to the
time variable and taking ¢ — 0, we obtain the continuity of 8t2u§c and

(pe 07z (0), d)as + (B (beo,s)e(ugo), (d)) . + (Vpio: d)o
+(pr 07u3(0), d)as +e”ple(ug,), e(¢))as + (P, ¢ - nre = 0.
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The integration by parts, the boundary conditions for u{,, and the assumptions on ¢
imply
(pr07u3(0), ¢)as = —(pe 07 ug(0), $)as + (div(E (beo3)e(ugy)), 8)o: — (VPig, d)o
+(%u div(e(u}o)), P)as — e2{un - e(u}o)n, @ - n)re.
From the assumptions on uS, and p%, we have that div(E® (b 3)e(usy)) = fu, with
fu € L?(Q), and IVpgollz2(qy < C1, where Cy is independent of e. The assumptions

on u}o ensure that 52M||div(e(u}0))||L2(Q§) < Cy and there exists ¢ € Hl(Qjc), such
that ||V’l/15||L2(Q?) S Cg and

e (un - e(upg)n, ¢ - n)re| = (VY= d)az| < Culldll2(as),

where the constants Cs, C5, and C} are independent of €. Using the density of ¢ in
H={ve Q%) : dive =0 in Q%}, we obtain the boundedness of 9?u%(0) in H
, Al f b s
uniformly in €.
Then considering assumptions A1-A2 and applying the Holder and Gronwall
inequalities in (23), we obtain the estimates for 9?us, 9;ps, and a,?u§ stated in (15).
Here we used the fact that assumptions A1 on E imply the following upper bound:

107E" (b5 3) || Lov ((0,1)x22) < C-

Testing the first and third equations in (7) with ¢ € L?(0,T; H'(Q))? and using the
a priori estimates for ug, pg, and dyu3, we obtain

<p[;7 div ¢>Q?T + <pza div ¢>Qi,T = <€2/J' e(atu;')a e(¢)>9?T + Prf <at2u§"a ¢>Q?,T
(25) T pe(0Ru, B)a, + (BF (5 5)e(u), e(@))ox , + (pEn — Fur ) oy
< Cl@llL2 0,11 (92))3-

Here we used the properties of an extension of p from €2 to Q (see Lemma 3.1) and

the trace estimate ||pg||z2(0,1)xa0) < C1llpEllLz0,1:0m1 (@) < C2llpellLz 0,101 (2))-
For any ¢ € L?(Qr) there exists ¢ € L?(0,T; H(Q))? satisfying div$ = ¢ in €,
¢-n= |Tlﬂ| Jo (-, x)dz on 9, and ||| .20, 7;11 ()5 < CllallL2(p)- Thus for

7= py in (O,T)XQ?,
pe in (0,7) x (2\Q3)

using (25) we obtain

<i)€7Q>QT < C”q”Lz((O,T)XQ)v
where the constant C' is independent of . This implies, by the definition of the
L?-norm and the estimates for p¢, that ||p?||L2((O7T)><Q?) <C.
To justify estimates (16) we take b and ¢© as test functions in (10) and (11),
respectively. Using assumptions A3—-A5, we obtain
106 () 22y + 1905 220
<EO) 122 (0z) + Crlle(ue) L= (0,522 @) 1072 (0,524 (020 )
+ o [”CZH%P(Q;S) + ”bZH%Z(Qg,S)] +C31 +5||bz|\%2(rg) + Hbi”%%(o,s)xaﬂ)}
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and

leg ()22 az) + €5 (T2 0z + IVl ) + VT2 0z )
<le2(0) 112 (qz) + 5 (01 gz
+Cl||e(ui)HLO@(O,S;B(Qz)) “|be||L2(0,s;L4(Qg)) + ||C§Hi2(o,s;L4(Qg))]
+Ca[1+ ||g(3tu§)||ioo(ﬂ; )] Hcff”%z(n;,s)

]

+C3[||bi||%2(ﬂgys) + HCEH%P(Q;S) + €72 0,0y x00)]

The Gagliardo—Nirenberg and trace inequalities, together with the extension proper-
ties of bS and ¢° (see Lemma 3.1), yield

12017 4(e) < 0270y < 01lIVEENT2(0) + Co 121720
< 0| VB[ 72e) + Co 102N 7202
leE3s ) + Ne53ea) < 6 [IVelZaar) + 1965 132as) |
(26) + Cs [t l32(as) + 1513205y -
15017200y < OIVOENZ2(0c) + CsllbEN1 20 )
\\Ci||2L2(aQ) < 5HV(32H%2(Q§) + Cé||ci||2L2(Qg)7
ellb12rey < ClE® VO 200y + 102]1 720 )]

for an arbitrary § > 0, and Cy depending on § and independent of . Notice that since
the Gagliardo—Nirenberg inequality is applied to the extension of b and c¢® defined
in €2, the constant in the Gagliardo—Nirenberg inequality is independent of . Then
applying the Gronwall inequality and using the assumptions A3 on G yields

(27) 16ell o< (0,522 (022)) + Vel L2((0,7)x02) < C,
||C§||Loo(o,T;L2(Q§)) + ||Vc;|\L2((07T)XQ§) <C, j=e,f.

The uniform boundedness of b, i.e.,
(28) 162l o< (0,752 (22)) < C,

with a constant C independent of e, is proved by applying the Alikakos iteration
lemma [2, Lemma 3.2]. Since the derivation of estimate (28) is rather involved, we
present the detailed proof of this estimate in the appendix; see Lemma 10.1. In the
same lemma in the appendix we also prove the estimate

leellzoo 0,520 (00)) + €t lLoe 0,1529(03)) < C,

where the constant C' does not depend on €.
To justify the last estimate (17), we integrate the equation for b¢ in (6) over
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(t,t + h) and consider 0,05 — bS as a test function:

t+h
10085 =V oty + (D0 [ 0(6) 5,9 080) — 9 )
’ ¢ t (0,T)x Q2

=<[M%@®Mﬂ%d@@»%%£—@>

t+h
+€</ P(b(s)) ds, 0% — bg>
t (0,T)xIe

t+h
+</ lM@M&%@@>
t (0,7)x 09

for all T € (0, T — h]. Then using the a priori estimates for u¢, b%, and ¢ in (15) and
(16) together with the Holder inequality implies the estimate for bS(t+ h, x) — bE(¢, x).
Similar calculations yield the estimates for cg(t + h,z) — cg(t, ) and c3(t + h,x) —

3 (t,x). 0

(0,T)x s

THEOREM 3.3. Under assumptions A1-A5, for every e > 0 there exists a unique
weak solution of the coupled problem (6)—(8).

Proof. We shall use a contraction argument to show the existence of a solu-
tion of the coupled system. We consider an operator K over L>(0,s; H*(Q£)3) x
L>(0,5; L*(Q5)%) defined by (ui’j,atujc’j) = K(ui*j’l,atu?j_l), where for given
(usi =1, atu?j 1) we first define (b57, 57, c;’j ) as a solution of system (6) with func-
tions (uS’ 1 8tu§’j 1 in place of (uf, dyu$) and with external boundary conditions
in (8), and then (uS,pS7, 6tu;’]7p?3) are solutions of (7) with b5 in place of bE.

For each j = 2,3, ..., the proof of existence and uniqueness of (b7, cz7,c;”) for
given (uSd=1, 8tuj;j 1) follows the same arguments (with a number of simplifications)

as the proof that K is a contraction for (u$, 6tuj;j ), i.e., using the Galerkin method
and fixed-point arguments. Notice that the fixed-point argument for the system for
be7 and ¢ allows us to consider the equations for 57 and ¢ recursively. Thus using
the nonnegativity of initial data beg, ceo, and cyo and assumptions A4 on the reaction
and boundary terms and applying iteratively the theorem on positively invariant
regions [40, 47], we obtain the nonnegativity of all components of b5 and 7.

We choose the first iteration (uS!, pS!, 6tu§c’1 , p‘;’l) to satisfy the initial and bound-
ary conditions in (7) and (8). Then applying the Galerkin method (using the basis
functions for H () x H'(Q2\I¥)) and fixed-point argument, we obtain the existence
of solutions (b2, 2, c?z) of system (6) with external boundary conditions in (8) and
have

16521 oe (0.7:22022)) + IVOE 2 | 20 ) + 1052 o< (0,752 (02)) < C,

(29)

e e oriz2@p) + IV le2r ) + 116 I min00p) < €5 I=e.f,

where the constant C' depends only on [le(ug')|| Lo (0,r;12(0s)) and the constants in
assumptions A1-A4. The estimates (29) can be justified in the same way as those in
(16).

Next we consider system (7) with 52 in place of b5. To show the existence result
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we use the Galerkin method with the basis functions {¢;,;,n; };en for the space

W ={(v,p,w) € H'(Q)* x H'(Q%) x H'(Q3)*: divw =0 in QF,
[yv=TLw on T, div(K,Vp) e L2(QF),
<(U - K;Vp - w) -n, 1/)>H71/2(F5)$H1/2(F5) = O},

and consider the approximate solutions in the form

k k k
DD ACL Z dh(t)y, O z

&‘&
&.‘g‘

t)nj, keN.

The linearity of equations for (us?, pS2, 8tuf;2) ensures the existence of unique so-
lutions q;“(t) of the corresponding linear system of second order ordinary differential
equations with initial conditions q;?(()) = af and %qf (0) = J’?, where 04;? and B;?’ are
derived from the initial conditions in (7), and hence, the existence of a unique solution
(u z i, pe k, atu ) for k € N. Then using the a priori estimates derived in the same way
as in Lemma 3 2 (by considering assumptions A1, A2, and A5) and taking the limit
as k — 00, we obtain the existence of uS? € [H1(0,T; H*(Q2)) N H2(0,T; L*(Q2)))3,
p? € HY0,T; H' (%)), and du® € HY(0,T; H'(Q3))° N L*(0,T;V), with V =
{v e H'(Q3)? : dive = 0in Q‘;}, satisfying (9) with bE3 in place of b% ;. Taking
€ L?(0,T; H}(Q2)), ¢ € L2(0,T; HE(Q2))3, and 1 € Lz((),T7 Vo), where VO ={ve
Hé(Q?)?’ : dive =0 in Q3}, as test functions in the weak formulation, we obtain the
equations for u$? and pS2 in (7) and (pfazuf —e2udiv(e (8tuf;2)),n> =0foranyn €
L?(0,T;Vp). Then De Rham’s theorem applied to pf82u;"2 +e%u div(e(atuj{z)) im-
phes the existence of p 2 e L2((0,T) x Q%) such that —pfa,?uj;%s?,i div(e(@tu?2)) =
fo . Using first 9 = 0, ¢ = 0, and n € L%(0, T; Hl(Qf))3, with II,7 = 0 on (0,T) x
I'¢, as a test function in the weak formulation of the equations for (u?, pS2, Btujc’Z)
we obtain the transmission condition —n - &2y e(f)‘tu;’Q) n —|—pjc’2 =p52on (0,T) x ',
satisfied in the distribution sense. Choosing ¢ = 0, ¢ € L2(0,T; H'(9%))3, and
n € L*(0,T; Hl(Qic))3, with ¢ = non (0,7) xI'®, as test functions and using the equa-
tions for uS? and 8tu;’2 ensure (2 e(@tuE’Q) — pj{21)n = (E5(b]3)e (uE 2) —pS2Dn
n (0,7) x T'°. Then, using the equations for u$?, pS2, and 6tuf and consider-
ing ¥ € L2(0,T; H(Q)), ¢ € L2(0,T5 HY(Q9))?, and 5 € L2(0,T5 H(5))?, with
II,¢ =,;non (0,7) xI'* and ¥ = 0, ¢ = 0 on (0,7) x 99, as test functions, we
obtain the transmission condition (—K5VpS? + dyug?) - n = 8tu?2 -non (0,T) x I'®
in the distribution sense. Taking v € L?(0,T; H'(Q%)), ¢ € L?(0,T; H*(Q2))3, and
n € L(0,T; Hl(QE))37 with II;¢ = II;n on (0,T) x I'¢, as test functions we obtain
the boundary conditions on (0,7) x Q. Hence we obtain that (u?, p5:?, 8tuf N %)
is a weak solution of (7), with bE '3 in place of b 5, together with the corresponding
external boundary conditions in ( ). Standard arguments pertaining to the consider-
ation of two solutions of (7) imply the uniqueness of a weak solution of (7), (8). The
transmission condition —n - €2 e(@tu?z) n + p?g = p>2 on (0,T) x I'® ensures that
p‘;’Q is defined uniquely.
Also we obtaln that the estimates similar to (15) are valid for the functions
(us?, pe2, o 7 pf ) uniformly with respect to solutions of (6) with boundary con-
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ditions in (8):

106w L= (0,722 (0)) + Ve[| o< (0,7522(0)) < €
(30) ||P§’2||Loc(o,T;L2(Qs)) + ||Vpi’2||L2(Qs 2 <G,

1952 | oo 0,722 (25)) + €I VOuT? L2 (@ 1y + P72 2005 ) < C
Iterating this step, we conclude the existence of a solution (b5, ¢S, ¢ ’j) of (6) with
(usi=t 8tu§’j_l) instead of (ug, Oyu}) and a solution (ug7, pg, 8tuf , DY 7Y of system
(7) with b2 instead of bZ, and that the estimates similar to (29) and (30) are fulfilled
for (b7, ¢S, c;’j) and (uS?, pS7, atu;’j, pj{j)7 with j > 2.

To show the contraction property of K, we consider two iterations
(bi’j_l,cgj_l,cjc’j_l), (atuz,j—Q’atus,j—Q) and (szchJ, 8]) ((‘3tu —1 8tuf,_] 1)
Then the differences b2 = bs9—1 — bSd | ¢80 = ¢£9—1 — 57 and c; &= cf’J ! cf’J

satisfy the following equations:
A2 — div(DyVbEY)
= gu(cg? 00T e(ugTT?)) — gy(e? 00 e(ug? ™)) in QF
Opcsd — div(D.VeEET)
31) eI e(usTR)) - g (€57, b5 e(uETY))  in Q2
8t?:?j - dlv(Dfch’] — g(@tuf’J 2)cfj)
+ diV(C?’j [g(atuf,] 2) _ g(atu?j—l)])

= gp(c57 ™) — g5 (c57) in Q% 7,
together with the boundary conditions
DyVbT - = e(P(b271) — P(b57)) on TS,
&= on IG5\ T%,
DV = [D;Vey - GOy’ )] - n
52) | — [(G(0u572) =GOS ) 7] - on T5\ T%.,
D.NVET -n=0 on I'%,
[DVeEs? — (G(0us” ™)™ = G071 )e3")] =0 on f;,
DyVbE7 - n = Fy(b2771) — Fy(bE7) on (9Q) 7,
D NVET n = F (5771 — F(£9) on (0Q)r.

Using b8 I, ¢59, and cf’J as test functions in the weak formulation of (31) and (32),

we obtain, for any é; > 0,
8t\\gi’j||2L2(Qg) + vai’juiz(ng) < (& + 51)va2’j”2L2(Qg)
+Ca (1657 ) + o) (1827 132z + 187 32 )|
(33) + Col b5 e (2) [||e(~8’] Nz + H%’”ﬁ?(ﬂ@)}
+Cs[[lee7 N n2ae) + lle(ug? ™) 2] ||EZ’j||%4(Qg)
+C4 [5||gi’j|\%2(rs) + HZZJ”QLQ(BQ)]
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and
OulEE 2 ey + V8 I a(e) + Ol I3 ca) + 19657 2
< G (17 o) + 1) (187132 z) + le(@E " 220 )

(B9 +Co (le(us?™)aon + et rzn) (177 2acar) + 1027 Eacar) )
+ Cslle(@z? Ml z2 o) llee? Hlzas) 167 s oz) + Callé? (17200

J—1 ~ 1 J—1 \J
o+ O5 (17 3 ) 19857~ 3 + 16005 ™) ) 1757 3 )

i - i -1 1 i—2 :
where 059! = w971 — 472 and uy’m = uf’J —uy’77. Using the trace

and the Gagliardo-Nirenberg inequalities, we estimate HbEJ||L4(QE)7 ||E§’j||%4(92), and

||cf ||L4 (05)> 35 well as the boundary terms e[bS7 |2 12(re)s Hb”||L2 (o0)> and ||E§’jH%2(8Q),

in the same way as in (26). The estimates for ¢/ =% in L>°(0,T; L*(2£)) and for c?j_l
in L>(0,T; L*(Q5)) ensure

| let@ a7 sl sy + ey ™ e 075 et
0

< e2? e 0,524 02y [Calle(@g? ™~ 1)”%2(95 )+ CzSHEE’jHB(Qa o7 5||V6€’j||2L2(Q;s)]
J—1 ~ 1 ~e,j—1
A e mrncas [CoI0TT e, + 01€(OT e )
for any § > 0. Then combining (33) and (34) and applying the Gronwall inequality,
we obtain
165711 o 0,0:22(026)) + ||Vb§’jH%2(ngs) F11E7 1Foe (0,622 (02)) + ||V5§’j||%2(ngrs)
(35) + €77 17 0, siL2(02) T HVE?]HQL?(Q?S)
~ 1 ~ 1

< Cille(ug? ™ II22(q: ) + Cslloaz’™ 172 ) + dlle(@:iy 2 Nz -

Notice that C; = C2e3* < C2e“*T and Cs5 = Cye>* < C4e%7 for s € (0,T], and we
can consider C; and Cjs to be independent of s.

Considering |b57[P~1, with p = 2%, k = 2,3,..., as a test function in the weak
formulation of (31) and (32), applying the Gagliardo—Nirenberg inequality to \Eﬁj |2,
and using the iteration in p = 2* with k& € N (see [2, Lemma 3.2]), we derive the
estimate

1527 12 0,52 @21 < Calle(@T 10t 1z

+C§||atﬂ€]7 ||L2 Qs )+5He(at~6] )HLZ(Q?Q)

for s € (0,T], an arbitrary 0 < § < 1, and any 0 < o < 1/9. For more details see the
proof of Lemma 10.2 in the appendix. Notice that C; and Cs depend on T and are
independent of s. ‘

Now letting a7 = uS7=t —uSd, pod = pSd—1 — pgd, 'ﬁ‘;’j = uf’j ! uf’j,
considering the equations for (u,ps7, 8t~jc7) and using (0,uS?, ps7, Oy f’]) as test
functions in the integral formulation of these equations, we arrive at the following
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inequality:

1 . 1 e
gPe O¢||Opuc H%?(Qg) + §6t<E5(bi:§ 1)‘3(112”),9(“2’]»92

4 3w Wl Wogs) + IVFE Py
+ 50 0TS gy + e 10D o e
) < (OB Vel eli)),,
()~ BE050)) e(us? ), due(@z ),
< CulleiE?) s + 0 (B2 (623 7) — B 05 (™), e(i2)),,
(OB (5 — B () Jeus ). el ).,
(B2 — B () dre(uE ™), (i)

Thus using a priori estimates for u:?, dyus, 8tujﬂ, b2, and b5/, we have that

le(@g) o o.s:z2(20)) + 190657 | L= 0,5522(05)) + le(@y Iz )

1527 || o 0,s:2202)) + VB 2z ) < Crllbz | Lo 0,052 02))

e i o1 -1
< Colle(@e? ™) Lo (0,0:2200)) + Csllus” ™ N rzcos ) + 0lle(@ay” rzcos )

for s € (0,T], 0 < § < 1, and o1 > 10, with the constants C;, Cs, and Cs depending
on T and the model parameters but independent of the solutions, initial data, and of
s € (0,T]. Considering § < 1 and sufficiently small time intervals s in the inequality

le@E )l (0.5:22(02)) + 100057 | L= (0,5:L2(05)) + |e(@utis” ) 2o,
< Cos™ 7 e(@? )| Lo (0,5:22(02))
+ 0581/2”(%17?]_1 ||Loo(075;L2(Q§)) + 6||e(8tﬂ§.’3_1)||L2(Q?S),

we obtain by the contraction arguments the existence of a fixed point of X and hence
the existence of a unique weak solution of the microscopic problem (6)—(8) in (0, s).
Since the constants Cy and Cy depend only on T and the model parameters and do
not depend on s, iterating over time intervals we obtain the existence and uniqueness
result in the whole time interval (0, 7). 0

4. Convergence results. The a priori estimates proved in Lemma 3.2 imply
convergence results for the components of solutions of the microscopic problem (6)—

(8).
LEMMA 4.1. There exist functions u. € HY(0,T; H*(2)) N H%(0,T; L*()), p. €
HY(0,T; HY(Q)), e, Opue € L2(Qp; Hyo (Ye) /R), pp € L*(Qr; Hy,(Ye)/R), Opuy,

Ofuy € L*(Qp; Hyo, (Yy)), and py € L*(Qp x Yy) such that, up to a subsequence,

U — Ue strongly in H(0,T; L*(%2)),
P = Pe strongly in L*(Qr),
(37) O2us — 0%ue, OypS — Oype  weakly two-scale,
Vus — Vu, + Vyul weakly two-scale,
VoS — Vpe + Vypi weakly two-scale,
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and for fluid velocity and pressure we have

(38) Opuf — Oyuyp, pj —py  weakly two-scale,
eVouus — Vyopuy weakly two-scale.

Additionally, we have weak two-scale convergence dyul — Oiu. and 8tu§ — OQruy on

I%.

Proof. Applying standard extension arguments (see, e.g., [1, 16] or Lemma 3.1)
and using the same notation for the original and extended sequences, from estimates
(15) in Lemma 3.2 we obtain a priori estimates, uniform in e, for us, Vus, dyus, 92us,
and VO,ug, as well as pS, Vpg, and 9;pS in L?(Qr). Then the convergence results for
ué and p follow directly from the compactness of the embedding of H'(0, T; L*(Q2))N
L2(0,T; HY(Q)) in L?(Qr), the a priori estimates (15), and the compactness theorems
for the two-scale convergence; see, e.g., [3, 31]. The a priori estimates (15) and the
compactness theorems for the two-scale convergence ensure the convergence results
for 8tu§c and p%. Using the trace inequality and a scaling argument together with a
priori estimates (15), we obtain

5||3t“2||2L2(rET) < C(|\atui|\2L2(Q;T) + 52||V8tui\|%2(95j)> <C,

5||3tu§|\%2(r; = C(H&:“?H%%Q;T) + 52||V3tU§H%2(Q;‘T)) <C,

where the constant C' is independent of . Then the compactness theorem for the two-
scale convergence on oscillating surfaces [4, 30] ensures the weak two-scale convergence
of dyug and dyul on I'y. O

In what follows we shall use the same notation for b, ¢ and their extensions to
Q, whereas the extension of ¢ from SN}Z 7 to € will be denoted by ¢°. Then for b and
¢® we have the following convergence results.

LEMMA 4.2. There exist functions

be, c € L*(0,T; H'()), b} € L*(Qq; HL (Vo) /R), ¢! € L*(Qp; HL (Y \T)/R),

er per

such that, up to a subsequence,

b = be, ¢ —c, T —c strongly in L*(Q),

(39) VbE — Vb, + V,,b. weakly two-scale,
Ve = Ve+ Vet weakly two-scale.

Proof. Using estimates (16) and the extensions of b, ¢, and ¢°, defined in
Lemma 3.1, we obtain

162l 22 ) + IV llL2 ) + el 2 ) + Vel 2@y < O

(40) _ .
el 22y + [IVE L2 () < C,

where the constant C is independent of €. The estimates (40), the compactness of
the embedding of H!(Q) in L?(f2), along with the estimate (17) and the Kolmogorov
compactness theorem [29] yield the strong convergence of b — b, ¢ — ¢, and
¢ — cin L*(Qr). Since QS 1 QQZLT # 0 and c¢(t, ) = ¢ (¢, x) in QF 1 ﬂﬁzﬁT, along
with the fact that c. and ¢ are independent of the microscopic variables y, we obtain
that c.(t,z) = c(t,z) in Q.

From the estimates for c®, applying the compactness theorem for the two-scale
convergence, we obtain that there exists ¢' € L*(Qr; H)., (Y \T)/R) such that Vc® —
Ve+ Vet weakly two-scale [54]. O
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5. Derivation of macroscopic equations for the flow velocity and elastic
deformations. This section focuses on homogenization of the microscopic problem
(7)—(8). First we define the effective tensors EPom, ngom, and K.

The macroscopic elasticity tensor EPo™ = (Eg[}crl“), permeability tensor Ké’om =

(Kp%), and K, = (Ku,i;) are defined by

p,iJ
hom 1 kl
5800 = 7 [ (Bouanbea) + Buinbea)ey (0 d.
om 1 j
(41) K?,ij (z) = |Y|/y (Kp,ij(%y) + Kp,i(x,y)vwa>> dy,

1 )
Ku,ij(x) = |Y|/Y <5z‘j - Kp,i(xvy)vywé)dya

where wk! = w* (b, 3,), for k,I = 1,2,3, are Y-periodic solutions of the unit cell

problems

div, (E(y, be,3) (ey (w™) + br)) =0 inY,

(42) E(y, be,S)(ey(wkl) +by)n=0 on I,
/ wr dy =0,
Ye
functions w]’,f = w’;(x, ), for k = 1,2,3, are Y-periodic solutions of the unit cell
problems
divy (Kp(z,y)(Vywy +ex)) =0 in Y,
(43) Kp(z,y)(Vywh + ex) -n=0 on T,

/ w;fdy:O,
Y,

e

and w* = w¥(z,), for k = 1,2, 3, are Y-periodic solutions of the unit cell problems

divy (K (z,y)Vywt —er) =0 in Y,
(Kp(z,y)Vywt —er)-n=0 onT,

/ wfdy:O.
Y,

e

(44)

Here by = e ® e; and {e; }?:1 is the canonical basis of R3.

LEMMA 5.1. Periodic cell problems (42)—(44) are well-posed and have a unique
solution. The tensors EP™ and Kgom are positive definite. Moreover, EP*™ possesses
the symmetries declared in Al.

Sketch of proof. Assumptions A1 on E and the Korn inequality for periodic func-
tions ensure the existence of a unique solution of the unit cell problems (42) for a given
bes € L*(Qr); see, e.g., [33]. Assumptions A2 on K, yield the existence of unique
solutions of the unit cell problems (43) and (44). The positive definiteness of E and
K, the definition of EPo™ and Kgom, and the fact that w* and w’p“, for k,1=1,2,3,
are solutions of (42) and (43) ensure in the standard way (see [7]) that EP°™ and
K}o™ are positive definite. The definition of E'™ implies that E"™ satisfies the
same symmetry assumptions in A1l as E. 0
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Applying the method of the two-scale convergence and using the convergence
results in Lemmas 4.1 and 4.2, we derive the homogenized equations for displacement
gradient, pressure, and flow velocity for a given {0} such that b5 — b, strongly in
L?(Q7)3 as ¢ — 0. It should be emphasized that we have not yet derived the equation
for the limit function b.. We only use the strong convergence of {b}.

In the formations of the macroscopic problem for (ue,pe, yus) we shall use the
function Q(z,dyuy) defined as

1
@) Qo) = ([ osdn [ Kol )Vatendup ).
Y1\ Jy, Yo
where for (¢,2) € Qr the function ¢ is a Y-periodic solution of the problem
divy (Kp(z,y)Vyq) =0 in Ye,

— Ky(z,y)Vyq-n = 0wy -n on I,

/ q(x,y, Opuy) dy = 0.

e

(46)

THEOREM 5.2. A sequence of solutions {ui,pi,@m?,p?} of microscopic problem
(7) and (8) converges, as € — 0, to a solution (ue,Dpe,Orus,ms) of the macroscopic
equations

Jope 2ute — div (B2 (b, 3)e(u)) + Ve + Uy ][ Puydy=0 inQp,
Yy

47
o Ve pp OrPe — diV(KZ})lomVpe — Ky Oue — Q(z,0yuy)) =0 in Qr,
with boundary and initial conditions
E"™ (b, 3)e(u.)n = F, on (0Q)r,
(48) (KI};O’“Vpe — K, 0w.) -n=F,+Q(z,0uf) -n on (0Q)r,
ue(0) = teo,  Oyue(0) = ugg, Pe(0) = peo in 2,

and the two-scale problem for the fluid flow velocity and pressure

pf 8t2uf —divy(ney(Ous) —mpl) + Vpe =0, divyQuy =0 in Qp x Yy,

49 HTath = HTat’LLe on QT X F,
W) ey (@uug) — 7 Dyn = ! on Qp x T,
Apus(0) = uj, in Qx Yg,

where 9. = |Ye|/|Y|, 9 = |Y;|/|Y], and

3 3
(50)  pi(t,z,y) =Y Oupe(t,x) wh(z,y) + Y Ol (t,x) wh(2,y) + (o, y, Ouyp),
k=1 k=1
with w’;, wk, and q being solutions of (43), (44), and (46), respectively.
We have u. € H*(0,T; L*(Q)) N H'(0,T; H'(2)), pe € H(0,T; H(Q)), dyus €
L2(Qr; HY(Y)) N HY(0,T; L2(Q2 x Y5)), and mp € L*(Qr x Yy) and the convergence
in the following sense:

us = ue in HY(0,T; L*(Q)), pS— pe in L*(Qr),
Vug — Vu, + Vyul, VpE — Vpe + Vyp! weakly two-scale,
3tufc — Opuy, p‘;:c — Pe, evatujc — V,0uus weakly two-scale.
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Remark. In the original microscopic problem the equations of poroelasticity and
the Stokes system are coupled through the transmission conditions. The limit system
shows the strong coupling in the whole domain Q1. Namely, the equations for macro-
scopic displacement and pressure defined in the whole domain Q7 are coupled with
the two-scale equations for the fluid flow defined on Q7 x Y. This coupling in the
limit problem can be observed through both the lower order terms in the equations
and the boundary conditions.

Proof of Theorem 5.2. Considering (e¢(t, z,x/c), ep(t, x,x/e), en(t, z,z/c)) with
¢ € C°(Qr; Ce(Ye))?, ¥ € C5°(Qr; C3%(Ye)), and n € C§°(Qr; Coo,(Y))? as test

per per
functions in the weak formulation of (7), with the corresponding boundary conditions

in (8), we obtain

(peOFug, ed)az . + (B (b 5)e(uf), ee())as . + (V. ed)a: ,

+ (ppOig, )z, + (K VD; — Qpug,eVib)a:

+ (profuf,enas , +*ple(Onuf) ce(n)as , — (y,edivaos ,

+ (Opuf -, ed)re. — (05, en - n)re. = (Fu,€0) 00)r + (Fp, €¥) 00)

(51)

Letting ¢ — 0 and using the convergence results in Lemmas 4.1 and 4.2 yields

(E(y be3)(e(ue) + ey (ug)), ey(6))arxy.
(52) + <Kp(vPe + vypé) - atuey vy¢>QT><Ye + <8tuf ' n, ¢>QT><F
— (ps,divyn)arxy; — (Pe, N n)arxr = 0.
Considering first
(i) ¢ € C°(Qr; C5°(Ye))?, ¥ € C5°(Qr; C5°(Ye)), and 1 € C§°(Qr; C°(Yy))?
and then
(il) ¢ € O5°(Qr; Cper(Ye))?, ¥ € O3 (Qr; Ce(Ye)), and 1 € CF°(Qr; Cpey(Yy))?

per per

with II;¢ =Il.n and n-n =0 on Qr x I', we obtain
(53) <pf> diVyU>QTfo =0

and the equations for correctors

(54) divy (E(y, be,3)(e(ue) + ey (ul))) =0 in Qp x Y,
E(y, be,3)(e(ue) + ey(ui)) n=0 on Qp xII

and

(55) divy (K,(Vpe + Vypl) — Opue) =0 in Qr xYe,

(—K,(Vpe + Vypi) + Oue) -m = Oy -n on Qr x I,

Considering 7 € C§°(Qp; Cg2, (Yy))? with I1,¢ = I1,7 on Qg x T, from (52) and (53)
it follows that

pr =ps(t,x) inQprxY; and py=p. onQpxT.

Thus we have py = pe in Qr. Taking (¢(t, x),9(t, v),n(t, v, x/¢)), where
o ¢ € C™(Qr)” and ¥ € C*(Qr),

o 7€ C®(Qr; C.(Yy))? with I = II.¢ on Qp x T and divyn(t,z,y) = 0 in
Qr x Yf,
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as test functions in the weak formulation of (7), with external boundary conditions
in (8), yields

(pe Ofu, d)a: , + (B (b 3)e(ug), e(d))a: . + (VP d)as

+ {pp Oz, )z . + (K VL — Owug, Vib)as

T oy 25, mhars , + peHe(@u), e(n) + e Ly (s, — (05, divendas
+(0u§ -, )re, — (pe,n - m)re. = (Fu, @) 00)r + (Fps V) (09) 1+

Letting ¢ — 0 and using the two-scale convergence of u¢, pS, and Gtu?, we obtain

<Peat2uea ¢>QT><Y5 + <E(y, be,3)(e(ue) + ey(ué))ve(qs»QTxYe
+(Vpe + Vypi,a P)arxy. — (Owup, Vi) arxy;

(57) + (pp Orpe, VYar xv, + (Kp(Vpe + Vypi) — Ottie, V) arxy,
+ (o Fug,marxy, + uley(Qug), ey()arxy, + (Vbe,marxy,
— (pesn - myarxr = [Y(Fus ) 00)r + [Y(Fp, ) (00

Here we used the relation p. = py a.e. in Qp, as well as the fact that due to the
relation div 8tu§c‘ = 0 and the two-scale convergence of 8tu§c, we have

(58) g%@tuf “n,P)rs, = g% (—(dw@tuf,z/;)Q?T — <8tulfav'(/)>Q?T>
— —il_r%<8tU§c,V¢>Q?T = —|Y‘_ <8th,V¢>QTXYf_

To show the convergence of (p,n-n)rs. we use div,n = 0 and the fact that p} is well
defined on I':

: £ _ _ € . — (e di .
g%<pe,n-n>r;—;l_{r(l)( (V. mas , <pe,dlvxn>sz”)

(59) = —|Y|7HVpe + Vype, Marxy, — Y] pe, divan)arxy,
= Y7 ((pesn - m)arxr = (VPes Marxy; — (e, divan)orxy;)-
Notice that n is the internal for Y normal at the boundary I'.

Also, for an arbitrary test function 1 € C§°(Qr; C5°(Yy)), from the two-scale
convergence of du§ and the fact that dyu3 is divergence-free, it follows that

0= Eli_rg(div Opu, em (t,x,x/s))Q?T = —ii_r)rg)(@tu?,avwm + Vy771>9§,T

=~ Y7 0us, Vym)arxy, = Y]~ {divyrug, m)arxy;-
Thus divy puy = 0 in Qp X Y.
Considering ¢ = 0 and 3 = 0, and taking first n € C5°(Q7;C5(Yy))? with
divyn = 0 and then n € C§°(Qr; C2,(Yy))? with Iy = 0 on Qr x I', we obtain the

per
two-scale problem (49) for d;uy. From the boundary conditions I, d;u = Hfatujc on

I'7 and the two-scale convergence of dyug and dyu on I'; (see Lemma 4.1), we obtain
1

—/ /HTatue(t,x) Y(t, z,y) dy,dedt = lim e’:‘/

Yl Ja, Jr =0 Jr

=lime
e—0 re.

1
:Y/QT/F]:[Tatuf(t7$7y)’(b(t7x7y)d,yydxdt

IL, Opul (t, x) ¢ (t, T, g) drydt

€
T

0, 0puf(t, ) (t, x, g) drydt
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for all ¥ € Co(Qr; Cper(Y)). Thus II-0yu. = I1;0yuyp on Qp x T

Considering first ¢ € Cg°(Qr)3, ¥ € C§°(Qr), and then ¢ € C>®(Qr)3, ¢ €
C>(Qr), together with n € C5°(Qp; C32,.(Yy))? and I.n = I1,¢ on T, and using the
equations (49) for dyuy, we obtain the limit equations for u. and p.:

1
Vepe OFue — div(E"™ (be 3) e(ue)) + 9 Vpe + Vi / Vyp. dy
Ye

60 1 .
( ) _|7|<IU’HT(e(atuf)n)71>H71/27H1/2(1"):0 in Qrp,

E"™ (b, 3) e(uc)n = F, on (0Q)r,
where ¥, = |Y.|/|Y| and the effective elasticity tensor E'*™ is defined by (41), and
ﬂepp O¢De

1
— —di K, (Vpe + V,pl) — du.]dy —
(61) V] W{/e[ p(Vpet Vupe) = Oreeldy = |

1
|7| [/Y [KP(Vpe =+ vyp}z) - 875“6} dy —

Opug dy] =0 inQp,
Oy s dy} -n=2F, on (0Q)r,
Yy

with p! defined by the two-scale problem (55). Considering the weak formulation of
(49) with the test function n = 1 yields

Pf/y Fupdy+ |Yy|Vpe = —(u(ey(drug) — mpI)n, 1) -2 grija(ry = /Fpindvy
f
— (1l (ey (Drug)n), 1>11r71/2,15r1/2(r)-

Using the Y-periodicity of pl, we obtain

— (1l (ey(Opup) n), 1) g-1/2 gi/2ry = Pf/ OFupdy + |Yy|Vpe */ Vypidy.
Yy

e

Thus we can rewrite the equation for u. as
(62)  Vepe O — diV(Ehom(beﬁ) e(ue)) + Vpe + ﬁfpf][ (fufdy =0 in Q7,
Yy

where 97 = |Y¢|/|Y]. Considering the structure of problem (55), we represent p! in
the form

3 3
(63)  pi(t,w,y) =Y Onpe(t,m) wh(z,y) + Y Qb (t,x) wk(x,y) + q(x,y, duy),
k=1 k=1

where w and w¥ are solutions of unit cell problems (43) and (44), and g is a solution
of the two-scale problem (46). Incorporating the expression (63) for p! into (61) and
considering (62), we obtain that p, and . satisfy the macroscopic problem (47)—(48),
where EPo™ KI};O‘“7 and K, are defined by (41). The coupling with the flow velocity
Owuy is reflected in the interaction function @), defined by (45). Notice that since
div dyuy = 0 in Yy, we have that [ dyuy-ndy = 0 and the problem (46) is well-posed,
i.e., the compatibility condition is satisfied. 0
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6. Strong two-scale convergence of e(uZ), VpS, and Btu‘;.

LEMMA 6.1. For a subsequence of solutions of microscopic problem (7)—(8), {uc},
{p2}, and {03} (denoted again by {ug}, {p;}, and {Ou%}), and the limit functions
Ue, UL, De, PL, and dyuy as in Lemma 4.1, we have

Vui = Vu + Vyu}5 strongly two-scale,
(64) Vpi — Vpe + Vypi strongly two-scale,
Oyuf — Opuy strongly two-scale,
ce(0pu}) — ey (Ouy) strongly two-scale.

Proof. To show the strong two-scale convergence, we prove the convergence of the
energy functional related to (7) for ug, pZ, and O0yu%. Because of the dependence of E
on the temporal variable, we have to consider a modified form of the energy functional.
We consider a monotone decreasing function ¢ : Ry — Ry, e.g., ((t) = e for
t € R, and define the energy functional for the microscopic problem (7)—(8) as

& (ug, pe, Oruy) = %pel\atui(S)C(S)lliz(Qg) — (¢, pelrug*)a:
(B c.3) €(uc(s)) C(s), e(uc(s)) ((s))as

2
1
([2CCE (b ) + ¢ OB (b 5)]e(uf), e(ug) ).

2
1
+ 500 (8)C(3) 12 02y = (G pplpE)az , + (KGVPEC VP Qo

1
+ 5051005 ()C(9) 1125y = (G prlOG My, + plleCe(euf) T2 as )

for s € (0,T)]. Considering (9;us (2, pS (2, dwu ¢?) as a test function in (9) we obtain
the equality

1
&% (ug, pe, Opuf) = §Pe||3tui(0)||%2(gg)
1 1
(66) +3 (B (b 3) e(ui(O)),e(ui(O)))Qi + §Pp||P§(0)H2L2(Qg)
1
+ §Pf||atu§(0)||2m(n;) + (Fu, Orug) o9, + (Fppe) (09). -

Due to the assumptions on E and J;E, there exists a positive constant v such that

(27E(y, &) — 0 E(y,£)) A- A >0 for all symmetric matrices A,

all continuous bounded functions £, and y € Y.

Since {bZ} converges strongly in L?(Q27), e(uf) converges weakly two-scale, and

E# (b 3) is uniformly bounded, we have the weak two-scale convergence of the sequence
(E=(525)) 7 e(ug) to (E(y, be,3))? ((ue) +e, (ul)) and of (29E (b2 5) ~ O EF (b 5)) 2 e(us)
to (2YE(y, be.3) — O E(y, be.3))? (e(ue) + €, (ul)) as e — 0. Using in (65) and (66) the
lower semicontinuity of the corresponding norms, the initial conditions for «, p$, and
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8tu;i, and the convergence of d,ug, p, and 6tujc implies

Pe\|5tue(5)§(5)||2L2(QxYe) + 27/’e||3tUeC||%2 Q.xY,)
+ (E(y, be,3)C () (e(ue(5)) + ey (ug(s)), e(ue(s)) + ey (ue(s))) gy,
+{(C(27E(y, be 3) — E(y, b 3)) (e (Ue)+ey(ui))ve(ue)+ey( ). xY.
+ ppllpe(5)C(8) 172 (ax vy + 27PplPe CllE2 (0 xv2)
2K, (Ve + V00, Ve + Vypblan ey + 7005 (51C(3) 2 ey,
+ 29518y Il 20, xvy) + 20y (Orug) 20, vy
<2|Y] 1iggf5€(ug,pg,atu;) <2|Y]| liranjélpga(ui,pi,atu?)
= (E(y, be,3)(e(uco) + €y (iico)), €(ueo) + €y(teo))axy,
+ pellugolFzaxy.) T PollpeollZzxy.) + Pf||u}o||i2(nxyf)
+ 2|V [(Fu, 0rueC?) a0, + 2|Y [(Fp, peC?) 00,

for s € (0,7]. Here we used the weak and the weak two-scale convergences of
drug, e(ug), e(drug), pe, and Vpg, and the weak two-scale convergence of dyu} and
ee(dyuf). Considering the limit equations (47)-(49) for ue, pe, and dyuy and taking
(Orue €%, pe €%, Oruys C?) as a test function yields

1 1
§PeHatue(S)C(S)HQB(QxYe) - §Pe||3tue(0)||2L2(QxYe) +’7Pe||3tue4||2L2(stYe)

+ <E(y7 be,S) (e(ue) + ey(ué)) , e(atue) C2>stye + <vPe + Vypi, Orue C2>QS XY,

1 1
+ ipp”pe(S)CQ(S)||2L2(Q><Ye) - §Pp||pe(0)\|%2(ﬂxye) + 7Pp||peCH%2(QSxYe)

1
+ (Kp(2,9)(Vpe + Vype) = Ortte, VpeCha,xv. + 5051101 (5)C(3) 72 0y

- %PfHath(O)Hiz’(Qxyf) +VPfH3thC||2L2(QSfo) - <péa3tuf 'n<2>95x1“
+ pley (Bruy), ey (Our)C?)a.xv; = [YI(Fu, Oue ) a0), + 1Y [(Fp,pe () o0,
for s € (0,T]. From (55) for the corrector p! we obtain
(69)  —(pe, By - nC*)a.xr = (Kp(@,y)(Vpe + Vype) — Ortie; Vg (o, xv.
Considering (54) for the corrector u!l and taking d;ul (% as a test function yields
(E(ys be3) (e(ue) + ey (uc)), (at”€>c2>sz XY,
= (B(y,bes) () + e, (uh)), (e(Brue) + e, () gy Ly

(70) :éww@@@<<»+%<<m@u e(ue(s)) + ey(ue($)) gy,
‘%@@mﬂXq%m»+%wam»dww»+%WH®Mnn
45 (9B, bes) — BBy, b)) (eue) + ey (ud)), o(ue) + ey (ul))g .

Combining (68)—(70) with (67) and using that e,(ul(0)) = e,(fe0) in Q x Ye, we
obtain

E(Ue, Pe, Opuy) < hmmfge( ug, pg, Opu) < limsup E° (ug, pg, dyuf) = E (e, pe, Oruy)

e—0
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and thus conclude that lim._,q Es(ui,pg,&gu?) = &(Ue,Pe, Opup). Then the strong
two-scale convergence relations stated in the lemma follow by lower semicontinuity
arguments. ]

7. Derivation of macroscopic equations for reaction-diffusion-convec-
tion problem. The homogenized coefficients in the reaction-diffusion-convection
equations, which will be obtained in the derivation of the macroscopic problem, are
defined by

1 ,
Dg*j;;n =— [ [D) + (DyVywi(v)),]dy,
Y1 Jy,

(71) D™ = ][ [DY(y) + (D(y)Vy’ (v)),] dy,
Y
vyt z) = % [ (60w t.2.)) = D9 2(t.2.0)] .

with wp, and w being Y-periodic solutions of the unit cell problems

div(Db(Vng (y)+e;))=0 inY,

(72) ,
Dy(Vywi(y)+e€j)-n=0 onT
and
(73) div, (D(y)(Vyw’ +¢€;)) =0 in }: \ T,

D.(Vyw! +ej)-n=0, Df(Vych +e;)-n=0 onT,

where wl(y) = w’(y) for y € Y, and w}(y) = wl(y) for y € Y, and z is a Y-periodic
solution of

(74) diVy(DnyZ - g(ath)) =0 in Yf,
(DfVyz —G(Opus)) -n=0 onTI.

Here

D(y) = D, inY,,
Y=1p;, vy,

Notice that the definition of D™ and D"™ and the fact that Dij > 0, with j =
1,2,3, D, > 0, Dy > 0, and wg, w’ are solutions of the unit cell problems (72) and
(73) ensure that D™ and D"™ are positive definite.

Next we derive macroscopic equations for the limit functions b, and ¢ defined in
(39). The main difficulty in the proof is to show the convergence of the nonlinear
functions depending on the displacement gradient.

THEOREM 7.1. Solutions of the microscopic problem (6), (8) converge to solutions
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be,c € L*(0,T; HY(Q)) of the macroscopic equations
Ve O;b, — div(DI™Vb,)
= 196][ gb(C, beyw(be,3>y) e(ue))dy +Vr P(be) in QTa
Ye

drc — div(D"™Ve — vy c)

75 .
( ) = ﬁf gf (C) + 796][ ge(c, bea W(be,Sa y) e(ue))dy n QTa
Ye
Dpo™Vb, -n = Fy(be) on (997,
(D"™Ve —vie)-n = F.(c) on (00,
b(0,2) = bo(z), ¢(0,z) = co(x) in £,
where

3 ij i 3
(76) W(be,?ny) = {Wklij (be,37y)}k717iﬁj:1 = {bkjl + (ey(w” (be73’y)))kl}k,l,i7j:17
with w' being solutions of the unit cell problems (42), and by = ex, @ e, {ek}zzl, 1
the canonical basis of R3.
Here 9. = |Y|/|Y|, 95 = |Y}|/|Y|, and 9r = |T|/|Y|. We have the convergence
in the following sense:
b — be, ¢ —ec strongly in L*(Qr),
VbE — Vb, + Vybl, V& = Ve+ V' weakly two-scale.
Proof. We can rewrite the microscopic equation for b as
- <bi XQi ) a75‘)01>QT + <DZVbZ7 V‘Pl XQg>QT - <b€03 @1XQ§>QT
= (gv(ce, b e(ue)), p1 X dag +e(P07), p1)rs. + (Fb(0), 1) (90) -

with @1 = ¢1(t,2) + ea(t, z, /), where ¢y € C*°(Qp) is such that ¢1(T,z) = 0 for
z € Q, and ¢z € C5°(Qr; Cpe,(Y)), and x,. the characteristic function of 2F. Taking

per

(77)

into account the strong convergence of b7 and c; and the two-scale convergence of Vb7
and V¢£ (see Lemma 4.2) together with the strong two-scale convergence of e(ug), we
obtain

—([Yelbe, Ou1)ar + (Do(Vbe + Vybe), Vo1 + Vyda)arxy.
(78) —{|Yelbeo, d1)ar = (gv(c,be, e(uc) + ey(ue)), $1)arxv.
+ (P(be); 1) xr + [Y[(Fb(be), é1) 601
Here we used the fact that due to the strong two-scale convergence of e(ut), we have
tim |72 (e(ug)) — e(ue) — ey (ul) 22,y = 0.
&

where 7. is the periodic unfolding operator for the perforated domain €Z; see, e.g.,
[15]. Assumptions on g, in A4 and the a priori estimates for ¢%, b, and uZ ensure

lgn(T2(2), T2 (65), T2 (e(uf)) — (e bes eue) + ey ()11 (ar xve)
79) <G (HT;(Ci) —cllz2rxy.) F T2 (05) = bell L2 (0r xvy)
79
+ 172 (e(uf)) — e(ue) — ey (wh) | 2(@r xv2) ).

g5 (et b e(wd)) 2oz ) < o
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where Cy = C1 (1T (e(u2) | 2@ v 6(te) ey (uh) 2@ evys 1T () 20 wveys
172 (09| L2 (20 xvo)s el L2 @) |bell L2 (7)) and the constants Cy and Cy are indepen-
dent of . Combining the estimates in (79), the definition of QF, and the strong
convergence of £ and bS in L?(Qr) and of T*(e(u)) in L?(Q x Y,), along with the
properties of the unfolding operator, we obtain

1
lim gu(cS, bs, e(ud))y (t,x, g)dazdt = |Y|/Q /Y gu(C, be, e(ue) +ey(ui))wdydxdt
T e

e—0 Qa

+ rplim /Q | [T 660, 7206, T2 020) — gl i)+ ey ()] T2 ()

(80) = % /QT /Ye gv(c, be, e(ue) +ey(ué))wdydxdt

for all ¢ € C§°(Q7; Cper(Y)). Thus using the estimate for ||gs(cZ, bZ, e(ug))l| 2o
n (79), we conclude

ar)

gp(cS, b5, e(ul)) — gp(ce, be,e(ue) + ey(ui)) two-scale.

To show the convergence of the boundary integral over I'*, we used the Lipschitz
continuity of P and the trace estimate
(81)

ellbg = bell3aqeg) < Cr (1166 = bell3zqar ) + 2NV 0 = b)lBaqar ) )

< Co (82 = belZaqar ) + 22 (190l nacoz ) + VBl )] )

Then due to the strong convergence of b in L?(Qr), the regularity of be, i.e., b €
L?(0,T; HY(Q)), and the boundedness of Vb in LQ(Q‘;T), uniformly in €, we obtain

tim e[| P(F) — P(be) [3a(rs) < Clim e 165 — bell3aqrs ) = 0.

Taking in (78) first ¢1 = 0 and then ¢ = 0 and considering ¢; such that ¢,(0) = 0, we
obtain macroscopic equations for b. in (75). The standard arguments for parabolic
equations imply that d;b. € L2(0,7; H'(Q)). Combining this with the fact that
be € L2(0,T; H'(2))(see Lemma 4.2), we conclude that b, € C([0,7]; L?(€2)). Then
from (78) we obtain that b, satisfies the initial condition.

The properties of % and of the unfolding operator 7, for the domain Q5 yield

lim G(Ou}) Y(t,x,x/e) drdt = hm G(T2 ¢ (0pu3)) T2 () dydadt
==0Jas . \Y\ Qr JY;
G(o dydxdt
|Y| Qr Yf ( tuf)w y ’
|Y| lim / / S (005)) — G(0pup)] T2 () dydedt

for all ¥ € C5°(Qr; Cper(Y)). Using the Lipschitz continuity of G and the strong
convergence of T f(atuf) ensured by the strong two-scale convergence of 8tu§p, we
obtain

lim [G(T2 1 (00u5)) — G(Dyuy)] T2 (W) dydadt

e—0 Qr xYy

< Clim |21 (00) — gl 92 @ vy =0
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Thus taking into account the boundedness of G(9;u3), we conclude

G(0u}) = G(Opuy)  two-scale.
In the same way as for g;, the assumptions in A4 ensure that
lge (T2 (c2), T2 (b2), T2 (e(ug))) — ge(c; be, e(ue) + ey (ue)) || Lt (@rxv.)
(82) < C<||7-e*(ci) = cllrzrxv.)
FIT72(02) = bell2r xve) + 1T (e(ug)) — e(ue) — ey(uelz)HL2(QT><Ye))7

where C' = C(|| T (e(uf))l| 2@, xv.): lle(ue) + ey (u)ll 22 xvo) 172(€) | L2(0r xv2)

172 (02 | L2 (2 xv2)s el 2@y s [1PellL2 (7). The a priori estimates for ¢, b, and ug

and assumptions on g in A4 imply
llge(ce, be, e(ue))l L2z ) < C,

with a constant C' independent of . Then estimate (82) and the strong convergence
of ¢£ and b¢ in L?(Qr) and of T*(e(uf)) in L?(Qr x Y,), together with calculations
similar to (80), yield

ge(c, b5, e(us)) — gelc, be, e(ue) +e,(ul))  two-scale.
Considering o (t, ) = 11(t,x) + by (t,x, %), with ¢; € C§°(0,T;C°°(£2)) and 9y €
Cee (75 O (Y I)), as a test function in (11), we obtain
_<ciXQ§ ) 8t<P2>QT + <DcV027 v<p2XQ§>QT - <gc(civ biv e(ui))7 (P2XQZ>QT
—{chxas, Op2)ar + (DfVes — G(OwuF)ct, Viorxas Jar — (97(c), p2x05)or
= (Fe(c), v2) (00 r-

The two-scale and the strong convergences of ¢; and 5 together with strong two-scale
convergence of e(ug) and dyu} ensure that

— ([Yele, Ourr)ar + (De(Ve+ V'), Vibr + Vo) arxy,
—{|Y¢le, Otbr)ar + (Dy (Ve + Vye') = G(yug)e, Vi + Vyiha)arxy;
— (ge(c, be, e(ue) + €(u))), Y1)arxy, — (97(0), Y1) arxy; = Y I(Fe(c), ¥1)00),-
Letting 11 = 0 yields
(De(Ve+ Vyel), Vyta)arxy, + (De(Ve+ Vyck), Vo) arxy;
—(G(Bvug)e, Vyva)orxy, =0,

where ¢ (t,z,y) = c'(t,z,y) for y € Y, and (t,z) € Qp, with | = e, f. Taking into
account the structure of (83), we represent ¢! in the form

(83)

clt,z,y) = Oz, c(t, x) W (y) for (t,z) € Qp, y €Y,

M-

I
—

J

cp(t,z,y) =) Oujelt, ) (y) +e(t, ) 2(t,zy)  for (t,2) € Qr, y €Yy,

M-

Il
—

J
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where w/, with j = 1,2, 3, and z are solutions of the unit cell problems (73) and (74),
respectively. Then choosing ¥y = 0, we obtain the macroscopic equations for ¢ in
(75). d

8. Well-posedness of the limit problem. Uniqueness of a weak solution.
To ensure that the whole sequence of solutions of microscopic problem converges, we
shall prove the uniqueness of a solution of the limit problem (47)-(49), (75). In fact
we are going to prove, using the contraction arguments, that the limit problem is
well-posed and in particular has a unique solution.

- We consider an operator K on L>(0,T; H'(Q)) x L>(0,T;L*(Q)) given by
(ul, Opu) = K(ul ™, 8tu3f_1), where for given (ui™t, 8tu;_1) we first define b7, ¢’ as a
solution of (75) with (uZ~!, (?tuifl) in place of (ue, Oyuy) _and ‘Achen‘(uje‘,f_]e‘, u;,_w}) are
solutions of (47)—(49) with b/ in place of b.. We denote ¢/ = ¢/ — /=1 bl = bl — bl =1
v - R P ,_ 1 9 o
Wt =l w72 it = piml —pi=2 and W = v} — ' °. To prove the
existence of a unique solution of problem (47)—(49), (75), we derive a contraction
inequality and show that the operator K has a fixed point.

First we obtain estimates for solutions of the reaction-diffusion-convection system
(75).

LEMMA 8.1. Any two consecutive iterations
(ug_l,&gujﬁl), (b, and (ug—Q,atug;‘Q), (b=t 7 h
for the limit problem (47)—(49), (75) satisfy the following estimates:
Y g

||bg||Lw(07T;L°°(Q)) + HCjHLoc(O,T;Loc(Q)) + ||bg_1|‘Loo(0,T;Loo(Q))
+ 1| e 0,72 (@) < C
84 - B
(59 16211 oo (0,525 (2)) + €[] £ow (0,322 ()

< O 11+ g g ay + 107 2|

with an arbitrary s € (0,T] and any 0 < o < 1/9, the constant C being independent
of s.

Proof. The boundedness of b) and b)~! can be obtained in the same way as the
corresponding estimate for b5 in (16). To show the boundedness of ¢/, we consider
(¢ — M)*, where M > max{||co||r(q), 1}, as a test function in the equation for ¢/
in (75). Using assumptions A4 on g, gy, and F,, we obtain

I’ (5) = M) F |72 + IV (e = M)F|[2q,)
< M6l o=@,y + 1l = M) [|11q.)
+ M v} o=, + IVE = M) .
. 1 ,
+ OBl 0 + Collvy (o) + LI = M) L2,

+ le(ud ™) lzoe 0,502 W7 | oo (@usz2 v 1€ = M) (1720 5:24(02))
- . s 1
+ lle(ul 1)||2L2(QS)IIWJIIim(QS;Lz(ye))(l+M2)/0 Qs (t)]2 dt

j—1

for s € (0,T), where Qp(t) = {x € Q : I(t,x) > M} for t € (0,T). Here t
74)

v
is defined in the following way: first we replace J;uy in the unit cell problem (
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with 8tuic—1 to obtain 2771, and then we use the third line of (71) with 27! instead

of z to obtain Vifl. The definition of V?fl and of W/ = W(bé’?ﬂy) in (76) to-
gether with assumptions A1 and A3 on E and G ensure that ||vzc_1|| L=, < C and
||WjHLoc(QS;L2(YE)) < C]Hb';’?)HLOC(QS) < Cy. Using the embedding H'(Q2) C L*(Q),
we obtain

I = MY* e o2y + V(& = M)F|aq,) < OM? / (120 (D] + [0 (1) at

for some s € (0,7]. Then applying Theorem I1.6.1 in [22] with ¢ = 4(1+7), r = 5(1+
7)/2 and iterating over time intervals yields the boundedness of ¢/ in L°°(0, T'; L>°(2)).
The same calculations ensure also the boundedness of cﬁ -

Considering the equations for b/ and ¢/ and using b) and ¢/ as test functions in
these equations, we obtain

182 () 1720y + IVBLIZ 200y < Culle? ™l zoe 0,5:L2) 1021720, 520 02))
+ 182032 0,y + Colbllze o) (1821320, + 1€ 1320,
o+ Callb e 20 [l (@) ey + W (0 sizsceuzzny + 5120,

+ ”bgH%Z(O,s;L‘*(Q))} + Calle(ul™ )l 0,552 @) 102172 (0.5:24 (02
where Wi = W(bi_rga y) — W(bigl,y), and

1& ()1 720) + IV 1720,
< Cy [+ (16 | pe o0y + 11 | 2o (s [”EjH%Q(QS) + H@”%%QJ]
+ Colle(ul ™)l Lo (0,522 () U|b£||%2(0,s;L4(Q)) + ngll%Q(O,s;L‘l(Q))]
+ Cs (1 o) + 17 ) [le@ )32,

HIW 20,504 iz20v20) + 1€ 1220, + ||Ej||2L2(o,s;L4(Q))}

~j—1

+ G (I8 1) 1 B,y + 16 B I B ]

for s € (0,T]. Here we used assumptions A4 on the nonlinear functions gy, ge, g7, P,

F,, and F,. From the definition of v * and WJ—!, the Lipschitz continuity of G and
assumptions on E; it follows that

7 2200y < ClUOTEL |20 x vy W9 L2 0,504 22 (v y)) < ClBEI L2(0,0:2402)) -

Adding the inequalities (85) and (86), considering the compactness of embedding
H(Q) C L*(Q), and using the Hélder and Gronwall inequalities yields

1821l oo 0,522 () + VBN 200y + 1@ | o 0,:2200) + 1V [l 220

< C [le@ sz + 10 z2@xvp] -

(87)
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To derive the estimate for the L>-norm of b/ we use (b7)P~! as a test function in (75):

1~ dp—1),_~:»
)2 @+ == IV (e, < O [l 0 20

+ lle(wd ™)z (0,022 W7~ e sz | 1B 132 0 sz
(88)  +Calltll o, + Collb T ey (e B,
+ Cl |63 | e 2 (el DWW | 23 [B1P )y,

. 1, . p— 1 ~ »
+ Csllb Mz | I8 W 0,siz20) + 5021 220,00
for s € (0,T]. Using the Gagliardo—Nirenberg inequality
lwllage) < CIVWl 2 () llwllz),

with @ = 9/10, and making calculations similar to those in (118) in the appendix, we
obtain the following estimate:

(e(@ )], B[P "Ya, < 52
p

(89)
+ 0 2= e e O le@ I,
1 P L (0,s;L'(2)) L1+ OS'L2(Q))7
where = ,0<0<1/9,and § > 0 can be chosen arbitrarily. The definition of
Wi 1mphes

(90) (le(wd™ W |2,y [B2IP~ e, SCHe(uz_l)HLoo<0,s;L2(Q))H‘bglg||2L2(0,5;L4(Q))'

Incorporating the estimate (87) for ||é7|| = (0,r;12(n)) together with (89) and (90) into
(88), using the Gagliardo-Nirenberg inequality to estimate |5/ 1%, r(0.) PY 67| HLI(Q

and iterating over p = 2% with k = 2,3,..., as in the Alikakos lemma [2, Lemma 3. 2]
we finally get

152 e 0.2 ) < C1@™M 143 g sugngayy + 190 e2evy)]
for s € (0,7] and any 0 < o < 1/9. ad

The macroscopic equations for elastic deformation and pressure are coupled with
the two-scale problem for fluid flow velocity. Thus the derivation of the estimates for
ue and Oyuy is nonstandard and is shown in the following lemma.

LEMMA 8.2. For two iterations
(ug_l,pé_l,ﬁtugc 7Tf b, LY and (ué,pé,@tu;,ﬂ'}), (b1, ¢)
for limit problem (47)—(49), (75), we have the following estimates:
||atag||L°°(O,s;L2(Q)) + ||e(77g)||L°°(0,S;L2(Q))
(91) + 15 e 0,522 2)) + IVPL L2020y < ClBLII Lo (0,551 (02))
106 | oo (0,5:22 (x vy)) + €y (0t} || L2, xvy) < CllOLlILoo (0,552 (2))
for s € (0,T], where u} = ul —ul™t, pl = pl —pi—1, 8@; = 6tu§c - 8tugc_1, b =

bl —bi~t and the constant C is independent of s and solutions of the macroscopic
problem.
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Proof. We begin with the two-scale model for fluid flow velocity. Taking 8,5&}' —

dyul as a test function in the equation for the difference 8@;7 we obtain

(B (0] 5 el (s)), e((s))) g — (E"™(b] 5" )e(al), e(al))q,
+2((EM™(b] 5) — EMM (0] 51)) e(ul(s)), e(@l(s))),,

— 2(0 (B (1] 5) — EMR (0] 51))e(ul), e(@l)),

= 2((E"™ (b 5) — E"™ (0] 51))re(ud), e(al)),

s

+ pell Ot ()72 () + 10T} ()12 2y + 2utlley (Brtip )17, vy

[ o dy> — 95, B4 - )arxr + el 0T 22
! Qs

+ o1 18603 (0) [ 12y, + (B (051 e(@l(0)), e(@l(0))),,
+2((E"™ (0] 5) — EM™ (0] 51)) e(ul (0)), e(@l(0)),,

+2<Vﬁz,aﬂg +

where plJ = plJ — pli=1 Equation (47) for pJ and pi~! yields
pollBL(s) (720 + 20K, VL, Vil)a,
= 2(K,, 041 + Q(x, ) — Q, 0wl ™), VL), + ppllPL(0) 1720
Due to the assumptions in A1 on E, we have
[B"™(6] 5) — B (013 1 (@) + 10:(B"™ (6] 5) = B (6131)) | o o)
< C|bE|| Lo (0,551 ()

for s € (0,T]. The expression (50) for plJ and pl“~! and the estimates for the
H'-norm of the solutions of the unit cell problems (43), (44), and (46) yield

1527 20, xr < C (IVB2(a) + 10 z2(0,) + 10 |22, x1) -

From the compactness of the embedding H'(Y;) C L?*(T") we obtain

||at17§c||L2(str) < C&H@@Hm(ﬂsxyf) + 6||vyatﬁ3;”L2(Qs><Yf)

for any ¢ > 0. Adding (92) and (93) and applying the Holder and Gronwall inequalities
yields
105 e 0,5512 (2 vy + 1@y (D) | L2, xvy) + 104 | Lo (0,82 ()

+ ||e(ﬁi)||Loo(o,s;L2(Q)) =+ ||l72\\Lw(o,s;L2(Q)) + ||Vﬁé||L2(QS) < C||Ei||Lw(o7s;Lx(Q))

for all s € (0,T]. 0

The estimates in Lemmas 8.1 and 8.2 together with a fixed-point argument imply
the existence of a unique solution of the strongly coupled limit problem (47)—(49), (75).

LEMMA 8.3. There exists a unique weak solution of the limit problem (47)—(49)
and (75).
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Proof. Considering the equations for the difference of two iterations for (47)-
(49), (75) and using estimates in Lemmas 8.1 and 8.2 yields

[06(u? — wl ™" | Lo (0,522 (0)) + lle(ud — wl ™)L 0,522 ()
+ (106 (u} — u}_l)HLw(o,s;Lz(Qxyf)) + ey (u} — Ugr_l)HLz(styf)
< C 6L — bl oo 0,52 ()

< Cllle(wl™ =l ™)1

(94)

j—1 j—2
(o,s;L2(Q))+H8t(u§‘ - uj )HLZ(QSXYf)}

for s € (0,T) and any 0 < 0 < 1/9, where C' is independent of s and iterative solutions
of the limit problem. Considering a time interval (0,7, such that CT T+ < 1 and
CTY? <1, and applying a fixed-point argument, we obtain the existence of a unique
solution of the coupled system (47)—(49), (75) on the time interval [0, T]. Iterating this
step over time intervals of length T yields the existence and uniqueness of a solution
of the macroscopic problem (47)—(49), (75) on an arbitrary time interval [0, T7]. 0

9. Incompressible case. Quasi-stationary poroelastic equations in f.
Problem (6)—(8) was derived under a number of assumptions on plant tissue. In some
cases these assumptions should be changed, and system (6)—(8) should be modified
accordingly.

In this section we consider two possible modifications of problem (6)—(8):

(i) the incompressible case, when the intercellular space is completely saturated
with water and we have the elliptic equation for p¢;

(ii) the quasi-stationary case for the displacement u¢. In this case we can consider
both compressible and incompressible fluid phases in the elastic part Q€.

In the first case the equation for p¢ in (7) is replaced with the following elliptic
equation:

(95) — div(K,Vpg — dyug) =0 in Q 7.
In the second situation we consider in (7) the quasi-stationary equations for ug,
(96) — div(E*(b 3)e(uc)) + Vpe =0 in QF 7.

In the incompressible case, i.e., pS satisfies (95), Definition 2.4 of a weak solution of
microscopic problem (6)—(8) should be modified. Namely, we assume that

(97)  pf € L*(0,T; H'(Q)) with / pi(t,x)der =0 for te€(0,T)
Qg
and no initial conditions for p¢ are required. Additionally we assume that
/ Fp(t,x)dr =0 for te(0,T).
o0

The analysis of the quasi-stationary problems considered in this section is very
similar to the analysis of (6)—(8) presented in the previous sections. The only part
that should be slightly modified is the derivation of a priori estimates.

For the incompressible case, in the same way as in the proof of Lemma 3.2, but
now with (95) for pg, we obtain

10ug (s)]|72qe) + lle(ue ()7 + IVDENT20: ) + 52He(8tu§)||2L2(Q;s)
(98) + ||8tu?(3)||2L2(Q; < S[lug ()7 2(a0) + IDE1Z2((0,) x00)) + ClHe(Ui)HQp(Q;S)
+ Cs [I1Full T 0,522 00)) T 10:FullT2 0,y xa0) + 1FpllE2((0,5)x00)] + Co
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for s € (0,T] and arbitrary § > 0. Then, as in the proof of Lemma 3.2, applying the
trace and Korn inequalities [33] and using extension properties of uS and assumptions
A5 on initial data uS,, uly, and u}co, we obtain estimates (19), (20), and (22). The
trace and Poincare inequalities together with the constraints in (97) and properties
of an extension of p¢ from Qf to Q (see Lemma 3.1) ensure that

(99) 1920172 ((0,5)x00) < C’IIVpilliz(Q;S)

for s € (0,T]. Then applying the Gronwall inequality, we obtain from (98) the esti-
mates for ug, dyug, pZ, and dyuf in (21).

Differentiating the equations in (7) and (95) with respect to time ¢ and taking
(0?us, Oyp, afuft) as test functions in the weak formulation of the resulting equations,
we obtain

pellOFus(s)|[ 72 (0z) + (EF (b 3)e(Diug(5)), e(Dpu(s)))as

+ 2K V0L, Voup)az , + prllofus(s)ll7z ey + 21 (07 ui)l Tz 0; )
=2(0iFu, 07ug) (00, + 2(0:Fp, 0ip%) (00, + pellOFus(0)]|72 )

+ pellOfuF(0) 172 (s + 2(0E" (b 5)e(u(s)), e(Drug(s))) o

+ (E° (0 5)e(0ru (0)) — 20,E° (b 5(0))e(u(0)), e(ru (0)) )

— (2077 (b 5)e(u) + OE (b 5)e(dpu;), e(@ug))q.

(100)

for s € (0,T]. As before, applying the Korn inequality and the Poincare inequality
together with the constraint in (97), we obtain the estimates for 97ug, 0;pf, and d7u3
stated in (15). The equations for d;u} and ug and calculations similar to those in the
proof of Lemma 3.2 ensure the estimate for p3.

To derive the a priori estimates in the second case, when u¢ satisfies the quasi-
stationary equations (96), we have to check that the Korn inequality holds for ug.

LEMMA 9.1. Forui(s) € H'(QF), with s € (0,T], we have the following estimate:
1
||U§(5)||H1(Qg) < C[He(ui(s))HLz(szg) +e2 ||H78tu§|\Lz(paT) + Hui(O)HHl(Q)L
[|Osug (s) || rr2 (g < 0[||8te(ui(8))\|L2(Qg) +e? Hﬂfatuff(s)ﬂm(rs)]-

Proof. Consider first Y, and V = {v € H}(Y.)? : Il,v = 0 on I'}. Then since
VN R(Y.) = {0}, where R(Y.) is the space of all rigid displacements, we have

(101)

(102) 01 v,y < Cllle()|Zy,) + ITrolZ2 ()]
Considering scaling x = ey and summing over £ € =Z¢, we obtain
(103) ”vHiQ(Qi) +52||VU||12(§3§) < C[egHe(v)”iz(Qi) + 8”rLrv”%?(FE)]a

where O = Int(Ugez- e(Ye +€)). Using the fact that I1,0,us = II;0ru§ on I'* and
estimating u by dyus and the initial value uZ(0), we obtain

ML ug(s) [ L2 (rey < ClIT0uT | L2 (rs) + [uE(0)] L2 (re) ] -

Hence applying (103) to u and using the fact that 5||u§(0)||2L2(F5) < C’||u§(0)||§{1(m,
we have

()12 ) < CE () + M0 [2ars ) + 2(0) 1)
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Then considering the extension of ug from Q to £ (see, e.g., [33]) and applying the
Korn inequality in 2 yields the estimate stated in the lemma. 0

Then, in the same way as in the proof of Lemma 3.2, applying the Korn inequal-
ities proved in Lemma 9.1 and using extension properties of u¢ and the regularity of
the initial data u}o € H?(Q)?, we obtain the following a priori estimates for solutions
of the quasi-stationary problem:

gl o 0,7: 17 (2)) + [10¢u|| Lo 0,752 (22)) < C,

Ipellz2 0,10 (2y) + 19epEll L2 0,110 (22)) < O

(104)

10¢uF || Lo (0,L2(05)) + ||at2u§“||L°°(0,T;L2(Q;))

+ el Vouglla oL @s) + P72 s ) < C,

where the constant C is independent of €. Notice that in the incompressible and
quasi-stationary case, i.e., in the case of (95) and (96) for p¢ and g, respectively,
problem (7), (8), (95), and (96) is well-posed without the initial conditions for uZ and
pS. In this case uZ(0,-) and Jyus(0,-) are determined from the corresponding elliptic
equations and the initial values for the fluid flow u}o.

In contrast with the limit equations given by (47), in the quasi-stationary and
incompressible case the macroscopic equations for effective displacement and pressure

do not contain time derivatives and take the form

— div(E™™(be 3)e(u.)) + Vpe + ﬁfpf][ Qfupdy=0 in Qp,
Yy

(105) - div(KﬁomVpe - Ku atue - Q(I7atuf)) = 0 in QT7
Ehom(bevg)e(ue) n = Fu on (aQ)T7
(K2 Vpe — Ko dyue) -1 = Fy + Q(a, dyug) -n on (97,

together with the two-scale equations (49) for uy and 7y.

10. Appendix. Here we provide proofs of the estimates for ||bg|| Lo (0,7;1(0z))
llc*[| oo (0,7; L4 (2=)) and for the difference ||52J | oo (0,7, (022)) of two iterations for sys-
tem (6)—(8).

LEMMA 10.1. Under assumptions A1-A5 solutions of the microscopic problem
(6)—(8) satisfy the following estimates:

16€] o< 0,7, (022)) < C,
(106) ‘ ( (Q¢)) ;
lleell oo 0,04 (02)) + €kl 0,730(05)) < C,

where the constant C' is independent of €.

Proof. To show that [bZ|P for p > 2 is an admissible test function for (10), we
set b (¢, z) = min{bZ(¢t,z), N} for (t,z) € Qf 1, where N > [|beo || (q), and derive
estimates for b5 y|? independent of N. Then letting N — oo, we obtain the desired
estimates for b7. Taking (b ~)P71 as a test function in (10) and applying simple
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calculations, we obtain
162, 3 ()17 0 2z + IV 10E 1 % 122 ><Cl[||e( Lo (0,522 (02))

Tl sz + 1 / 1521 e 165 0

(107) p 25t
+ C2||b80||Lp (Q2) + CSHbiHLOO(O $;L2(9Q2)) |||bi N| : ||L2 0,5;L4(Q¢))

+C4 |Hb N|2 HL2(05L4(QE ) + ”C HLp 0,5;L2(Q¢)) + He( E)Hip(o,s;LZ(Qg))
+e([ PO 10w P~ )rs + (F 001, 105 67~ 00,

for s € (0, T]. Here we used the fact that the definition of b5  implies
(Vbi,V( ‘Z,N)”‘%; <Vbe va( 2,N)p_1>ﬂiys
and that due to the inequality bg > 0 in g - we have
A LA s WS %Hbi, (s >||Lp(95 = el gy = ool
+ (b2(5), 02, N ()" e e (s H N Loaz) = (1 +1/P)1beoll T 0z )

Here Q5N (t) = {z € Q5 : bi(t,#) < N} for t € (0,T). Applying the Gagliardo-
Nirenberg inequality, we can estimate

(108) (162 N|p||L2 Q) = [|b N‘Q ||L4 Q) < CIVbg N|2 HLZ(Qi) ‘7||L1 Q2)

with o = 9/10. Using the embedding L?(0,s; H*(QS)) C L?(0, s; L5(£2)), in space-
dimensions two and three, and applying the Gagliardo—Nirenberg inequality to
16, 12 | 22 (2 vields

/ 105 20 00 182 e
—1)

3(p—1)
/ (1821 2 g, + I 1EEL 1 ey ) I o 19105 e

Then using the Holder inequality on the right-hand side of the last estimate, we obtain

S
162l
0

NHLQ:D(QE)dt

) c QTP el &2 %
) .
sy <o [ (weky, IV )
2p-3
» 3,,3 B
s 8 1 o | [ 19113855
,8)

For p > 3 we can estimate
M4k 720z ) < IIVbEIILZ(Qel + IIVWI*IILZ(QE \5:)

(110)
< IVBEIZ2 0 . )+ IV IbE = ||L2<QE )
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where Q2L = {(t,z) € Q¢ : bi(t,z) < 1}. Also notice that for p > 3 we have

3 (2p—2) 2)

1955 < land 2p < p — 1. Thus applying the Young inequality in (109) yields

/ 16511 2 22 116, 117 20 0yt < 8y sup [0 w170 ey + 021 VIOE 1211220 )
(111) 70 (0:) ’

e

+Cs (L 1051 s ey + V0 + IVIEEL T ey )

for any 6; > 0 and d2 > 0. Using the trace inequality, we estimate the integral over
I as

(| POD)I, 65 v P~ )rs < Cre (L + (2], b2 w17~

S

I 2 L - 5
<Cale) [ [10 MO0 1y V102 Py + 10215 U 7115 s
0

p—1

(112) x 1851 % 200 V105 B oo 7 dt
1 -
< ale) [ 1+ NI ey IV EIB R |
L, p=l L, p=1
X sup |||bz,N|§||L§(Qs)Hv|b;N|§||L§(Qs )
(0.5) ‘

Applying the Young inequality on the right-hand side of (112) and using (110), to-
gether with the uniform estimate of ||VbS||p2(qs ) obtained in Lemma 3.2, yields

p, L1 c
PO s < €)1+ I Wiy (1 IVEF IR )

+ 01 (S(}lp [ N|2HL2(QE + 62| V[b N|2HL2(QE BE

The same calculations together with (110) ensure that

L)1, 165w P o0, < @) |1+ 1SN T 1 s 0,0512000)) + VIS 1132 )
+0 (S(}lp)l\b el o asy + 020 VIBE N1 E T2 -
]

Considering p = 3 and using the standard a priori estimates (27) for b yields

s s %
P e A (C TR N A Y

[N

s . 5
(113) <sup 5 o RCCEE A

0,s)

3
< Cs + 61 sup ||b7 n(s )||L3(Qg) + 02[|V[bg v |2 ||%2(ng5)~

0,s)
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For the boundary integrals, for p = 3, we have
(P21, bg n[*)rs + ([F (021, 165, %) 092,
1 5
< C1(E) 1+ 1061w 0 sz 190 D s |

2 3. 2
: BN 2 1 i) V105 12 1122 e
(114) (S(}’lg Il e,N| ||L2(Qe)|| ‘ e,N| ||L2(Qe)s)

1 15
< Co(e) |1+ 1061w 0 se2200) 190 D o |

3
+ 615 103 9y + Bl VI E e

Considering (107) for p = 3 and using the estimates (108), (113), and (114) together

with the standard a priori estimates for b, ¢, and u$ shown in Lemma 3.2, we obtain

165, ()15 (e + IV10E [ 132 s )
3
<C(e) + 1 (s(;up) ||be,N(S)HL3(Qi) + 02[|V[bg v |2 H%ﬂ(Qg’s)
)8

with s € (0,T], a constant C(e) independent of N, and arbitrary 0 < &; < % and

0<dy < % Considering the supremum over (0, s) and taking the limit N — oo yields
that b € L>(0,T; L3(Q)) and V|b5|? € L2(Q‘;T). Taking iteratively p = 4,5,...
and choosing d; > 0 and J5 > 0 sufficiently small for each fixed p and for fixed €, we
obtain estimates for b5 x|z (0,7;Lr(0s)) and ||V|bi,N|%||%2(Q;T) independent of N.
Letting N — oo yields that [bZ|2 € L2(0,T; H'(Q2)) and b5 € L>°(0,T; LP(9)) for
every fixed p > 2.

Now we consider (b%)P

as a test function in (10) and obtain

4(19

1 -1 P
];Hbg( Nire) + T\\Wbﬂ?llizms *||be0|| el A e

+ Cr(llegll o 0,502 (0)) + lle(u E)”L“(O,S;L?(Qi)) +1)]1[6z]2 ||L2(o,s;L4(Qg))

Cy
+ 7(||CCHLP(O s LZ(QE ) + He(ui)”il’(o,s;LZ(Qi)))

+e(IPO)I 2P~ )rs + (Fo(8), 2P~ ) o).
for s € (0,T]. The integral over I'® is estimated as

(115)

(I Pb)], B2 )rs < Cre(l+ B2, 1B )
< Co(1+ 121 1320z ) + 2219 IBEL I )

Using the properties of extension of bf from 2f to 2 and applying the Gagliardo—-
Nirenberg inequality

lollz@) < IVl i, ol < OVl g ol

with oy = 5 and oy = %, we obtain
(P, B s < Cs(L+ 11EE1E 2 s ) + (€2 + DIVIELE 3.

(Fs(05)], BP0y, < C(L+1IBEI 2 172 (0,6) x00))
< Cs[L+ IS # 1122 oz )] + OIVIBEIE [ -
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Then applying the Gagliardo—Nirenberg inequality and the extension lemma, Lemma
3.1, to |||b2|gH%2(Qg) and |||bi|%\|%2(0 s:L4(qs)) 10 (115) and using the estimates (27)
yields

165 (5)1 ey + IV1EEL 2 [y < OF + Ca(1 4 ') / 16515 123 o

where the constants C; and Cy are independent of €. Then the Alikakos iteration
lemma implies the boundedness of b, uniformly in €.

We turn to ¢®*. Considering ﬁrst (c8 )p* and (c fN)p’ , where ¢§ y(t,z) =
min{c;(t, ), N'} for (t,z) € Q5 with j = e, f and N > 0, as test functlons in (11)
and performmg calculations smular to those in the derivation of (107), we obtain

€2 Wiy + 165,80 5)Encas) + IVIE N E R ) + 19165 1 oo
< IOy + IGO0y + O+ 1900 G oy,
+ 0O, [IlbiHip(ngs) + HC?N||Z£1J(Q§,S>] + s /08(1 + leEllzocon ) leg.n I (ony
+ Culleud) e wasazany | [P e + llaomcon el
Pz e+ Call o ezl 7 2fo ey

p—1

P, 2
+Colictllzeeo,522 (s lleq v 12 L2 {0 5:0 00
Similar to (111) we estimate

s
—1 L
/0 e z20 o) eyt < 8150 1k v () + 827 1cE vl ¥ .
,S

e

p—1
T (N R 2 T P el A
The boundary integral can be estimated in the same way as in (112):

s
—1 r
/0 (L4 llecl e oo))lce v 1o o0yt < 51(50111)) et () Lo sy + 0201 VIeE w12 1220z )
,8

p=1 p—1
FOE) [T+ eE] 7 (I 0,0:22(02)) + IVIE] 2 H%P(QQS) .

Considering p = 3,.. ., 6 iteratively, using estimates (27), and making the calculations
similar to those for bf y yields

||C§,N||L°°(0,T;L5(ﬂz)) + ||C§,N(S)||Loo(o,T;L6(Q;))

+ ||V|Ci,N|3||L2(s2;S) + ||V‘C§C’N|3||L2(QE,S) <C,

where the constant C' depends on p and € and is independent of N. Letting N — oo,
we obtain that (c5)P~! € L%(0,T; Hl(QE)) with j = e, f and p = 3,...,6. Thus we
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can consider (c;)P~! and (c7)P~", with p = 3,4, as test functions in (11):

€5y + 155D e + VIS E B
< E Oy + 15O o) + Cr [1 4+ 19 @53y 15 s

P
) Ve 2 ”%2(9?5)

+ Calle(ug)|l L= (o ,8;L2(Q¢)) [|Hb§|2 ||L2(o,s;L4(Qg)) + llec|? ||L2(0,5;L4(Qg))]
+ 03[ + ||bs|| P(Qe ) + ||C€||[£”(Q‘Z,s) + ||Ci||ip((o,s)xag)]

In the same way as in (115), applying the Gagliardo-Nirenberg inequality to |cj| 5
in L*(Q5) and L*(Q5) and using properties of the extension of ¢ from Qf to Q and

of ¢ from ﬁef to €, we obtain
legll Lo 0,522 02)) + 163 0,709 (05)) + IVIEE P20z ) + IVIEG Pllz20s ) < C

where the constant C' is independent of ¢. 0

Next we present the proof of the estimate for ||523 | o0 (0,832 (22))

LEMMA 10.2. For the difference of two iterations ge’j = b7l —bEd il =
uSI =2 —uSI=l and &gﬂ;’]*l = atu;’jﬂ—atu;’j ! for the microscopic system (6)—(8),
defined in Theorem 3.3, we have
Hb ’]HLOO (0,8;L°°(0¢)) < CHe( e 1)HL1+%(O,S;L2(92))
+ Cg”at"’E Jj—1 ||L2(Q§",s) + 5‘|e(8ta?]*1)HLZ(Q?S)
for s € (0,T), any 6 > 0, and 0 < o < 1/9, where the constants C and Cs are
independent of s and j.

Proof. Considering (Eﬁj )P~1 as a test function in the weak formulation of (31)
yields

1,~ 2(p— 1) e ~
*||bi’]( Moe + =5 IIVIOE]® 220z ) < CullbZ7 12 (o )
+ G [[le27 | 0,si22(22)) + lle(e” ™) oo o,s522 0] OE7 12 120,024 02)

(116) b
+ CS||b¢€z’J71||L°°(Q§,3) |:p||E¢82’J||ZL7,OO(07S;L2(Qz)) + Tmbi’J 2

5112
122 (0,5:L(22))
+ Callbg? o oz (le(@e? ] b7 P e

for s € (0,7). Applying the Holder inequality, we estimate

S
(le(@e? =], b7 [P a: | < He(ﬂi”’l)\l IIbe | et
L2k (©2)

(117) <o / Je(iie ™ 1>||L2<Qs B et

1)
p(l4o) (+o)
<02( | et dt) ( [ ) dt)

for some o > 0. Applying the Gagliardo—Nirenberg inequality

lwllzs() < ClIVWIEs @ llwllziy,
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with o = 3%, we obtain for 0 < o < 1/9
- @
EN LA 21+U G (140)a e, j1212(1+0)(1—« tte
([ wmeeiana) ™ < o [ b v )
1—a(l+o)
7,712 112 c,j %&0)&) e

< ol e ([ I E1, i e
) Te il22 _o W (140)(1—a)

(118) < IV I+ Cov™™e / e o)

5 oy ;P —_— oy ;P
< ];||V|bi’J| 2 ||2L2(Qg,5) + Cop™= ||[b27 [ ||2L<x>(o,s;L1(Qg))

for any § > 0. Hence we have the following estimate:

(le(@s 1)), b7 P 1), < 67—~ ||V\b”|2|\L2(Qe
(119)
+ 0 @1 e + O le(@
o Le=(0,5:L1(2)) LY 3 (0,5:22(22))
with 8 = 2-. We incorporate inequality (119) in (116), estimate ||b5’J Lr(0z.,)

and |||bs9|% ||L2(05L4(QE)) in terms of |[|b2|% HLQ(OSLI(QE)) and [|V[bS7| % ||L2 ©:.) by
applying the Gagliardo—Nirenberg inequality, and then use the estimate (35) for
||E§’j||’£m(0 si22(qs)) and the boundedness of b7~1, which can be shown in the same

way as the L>-estimates in (106), to obtain

1b¢ (s )”LP Qo) T Hv|bi’j|§||2L2(Qa

< £,J . P ~s,j 1
Cup'® sup 1827111 oy + OO DMt ey

+ 8 e(@iy g, + CEIOE I

Using (35) and iterating in p = 2% for k = 2,3,..., similarly to [2, Lemma 3.2], we
obtain the estimate stated in the lemma. 0
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