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HOMOGENIZATION OF BIOMECHANICAL MODELS FOR PLANT
TISSUES∗

ANDREY PIATNITSKI† AND MARIYA PTASHNYK‡

Abstract. In this paper homogenization of a mathematical model for plant tissue biomechanics
is presented. The microscopic model constitutes a strongly coupled system of reaction-diffusion-
convection equations for chemical processes in plant cells, the equations of poroelasticity for elastic
deformations of plant cell walls and middle lamella, and Stokes equations for fluid flow inside the
cells. The chemical process in cells and the elastic properties of cell walls and middle lamella are
coupled because elastic moduli depend on densities involved in chemical reactions, whereas chemical
reactions depend on mechanical stresses. Using homogenization techniques, we derive rigorously a
macroscopic model for plant biomechanics. To pass to the limit in the nonlinear reaction terms, which
depend on elastic strain, we prove the strong two-scale convergence of the displacement gradient and
velocity field.
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1. Introduction. Analysis of interactions between mechanical properties and
chemical processes, which influence the elasticity and extensibility of plant cell tissues,
is important for better understanding of plant growth and development, as well as their
response to environmental changes. Plant tissues are composed of cells surrounded
by cell walls and connected by a cross-linked pectin network of middle lamella. Plant
cell walls must be very strong to resist high internal hydrostatic pressure and at the
same time flexible to permit growth. It is supposed that calcium-pectin cross-linking
chemistry is one of the main regulators of plant cell wall elasticity and extension [51].
Pectin is deposited to cell walls in a methylesterified form. In cell walls and middle
lamella, pectin can be modified by the enzyme pectin methylesterase (PME), which
removes methyl groups by breaking ester bonds. The de-esterified pectin is able to
form calcium-pectin cross-links, and thus stiffen the cell wall and reduce its expansion;
see, e.g., [50]. On the other hand, mechanical stresses can break calcium-pectin cross-
links and hence increase the extensibility of plant cell walls and middle lamella. It
has been shown that chemical properties of pectin and the control of the density of
calcium-pectin cross-links greatly influence the mechanical deformations of plant cell
walls [34], and the interference with PME activity causes dramatic changes in growth
behavior of plant tissues [50].

To analyze the interactions between calcium-pectin dynamics and deformations
of a plant tissue, we derive a mathematical model for plant tissue biomechanics at the
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340 ANDREY PIATNITSKI AND MARIYA PTASHNYK

length scale of plant cells. In the microscopic model we consider a system of reaction-
diffusion-convection equations describing the dynamics of the methylesterified pectin,
demethylesterified pectin, calcium ions, and calcium-pectin cross-links. Elastic defor-
mations and water flow are modelled by the equations of poroelasticity for cell walls
and middle lamella coupled with the Stokes system for the flow velocity inside cells.
The interplay between the mechanics and the chemistry comes in by assuming that
the elastic properties of cell walls and middle lamella depend on the density of the
calcium-pectin cross-links and that the stress within cell walls and middle lamella
can break the cross-links. Thus the microscopic problem is a strongly coupled system
of the Stokes equations, reaction-diffusion-convection equations, with reaction terms
depending on the displacement gradient, and equations of poroelasticity, with elastic
moduli depending on the density of cross-links. To address the situations when a
plant tissue is completely and not completely saturated by water, we consider both
evolutional and quasi-stationary equations of poroelasticity.

To show the existence of a weak solution of the microscopic equations, we use
a classical approach and apply the Banach fixed-point theorem. However, due to
quadratic nonlinearities of reaction terms, the proof of the contraction inequality is
not standard and relies on delicate a priori estimates for the L∞-norm of a solution
of the reaction-diffusion-convection system in terms of the L2-norm of displacement
gradient and flow velocity. The Alikakos iteration technique [2] is applied to show the
uniform boundedness of some components of solutions of the microscopic equations.

To analyze effective mechanical properties of plant tissues, we derive rigorously
a macroscopic model for plant biomechanics using homogenization techniques. The
two-scale convergence, e.g., [3, 31], and the periodic unfolding method, e.g., [15], are
applied to obtain the macroscopic equations. The main mathematical difficulty in the
derivation of the macroscopic problem arises from the strong coupling between the
equations of poroelasticity and the system of reaction-diffusion-convection equations.
In order to pass to the limit in the nonlinear reaction terms, we prove the strong two-
scale convergence for the displacement gradient and fluid flow velocity, essential for
the homogenization of the coupled problem considered here. Due to the dependence
of the elasticity tensor on the time variable, in the proof of the strong two-scale
convergence a specific form of the energy functional is considered.

Similar to the microscopic problem, to prove uniqueness of a solution of the
macroscopic equations, we derive a contraction inequality involving the L∞-norm of
the difference of two solutions of the reaction-diffusion-convection equations. This
contraction inequality also ensures the well-posedness of the limit system.

The poroelasticity equations, modelling interactions between fluid flow and elastic
stresses in porous media, were first obtained by Biot using a phenomenological ap-
proach [10, 9, 8] and subsequently derived by applying techniques of homogenization
theory. Formal asymptotic expansion was undertaken by the authors of [5, 13, 23, 42]
to derive Biot equations from microscopic description of elastic deformations of a solid
matrix and fluid flow in porous space. The rigorous homogenization of the coupled
system of equations of linear elasticity for a solid matrix combined with the Stokes or
Navier–Stokes equations for the fluid part was conducted in [17, 19, 24, 32] by using
the two-scale convergence method. Depending on the ratios between the physical
parameters, different macroscopic equations were obtained, e.g., Biot’s equations of
poroelasticity, the system consisting of the anisotropic Lamé equations for the solid
component, and the acoustic equations for the fluid component, the equations of vis-
coelasticity. The homogenization of a mathematical model for elastic deformations,
fluid flow, and chemical processes in a cell tissue was considered in [20]. In contrast
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HOMOGENIZATION OF BIOMECHANICAL MODELS 341

to the problem considered in the present paper, in [20] the coupling between the
equations of linear elasticity and reaction-diffusion-convection equations for a concen-
tration was given only through the dependence of the elasticity tensor on the chemical
concentration. The existence and uniqueness of a solution for equations of poroelas-
ticity were studied in [45, 53].

Compared to the many results for the equations of poroelasticity, there exist only
a few studies of interactions between a free fluid and a deformable porous medium. In
[46] a nonlinear semigroup method was used for mathematical analysis of a system of
poroelastic equations coupled with the Stokes equations for free fluid flow. A rigorous
derivation of interface conditions between a poroelastic medium and an elastic body
was considered in [26]. Numerical methods for a coupled Biot poroelastic system
and Navier-Stokes equations were derived in [6]. The Nitsche method for enforcing
interface conditions was applied in [12] for numerical simulation of the Stokes–Biot
coupled system.

Several results on homogenization of equations of linear elasticity can be found
in [7, 21, 33, 42] (and the references therein). Homogenization of the microscopic
model for plant cell wall biomechanics, composed of equations of linear elasticity and
reaction-diffusion equations for chemical processes, has been studied in [39].

This paper is organized as follows. In section 2 we derive the microscopic model for
plant tissue biomechanics. A priori estimates as well as the existence and uniqueness
of a weak solution of the microscopic problem are obtained in section 3. In section 4 we
prove the convergence results for solutions of the microscopic problem. The multiscale
analysis of the coupled poroelastic and Stokes problem is conducted in section 5. In
section 6 we show strong two-scale convergence of the displacement gradient and flow
velocity. The macroscopic equations for the system of reaction-diffusion-convection
equations are derived in section 7. The well-posedness and uniqueness of a solution
of the macroscopic problem are proved in section 8. In section 9 we consider the
incompressible and quasi-stationary cases for the equations of poroelasticity.

2. Microscopic model. In the mathematical model for plant tissue biomechan-
ics we consider interactions between the mechanical properties of a plant tissue and
the chemical processes in plant cells. A plant tissue is composed of the cell inte-
rior (intracellular space), the plasma membrane, plant cell walls, and the cross-linked
pectin network of the middle lamella joining individual cells together. Primary plant
cell walls consist mainly of oriented cellulose microfibrils (that strongly influence the
cell wall stiffness), pectin, hemicellulose, proteins, and water. It is supposed that
calcium-pectin chemistry, given by the de-esterification of pectin and creation and
breakage of calcium-pectin cross-links, is one of the main regulators of cell wall elas-
ticity; see, e.g., [51]. Hence in our mathematical model we consider the interactions
and two-way coupling between calcium-pectin chemistry and elastic deformations of
a plant tissue. To describe the coupling between the mechanics and chemistry, we
consider the dynamics of pectins, calcium, and calcium-pectin cross-links, water flow
in a plant tissue, and the poroelastic nature of cell walls and middle lamella.

To derive a mathematical model for plant tissue biomechanics, we denote a do-
main occupied by a plant tissue by Ω ⊂ R3, where Ω is a bounded domain with C1,α

boundary for some α > 0. Notice that all results also hold for a two-dimensional
domain. Then the time-independent domains Ωf ⊂ Ω and Ωe ⊂ Ω, with Ω = Ωe ∪Ωf
and Ωe∩Ωf = ∅, represent the reference (Lagrangian) configurations of the intracellu-
lar (cell interior) and intercellular (cell walls and middle lamella) spaces, respectively,
and Γ denotes the boundaries between the cell interior and cell walls and corresponds
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342 ANDREY PIATNITSKI AND MARIYA PTASHNYK

to the plasma membrane. Since Γ represents the interface between elastic material
and fluid in the Lagrangian configuration, it is also independent of time.

Pectin is deposited into the cell wall in a highly methylesterified state and is
modified by the wall enzyme PME, which removes methyl groups [50]. It was observed
experimentally that pectins can diffuse in a plant cell wall matrix; see, e.g., [18, 35, 48].
Thus in the balance equation for the density of the methylesterified pectin be,1 and
demethylesterified pectin be,2,

∂tbe,j + divJb,j = gb,j in Ωe, j = 1, 2,

we assume the flux to be determined by Fick’s law, i.e., Jb,j = −Dbe,j∇be,j , with
j = 1, 2 and Dbe,j > 0. The term gb,j models chemical reactions that correspond
to the demethylesterification processes and creation and breakage of calcium-pectin
cross-links. In general, diffusion coefficients for pectins and calcium depend on the
microscopic structure of the cell wall given by the cell wall microfibrils and hemicel-
lulose network, which is assumed to be given and not to change in time, as well as on
the density of pectins and calcium-pectin cross-links. For presentation simplicity we
assume here that the diffusion coefficient does not depend on the dynamics of pectin
and calcium-pectin cross-link densities. However, the analysis can be conducted in
the same way for the generalized model in which the diffusion of pectin, calcium, and
cross-links depends on pectin and cross-link densities, assuming that diffusion coef-
ficients are uniformly bounded from below and above, which is biologically sensible.
The modification of methylesterified pectin by PME is modelled by the reaction term
gb,1 = −µ1be,1 with some µ1 > 0. For simplicity we assume that there is a constant
concentration of PME enzyme in the cell wall. By simple modifications of the analysis
considered here, the same results can be obtained for a generalized model including
the dynamics of PME and chemical reactions between PME and pectin; see [39] for
the derivation of the corresponding system of equations.

The deposition of the methylesterified pectin is described by the inflow boundary
condition on the cell plasma membrane. We also assume that the demethylesterified
pectin cannot move back into the cell interior:

Dbe,1∇be,1 · n = P1(be,1, be,2, be,3), Dbe,2∇be,2 · n = 0 on Γ.

To account for mechanisms controlling the amount of pectin in the cell wall, we assume
that the inflow of new methylesterified pectin depends on the density of methylester-
ified and demethylesterified pectin, i.e., be,1 and be,2, and calcium-pectin cross-links
be,3.

We consider the diffusion and transport by water flow of calcium molecules in the
symplast (in the cell interior) and diffusion of calcium in the apoplast (cell walls and
middle lamella); see, e.g., [49]. Then the balance equations for calcium densities cf
and ce in Ωf and Ωe, respectively, are given by

∂tcf − div(Df∇cf − G(∂tuf )cf ) = gf in Ωf ,

∂tce − div(De∇ce) = ge in Ωe,

where the chemical reaction term gf = gf (cf ) in Ωf describes the decay and/or
buffering of calcium inside the plant cells (see, e.g., [52]), ge models the interactions
between calcium and demethylesterified pectin in cell walls and middle lamella and
the creation and breakage of calcium-pectin cross-links, and G is a bounded function
of the intracellular flow velocity ∂tuf . The condition that G is bounded is natural from
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HOMOGENIZATION OF BIOMECHANICAL MODELS 343

the biological and physical point of view, because the flow velocity in plant tissues
is bounded. This condition is also essential for a rigorous mathematical analysis of
the model. We assume that as the result of the breakage of a calcium-pectin cross-
link by mechanical stresses we obtain one calcium molecule and two galacturonic acid
monomers of demethylesterified pectin. A detailed derivation of the chemical reaction
term ge is given in [39]. See also Remark 2.3 for the detailed form of the reaction
terms. We assume a passive flow of calcium between cell walls and cell interior and
assume that the exchange of calcium between cell interior and cell walls is facilitated
only on parts of the cell membrane Γ \ Γ̃, i.e.,

cf = ce, (Df∇cf − G(∂tuf )cf ) · n = De∇ce · n on Γ \ Γ̃,

De∇ce · n = 0, (Df∇cf − G(∂tuf )cf ) · n = 0 on Γ̃.

The regulation of calcium flow by mechanical properties of the cell wall will be con-
sidered in future studies.

Calcium-pectin cross-links be,3 are created by electrostatic and ionic binding be-
tween two galacturonic acid monomers of pectin chains and calcium molecules. It
is also known that these cross-links are very stable and can be disturbed mainly by
thermal treatments and/or mechanical forces; see, e.g., [38, 37]. Thus assuming a
constant temperature, the calcium-pectin chemistry can be described as a reaction
between calcium molecules and pectins, where the breakage of cross-links depends
on the deformation gradient of the cell walls. Hence we assume that the cross-links
are disturbed by the mechanical stresses in cell walls and middle lamella; see [39] for
a detailed description of the modelling of the calcium-pectin chemistry. A similar
approach was used in [41] to model a chemically mediated mechanical expansion of
the cell wall of a pollen tube. There are no experimental observations of diffusion of
calcium-pectin cross-links be,3; however, since most calcium-pectin cross-links are not
attached to cell wall microfibrils [18], it is possible that cross-links can move inside
the cell wall matrix by a very slow diffusion

∂tbe,3 − div(Dbe,3∇be,3) = gb,3 in Ωe,

where Dbe,3 > 0 and the reaction term gb,3 models the creation and breakage by
mechanical stresses of calcium-pectin cross-links (see Remark 2.3 for a detailed form of
gb,3). For the analysis presented here the diffusion term in the equations for calcium-
pectin cross-link density is important. However, the same results can be obtained
if one assumes that calcium-pectin cross-links do not diffuse and that the reaction
terms in equations for pectin, calcium, and calcium-pectin cross-links depend on a
local average of the deformation gradient, reflecting the fact that in a dense pectin
network mechanical forces have a nonlocal effect on the calcium-pectin chemistry; see
[39].

To describe elastic deformations of plant cell walls and middle lamella, we consider
the equations of poroelasticity reflecting the microscopic structure of cell walls and
middle lamella permeable to fluid flow:

ρe∂
2
t ue − div(E(be,3)e(ue)) + α∇pe = 0 in Ωe,

ρp∂tpe − div(Kp∇pe − α∂tue) = 0 in Ωe.

Here ue denotes the displacement from the equilibrium position, e(ue) stands for the
symmetrized gradient of ue, and ρe denotes the poroelastic wall density. Since we
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344 ANDREY PIATNITSKI AND MARIYA PTASHNYK

consider the equations of poroelasticity, one more unknown function that should be
determined is the pressure, denoted by pe. The mass storativity coefficient is denoted
by ρp, and Kp denotes the hydraulic conductivity of cell walls and middle lamella. In
what follows, we assume that the Biot–Willis constant is α = 1.

It is observed experimentally that the load-bearing calcium-pectin cross-links re-
duce cell wall expansion; see, e.g., [51]. Hence elastic properties of cell walls and middle
lamella depend on the chemical configuration of pectin and density of calcium-pectin
cross-links; see, e.g., [55]. This is reflected in the dependence of the elasticity tensor
E of the cell wall and middle lamella on the density of calcium-pectin cross-links be,3.
The differences in the elastic properties of cell walls and middle lamella result in the
dependence of the elasticity tensor E on the spatial variables. Since the properties
of calcium-pectin cross-links are changing during the deformation and the stretched
cross-links have different impact (stress drive hardening) on the elastic properties of
the cell wall matrix from that of newly created cross-links (see, e.g., [11, 36, 43]), we
consider a nonlocal-in-time dependence of the Young modulus of the cell wall matrix
on the density of calcium-pectin cross-links; see Assumption A1. A similar approach
was used in [20] to model the dependence of cell deformations on the concentration
of a chemical substance. We assume that the hydraulic conductivity tensor varies
between cell wall and middle lamella and, hence, Kp depends on the spacial variables.

In the cell interior, that is, in Ωf , the water flow is modelled by the Stokes system

ρf∂
2
t uf − µdiv(e(∂tuf )) +∇pf = 0, div∂tuf = 0 in Ωf ,

where ∂tuf denotes the fluid velocity, pf the fluid pressure, µ the fluid viscosity, and
ρf the fluid density.

As transmission conditions between free fluid and poroelastic domains we consider
the continuity of normal flux, which corresponds to mass conservation, and the conti-
nuity of the normal component of total stress on the interface Γ; i.e., the total stress
of the poroelastic medium is balanced by the total stress of the fluid, representing the
conservation of momentum,

(1)
(−Kp∇pe + ∂tue) · n = ∂tuf · n on Γ,

(E(be,3) e(ue)− peI)n = (µ e(∂tuf )− pfI)n on Γ.

Also taking into account the channel structure of a cell membrane separating cell
interior and cell wall, given by the presence of aquaporins (see, e.g., [14]), we assume
that the water flow between the poroelastic cell wall and cell interior is in the direction
normal to the interface between the free fluid and the poroelastic medium. Hence we
assume the no-slip interface condition, which is appropriate for problems where at the
interface the fluid flow in the tangential direction is not allowed (see, e.g., [12]),

Πτ∂tue = Πτ∂tuf on Γ.

By Πτw we define the tangential projection of a vector w, i.e., Πτw = w − (w · n)n,
where n is a normal vector and τ indicates the tangential subspace to the boundary.
The balance of the normal components of the stress in the fluid phase across the
interphase is given by

(2) n · (µ e(∂tuf )− pfI)n = −pe on Γ.

Notice that the transmission conditions (1) and (2) imply E(be,3) e(ue)n ·n = 0 on Γ.
The transmission conditions are motivated by the models describing coupling between
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HOMOGENIZATION OF BIOMECHANICAL MODELS 345

Biot and Navier–Stokes or Stokes equations considered in, e.g., [6, 12, 27, 28, 46]. The
coupling between elastic deformations and fluid flow is described in the Lagrangian
configuration, and hence Γ is a fixed interface between the fluid domain and elastic
material. Since in our model we consider only the linear elastic nature of the solid
skeleton of the cell walls, the transmission conditions (1) and (2) are the corresponding
linearizations of the fluid-solid interface conditions; i.e., |det(I+∇ue)|(µ e(∂tuf (t, x+
ue))− pf (t, x+ ue)I)(I +∇ue)−Tn is approximated by (µ e(∂tuf (t, x))− pf (t, x)I)n
on Γ, and the first Piola–Kirchhoff stress tensor is equal to the Cauchy stress tensor
in the first order approximation.

Then the model for the densities of calcium, pectins, and calcium-pectin cross-
links reads as

(3)

∂tbe = div(Db∇be) + gb(ce, be, e(ue)) in Ωe, t > 0

∂tce = div(De∇ce) + ge(ce, be, e(ue)) in Ωe, t > 0,

∂tcf = div(Df∇cf − G(∂tuf )cf ) + gf (cf ) in Ωf , t > 0,

Db∇be · n = P (be) on Γ, t > 0,

ce = cf , De∇ce · n = (Df∇cf − G(∂tuf )cf ) · n on Γ \ Γ̃, t > 0,

De∇ce · n = 0, (Df∇cf − G(∂tuf )cf ) · n = 0 on Γ̃, t > 0,

be(0, x) = be0(x), ce(0, x) = c0(x) in Ωe,

cf (0, x) = c0(x) in Ωf ,

where be = (be,1, be,2, be,3), Df > 0, De > 0, and Db = diag(Dbe,1 , Dbe,2 , Dbe,3) with
Dbe,j > 0, j = 1, 2, 3, stands for the diagonal matrix of diffusion coefficients for be,1,
be,2, and be,3.

For elastic deformations of cell walls and middle lamella and fluid flow inside the
cells we have a coupled system of Stokes equations and poroelastic (Biot) equations:

(4)

ρe∂
2
t ue − div(E(be,3)e(ue)) +∇pe = 0 in Ωe, t > 0,

ρp∂tpe − div(Kp∇pe − ∂tue) = 0 in Ωe, t > 0,

ρf∂
2
t uf − µdiv(e(∂tuf )) +∇pf = 0 in Ωf , t > 0,

div ∂tuf = 0 in Ωf , t > 0,

(E(be,3) e(ue)− peI)n = (µ e(∂tuf )− pfI)n on Γ, t > 0,

Πτ∂tue = Πτ∂tuf , n · (µ e(∂tuf )− pfI)n = −pe on Γ, t > 0,

(−Kp∇pe + ∂tue) · n = ∂tuf · n on Γ, t > 0,

ue(0, x) = ue0(x), ∂tue(0, x) = u1
e0(x), pe(0, x) = pe0(x) in Ωe,

∂tuf (0, x) = u1
f0(x) in Ωf .

For multiscale analysis of the mathematical model (3)–(4) we derive the nondimen-
sionalized equations from the dimensional model by considering t = t̂t∗, x = x̂x∗,
be = b̂b∗e, cj = b̂c∗j , uj = ûu∗j , pj = p̂p∗j , with j = e, f , E = ÊE∗, Kp = K̂K∗p , µ = µ̂µ∗,

ρp = ρ̂pρ
∗
p, ρj = ρ̂ρ∗j , with j = e, f , Dj = D̂D∗j for j = b, e, f , P (be) = R̂b̂P ∗(b∗e),

gj(ce, be, e(ue)) = ĝb̂g∗j (c∗e, b
∗
e, e(u∗e)) for j = b, e, and gf (cf ) = ĝf b̂g

∗
f (c∗f ). The di-

mensionless small parameter ε = l/L represents the ratio between the representative
size of a plant cell l and the considered size of a plant tissue L and reflects the size
of the microstructure. For a plant root cell we can consider l = 10µm and L = 1m,
and, hence, ε is of order 10−5. We consider x̂ = L, p̂ = Λε, with Λ = 1MPa, and
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Fig. 1. Schematic diagram of the geometry of a plant tissue and unit cell.

û = l. For the time scale we take t̂ = µ̂/(Λε2), which together with µ̂ = 10−2Pa·s
corresponds approximately to 1.7min. We also consider Ê = Λ, K̂ = x̂2ε/(p̂t̂) = l2/µ̂,
ρ̂ = (Λt̂2)/x̂2 = µ̂2/(Λε4L2), ρ̂p = 1/Λ, D̂ = x̂2/t̂ = l2Λ/µ̂, and R̂ = x̂ε/t̂ = ε3LΛ/µ̂.
Hydraulic conductivity Kp is of order 10−9–10−8 m2· s−1· Pa−1, and the minimal
value of the elasticity tensor is of order 10MPa [55]. Hence the minimal value of the
nondimensionalized elasticity tensor E∗ is approximately 10, and K∗p ∼ 0.01 − 0.1.
The parameters in the inflow boundary condition, i.e., in P (be), are of order 10−7m/s,
and with R̂ = 10−7m/s we obtain the nondimensional parameters in the boundary
condition for be to be of order 1. Here we assume that ρj > 0, with j = e, p, f , are
fixed. The case when the density ρe and/or ρp is of order ε2 can be analyzed in the
same way as the case when ρe = 0 and ρp = 0, considered in section 9.

To describe the microscopic structure of a plant tissue, we assume that cells in
the tissue are distributed periodically and have a diameter of order ε. The stochastic
case will be analyzed in a future paper. We consider a unit cell Y = Y e ∪ Y f , with
Y = [0, a1] × [0, a2] × [0, a3], for aj > 0 with j = 1, 2, 3, where Ye represents the cell
wall and a part of the middle lamella, and Yf , with Y f ⊂ Y , defines the inner part of

a cell. We denote ∂Yf = Γ and let Γ̃ be an open on Γ regular subset of Γ.
Then the time-independent domains Ωεf and Ωεe, representing the reference (La-

grangian) configuration of the intracellular (cell interior) and intercellular (cell walls
and middle lamella) spaces, are defined by

(5) Ωεf = Int

( ⋃
ξ∈Ξε

ε(Y f + ξ)

)
and Ωεe = Ω \ Ω

ε

f ,

respectively, where Ξε = {ξ = (a1η1, a2η2, a3η3), η = (η1, η2, η3) ∈ Z3 : ε(Y f + ξ) ⊂
Ω}, and Γε =

⋃
ξ∈Ξε ε(Γ + ξ) defines the boundaries between cell interior and cell

walls, Γ̃ε =
⋃
ξ∈Ξε ε(Γ̃ + ξ); see Figure 1.

We shall use the following notation for time-space domains: Ωs = (0, s) × Ω,

(∂Ω)s = (0, s)×∂Ω, Ωεj,s = (0, s)×Ωεj for j = e, f , Γεs = (0, s)×Γε, and Γ̃εs = (0, s)×
Γ̃ε for s ∈ (0, T ].

Neglecting ∗, we obtain the nondimensionalized microscopic model for plant tissue
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HOMOGENIZATION OF BIOMECHANICAL MODELS 347

biomechanics

(6)

∂tb
ε
e = div(Db∇bεe) + gb(c

ε
e, b

ε
e, e(uεe)) in Ωεe,T ,

∂tc
ε
e = div(De∇cεe) + ge(c

ε
e, b

ε
e, e(uεe)) in Ωεe,T ,

∂tc
ε
f = div(Df∇cεf − G(∂tu

ε
f )cεf ) + gf (cεf ) in Ωεf,T ,

Db∇bεe · n = ε P (bεe) on ΓεT ,

cεe = cεf , De∇cεe · n = (Df∇cεf − G(∂tu
ε
f )cεf ) · n on ΓεT \ Γ̃εT ,

De∇cεe · n = 0, (Df∇cεf − G(∂tu
ε
f )cεf ) · n = 0 on Γ̃εT ,

bεe(0, x) = be0(x), cεe(0, x) = c0(x) in Ωεe,

cεf (0, x) = c0(x) in Ωεf

and

(7)

ρe∂
2
t u

ε
e − div(Eε(bεe,3)e(uεe)) +∇pεe = 0 in Ωεe,T ,

ρp∂tp
ε
e − div(Kε

p∇pεe − ∂tuεe) = 0 in Ωεe,T ,

ρf∂
2
t u

ε
f − ε2µdiv(e(∂tu

ε
f )) +∇pεf = 0 in Ωεf,T ,

div ∂tu
ε
f = 0 in Ωεf,T ,

(Eε(bεe,3) e(uεe)− pεeI)n = (ε2µ e(∂tu
ε
f )− pεfI)n on ΓεT ,

Πτ∂tu
ε
e = Πτ∂tu

ε
f , n · (ε2µ e(∂tu

ε
f )− pεfI)n = −pεe on ΓεT ,

(−Kε
p∇pεe + ∂tu

ε
e) · n = ∂tu

ε
f · n on ΓεT ,

uεe(0, x) = uεe0(x), ∂tu
ε
e(0, x) = u1

e0(x), pεe(0, x) = pεe0(x) in Ωεe,

∂tu
ε
f (0, x) = u1

f0(x) in Ωεf .

On the external boundaries we prescribe the following force and flux conditions:

(8)

Db∇bεe · n = Fb(b
ε
e), De∇cεe · n = Fc(c

ε
e) on (∂Ω)T ,

Eε(bεe,3)e(uεe)n = Fu on (∂Ω)T ,

(Kε
p∇pεe − ∂tuεe) · n = Fp on (∂Ω)T .

The elasticity and permeability tensors are defined by Y -periodic functions

Eε(x, ξ) = E(x/ε, ξ) and Kε
p(x) = Kp(x, x/ε),

where E(·, ξ) and Kp(x, ·) are Y -periodic for a.a. ξ ∈ R and x ∈ Ω.
We emphasize that the diffusion coefficients Db, De, and Df in (6) are supposed

to be constant just for presentation simplicity. The method developed in this paper
also applies to the case of nonconstant uniformly elliptic diffusion coefficients.

We suppose the following conditions hold:
A1. Elasticity tensor E(y, ζ) = (Eijkl(y, ζ))1≤i,j,k,l≤3 satisfies Eijkl = Eklij =

Ejikl = Eijlk and α1|A|2 ≤ E(y, ζ)A · A ≤ α2|A|2 for all symmetric matrices
A ∈ R3×3, ζ ∈ R+, and y ∈ Y , and for some α1 and α2 such that 0 < α1 ≤
α2 <∞.
E(y, ζ) = E1(y,F(ζ)), where

E1 ∈ Cper(Y ;C2
b (R)) and F(ζ) =

∫ t

0

κ(t− τ)ζ(τ, x)dτ,

with a smooth function κ : R+ → R+ such that κ(0) = 0, and x ∈ Ω.
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348 ANDREY PIATNITSKI AND MARIYA PTASHNYK

A2. Kp ∈ C(Ω;L∞per(Y )) and Kp(x, y)η · η ≥ k1|η|2 for η ∈ R3, a.a. y ∈ Y and
x ∈ Ω, and k1 > 0.

A3. G is a Lipschitz continuous function on R3 such that |G(r)| ≤ R for some
R > 0 and all r ∈ R3.

A4. For functions gb, ge, gf , P , Fb, and Fc we assume that

gb ∈ C(R× R3 × R6;R3), ge ∈ C(R× R3 × R6), Fb, P ∈ C(R3;R3),

and Fc and gf are Lipschitz continuous. Moreover, the following estimates
hold:

|gb(s, r, ξ)| ≤ C1(1 + |s|+ |r|) + C2|r||ξ|,
|ge(s, r, ξ)| ≤ C3(1 + |s|+ |r|) + C4(|s|+ |r|)|ξ|,

|Fb(r)|+ |P (r)| ≤ C(1 + |r|),
|Fc(s)|+ |gf (s)| ≤ C(1 + |s|),

where s ∈ R+, r ∈ R3
+, and ξ is a symmetric 3× 3 matrix. Here and in what

follows we identify the space of symmetric 3× 3 matrices with R6.
It is also assumed that for any symmetric 3 × 3 matrix ξ we have that
gb,j(s, r, ξ), Fb,j(r), and Pj(r) are nonnegative for rj = 0, s ≥ 0, and ri ≥ 0,
with i = 1, 2, 3 and j 6= i, and ge(s, r, ξ), gf (s), and Fc(s) are nonnegative for
s = 0 and rj ≥ 0, with j = 1, 2, 3.
We assume also that gb(·, ·, ξ), ge(·, ·, ξ), Fb, and P are locally Lipschitz con-
tinuous and

|gb(s1, r1, ξ1)− gb(s2, r2, ξ2)| ≤ C1(|r1|+ |r2|)|s1 − s2|
+ C2(|s1|+ |s2|+ |ξ1|+ |ξ2|)|r1 − r2|+ C3(|r1|+ |r2|)|ξ1 − ξ2|,

|ge(s1, r1, ξ1)− ge(s2, r2, ξ2)| ≤ C1(|r1|+ |r2|+ |ξ1|+ |ξ2|)|s1 − s2|
+ C2(|s1|+ |s2|+ |ξ1|+ |ξ2|)|r1 − r2|+ C3(|r1|+ |r2|+ |s1|+ |s2|)|ξ1 − ξ2|

for s1, s2 ∈ R+, r1, r2 ∈ R3
+, and ξ, ξ1, ξ2 are symmetric 3× 3 matrices.

A5. be0 ∈ L∞(Ω)3, c0 ∈ L∞(Ω), and be0,j ≥ 0, c0 ≥ 0 a.e. in Ω, where j = 1, 2, 3.
u1
e0 ∈ H1(Ω)3, u1

f0 ∈ H2(Ω)3, and div u1
f0 = 0 in Ωεf .

uεe0 ∈ H1(Ωεe)
3, pεe0 ∈ H1(Ω) are defined as solutions of

div(Eε(be0,3)e(uεe0)) = fu in Ωεe,

Πτ (Eε(be0,3)e(uεe0)n) = ε2µΠτ (e(u1
f0)n) on Γε,

n ·Eε(be0,3)e(uεe0)n = 0 on Γε, uεe0 = 0 on ∂Ω,

div(Kε
p∇pεe0) = fp in Ω, pεe0 = 0 on ∂Ω,

for given fu ∈ L2(Ω)3 and fp ∈ L2(Ω).
Fp ∈ H1(0, T ;L2(∂Ω)), Fu ∈ H2(0, T ;L2(∂Ω))3.

Remark 2.1. Under the assumptions on uεe0 and pεe0 by the standard homogeniza-
tion results, we obtain

ũεe0 → ue0, pεe0 → pe0 strongly in L2(Ω),

e(uεe0)→ e(ue0) + ey(ûe0) strongly two-scale, ûe0 ∈ L2(Ω;H1(Ye)/R)3,

where ũεe0 is an extension of uεe0, and ue0 ∈ H1(Ω)3 and pe0 ∈ H1(Ω) are solutions of
the corresponding macroscopic (homogenized) equations.
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HOMOGENIZATION OF BIOMECHANICAL MODELS 349

Remark 2.2. Our approach also applies to the case when the initial velocity u1
f0

has the form u1,ε
f0 (x) = U1

f0(x, x/ε), where the vector function U1
f0(x, y) is periodic in

y, sufficiently regular, and such that divx U
1
f0(x, y) = 0, divy U

1
f0(x, y) = 0.

Remark 2.3. The reaction terms for cεf , bεe,1, bεe,2, bεe,3, and cεe can be considered
in the following form:

gf (cεf ) = −µ2c
ε
f , gb,1(bεe, c

ε
e, e(uεe)) = −µ1b

ε
e,1,

gb,2(cεe, b
ε
e, e(uεe)) = µ1b

ε
e,1 − 2rdc

bεe,2c
ε
e

κ+ cεe
+ 2Rb(b

ε
e,3)(trEε(bεe,3)e(uεe))

+ − rdbεe,2,

gb,3(cεe, b
ε
e, e(uεe)) = rdc

bεe,2c
ε
e

κ+ cεe
−Rb(bεe,3)(trEε(bεe,3)e(uεe))

+,

ge(c
ε
e, b

ε
e, e(uεe)) = −rdc

bεe,2c
ε
e

κ+ cεe
+Rb(b

ε
e,3)(trEε(bεe,3)e(uεe))

+,

where µ1, µ2, rdc, rd, κ > 0, and Rb(b
ε
e,3) is a Lipschitz continuous function of calcium-

pectin cross-links density, e.g., Rb(b
ε
e,3) = rbb

ε
e,3 with some constant rb > 0. We

assume that the concentration of the enzyme PME is constant, and hence methylester-
ified pectin is de-esterified at a constant rate. The demethylesterified pectin is pro-
duced through the de-esterification of methylesterified pectin by PME, demethylester-
ified pectin can decay, and through the interaction between two galacturonic acid
groups of pectin chains and a calcium molecule a calcium-pectin cross-link is pro-
duced. If a cross-link breaks due to mechanical forces, we regain two acid groups of
demethylesterified pectin and one calcium molecule. We consider the decay of calcium
inside the cells. The positive part of the trace of the elastic stress reflects the fact that
extension rather than compression causes the breakage of calcium-pectin cross-links.
See [39] for more details on the derivation of a microscopic model for the biomechanics
of a plant cell wall.

In what follows we use the notation 〈·, ·〉H1(A)′,H1 for the duality product between
L2(0, s; (H1(A))′) and L2(0, s;H1(A)), and

〈φ, ψ〉As =

∫ s

0

∫
A

φψ dxdt for φ ∈ Lq(0, s;Lp(A)) and ψ ∈ Lq
′
(0, s;Lp

′
(A)),

where 1/q + 1/q′ = 1 and 1/p+ 1/p′ = 1 for any s > 0 and domain A ⊂ R3.
We also use the notation

cε =

{
cεe in Ωεe,T ,

cεf in Ωεf,T .

Next we define a weak solution of the coupled system (6)–(8).

Definition 2.4. Functions

uεe ∈
[
L2(0, T ;H1(Ωεe)) ∩H2(0, T ;L2(Ωεe))

]3
,

pεe ∈ L2(0, T ;H1(Ωεe)) ∩H1(0, T ;L2(Ωεe)),

∂tu
ε
f ∈

[
L2(0, T ;H1(Ωεf )) ∩H1(0, T ;L2(Ωεf ))

]3
, pεf ∈ L2((0, T )× Ωεf ),

Πτ∂tu
ε
e = Πτ∂tu

ε
f on ΓεT , div ∂tu

ε
f = 0 in Ωεf,T ,

and
bεe ∈

[
L2(0, T ;H1(Ωεe)) ∩ L∞(0, T ;L2(Ωεe))

]3
,

cε ∈ L2(0, T ;H1(Ω \ Γ̃ε)) ∩ L∞(0, T ;L2(Ω))
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350 ANDREY PIATNITSKI AND MARIYA PTASHNYK

are a weak solution of (6)–(8) if
(i) (uεe, p

ε
e, ∂tu

ε
f , p

ε
f ) satisfy the integral relation

(9)

〈ρe ∂2
t u

ε
e, φ〉Ωεe,T +

〈
Eε(bεe,3)e(uεe), e(φ)

〉
Ωεe,T

+ 〈∇pεe, φ〉Ωεe,T
+ 〈ρp ∂tpεe, ψ〉Ωεe,T +

〈
Kε
p∇pεe − ∂tuεe,∇ψ

〉
Ωεe,T

+ 〈∂tuεf · n, ψ〉ΓεT − 〈p
ε
e, η · n〉ΓεT

+ 〈ρf ∂2
t u

ε
f , η〉Ωεf,T + ε2µ

〈
e(∂tu

ε
f ), e(η)

〉
Ωεf,T

= 〈Fu, φ〉(∂Ω)T + 〈Fp, ψ〉(∂Ω)T

for all ψ ∈ L2(0, T ;H1(Ωεe)), φ ∈ L2(0, T ;H1(Ωεe))
3, and η ∈ L2(0, T ;H1(Ωεf ))3, with

Πτφ = Πτη on ΓεT and divη = 0 in (0, T )× Ωεf ,
(ii) (bεe, c

ε) satisfy the integral relations

(10)
〈∂tbεe, ϕ1〉H1(Ωεe)

′,H1 + 〈Db∇bεe,∇ϕ1〉Ωεe,T − 〈gb(c
ε
e, b

ε
e, e(uεe)), ϕ1〉Ωεe,T

= ε〈P (bεe), ϕ1〉ΓεT + 〈Fb(bεe), ϕ1〉(∂Ω)T

and

(11)

〈∂tcεe, ϕ2〉H1(Ωεe)
′,H1 + 〈De∇cεe,∇ϕ2〉Ωεe,T − 〈ge(c

ε
e, b

ε
e, e(uεe)), ϕ2〉Ωεe,T

+ 〈∂tcεf , ϕ2〉H1(Ωεf )′,H1 + 〈Df∇cεf − G(∂tu
ε
f )cεf ,∇ϕ2〉Ωεf,T − 〈gf (cεf ), ϕ2〉Ωεf,T

= 〈Fc(cεe), ϕ2〉(∂Ω)T

for all ϕ1 ∈ L2(0, T ;H1(Ωεe))
3 and ϕ2 ∈ L2(0, T ;H1(Ω \ Γ̃ε)),

(iii) the corresponding initial conditions are satisfied. Namely, as t→ 0,
uεe(t, ·)→ uεe0(·) and ∂tu

ε
e(t, ·)→ u1

e0(·) in L2(Ωεe)
3, pεe(t, ·)→ pεe0(·) in L2(Ωεe),

∂tu
ε
f (t, ·)→ u1

f0(·) in L2(Ωεf )3,

bεe(t, ·)→ be0(·) in L2(Ωεe)
3, and cε(t, ·)→ c0(·) in L2(Ω).

3. A priori estimates, existence and uniqueness of a solution of the
microscopic problem. We begin by proving the existence of a weak solution of the
microscopic model (6)–(8) and uniform in ε a priori estimates. In order to obtain
uniform in ε estimates, we shall extend H1-functions from a perforated domain into
the whole domain.

Lemma 3.1.
• There exist extensions b

ε

e and cεe of bεe and cεe, respectively, from L2(0, T ;H1(Ωεe))
to L2(0, T ;H1(Ω)) such that

(12) ‖bεe‖L2(ΩT ) ≤ C‖bεe‖L2(Ωεe,T ), ‖∇bεe‖L2(ΩT ) ≤ C‖∇bεe‖L2(Ωεe,T ),

(13) ‖cεe‖L2(ΩT ) ≤ C‖cεe‖L2(Ωεe,T ), ‖∇cεe‖L2(ΩT ) ≤ C‖∇cεe‖L2(Ωεe,T ).

• There exists an extension cε of cε from L2(0, T ;H1(Ω̃εef )) to L2(0, T ;H1(Ω))
such that

(14) ‖cε‖L2(ΩT ) ≤ C‖cε‖L2(Ω̃εef,T ), ‖∇cε‖L2(ΩT ) ≤ C‖∇cε‖L2(Ω̃εef,T ).

Here the constant C is independent of ε, and Ω̃εef = Ω \ Ω̃ε, with Ω̃ε =⋃
ξ∈Ξε ε(Γ̃

δ∩Ye+ξ), where Γ̃δ is a δ-neighborhood of Γ̃ such that Γ̃δ∩∂Y = ∅

and Y \ Γ̃δ ∩ Ye is a connected set.
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HOMOGENIZATION OF BIOMECHANICAL MODELS 351

Sketch of proof. The assumptions on the geometry of Ωεe and Ω̃εef and a standard
extension operator (see, e.g., [1, 16]) ensure the existence of extensions of bεe, c

ε
e, and

cε satisfying estimates (12), (13), and (14), respectively.

Remark. Notice that we have a jump in cε across Γ̃. Thus in order to construct
an extension of cε in H1(Ω) we have to consider cε outside a δ-neighborhood of Γ̃.
Also since we would like to have an extension of cεf from Ωεf to Ω, we have to consider

Γ̃δ ∩ Ye; see Figure 1.
Notice that, since Yf ⊂ Y with ∂Yf ∩ ∂Y = ∅ and Γ = ∂Yf , for δ > 0 sufficiently

small Γ̃δ will satisfy the assumption of the lemma.

Lemma 3.2. Under assumptions A1–A5, solutions of the microscopic problem
(6)–(8) satisfy the following a priori estimates:

For elastic deformation, pressures, and flow velocity we have

(15)

‖uεe‖L∞(0,T ;H1(Ωεe))
+ ‖∂tuεe‖L∞(0,T ;H1(Ωεe))

+ ‖∂2
t u

ε
e‖L∞(0,T ;L2(Ωεe))

≤ C,
‖pεe‖L2(0,T ;H1(Ωεe))

+ ‖∂tpεe‖L∞(0,T ;L2(Ωεe))
+ ‖∂tpεe‖L2(0,T ;H1(Ωεe))

≤ C,
‖∂tuεf‖L∞(0,T ;L2(Ωεf )) + ‖∂2

t u
ε
f‖L∞(0,T ;L2(Ωεf )) + ε‖∇∂tuεf‖H1(0,T ;L2(Ωεf ))

+ ‖pεf‖L2(Ωεf,T ) ≤ C.

For the densities we have

(16)

bεe,i ≥ 0, cεe ≥ 0 a.e. in Ωεe,T , cεf ≥ 0 a.e. in Ωεf,T , i = 1, 2, 3,

‖bεe‖L2(0,T ;H1(Ωεe))
+ ε1/2‖bεe‖L2(ΓεT ) + ‖bεe‖L∞(0,T ;L∞(Ωεe))

≤ C,
‖cεj‖L2(0,T ;H1(Ωεj))

+ ‖cεj‖L∞(0,T ;L2(Ωεj))
+ ‖cεj‖L∞(0,T ;L4(Ωεj))

≤ C, j = e, f,

and

(17) ‖θhbεe − bεe‖L2((0,T̃ )×Ωεe)
+ ‖θhcεj − cεj‖L2((0,T̃ )×Ωεj)

≤ Ch1/4, j = e, f,

for T̃ ∈ (0, T − h], where θhv(t, x) = v(t + h, x) for (t, x) ∈ (0, T − h] × Ωεj , with
j = e, f , and the constant C is independent of ε.

Proof. The nonnegativity of cεe, c
ε
f , and bεe is justified in the proof of Theorem 3.3

on the existence and uniqueness of a weak solution of the microscopic problem (6)–(8).
To derive the estimates in (15), we first take (∂tu

ε
e, p

ε
e, ∂tu

ε
f ) as test functions in

(9) and obtain

ρe‖∂tuεe(s)‖2L2(Ωεe)
+ 〈Eε(bεe,3)e(uεe(s)), e(uεe(s))〉Ωεe − 〈∂tE

ε(bεe,3)e(uεe), e(uεe)〉Ωεe,s
+ 2〈∇pεe, ∂tuεe〉Ωεe,s + ρp‖pεe(s)‖2L2(Ωεe)

+ 2〈Kε
p∇pεe,∇pεe〉Ωεe,s − 2〈∂tuεe,∇pεe〉Ωεe,s

+ ρf‖∂tuεf (s)‖2L2(Ωεf ) + 2ε2µ‖e(∂tu
ε
f )‖2L2(Ωεf,s)

= 2〈Fu, ∂tuεe〉(∂Ω)s + 2〈Fp, pεe〉(∂Ω)s + ρe‖∂tuεe(0)‖2L2(Ωεe)

+ ρp‖pεe(0)‖2L2(Ωεe)
+ ρf‖∂tuεf (0)‖2L2(Ωεf ) + 〈Eε(bεe,3)e(uεe(0)), e(uεe(0))〉Ωεe

for s ∈ (0, T ]. As was defined just after formula (5), Ωεj,s := (0, s) × Ωεj for j = e, f .
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Using assumptions A1, A2, and A5 yields

(18)

‖∂tuεe(s)‖2L2(Ωεe)
+ ‖e(uεe(s))‖2L2(Ωεe)

+ ‖∂tuεf (s)‖2L2(Ωεf ) + ε2‖e(∂tu
ε
f )‖2L2(Ωεe,s)

+ ‖pεe(s)‖2L2(Ωεf ) + ‖∇pεe‖2L2(Ωεe,s)

≤ δ
[
‖uεe(s)‖2L2(∂Ω) + ‖pεe‖2L2((0,s)×∂Ω)

]
+ C1〈|∂tEε(bεe,3)|e(uεe), e(uεe)〉Ωεe,s

+Cδ
[
‖Fu‖2L∞(0,s;L2(∂Ω)) + ‖∂tFu‖2L2((0,s)×∂Ω) + ‖Fp‖2L2((0,s)×∂Ω)

]
+ C2

for s ∈ (0, T ]. Under our standing assumptions A1 on E, we have

‖∂tEε(bεe,3)‖L∞((0,T )×Ωεe)
≤ C.

Applying the trace and Korn inequalities [33] and using extension properties of uεe,
we obtain

(19) ‖uεe(s)‖L2(∂Ω) ≤ C
[
‖uεe(s)‖L2(Ωεe)

+ ‖e(uεe(s))‖L2(Ωεe)

]
.

Our assumptions A5 on the initial conditions ensure

(20) ‖uεe(s)‖L2(Ωεe)
≤ ‖∂tuεe‖L2(Ωεe,s)

+ ‖uεe0‖L2(Ωεe)
≤ C + ‖∂tuεe‖L2(Ωεe,s)

for s ∈ (0, T ]. Then applying the trace and Gronwall inequalities in (18) yields the
following estimate:

(21)
‖∂tuεe‖L∞(0,T ;L2(Ωεe))

+ ‖e(uεe)‖L∞(0,T ;L2(Ωεe))
+ ‖pεe‖L∞(0,T ;L2(Ωεe))

+ ‖∇pεe‖L2(Ωεe,T ) + ‖∂tuεf‖L∞(0,T ;L2(Ωεf )) + ε‖e(∂tu
ε
f )‖L2(0,T ;L2(Ωεf )) ≤ C,

where the constant C is independent of ε. Using the Korn inequality [33] for defor-
mation and velocity, together with a scaling argument, we obtain

(22)

‖uεe‖L∞(0,T ;L2(Ωεe))
+ ‖∇uεe‖L∞(0,T ;L2(Ωεe))

≤ C1

(
‖e(uεe)‖L∞(0,T ;L2(Ωεe))

+ ‖uεe‖L∞(0,T ;L2(Ωεe))

)
≤ C,

‖∂tuεf‖L2(Ωεf,T ) + ε‖∇∂tuεf‖L2(Ωεf,T )

≤ C2

(
ε‖e(∂tu

ε
f )‖L2(Ωεf,T ) + ‖∂tuεf‖L2(Ωεf,T )

)
≤ C.

Differentiating all equations in (7) with respect to time t and taking (∂2
t u

ε
e, ∂tp

ε
e, ∂

2
t u

ε
f )

as test functions in the resulting equations, we obtain

(23)

ρe‖∂2
t u

ε
e(s)‖2L2(Ωεe)

+ 〈Eε(bεe,3)e(∂tu
ε
e(s)), e(∂tu

ε
e(s))〉Ωεe − ρe‖∂

2
t u

ε
e(0)‖2L2(Ωεe)

+ ρp‖∂tpεe(s)‖2L2(Ωεe)
+ 2〈Kε

p∇∂tpεe,∇∂tpεe〉Ωεe,s − ρp‖∂tp
ε
e(0)‖2L2(Ωεe)

+ ρf‖∂2
t u

ε
f (s)‖2L2(Ωεf ) + 2 ε2µ‖e(∂2

t u
ε
f )‖2L2(Ωεf,s)

− ρf‖∂2
t u

ε
f (0)‖2L2(Ωεf )

=
〈
Eε(bεe,3(0))e(∂tu

ε
e(0)), e(∂tu

ε
e(0))

〉
Ωεe

+ 2
〈
∂tE

ε(bεe,3)e(uεe(s)), e(∂tu
ε
e(s))

〉
Ωεe

− 2
〈
∂tE

ε(bεe,3(0))e(uεe(0)), e(∂tu
ε
e(0))

〉
Ωεe

+ 2〈∂tFu, ∂2
t u

ε
e〉(∂Ω)s

−
〈
2∂2
tE

ε(bεe,3) e(uεe) + ∂tE
ε(bεe,3) e(∂tu

ε
e), e(∂tu

ε
e)
〉

Ωεe,s
+ 2〈∂tFp, ∂tpεe〉(∂Ω)s

for s ∈ (0, T ]. Here we used the following equality:〈
∂tE

ε(bεe,3) e(uεe), e(∂2
t u

ε
e)
〉

Ωεe,s
=
〈
∂tE

ε(bεe,3(s))e(uεe(s)), e(∂tu
ε
e(s))

〉
Ωεe

−
〈
∂tE

ε(bεe,3(0))e(uεe(0)), e(∂tu
ε
e(0))

〉
Ωεe

−
〈
∂2
tE

ε(bεe,3) e(uεe) + ∂tE
ε(bεe,3) e(∂tu

ε
e), e(∂tu

ε
e)
〉

Ωεe,s
.
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Assumptions A5 on the initial conditions together with the microscopic equations in
(7) ensure that

(24) ‖∂2
t u

ε
e(0)‖2L2(Ωεe)

+ ‖∂tpεe(0)‖2L2(Ωεe)
+ ‖∂2

t u
ε
f (0)‖2L2(Ωεf ) ≤ C,

where the constant C is independent of ε. To justify (24), first we consider the
Galerkin approximations of uεe and ∂tu

ε
f and a function φk in the corresponding finite

dimensional subspace, with φk = 0 on ∂Ω and div φk = 0 in Ωεf ,

〈ρe ∂2
t u

ε,k
e , φk〉Ωεe +

〈
Eε(bεe,3)e(uε,ke ), e(φk)

〉
Ωεe

+ 〈∇pε,ke , φk〉Ωεe
+ 〈ρf ∂2

t u
ε,k
f , φk〉Ωεf + ε2µ 〈e(∂tu

ε,k
f ), e(φk)〉Ωεf + 〈pε,ke , φk · n〉Γε = 0.

Taking t → 0 and using the regularity of uε,ke , ∂tu
ε,k
f , and bεe,3 with respect to the

time variable, we obtain

〈ρe ∂2
t u

ε,k
e (0), φk〉Ωεe +

〈
Eε(be0,3)e(uε,ke (0)), e(φk)

〉
Ωεe

+ 〈∇pε,ke (0), φk〉Ωεe
+ 〈ρf ∂2

t u
ε,k
f (0), φk〉Ωεf + ε2µ 〈e(∂tu

ε,k
f (0)), e(φk)〉Ωεf + 〈pε,ke (0), φk · n〉Γε = 0.

Then the integration by parts in the last two terms and the assumptions on the initial
values ensure

|〈∂2
t u

ε,k
e (0), φk〉Ωεe |+ |〈∂

2
t u

ε,k
f (0), φk〉Ωεf | ≤ |

〈
fu, φ

k
〉

Ωεe
|+ |〈∇pε,ke0 , φk〉Ω|

+ ε2µ |〈div e(∂tu
1,k
f0 ), φk〉Ωεf |+ ε2µ ‖∇2∂tu

1,k
f0 ‖L2(Ω)‖φk‖L2(Ωεf ) ≤ C‖φk‖L2(Ω),

and hence

‖∂2
t u

ε,k
e (0)‖L2(Ωεe)

+ ‖∂2
t u

ε,k
f (0)‖L2(Ωεf ) ≤ C,

where the constant C is independent of k and div ∂2
t u

ε,k
f (0) = 0 in Ωεf . In a similar

way, we also obtain the boundedness of ‖∂tpε,ke (0)‖L2(Ωεe)
uniformly in k.

Then the estimates similar to (23) for the Galerkin approximations of uεe, p
ε
e,

and ∂tu
ε
f imply that pεe ∈ C([0, T ];L2(Ωεe)), ∇pεe, ∂tuεe ∈ C([0, T ];L2(Ωεe))

3, e(uεe) ∈
C([0, T ];L2(Ωεe))

3×3, ∂tu
ε
f ∈ C([0, T ];L2(Ωεf ))3, e(∂tu

ε
f ) ∈ C([0, T ];L2(Ωεf ))3×3.

Then from the equations for uεe and pεe and the continuity of e(uεe), ∂tu
ε
e, and

∇pεe with respect to the time variable, we obtain the continuity of ∂2
t u

ε
e and ∂tp

ε
e with

respect to the time variable. Then the assumptions on uεe0, u1
e0, and pεe0 ensure the

boundedness of ‖∂2
t u

ε
e(0)‖L2(Ωεe)

and ‖∂tpεe(0)‖L2(Ωεe)
uniformly in ε.

For φ ∈ H1
0 (Ω), with div φ = 0 in Ωεf , we have

〈ρe ∂2
t u

ε
e, φ〉Ωεe +

〈
Eε(bεe,3)e(uεe), e(φ)

〉
Ωεe

+ 〈∇pεe, φ〉Ωεe
+ 〈ρf∂2

t u
ε
f , φ〉Ωεf + ε2µ 〈e(∂tu

ε
f ), e(φ)〉Ωεf + 〈pεe, φ · n〉Γε = 0.

Considering the continuity of e(uεe), ∂
2
t u

ε
e, ∇pεe, and e(∂tu

ε
f ) with respect to the

time variable and taking t→ 0, we obtain the continuity of ∂2
t u

ε
f and

〈ρe ∂2
t u

ε
e(0), φ〉Ωεe + 〈Eε(be0,3)e(uεe0), e(φ)〉Ωεe + 〈∇pεe0, φ〉Ωεe

+ 〈ρf ∂2
t u

ε
f (0), φ〉Ωεf + ε2µ 〈e(u1

f0), e(φ)〉Ωεf + 〈pεe0, φ · n〉Γε = 0.
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354 ANDREY PIATNITSKI AND MARIYA PTASHNYK

The integration by parts, the boundary conditions for uεe0, and the assumptions on φ
imply

〈ρf∂2
t u

ε
f (0), φ〉Ωεf = −〈ρe ∂2

t u
ε
e(0), φ〉Ωεe + 〈div(Eε(be0,3)e(uεe0)), φ〉Ωεe − 〈∇p

ε
e0, φ〉Ω

+ 〈ε2µdiv(e(u1
f0)), φ〉Ωεf − ε

2〈µn · e(u1
f0)n, φ · n〉Γε .

From the assumptions on uεe0 and pεe0 we have that div(Eε(be0,3)e(uεe0)) = fu, with
fu ∈ L2(Ω), and ‖∇pεe0‖L2(Ω) ≤ C1, where C1 is independent of ε. The assumptions
on u1

f0 ensure that ε2µ‖div(e(u1
f0))‖L2(Ωεf ) ≤ C2 and there exists ψε ∈ H1(Ωεf ), such

that ‖∇ψε‖L2(Ωεf ) ≤ C3 and

|ε2〈µn · e(u1
f0)n, φ · n〉Γε | = |〈∇ψε, φ〉Ωεf | ≤ C4‖φ‖L2(Ωεf ),

where the constants C2, C3, and C4 are independent of ε. Using the density of φ in
H = {v ∈ L2(Ωεf ) : div v = 0 in Ωεf}, we obtain the boundedness of ∂2

t u
ε
f (0) in H

uniformly in ε.
Then considering assumptions A1–A2 and applying the Hölder and Gronwall

inequalities in (23), we obtain the estimates for ∂2
t u

ε
e, ∂tp

ε
e, and ∂2

t u
ε
f stated in (15).

Here we used the fact that assumptions A1 on E imply the following upper bound:

‖∂2
tE

ε(bεe,3)‖L∞((0,T )×Ωεe)
≤ C.

Testing the first and third equations in (7) with φ ∈ L2(0, T ;H1(Ω))3 and using the
a priori estimates for uεe, p

ε
e, and ∂tu

ε
f , we obtain

(25)

〈pεf ,div φ〉Ωεf,T + 〈pεe,div φ〉Ωεe,T = 〈ε2µ e(∂tu
ε
f ), e(φ)〉Ωεf,T + ρf 〈∂2

t u
ε
f , φ〉Ωεf,T

+ ρe〈∂2
t u

ε
e, φ〉Ωεe,T + 〈Eε(bεe,3)e(uεe), e(φ)〉Ωεe,T + 〈pεe n− Fu, φ〉(∂Ω)T

≤ C‖φ‖L2(0,T ;H1(Ω))3 .

Here we used the properties of an extension of pεe from Ωεe to Ω (see Lemma 3.1) and
the trace estimate ‖pεe‖L2((0,T )×∂Ω) ≤ C1‖pεe‖L2(0,T ;H1(Ω)) ≤ C2‖pεe‖L2(0,T ;H1(Ωεe))

.
For any q ∈ L2(ΩT ) there exists φ ∈ L2(0, T ;H1(Ω))3 satisfying div φ = q in Ω,

φ · n = 1
|∂Ω|

∫
Ω
q(·, x)dx on ∂Ω, and ‖φ‖L2(0,T ;H1(Ω))3 ≤ C‖q‖L2(ΩT ). Thus for

p̃ε =

{
pεf in (0, T )× Ωεf ,

pεe in (0, T )× (Ω \ Ωεf )

using (25) we obtain

〈p̃ε, q〉ΩT ≤ C‖q‖L2((0,T )×Ω),

where the constant C is independent of ε. This implies, by the definition of the
L2-norm and the estimates for pεe, that ‖pεf‖L2((0,T )×Ωεf ) ≤ C.

To justify estimates (16) we take bεe and cε as test functions in (10) and (11),
respectively. Using assumptions A3–A5, we obtain

‖bεe(s)‖2L2(Ωεe)
+ ‖∇bεe‖2L2(Ωεe,s)

≤‖bεe(0)‖2L2(Ωεe)
+ C1‖e(uεe)‖L∞(0,s;L2(Ωεe))

‖bεe‖2L2(0,s;L4(Ωεe))

+C2

[
‖cεe‖2L2(Ωεe,s)

+ ‖bεe‖2L2(Ωεe,s)

]
+ C3

[
1 + ε‖bεe‖2L2(Γεs)

+ ‖bεe‖2L2((0,s)×∂Ω)

]

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

03
/0

7/
18

 to
 1

58
.3

9.
85

.1
01

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



HOMOGENIZATION OF BIOMECHANICAL MODELS 355

and

‖cεe(s)‖2L2(Ωεe)
+ ‖cεf (s)‖2L2(Ωεf ) + ‖∇cεe‖2L2(Ωεe,s)

+ ‖∇cεf‖2L2(Ωεf,s)

≤‖cεe(0)‖2L2(Ωεe)
+ ‖cεf (0)‖2L2(Ωεf )

+C1‖e(uεe)‖L∞(0,s;L2(Ωεe))

[
‖bεe‖2L2(0,s;L4(Ωεe))

+ ‖cεe‖2L2(0,s;L4(Ωεe))

]
+C2

[
1 + ‖G(∂tu

ε
f )‖2L∞(Ωεf,s)

]
‖cεf‖2L2(Ωεf,s)

+C3

[
‖bεe‖2L2(Ωεe,s)

+ ‖cεe‖2L2(Ωεe,s)
+ ‖cεe‖2L2((0,s)×∂Ω)

]
.

The Gagliardo–Nirenberg and trace inequalities, together with the extension proper-
ties of bεe and cε (see Lemma 3.1), yield

(26)

‖bεe‖2L4(Ωεe)
≤ ‖bεe‖2L4(Ω) ≤ δ1‖∇b

ε
e‖2L2(Ω) + Cδ1‖bεe‖2L2(Ω)

≤ δ2‖∇bεe‖2L2(Ωεe)
+ Cδ2‖bεe‖2L2(Ωεe)

,

‖cεe‖2L4(Ωεe)
+ ‖cεf‖2L4(Ωεf ) ≤ δ

[
‖∇cεe‖2L2(Ωεe)

+ ‖∇cεf‖2L2(Ωεf )

]
+ Cδ

[
‖cεe‖2L2(Ωεe)

+ ‖cεf‖2L2(Ωεf )

]
,

‖bεe‖2L2(∂Ω) ≤ δ‖∇b
ε
e‖2L2(Ωεe)

+ Cδ‖bεe‖2L2(Ωεe)
,

‖cεe‖2L2(∂Ω) ≤ δ‖∇c
ε
e‖2L2(Ωεe)

+ Cδ‖cεe‖2L2(Ωεe)
,

ε‖bεe‖2L2(Γε) ≤ C
[
ε2‖∇bεe‖2L2(Ωεe)

+ ‖bεe‖2L2(Ωεe)

]
for an arbitrary δ > 0, and Cδ depending on δ and independent of ε. Notice that since
the Gagliardo–Nirenberg inequality is applied to the extension of bεe and cε defined
in Ω, the constant in the Gagliardo–Nirenberg inequality is independent of ε. Then
applying the Gronwall inequality and using the assumptions A3 on G yields

(27)
‖bεe‖L∞(0,T ;L2(Ωεe))

+ ‖∇bεe‖L2((0,T )×Ωεe)
≤ C,

‖cεj‖L∞(0,T ;L2(Ωεj))
+ ‖∇cεj‖L2((0,T )×Ωεj)

≤ C, j = e, f.

The uniform boundedness of bεe, i.e.,

(28) ‖bεe‖L∞(0,T ;L∞(Ωεe))
≤ C,

with a constant C independent of ε, is proved by applying the Alikakos iteration
lemma [2, Lemma 3.2]. Since the derivation of estimate (28) is rather involved, we
present the detailed proof of this estimate in the appendix; see Lemma 10.1. In the
same lemma in the appendix we also prove the estimate

‖cεe‖L∞(0,T ;L4(Ωεe))
+ ‖cεf‖L∞(0,T ;L4(Ωεf )) ≤ C,

where the constant C does not depend on ε.
To justify the last estimate (17), we integrate the equation for bεe in (6) over
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356 ANDREY PIATNITSKI AND MARIYA PTASHNYK

(t, t+ h) and consider θhb
ε
e − bεe as a test function:

‖θhbεe − bεe‖2L2((0,T̃ )×Ωεe)
+

〈
Db

∫ t+h

t

∇bεe(s) ds,∇(θhb
ε
e)−∇bεe

〉
(0,T̃ )×Ωεe

=

〈∫ t+h

t

gb(b
ε
e(s), c

ε
e(s), e(uεe(s))) ds, θhb

ε
e − bεe

〉
(0,T̃ )×Ωεe

+ ε

〈∫ t+h

t

P (bεe(s)) ds, θhb
ε
e − bεe

〉
(0,T̃ )×Γε

+

〈∫ t+h

t

Fb(b
ε
e) ds, θhb

ε
e − bεe

〉
(0,T̃ )×∂Ω

for all T̃ ∈ (0, T − h]. Then using the a priori estimates for uεe, b
ε
e, and cεe in (15) and

(16) together with the Hölder inequality implies the estimate for bεe(t+h, x)−bεe(t, x).
Similar calculations yield the estimates for cεe(t + h, x) − cεe(t, x) and cεf (t + h, x) −
cεf (t, x).

Theorem 3.3. Under assumptions A1–A5, for every ε > 0 there exists a unique
weak solution of the coupled problem (6)–(8).

Proof. We shall use a contraction argument to show the existence of a solu-
tion of the coupled system. We consider an operator K over L∞(0, s;H1(Ωεe)

3) ×
L∞(0, s;L2(Ωεf )3) defined by (uε,je , ∂tu

ε,j
f ) = K(uε,j−1

e , ∂tu
ε,j−1
f ), where for given

(uε,j−1
e , ∂tu

ε,j−1
f ) we first define (bε,je , cε,je , cε,jf ) as a solution of system (6) with func-

tions (uε,j−1
e , ∂tu

ε,j−1
f ) in place of (uεe, ∂tu

ε
f ) and with external boundary conditions

in (8), and then (uε,je , pε,je , ∂tu
ε,j
f , pε,jf ) are solutions of (7) with bε,je in place of bεe.

For each j = 2, 3, . . . , the proof of existence and uniqueness of (bε,je , cε,je , cε,jf ) for

given (uε,j−1
e , ∂tu

ε,j−1
f ) follows the same arguments (with a number of simplifications)

as the proof that K is a contraction for (uε,je , ∂tu
ε,j
f ), i.e., using the Galerkin method

and fixed-point arguments. Notice that the fixed-point argument for the system for
bε,je and cε,j allows us to consider the equations for bε,je and cε,j recursively. Thus using
the nonnegativity of initial data be0, ce0, and cf0 and assumptions A4 on the reaction
and boundary terms and applying iteratively the theorem on positively invariant
regions [40, 47], we obtain the nonnegativity of all components of bε,je and cε,j .

We choose the first iteration (uε,1e , pε,1e , ∂tu
ε,1
f , pε,1f ) to satisfy the initial and bound-

ary conditions in (7) and (8). Then applying the Galerkin method (using the basis

functions for H1(Ωεe)×H1(Ω\ Γ̃ε)) and fixed-point argument, we obtain the existence
of solutions (bε,2e , cε,2e , cε,2f ) of system (6) with external boundary conditions in (8) and
have

(29)
‖bε,2e ‖L∞(0,T ;L2(Ωεe))

+ ‖∇bε,2e ‖L2(Ωεe,T ) + ‖bε,2e ‖L∞(0,T ;L∞(Ωεe))
≤ C,

‖cε,2l ‖L∞(0,T ;L2(Ωεl ))
+ ‖∇cε,2l ‖L2(Ωεl,T ) + ‖cε,2l ‖L∞(0,T ;L4(Ωεl ))

≤ C, l = e, f,

where the constant C depends only on ‖e(uε,1e )‖L∞(0,T ;L2(Ωεe))
and the constants in

assumptions A1–A4. The estimates (29) can be justified in the same way as those in
(16).

Next we consider system (7) with bε,2e in place of bεe. To show the existence result
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HOMOGENIZATION OF BIOMECHANICAL MODELS 357

we use the Galerkin method with the basis functions {φj , ψj , ηj}j∈N for the space

W = {(v, p, w) ∈ H1(Ωεe)
3 ×H1(Ωεe)×H1(Ωεf )3 : divw = 0 in Ωεf ,

Πτv = Πτw on Γε, div(Kε
p∇p) ∈ L2(Ωεe),

〈(v −Kε
p∇p− w) · n, ψ〉H−1/2(Γε),H1/2(Γε) = 0},

and consider the approximate solutions in the form

uε,2e,k =

k∑
j=1

qkj (t)φj , pε,2e,k =

k∑
j=1

d

dt
qkj (t)ψj , ∂tu

ε,2
f,k =

k∑
j=1

d

dt
qkj (t)ηj , k ∈ N.

The linearity of equations for (uε,2e , pε,2e , ∂tu
ε,2
f ) ensures the existence of unique so-

lutions qkj (t) of the corresponding linear system of second order ordinary differential

equations with initial conditions qkj (0) = αkj and d
dtq

k
j (0) = βkj , where αkj and βkj are

derived from the initial conditions in (7), and hence, the existence of a unique solution
(uε,2e,k, p

ε,2
e,k, ∂tu

ε,2
f,k) for k ∈ N. Then using the a priori estimates derived in the same way

as in Lemma 3.2 (by considering assumptions A1, A2, and A5) and taking the limit
as k → ∞, we obtain the existence of uε,2e ∈ [H1(0, T ;H1(Ωεe)) ∩H2(0, T ;L2(Ωεe))]

3,
pε,2e ∈ H1(0, T ;H1(Ωεe)), and ∂tu

ε,2
f ∈ H1(0, T ;H1(Ωεf ))3 ∩ L2(0, T ;V ), with V =

{v ∈ H1(Ωεf )3 : div v = 0 in Ωεf}, satisfying (9) with bε,2e,3 in place of bεe,3. Taking

ψ ∈ L2(0, T ;H1
0 (Ωεe)), φ ∈ L2(0, T ;H1

0 (Ωεe))
3, and η ∈ L2(0, T ;V0), where V0 = {v ∈

H1
0 (Ωεf )3 : div v = 0 in Ωεf}, as test functions in the weak formulation, we obtain the

equations for uε,2e and pε,2e in (7) and 〈ρf∂2
t u

ε,2
f −ε2µdiv(e(∂tu

ε,2
f )), η〉 = 0 for any η ∈

L2(0, T ;V0). Then De Rham’s theorem applied to −ρf∂2
t u

ε,2
f + ε2µdiv(e(∂tu

ε,2
f )) im-

plies the existence of pε,2f ∈ L2((0, T )×Ωεf ) such that −ρf∂2
t u

ε,2
f +ε2µdiv(e(∂tu

ε,2
f )) =

∇pε,2f . Using first ψ = 0, φ = 0, and η ∈ L2(0, T ;H1(Ωεf ))3, with Πτη = 0 on (0, T )×
Γε, as a test function in the weak formulation of the equations for (uε,2e , pε,2e , ∂tu

ε,2
f )

we obtain the transmission condition −n · ε2µ e(∂tu
ε,2
f )n+ pε,2f = pε,2e on (0, T )× Γε,

satisfied in the distribution sense. Choosing ψ = 0, φ ∈ L2(0, T ;H1(Ωεe))
3, and

η ∈ L2(0, T ;H1(Ωεf ))3, with φ = η on (0, T )×Γε, as test functions and using the equa-

tions for uε,2e and ∂tu
ε,2
f ensure (ε2µ e(∂tu

ε,2
f ) − pε,2f I)n = (Eε(bε,2e,3)e(uε,2e ) − pε,2e I)n

on (0, T ) × Γε. Then, using the equations for uε,2e , pε,2e , and ∂tu
ε,2
f and consider-

ing ψ ∈ L2(0, T ;H1(Ωεe)), φ ∈ L2(0, T ;H1(Ωεe))
3, and η ∈ L2(0, T ;H1(Ωεf ))3, with

Πτφ = Πτη on (0, T ) × Γε and ψ = 0, φ = 0 on (0, T ) × ∂Ω, as test functions, we
obtain the transmission condition (−Kε

p∇pε,2e + ∂tu
ε,2
e ) · n = ∂tu

ε,2
f · n on (0, T )× Γε

in the distribution sense. Taking ψ ∈ L2(0, T ;H1(Ωεe)), φ ∈ L2(0, T ;H1(Ωεe))
3, and

η ∈ L2(0, T ;H1(Ωεf ))3, with Πτφ = Πτη on (0, T ) × Γε, as test functions, we obtain

the boundary conditions on (0, T )×∂Ω. Hence we obtain that (uε,2e , pε,2e , ∂tu
ε,2
f , pε,2f )

is a weak solution of (7), with bε,2e,3 in place of bεe,3, together with the corresponding
external boundary conditions in (8). Standard arguments pertaining to the consider-
ation of two solutions of (7) imply the uniqueness of a weak solution of (7), (8). The
transmission condition −n · ε2µ e(∂tu

ε,2
f )n + pε,2f = pε,2e on (0, T ) × Γε ensures that

pε,2f is defined uniquely.
Also, we obtain that the estimates similar to (15) are valid for the functions

(uε,2e , pε,2e , ∂tu
ε,2
f , pε,2f ) uniformly with respect to solutions of (6) with boundary con-
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358 ANDREY PIATNITSKI AND MARIYA PTASHNYK

ditions in (8):

(30)

‖∂tuε,2e ‖L∞(0,T ;L2(Ωεe))
+ ‖∇uε,2e ‖L∞(0,T ;L2(Ωεe))

≤ C,
‖pε,2e ‖L∞(0,T ;L2(Ωεe))

+ ‖∇pε,2e ‖L2(Ωεe,T ) ≤ C,

‖∂tuε,2f ‖L∞(0,T ;L2(Ωεf )) + ε‖∇∂tuε,2f ‖L2(Ωεf,T ) + ‖pε,2f ‖L2(Ωεf,T ) ≤ C.

Iterating this step, we conclude the existence of a solution (bε,je , cε,je , cε,jf ) of (6) with

(uε,j−1
e , ∂tu

ε,j−1
f ) instead of (uεe, ∂tu

ε
f ) and a solution (uε,je , pε,je , ∂tu

ε,j
f , pε,jf ) of system

(7) with bε,je instead of bεe, and that the estimates similar to (29) and (30) are fulfilled
for (bε,je , cε,je , cε,jf ) and (uε,je , pε,je , ∂tu

ε,j
f , pε,jf ), with j ≥ 2.

To show the contraction property of K, we consider two iterations

(bε,j−1
e , cε,j−1

e , cε,j−1
f ), (∂tu

ε,j−2
e , ∂tu

ε,j−2
f ) and (bε,je , cε,je , cε,jf ), (∂tu

ε,j−1
e , ∂tu

ε,j−1
f ).

Then the differences b̃ε,je = bε,j−1
e − bε,je , c̃ε,je = cε,j−1

e − cε,je , and c̃ε,jf = cε,j−1
f − cε,jf

satisfy the following equations:

(31)

∂tb̃
ε,j
e − div(Db∇b̃ε,je )

= gb(c
ε,j−1
e , bε,j−1

e , e(uε,j−2
e ))− gb(cε,je , bε,je , e(uε,j−1

e )) in Ωεe,T ,

∂tc̃
ε,j
e − div(Dc∇c̃ε,je )

= ge(c
ε,j−1
e , bε,j−1

e , e(uε,j−2
e ))− ge(cε,je , bε,je , e(uε,j−1

e )) in Ωεe,T ,

∂tc̃
ε,j
f − div

(
Df∇c̃ε,jf − G(∂tu

ε,j−2
f )c̃ε,jf

)
+ div

(
cε,jf
[
G(∂tu

ε,j−2
f )− G(∂tu

ε,j−1
f )

])
= gf (cε,j−1

f )− gf (cε,jf ) in Ωεf,T ,

together with the boundary conditions

(32)

Db∇b̃ε,je · n = ε
(
P (bε,j−1

e )− P (bε,je )
)

on ΓεT ,

c̃ε,jf = c̃ε,je on ΓεT \ Γ̃εT ,

De∇c̃ε,je · n =
[
Df∇c̃ε,jf − G(∂tu

ε,j−2
f )c̃ε,jf

]
· n

−
[(
G(∂tu

ε,j−2
f )− G(∂tu

ε,j−1
f )

)
cε,jf
]
· n on ΓεT \ Γ̃εT ,

De∇c̃ε,je · n = 0 on Γ̃εT ,[
Df∇c̃ε,jf − (G(∂tu

ε,j−2
f )cε,j−1

f − G(∂tu
ε,j−1
f )cε,jf )

]
· n = 0 on Γ̃εT ,

Db∇b̃ε,je · n = Fb(b
ε,j−1
e )− Fb(bε,je ) on (∂Ω)T ,

De∇c̃ε,je · n = Fc(c
ε,j−1
e )− Fc(cε,je ) on (∂Ω)T .

Using b̃ε,je , c̃ε,je , and c̃ε,jf as test functions in the weak formulation of (31) and (32),
we obtain, for any δ1 > 0,

(33)

∂t‖b̃ε,je ‖2L2(Ωεe)
+ ‖∇b̃ε,je ‖2L2(Ωεe)

≤ (ε2 + δ1)‖∇b̃ε,je ‖2L2(Ωεe)

+C1

(
‖bε,j−1
e ‖L∞(Ωεe)

+ Cδ1
) [
‖b̃ε,je ‖2L2(Ωεe)

+ ‖c̃ε,je ‖2L2(Ωεe)

]
+C2‖bε,j−1

e ‖L∞(Ωεe)

[
‖e(ũε,j−1

e )‖2L2(Ωεe)
+ ‖b̃ε,je ‖2L2(Ωεe)

]
+C3

[
‖cε,j−1
e ‖L2(Ωεe)

+ ‖e(uε,j−2
e )‖L2(Ωεe)

]
‖b̃ε,je ‖2L4(Ωεe)

+C4

[
ε‖b̃ε,je ‖2L2(Γε) + ‖b̃ε,je ‖2L2(∂Ω)

]
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HOMOGENIZATION OF BIOMECHANICAL MODELS 359

and

(34)

∂t‖c̃ε,je ‖2L2(Ωεe)
+ ‖∇c̃ε,je ‖2L2(Ωεe)

+ ∂t‖c̃ε,jf ‖
2
L2(Ωεf ) + ‖∇c̃ε,jf ‖

2
L2(Ωεf )

≤ C1

(
‖bε,je ‖L∞(Ωεe)

+ 1
) (
‖c̃ε,je ‖2L2(Ωεe)

+ ‖e(ũε,j−1
e )‖2L2(Ωεe)

)
+ C2

(
‖e(uε,j−2

e )‖L2(Ωεe)
+ ‖cε,j−1

e ‖L2(Ωεe)

) (
‖c̃ε,je ‖2L4(Ωεe)

+ ‖b̃ε,je ‖2L4(Ωεe)

)
+ C3‖e(ũε,j−1

e )‖L2(Ωεe)
‖cε,j−1
e ‖L4(Ωεe)

‖c̃ε,je ‖L4(Ωεe)
+ C4‖c̃ε,je ‖2L2(∂Ω)

+ C5

(
‖cε,j−1
f ‖2L4(Ωεf )‖∂tũ

ε,j−1
f ‖2L4(Ωεf ) + ‖G(∂tu

ε,j−1
f )‖2L4(Ωεf )‖c̃

ε,j
f ‖

2
L4(Ωεf )

)
,

where ũε,j−1
e = uε,j−1

e − uε,j−2
e and ũε,j−1

f = uε,j−1
f − uε,j−2

f . Using the trace

and the Gagliardo–Nirenberg inequalities, we estimate ‖b̃ε,je ‖2L4(Ωεe)
, ‖c̃ε,je ‖2L4(Ωεe)

, and

‖c̃ε,jf ‖2L4(Ωεf ), as well as the boundary terms ε‖b̃ε,je ‖2L2(Γε), ‖b̃
ε,j
e ‖2L2(∂Ω), and ‖c̃ε,je ‖2L2(∂Ω),

in the same way as in (26). The estimates for cε,j−1
e in L∞(0, T ;L4(Ωεe)) and for cε,j−1

f

in L∞(0, T ;L4(Ωεf )) ensure∫ s

0

[
‖e(ũε,j−1

e )‖L2(Ωεe)
‖cε,j−1
e ‖L4(Ωεe)

‖c̃ε,je ‖L4(Ωεe)
+ ‖cε,j−1

f ‖2L4(Ωεf )‖∂tũ
ε,j−1
f ‖2L4(Ωεf )

]
dt

≤ ‖cε,j−1
e ‖L∞(0,s;L4(Ωεe))

[
C1‖e(ũε,j−1

e )‖2L2(Ωεe,s)
+ Cδ‖c̃ε,je ‖2L2(Ωεe,s)

+ δ‖∇c̃ε,je ‖2L2(Ωεe,s)

]
+‖cε,j−1

f ‖2L∞(0,s;L4(Ωεf ))

[
Cδ‖∂tũε,j−1

f ‖2L2(Ωεf,s)
+ δ‖e(∂tũ

ε,j−1
f )‖2L2(Ωεf,s)

]
for any δ > 0. Then combining (33) and (34) and applying the Gronwall inequality,
we obtain

(35)

‖b̃ε,je ‖2L∞(0,s;L2(Ωεe))
+ ‖∇b̃ε,je ‖2L2(Ωεe,s)

+ ‖c̃ε,je ‖2L∞(0,s;L2(Ωεe))
+ ‖∇c̃ε,je ‖2L2(Ωεe,s)

+ ‖c̃ε,jf ‖
2
L∞(0,s;L2(Ωεf )) + ‖∇c̃ε,jf ‖

2
L2(Ωεf,s)

≤ C1‖e(ũε,j−1
e )‖2L2(Ωεe,s)

+ Cδ‖∂tũε,j−1
f ‖2L2(Ωεf,s)

+ δ‖e(∂tũ
ε,j−1
f )‖2L2(Ωεf,s)

.

Notice that C1 = C2e
C3s ≤ C2e

C3T and Cδ = C4e
C5s ≤ C4e

C5T for s ∈ (0, T ], and we
can consider C1 and Cδ to be independent of s.

Considering |̃bε,je |p−1, with p = 2k, k = 2, 3, . . . , as a test function in the weak

formulation of (31) and (32), applying the Gagliardo–Nirenberg inequality to |̃bε,je |
p
2 ,

and using the iteration in p = 2k with k ∈ N (see [2, Lemma 3.2]), we derive the
estimate

‖b̃ε,je ‖L∞(0,s;L∞(Ωεe))
≤ C1‖e(ũε,j−1

e )‖
L1+ 1

σ (0,s;L2(Ωεe))

+ Cδ‖∂tũε,j−1
f ‖L2(Ωεf,s)

+ δ‖e(∂tũ
ε,j−1
f )‖L2(Ωεf,s)

for s ∈ (0, T ], an arbitrary 0 < δ < 1, and any 0 < σ < 1/9. For more details see the
proof of Lemma 10.2 in the appendix. Notice that C1 and Cδ depend on T and are
independent of s.

Now letting ũε,je = uε,j−1
e − uε,je , p̃ε,je = pε,j−1

e − pε,je , ũε,jf = uε,j−1
f − uε,jf ,

considering the equations for (ũε,je , p̃ε,je , ∂tũ
ε,j
f ), and using (∂tũ

ε,j
e , p̃ε,je , ∂tũ

ε,j
f ) as test

functions in the integral formulation of these equations, we arrive at the following
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360 ANDREY PIATNITSKI AND MARIYA PTASHNYK

inequality:

(36)

1

2
ρe ∂t‖∂tũε,je ‖2L2(Ωεe)

+
1

2
∂t〈Eε(bε,j−1

e,3 )e(ũε,je ), e(ũε,je )〉Ωεe

+
1

2
ρp ∂t‖p̃ε,je ‖2L2(Ωεe)

+ ‖∇p̃ε,je ‖2L2(Ωεe)

+
1

2
ρf ∂t‖∂tũε,jf ‖

2
L2(Ωεf ) + µ ε2 ‖e(∂tũ

ε,j
f )‖2L2(Ωεf )

≤
〈
∂tE

ε(bε,j−1
e,3 )e(ũε,je ), e(ũε,je )

〉
Ωεe

+
〈
(Eε(bε,j−1

e,3 )−Eε(bε,je,3)) e(uε,j−1
e ), ∂te(ũε,je )

〉
Ωεe

≤ C1‖e(ũε,je )‖2L2(Ωεe)
+ ∂t

〈
(Eε(bε,j−1

e,3 )−Eε(bε,je,3))e(uε,j−1
e ), e(ũε,je )

〉
Ωεe

−
〈
∂t(E

ε(bε,j−1
e,3 )−Eε(bε,je,3))e(uε,j−1

e ), e(ũε,je )
〉

Ωεe

−
〈
(Eε(bε,j−1

e,3 )−Eε(bε,je,3)) ∂te(uε,j−1
e ), e(ũε,je )

〉
Ωεe
.

Thus using a priori estimates for uε,je , ∂tu
ε,j
e , ∂tu

ε,j
f , bε,je , and b̃ε,je , we have that

‖e(ũε,je )‖L∞(0,s;L2(Ωεe))
+ ‖∂tũε,jf ‖L∞(0,s;L2(Ωεf )) + ‖e(∂tũ

ε,j
f )‖L2(Ωεf,s)

+ ‖p̃ε,je ‖L∞(0,s;L2(Ωεe))
+ ‖∇p̃ε,je ‖L2(Ωεe,s)

≤ C1‖b̃ε,je ‖L∞(0,s;L∞(Ωεe))

≤ C2‖e(ũε,j−1
e )‖Lσ1 (0,s;L2(Ωεe))

+ Cδ‖∂tũε,j−1
f ‖L2(Ωεf,s)

+ δ‖e(∂tũ
ε,j−1
f )‖L2(Ωεf,s)

for s ∈ (0, T ], 0 < δ < 1, and σ1 > 10, with the constants C1, C2, and Cδ depending
on T and the model parameters but independent of the solutions, initial data, and of
s ∈ (0, T ]. Considering δ < 1 and sufficiently small time intervals s in the inequality

‖e(ũε,je )‖L∞(0,s;L2(Ωεe))
+ ‖∂tũε,jf ‖L∞(0,s;L2(Ωεf )) + ‖e(∂tũ

ε,j
f )‖L2(Ωεf,s)

≤ C2s
1/σ1‖e(ũε,j−1

e )‖L∞(0,s;L2(Ωεe))

+ Cδs
1/2‖∂tũε,j−1

f ‖L∞(0,s;L2(Ωεf )) + δ‖e(∂tũ
ε,j−1
f )‖L2(Ωεf,s)

,

we obtain by the contraction arguments the existence of a fixed point of K and hence
the existence of a unique weak solution of the microscopic problem (6)–(8) in (0, s).
Since the constants C2 and Cδ depend only on T and the model parameters and do
not depend on s, iterating over time intervals we obtain the existence and uniqueness
result in the whole time interval (0, T ).

4. Convergence results. The a priori estimates proved in Lemma 3.2 imply
convergence results for the components of solutions of the microscopic problem (6)–
(8).

Lemma 4.1. There exist functions ue ∈ H1(0, T ;H1(Ω)) ∩H2(0, T ;L2(Ω)), pe ∈
H1(0, T ;H1(Ω)), u1

e, ∂tu
1
e ∈ L2(ΩT ;H1

per(Ye)/R), p1
e ∈ L2(ΩT ;H1

per(Ye)/R), ∂tuf ,
∂2
t uf ∈ L2(ΩT ;H1

per(Yf )), and pf ∈ L2(ΩT × Yf ) such that, up to a subsequence,

(37)

uεe → ue strongly in H1(0, T ;L2(Ω)),

pεe → pe strongly in L2(ΩT ),

∂2
t u

ε
e ⇀ ∂2

t ue, ∂tp
ε
e ⇀ ∂tpe weakly two-scale,

∇uεe ⇀ ∇ue +∇yu1
e weakly two-scale,

∇pεe ⇀ ∇pe +∇yp1
e weakly two-scale,
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HOMOGENIZATION OF BIOMECHANICAL MODELS 361

and for fluid velocity and pressure we have

(38)
∂tu

ε
f ⇀ ∂tuf , pεf ⇀ pf weakly two-scale,

ε∇∂tuεf ⇀ ∇y∂tuf weakly two-scale.

Additionally, we have weak two-scale convergence ∂tu
ε
e ⇀ ∂tue and ∂tu

ε
f ⇀ ∂tuf on

ΓεT .

Proof. Applying standard extension arguments (see, e.g., [1, 16] or Lemma 3.1)
and using the same notation for the original and extended sequences, from estimates
(15) in Lemma 3.2 we obtain a priori estimates, uniform in ε, for uεe, ∇uεe, ∂tuεe, ∂2

t u
ε
e,

and ∇∂tuεe, as well as pεe, ∇pεe, and ∂tp
ε
e in L2(ΩT ). Then the convergence results for

uεe and pεe follow directly from the compactness of the embedding of H1(0, T ;L2(Ω))∩
L2(0, T ;H1(Ω)) in L2(ΩT ), the a priori estimates (15), and the compactness theorems
for the two-scale convergence; see, e.g., [3, 31]. The a priori estimates (15) and the
compactness theorems for the two-scale convergence ensure the convergence results
for ∂tu

ε
f and pεf . Using the trace inequality and a scaling argument together with a

priori estimates (15), we obtain

ε‖∂tuεe‖2L2(ΓεT ) ≤ C
(
‖∂tuεe‖2L2(Ωεe,T ) + ε2‖∇∂tuεe‖2L2(Ωεe,T )

)
≤ C,

ε‖∂tuεf‖2L2(ΓεT ) ≤ C
(
‖∂tuεf‖2L2(Ωεf,T ) + ε2‖∇∂tuεf‖2L2(Ωεf,T )

)
≤ C,

where the constant C is independent of ε. Then the compactness theorem for the two-
scale convergence on oscillating surfaces [4, 30] ensures the weak two-scale convergence
of ∂tu

ε
e and ∂tu

ε
f on ΓεT .

In what follows we shall use the same notation for bεe, c
ε
e and their extensions to

Ω, whereas the extension of cε from Ω̃εef to Ω will be denoted by cε. Then for bεe and
cε we have the following convergence results.

Lemma 4.2. There exist functions

be, c ∈ L2(0, T ;H1(Ω)), b1e ∈ L2(ΩT ;H1
per(Ye)/R), c1 ∈ L2(ΩT ;H1

per(Y \ Γ̃)/R),

such that, up to a subsequence,

(39)

bεe → be, cεe → c, cε → c strongly in L2(ΩT ),

∇bεe ⇀ ∇be +∇yb1e weakly two-scale,

∇cε ⇀ ∇c+∇yc1 weakly two-scale.

Proof. Using estimates (16) and the extensions of bεe, c
ε
e, and cε, defined in

Lemma 3.1, we obtain

(40)
‖bεe‖L2(ΩT ) + ‖∇bεe‖L2(ΩT ) + ‖cεe‖L2(ΩT ) + ‖∇cεe‖L2(ΩT ) ≤ C,
‖cε‖L2(ΩT ) + ‖∇cε‖L2(ΩT ) ≤ C,

where the constant C is independent of ε. The estimates (40), the compactness of
the embedding of H1(Ω) in L2(Ω), along with the estimate (17) and the Kolmogorov
compactness theorem [29] yield the strong convergence of bεe → be, c

ε
e → ce, and

cε → c in L2(ΩT ). Since Ωεe,T ∩ Ω̃εef,T 6= ∅ and cεe(t, x) = cε(t, x) in Ωεe,T ∩ Ω̃εef,T , along
with the fact that ce and c are independent of the microscopic variables y, we obtain
that ce(t, x) = c(t, x) in ΩT .

From the estimates for cε, applying the compactness theorem for the two-scale
convergence, we obtain that there exists c1 ∈ L2(ΩT ;H1

per(Y \ Γ̃)/R) such that ∇cε ⇀
∇c+∇yc1 weakly two-scale [54].
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362 ANDREY PIATNITSKI AND MARIYA PTASHNYK

5. Derivation of macroscopic equations for the flow velocity and elastic
deformations. This section focuses on homogenization of the microscopic problem
(7)–(8). First we define the effective tensors Ehom, Khom

p , and Ku.

The macroscopic elasticity tensor Ehom = (Ehom
ijkl ), permeability tensor Khom

p =

(Khom
p,ij ), and Ku = (Ku,ij) are defined by

(41)

Ehom
ijkl (be,3) =

1

|Y |

∫
Ye

(
Eijkl(y, be,3) + Eij(y, be,3)ey(wkl)

)
dy,

Khom
p,ij (x) =

1

|Y |

∫
Ye

(
Kp,ij(x, y) +Kp,i(x, y)∇ywjp

)
dy,

Ku,ij(x) =
1

|Y |

∫
Ye

(
δij −Kp,i(x, y)∇ywje

)
dy,

where wkl = wkl(be,3, ·), for k, l = 1, 2, 3, are Y -periodic solutions of the unit cell
problems

(42)

divy
(
E(y, be,3)(ey(wkl) + bkl)

)
= 0 in Ye,

E(y, be,3)(ey(wkl) + bkl)n = 0 on Γ,∫
Ye

wkl dy = 0,

functions wkp = wkp(x, ·), for k = 1, 2, 3, are Y -periodic solutions of the unit cell
problems

(43)

divy
(
Kp(x, y)(∇ywkp + ek)

)
= 0 in Ye,

Kp(x, y)(∇ywkp + ek) · n = 0 on Γ,∫
Ye

wkp dy = 0,

and wke = wke (x, ·), for k = 1, 2, 3, are Y -periodic solutions of the unit cell problems

(44)

divy(Kp(x, y)∇ywke − ek) = 0 in Ye,

(Kp(x, y)∇ywke − ek) · n = 0 on Γ,∫
Ye

wke dy = 0.

Here bkl = ek ⊗ el and {ej}3j=1 is the canonical basis of R3.

Lemma 5.1. Periodic cell problems (42)–(44) are well-posed and have a unique
solution. The tensors Ehom and Khom

p are positive definite. Moreover, Ehom possesses
the symmetries declared in A1.

Sketch of proof. Assumptions A1 on E and the Korn inequality for periodic func-
tions ensure the existence of a unique solution of the unit cell problems (42) for a given
be,3 ∈ L2(ΩT ); see, e.g., [33]. Assumptions A2 on Kp yield the existence of unique
solutions of the unit cell problems (43) and (44). The positive definiteness of E and
Kp, the definition of Ehom and Khom

p , and the fact that wkl and wkp , for k, l = 1, 2, 3,

are solutions of (42) and (43) ensure in the standard way (see [7]) that Ehom and
Khom
p are positive definite. The definition of Ehom implies that Ehom satisfies the

same symmetry assumptions in A1 as E.
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HOMOGENIZATION OF BIOMECHANICAL MODELS 363

Applying the method of the two-scale convergence and using the convergence
results in Lemmas 4.1 and 4.2, we derive the homogenized equations for displacement
gradient, pressure, and flow velocity for a given {bεe} such that bεe → be strongly in
L2(ΩT )3 as ε→ 0. It should be emphasized that we have not yet derived the equation
for the limit function be. We only use the strong convergence of {bεe}.

In the formations of the macroscopic problem for (ue, pe, ∂tuf ) we shall use the
function Q(x, ∂tuf ) defined as

(45) Q(x, ∂tuf ) =
1

|Y |

(∫
Yf

∂tuf dy −
∫
Ye

Kp(x, y)∇yq(x, y, ∂tuf ) dy

)
,

where for (t, x) ∈ ΩT the function q is a Y -periodic solution of the problem

(46)

divy(Kp(x, y)∇yq) = 0 in Ye,

−Kp(x, y)∇yq · n = ∂tuf · n on Γ,∫
Ye

q(x, y, ∂tuf ) dy = 0.

Theorem 5.2. A sequence of solutions {uεe, pεe, ∂tuεf , pεf} of microscopic problem
(7) and (8) converges, as ε → 0, to a solution (ue, pe, ∂tuf , πf ) of the macroscopic
equations

(47)
ϑeρe ∂

2
t ue − div(Ehom(be,3)e(ue)) +∇pe + ϑfρf −

∫
Yf

∂2
t uf dy = 0 in ΩT ,

ϑeρp ∂tpe − div
(
Khom
p ∇pe −Ku ∂tue −Q(x, ∂tuf )

)
= 0 in ΩT ,

with boundary and initial conditions

(48)

Ehom(be,3)e(ue)n = Fu on (∂Ω)T ,

(Khom
p ∇pe −Ku ∂tue) · n = Fp +Q(x, ∂tuf ) · n on (∂Ω)T ,

ue(0) = ue0, ∂tue(0) = u1
e0, pe(0) = pe0 in Ω,

and the two-scale problem for the fluid flow velocity and pressure

(49)

ρf ∂
2
t uf − divy(µ ey(∂tuf )− πfI) +∇pe = 0, divy∂tuf = 0 in ΩT × Yf ,

Πτ∂tuf = Πτ∂tue on ΩT × Γ,

n · (µ ey(∂tuf )− πfI)n = −p1
e on ΩT × Γ,

∂tuf (0) = u1
f0 in Ω× Yf ,

where ϑe = |Ye|/|Y |, ϑf = |Yf |/|Y |, and

(50) p1
e(t, x, y) =

3∑
k=1

∂xkpe(t, x)wkp(x, y) +

3∑
k=1

∂tu
k
e(t, x)wke (x, y) + q(x, y, ∂tuf ),

with wkp , wke , and q being solutions of (43), (44), and (46), respectively.
We have ue ∈ H2(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)), pe ∈ H1(0, T ;H1(Ω)), ∂tuf ∈

L2(ΩT ;H1(Yf )) ∩H1(0, T ;L2(Ω× Yf )), and πf ∈ L2(ΩT × Yf ) and the convergence
in the following sense:

uεe → ue in H1(0, T ;L2(Ω)), pεe → pe in L2(ΩT ),

∇uεe ⇀ ∇ue +∇yu1
e, ∇pεe ⇀ ∇pe +∇yp1

e weakly two-scale,

∂tu
ε
f ⇀ ∂tuf , pεf ⇀ pe, ε∇∂tuεf ⇀ ∇y∂tuf weakly two-scale.
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364 ANDREY PIATNITSKI AND MARIYA PTASHNYK

Remark. In the original microscopic problem the equations of poroelasticity and
the Stokes system are coupled through the transmission conditions. The limit system
shows the strong coupling in the whole domain ΩT . Namely, the equations for macro-
scopic displacement and pressure defined in the whole domain ΩT are coupled with
the two-scale equations for the fluid flow defined on ΩT × Yf . This coupling in the
limit problem can be observed through both the lower order terms in the equations
and the boundary conditions.

Proof of Theorem 5.2. Considering (εφ(t, x, x/ε), εψ(t, x, x/ε), εη(t, x, x/ε)) with
φ ∈ C∞0 (ΩT ;C∞per(Ye))

3, ψ ∈ C∞0 (ΩT ;C∞per(Ye)), and η ∈ C∞0 (ΩT ;C∞per(Yf ))3 as test
functions in the weak formulation of (7), with the corresponding boundary conditions
in (8), we obtain

(51)

〈ρe∂2
t u

ε
e, εφ〉Ωεe,T + 〈Eε(bεe,3)e(uεe), εe(φ)〉Ωεe,T + 〈∇pεe, εφ〉Ωεe,T

+ 〈ρp∂tpεe, εψ〉Ωεe,T + 〈Kε
p∇pεe − ∂tuεe, ε∇ψ〉Ωεe,T

+ 〈ρf∂2
t u

ε
f , εη〉Ωεf,T + ε2µ 〈e(∂tu

ε
f ), ε e(η)〉Ωεf,T − 〈p

ε
f , εdiv η〉Ωεf,T

+ 〈∂tuεf · n, εψ〉ΓεT − 〈p
ε
e, εη · n〉ΓεT = 〈Fu, εφ〉(∂Ω)T + 〈Fp, εψ〉(∂Ω)T .

Letting ε→ 0 and using the convergence results in Lemmas 4.1 and 4.2 yields

(52)

〈E(y, be,3)(e(ue) + ey(u1
e)), ey(φ)〉ΩT×Ye

+ 〈Kp(∇pe +∇yp1
e)− ∂tue,∇yψ〉ΩT×Ye + 〈∂tuf · n, ψ〉ΩT×Γ

− 〈pf ,divyη〉ΩT×Yf − 〈pe, η · n〉ΩT×Γ = 0.

Considering first
(i) φ ∈ C∞0 (ΩT ;C∞0 (Ye))

3, ψ ∈ C∞0 (ΩT ;C∞0 (Ye)), and η ∈ C∞0 (ΩT ;C∞0 (Yf ))3

and then
(ii) φ ∈ C∞0 (ΩT ;C∞per(Ye))

3, ψ ∈ C∞0 (ΩT ;C∞per(Ye)), and η ∈ C∞0 (ΩT ;C∞per(Yf ))3

with Πτφ = Πτη and η · n = 0 on ΩT × Γ, we obtain

(53) 〈pf , divyη〉ΩT×Yf = 0

and the equations for correctors

(54)
divy

(
E(y, be,3)(e(ue) + ey(u1

e))
)

= 0 in ΩT × Ye,
E(y, be,3)(e(ue) + ey(u1

e))n = 0 on ΩT × Γ

and

(55)
divy(Kp(∇pe +∇yp1

e)− ∂tue) = 0 in ΩT × Ye,
(−Kp(∇pe +∇yp1

e) + ∂tue) · n = ∂tuf · n on ΩT × Γ.

Considering η ∈ C∞0 (ΩT ;C∞per(Yf ))3 with Πτφ = Πτη on ΩT × Γ, from (52) and (53)
it follows that

pf = pf (t, x) in ΩT × Yf and pf = pe on ΩT × Γ.

Thus we have pf = pe in ΩT . Taking (φ(t, x), ψ(t, x), η(t, x, x/ε)), where
• φ ∈ C∞(ΩT )3 and ψ ∈ C∞(ΩT ),
• η ∈ C∞(ΩT ;C∞per(Yf ))3 with Πτη = Πτφ on ΩT × Γ and divyη(t, x, y) = 0 in

ΩT × Yf ,
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HOMOGENIZATION OF BIOMECHANICAL MODELS 365

as test functions in the weak formulation of (7), with external boundary conditions
in (8), yields

(56)

〈ρe ∂2
t u

ε
e, φ〉Ωεe,T + 〈Eε(bεe,3)e(uεe), e(φ)〉Ωεe,T + 〈∇pεe, φ〉Ωεe,T

+ 〈ρp ∂tpεe, ψ〉Ωεe,T + 〈Kε
p∇pεe − ∂tuεe,∇ψ〉Ωεe,T

+ 〈ρf ∂2
t u

ε
f , η〉Ωεf,T + µ ε2〈e(∂tu

ε
f ), e(η) + ε−1ey(η)〉Ωεf,T − 〈p

ε
f ,divxη〉Ωεf,T

+ 〈∂tuεf · n, ψ〉ΓεT − 〈p
ε
e, η · n〉ΓεT = 〈Fu, φ〉(∂Ω)T + 〈Fp, ψ〉(∂Ω)T .

Letting ε→ 0 and using the two-scale convergence of uεe, p
ε
e, and ∂tu

ε
f , we obtain

(57)

〈ρe∂2
t ue, φ〉ΩT×Ye + 〈E(y, be,3)

(
e(ue) + ey(u1

e)
)
, e(φ)〉ΩT×Ye

+ 〈∇pe +∇yp1
e, φ〉ΩT×Ye − 〈∂tuf ,∇ψ〉ΩT×Yf

+ 〈ρp ∂tpe, ψ〉ΩT×Ye + 〈Kp(∇pe +∇yp1
e)− ∂tue,∇ψ〉ΩT×Ye

+ 〈ρf ∂2
t uf , η〉ΩT×Yf + µ〈ey(∂tuf ), ey(η)〉ΩT×Yf + 〈∇pe, η〉ΩT×Yf

− 〈p1
e, η · n〉ΩT×Γ = |Y |〈Fu, φ〉(∂Ω)T + |Y |〈Fp, ψ〉(∂Ω)T .

Here we used the relation pe = pf a.e. in ΩT , as well as the fact that due to the
relation div ∂tu

ε
f = 0 and the two-scale convergence of ∂tu

ε
f , we have

(58)
lim
ε→0
〈∂tuεf · n, ψ〉ΓεT = lim

ε→0

(
−〈div ∂tu

ε
f , ψ〉Ωεf,T − 〈∂tu

ε
f ,∇ψ〉Ωεf,T

)
= − lim

ε→0
〈∂tuεf ,∇ψ〉Ωεf,T = −|Y |−1〈∂tuf ,∇ψ〉ΩT×Yf .

To show the convergence of 〈pεe, η · n〉ΓεT we use divyη = 0 and the fact that p1
e is well

defined on Γ:

(59)

lim
ε→0
〈pεe,η · n〉ΓεT = lim

ε→0

(
−〈∇pεe, η〉Ωεf,T − 〈p

ε
e,divxη〉Ωεf,T

)
= −|Y |−1〈∇pe +∇yp1

e, η〉ΩT×Yf − |Y |−1〈pe,divxη〉ΩT×Yf
= |Y |−1

(
〈p1
e, η · n〉ΩT×Γ − 〈∇pe, η〉ΩT×Yf − 〈pe,divxη〉ΩT×Yf

)
.

Notice that n is the internal for Yf normal at the boundary Γ.
Also, for an arbitrary test function η1 ∈ C∞0 (ΩT ;C∞0 (Yf )), from the two-scale

convergence of ∂tu
ε
f and the fact that ∂tu

ε
f is divergence-free, it follows that

0 = lim
ε→0
〈div ∂tu

ε
f , εη1(t, x, x/ε)〉Ωεf,T = − lim

ε→0
〈∂tuεf , ε∇xη1 +∇yη1〉Ωεf,T

= −|Y |−1〈∂tuf ,∇yη1〉ΩT×Yf = |Y |−1〈divy∂tuf , η1〉ΩT×Yf .

Thus divy ∂tuf = 0 in ΩT × Yf .
Considering φ ≡ 0 and ψ ≡ 0, and taking first η ∈ C∞0 (ΩT ;C∞0 (Yf ))3 with

divy η = 0 and then η ∈ C∞0 (ΩT ;C∞per(Yf ))3 with Πτη = 0 on ΩT × Γ, we obtain the
two-scale problem (49) for ∂tuf . From the boundary conditions Πτ∂tu

ε
e = Πτ∂tu

ε
f on

ΓεT and the two-scale convergence of ∂tu
ε
e and ∂tu

ε
f on ΓεT (see Lemma 4.1), we obtain

1

|Y |

∫
ΩT

∫
Γ

Πτ∂tue(t, x)ψ(t, x, y) dγydxdt = lim
ε→0

ε

∫
ΓεT

Πτ∂tu
ε
e(t, x)ψ

(
t, x,

x

ε

)
dγdt

= lim
ε→0

ε

∫
ΓεT

Πτ∂tu
ε
f (t, x)ψ

(
t, x,

x

ε

)
dγdt

=
1

|Y |

∫
ΩT

∫
Γ

Πτ∂tuf (t, x, y)ψ(t, x, y) dγydxdt
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366 ANDREY PIATNITSKI AND MARIYA PTASHNYK

for all ψ ∈ C0(ΩT ;Cper(Y )). Thus Πτ∂tue = Πτ∂tuf on ΩT × Γ.
Considering first φ ∈ C∞0 (ΩT )3, ψ ∈ C∞0 (ΩT ), and then φ ∈ C∞(ΩT )3, ψ ∈

C∞(ΩT ), together with η ∈ C∞0 (ΩT ;C∞per(Yf ))3 and Πτη = Πτφ on Γ, and using the
equations (49) for ∂tuf , we obtain the limit equations for ue and pe:

(60)

ϑeρe ∂
2
t ue − div

(
Ehom(be,3) e(ue)

)
+ ϑe∇pe +

1

|Y |

∫
Ye

∇yp1
e dy

− 1

|Y |
〈
µΠτ (e(∂tuf )n), 1

〉
H−1/2,H1/2(Γ)

= 0 in ΩT ,

Ehom(be,3) e(ue)n = Fu on (∂Ω)T ,

where ϑe = |Ye|/|Y | and the effective elasticity tensor Ehom is defined by (41), and

(61)

ϑeρp ∂tpe

− 1

|Y |
div

[ ∫
Ye

[Kp(∇pe +∇yp1
e)− ∂tue]dy −

∫
Yf

∂tuf dy

]
= 0 in ΩT ,

1

|Y |

[ ∫
Ye

[
Kp(∇pe +∇yp1

e)− ∂tue
]
dy −

∫
Yf

∂tuf dy

]
· n = Fp on (∂Ω)T ,

with p1
e defined by the two-scale problem (55). Considering the weak formulation of

(49) with the test function η = 1 yields

ρf

∫
Yf

∂2
t uf dy + |Yf |∇pe = −〈µ (ey(∂tuf )− πfI)n, 1〉H−1/2,H1/2(Γ) =

∫
Γ

p1
endγy

−〈µΠτ (ey(∂tuf )n), 1〉H−1/2,H1/2(Γ).

Using the Y -periodicity of p1
e, we obtain

−〈µΠτ (ey(∂tuf )n), 1〉H−1/2,H1/2(Γ) = ρf

∫
Yf

∂2
t ufdy + |Yf |∇pe −

∫
Ye

∇yp1
edy.

Thus we can rewrite the equation for ue as

(62) ϑeρe ∂
2
t ue − div

(
Ehom(be,3) e(ue)

)
+∇pe + ϑfρf −

∫
Yf

∂2
t ufdy = 0 in ΩT ,

where ϑf = |Yf |/|Y |. Considering the structure of problem (55), we represent p1
e in

the form

(63) p1
e(t, x, y) =

3∑
k=1

∂xkpe(t, x)wkp(x, y) +

3∑
k=1

∂tu
k
e(t, x)wke (x, y) + q(x, y, ∂tuf ),

where wkp and wke are solutions of unit cell problems (43) and (44), and q is a solution
of the two-scale problem (46). Incorporating the expression (63) for p1

e into (61) and
considering (62), we obtain that pe and ue satisfy the macroscopic problem (47)–(48),
where Ehom, Khom

p , and Ku are defined by (41). The coupling with the flow velocity
∂tuf is reflected in the interaction function Q, defined by (45). Notice that since
div ∂tuf = 0 in Yf , we have that

∫
Γ
∂tuf ·ndγ = 0 and the problem (46) is well-posed,

i.e., the compatibility condition is satisfied.
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HOMOGENIZATION OF BIOMECHANICAL MODELS 367

6. Strong two-scale convergence of e(uε
e), ∇pε

e, and ∂tu
ε
f .

Lemma 6.1. For a subsequence of solutions of microscopic problem (7)–(8), {uεe},
{pεe}, and {∂tuεf} (denoted again by {uεe}, {pεe}, and {∂tuεf}), and the limit functions

ue, u
1
e, pe, p

1
e, and ∂tuf as in Lemma 4.1, we have

(64)

∇uεe → ∇ue +∇yu1
e strongly two-scale,

∇pεe → ∇pe +∇yp1
e strongly two-scale,

∂tu
ε
f → ∂tuf strongly two-scale,

ε e(∂tu
ε
f )→ ey(∂tuf ) strongly two-scale.

Proof. To show the strong two-scale convergence, we prove the convergence of the
energy functional related to (7) for uεe, p

ε
e, and ∂tu

ε
f . Because of the dependence of E

on the temporal variable, we have to consider a modified form of the energy functional.
We consider a monotone decreasing function ζ : R+ → R+, e.g., ζ(t) = e−γt for
t ∈ R+, and define the energy functional for the microscopic problem (7)–(8) as

(65)

Eε(uεe, pεe, ∂tuεf ) =
1

2
ρe‖∂tuεe(s)ζ(s)‖2L2(Ωεe)

− 〈ζ ′ζ, ρe|∂tuεe|2〉Ωεe,s

+
1

2
〈Eε(bεe,3) e(uεe(s)) ζ(s), e(uεe(s)) ζ(s)〉Ωεe

− 1

2

〈[
2ζ ′ζ Eε(bεe,3) + ζ2 ∂tE

ε(bεe,3)
]
e(uεe), e(uεe)

〉
Ωεe,s

+
1

2
ρp‖pεe(s)ζ(s)‖2L2(Ωεe)

− 〈ζ ′ζ, ρp|pεe|2〉Ωεe,s + 〈Kε
p∇pεe ζ,∇pεe ζ〉Ωεe,s

+
1

2
ρf‖∂tuεf (s)ζ(s)‖2L2(Ωεf ) − 〈ζ

′ζ, ρf |∂tuεf |2〉Ωεf,s + µ‖εζ e(∂tu
ε
f )‖2L2(Ωεf,s)

for s ∈ (0, T ]. Considering (∂tu
ε
e ζ

2, pεe ζ
2, ∂tu

ε
f ζ

2) as a test function in (9) we obtain
the equality

(66)

Eε(uεe, pεe, ∂tuεf ) =
1

2
ρe‖∂tuεe(0)‖2L2(Ωεe)

+
1

2

〈
Eε(bεe,3) e(uεe(0)), e(uεe(0))

〉
Ωεe

+
1

2
ρp‖pεe(0)‖2L2(Ωεe)

+
1

2
ρf‖∂tuεf (0)‖2L2(Ωεf ) + 〈Fu, ∂tuεe〉(∂Ω)s + 〈Fp, pεe〉(∂Ω)s .

Due to the assumptions on E and ∂tE, there exists a positive constant γ such that

(2γE(y, ξ)− ∂tE(y, ξ))A ·A ≥ 0 for all symmetric matrices A,

all continuous bounded functions ξ, and y ∈ Y.

Since {bεe} converges strongly in L2(ΩT ), e(uεe) converges weakly two-scale, and
Eε(bεe,3) is uniformly bounded, we have the weak two-scale convergence of the sequence

(Eε(bεe,3))
1
2 e(uεe) to (E(y, be,3))

1
2 (e(ue)+ey(u1

e)) and of (2γEε(bεe,3)−∂tEε(bεe,3))
1
2 e(uεe)

to (2γE(y, be,3)− ∂tE(y, be,3))
1
2 (e(ue) + ey(u1

e)) as ε→ 0. Using in (65) and (66) the
lower semicontinuity of the corresponding norms, the initial conditions for uεe, p

ε
e, and
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368 ANDREY PIATNITSKI AND MARIYA PTASHNYK

∂tu
ε
f , and the convergence of ∂tu

ε
e, p

ε
e, and ∂tu

ε
f implies

(67)

ρe‖∂tue(s)ζ(s)‖2L2(Ω×Ye) + 2γρe‖∂tue ζ‖2L2(Ωs×Ye)

+
〈
E(y, be,3)ζ2(s)(e(ue(s)) + ey(u1

e(s)), e(ue(s)) + ey(u1
e(s))

〉
Ω×Ye

+ 〈ζ2
(
2γE(y, be,3)− ∂tE(y, be,3)

)
(e(ue) + ey(u1

e)), e(ue) + ey(u1
e)〉Ωs×Ye

+ ρp‖pe(s)ζ(s)‖2L2(Ω×Ye) + 2γρp‖pe ζ‖2L2(Ωs×Ye)

+ 2〈ζ2Kp(∇pe +∇yp1
e),∇pe +∇yp1

e〉Ωs×Ye + ρf‖∂tuf (s)ζ(s)‖2L2(Ω×Yf )

+ 2γρf‖∂tuf ζ‖2L2(Ωs×Yf ) + 2µ‖ey(∂tuf ) ζ‖2L2(Ωs×Yf )

≤ 2|Y | lim inf
ε→0

Eε(uεe, pεe, ∂tuεf ) ≤ 2|Y | lim sup
ε→0

Eε(uεe, pεe, ∂tuεf )

= 〈E(y, be,3)(e(ue0) + ey(ûe0)), e(ue0) + ey(ûe0)〉Ω×Ye
+ ρe‖u1

e0‖2L2(Ω×Ye) + ρp‖pe0‖2L2(Ω×Ye) + ρf‖u1
f0‖2L2(Ω×Yf )

+ 2|Y |〈Fu, ∂tueζ2〉(∂Ω)s + 2|Y |〈Fp, peζ2〉(∂Ω)s

for s ∈ (0, T ]. Here we used the weak and the weak two-scale convergences of
∂tu

ε
e, e(uεe), e(∂tu

ε
e), p

ε
e, and ∇pεe, and the weak two-scale convergence of ∂tu

ε
f and

ε e(∂tu
ε
f ). Considering the limit equations (47)–(49) for ue, pe, and ∂tuf and taking

(∂tue ζ
2, pe ζ

2, ∂tuf ζ
2) as a test function yields

(68)

1

2
ρe‖∂tue(s)ζ(s)‖2L2(Ω×Ye) −

1

2
ρe‖∂tue(0)‖2L2(Ω×Ye) + γρe‖∂tueζ‖2L2(Ωs×Ye)

+
〈
E(y, be,3)

(
e(ue) + ey(u1

e)
)
, e(∂tue) ζ

2
〉

Ωs×Ye
+ 〈∇pe +∇yp1

e, ∂tue ζ
2〉Ωs×Ye

+
1

2
ρp‖pe(s)ζ2(s)‖2L2(Ω×Ye) −

1

2
ρp‖pe(0)‖2L2(Ω×Ye) + γρp‖peζ‖2L2(Ωs×Ye)

+ 〈Kp(x, y)(∇pe +∇yp1
e)− ∂tue,∇peζ2〉Ωs×Ye +

1

2
ρf‖∂tuf (s)ζ(s)‖2L2(Ω×Yf )

− 1

2
ρf‖∂tuf (0)‖2L2(Ω×Yf ) + γρf‖∂tufζ‖2L2(Ωs×Yf ) − 〈p

1
e, ∂tuf · n ζ2〉Ωs×Γ

+ µ〈ey(∂tuf ), ey(∂tuf )ζ2〉Ωs×Yf = |Y |〈Fu, ∂tue ζ2〉(∂Ω)s + |Y |〈Fp, pe ζ2〉(∂Ω)s

for s ∈ (0, T ]. From (55) for the corrector p1
e we obtain

(69) −〈p1
e, ∂tuf · n ζ2〉Ωs×Γ = 〈Kp(x, y)(∇pe +∇yp1

e)− ∂tue,∇yp1
e ζ

2〉Ωs×Ye .

Considering (54) for the corrector u1
e and taking ∂tu

1
e ζ

2 as a test function yields

(70)

〈
E(y, be,3)

(
e(ue) + ey(u1

e)
)
, e(∂tue)ζ

2
〉

Ωs×Ye

=
〈
E(y, be,3)

(
e(ue) + ey(u1

e)
)
, (e(∂tue) + ey(∂tu

1
e)) ζ

2
〉

Ωs×Ye

=
1

2

〈
E(y, be,3)

(
e(ue(s)) + ey(u1

e(s))
)
ζ2(s), e(ue(s)) + ey(u1

e(s))
〉

Ω×Ye

− 1

2

〈
E(y, be,3)

(
e(ue(0)) + ey(u1

e(0))
)
, e(ue(0)) + ey(u1

e(0))
〉

Ω×Ye

+
1

2

〈(
2γE(y, be,3)− ∂tE(y, be,3)

)
ζ2
(
e(ue) + ey(u1

e)
)
, e(ue) + ey(u1

e)
〉

Ωs×Ye
.

Combining (68)–(70) with (67) and using that ey(u1
e(0)) = ey(ûe0) in Ω × Ye, we

obtain

E(ue, pe, ∂tuf ) ≤ lim inf
ε→0

Eε(uεe, pεe, ∂tuεf ) ≤ lim sup
ε→0

Eε(uεe, pεe, ∂tuεf ) = E(ue, pe, ∂tuf )
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HOMOGENIZATION OF BIOMECHANICAL MODELS 369

and thus conclude that limε→0 Eε(uεe, pεe, ∂tuεf ) = E(ue, pe, ∂tuf ). Then the strong
two-scale convergence relations stated in the lemma follow by lower semicontinuity
arguments.

7. Derivation of macroscopic equations for reaction-diffusion-convec-
tion problem. The homogenized coefficients in the reaction-diffusion-convection
equations, which will be obtained in the derivation of the macroscopic problem, are
defined by

(71)

Dhom
b,ij =

1

|Y |

∫
Ye

[
Dij
b +

(
Db∇yωjb(y)

)
i

]
dy,

Dhom
ij = −

∫
Y

[
Dij(y) +

(
D(y)∇yωj(y)

)
i

]
dy,

vf (t, x) =
1

|Y |

∫
Yf

[
G(∂tuf (t, x, y))−Df∇yz(t, x, y)

]
dy,

with ωb and ω being Y -periodic solutions of the unit cell problems

(72)
div
(
Db(∇yωjb(y) + ej)

)
= 0 in Ye,

Db(∇yωjb(y) + ej) · n = 0 on Γ

and

(73)
divy(D(y)(∇yωj + ej)) = 0 in Y \ Γ̃,

De(∇yωje + ej) · n = 0, Df (∇yωjf + ej) · n = 0 on Γ̃,

where ωje(y) = ωj(y) for y ∈ Ye and ωjf (y) = ωj(y) for y ∈ Yf , and z is a Y -periodic
solution of

(74)
divy(Df∇yz − G(∂tuf )) = 0 in Yf ,

(Df∇yz − G(∂tuf )) · n = 0 on Γ.

Here

D(y) =

{
De in Ye,

Df in Yf .

Notice that the definition of Dhom
b and Dhom and the fact that Djj

b > 0, with j =

1, 2, 3, De > 0, Df > 0, and ωjb , ω
j are solutions of the unit cell problems (72) and

(73) ensure that Dhom
b and Dhom are positive definite.

Next we derive macroscopic equations for the limit functions be and c defined in
(39). The main difficulty in the proof is to show the convergence of the nonlinear
functions depending on the displacement gradient.

Theorem 7.1. Solutions of the microscopic problem (6), (8) converge to solutions
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370 ANDREY PIATNITSKI AND MARIYA PTASHNYK

be, c ∈ L2(0, T ;H1(Ω)) of the macroscopic equations

(75)

ϑe ∂tbe − div(Dhom
b ∇be)

= ϑe−
∫
Ye

gb(c, be,W (be,3, y) e(ue))dy + ϑΓ P (be) in ΩT ,

∂tc− div(Dhom∇c− vf c)

= ϑf gf (c) + ϑe−
∫
Ye

ge(c, be,W (be,3, y) e(ue))dy in ΩT ,

Dhom
b ∇be · n = Fb(be) on (∂Ω)T ,

(Dhom∇c− vf c) · n = Fc(c) on (∂Ω)T ,

b(0, x) = b0(x), c(0, x) = c0(x) in Ω,

where

(76) W (be,3, y) =
{
Wklij(be,3, y)

}3

k,l,i,j=1
=
{
bijkl + (ey(wij(be,3, y)))kl

}3

k,l,i,j=1
,

with wij being solutions of the unit cell problems (42), and bkl = ek ⊗ el, {ek}3k=1, is
the canonical basis of R3.

Here ϑe = |Ye|/|Y |, ϑf = |Yf |/|Y |, and ϑΓ = |Γ|/|Y |. We have the convergence
in the following sense:

bεe → be, cε → c strongly in L2(ΩT ),

∇bεe ⇀ ∇be +∇yb1e, ∇cε ⇀ ∇c+∇yc1 weakly two-scale.

Proof. We can rewrite the microscopic equation for bεe as

(77)
− 〈bεe χΩεe

, ∂tϕ1〉ΩT + 〈Dε
b∇bεe,∇ϕ1 χΩεe

〉ΩT − 〈be0, ϕ1χΩεe
〉ΩT

= 〈gb(cεe, bεe, e(uεe)), ϕ1 χΩεe
〉ΩT + ε〈P (bεe), ϕ1〉ΓεT + 〈Fb(bεe), ϕ1〉(∂Ω)T

with ϕ1 = φ1(t, x) + εφ2(t, x, x/ε), where φ1 ∈ C∞(ΩT ) is such that φ1(T, x) = 0 for
x ∈ Ω, and φ2 ∈ C∞0 (ΩT ;C∞per(Y )), and χ

Ωεe
the characteristic function of Ωεe. Taking

into account the strong convergence of bεe and cεe and the two-scale convergence of ∇bεe
and ∇cεe (see Lemma 4.2) together with the strong two-scale convergence of e(uεe), we
obtain

(78)

−〈|Ye|be, ∂tφ1〉ΩT + 〈Db(∇be +∇yb1e),∇φ1 +∇yφ2〉ΩT×Ye
−〈|Ye|be0, φ1〉ΩT = 〈gb(c, be, e(ue) + ey(u1

e)), φ1〉ΩT×Ye
+ 〈P (be), φ1〉ΩT×Γ + |Y |〈Fb(be), φ1〉(∂Ω)T .

Here we used the fact that due to the strong two-scale convergence of e(uεe), we have

lim
ε→0
‖T ∗ε (e(uεe))− e(ue)− ey(u1

e)‖L2(ΩT×Ye) = 0,

where T ∗ε is the periodic unfolding operator for the perforated domain Ωεe; see, e.g.,
[15]. Assumptions on gb in A4 and the a priori estimates for cε, bεe, and uεe ensure

(79)

‖gb(T ∗ε (cεe), T ∗ε (bεe), T ∗ε (e(uεe)))− gb(c, be, e(ue) + ey(u1
e))‖L1(ΩT×Ye)

≤ C1

(
‖T ∗ε (cεe)− c‖L2(ΩT×Ye) + ‖T ∗ε (bεe)− be‖L2(ΩT×Ye)

+ ‖T ∗ε (e(uεe))− e(ue)− ey(u1
e)‖L2(ΩT×Ye)

)
,

‖gb(cεe, bεe, e(uεe))‖L2(Ωεe,T ) ≤ C2,
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HOMOGENIZATION OF BIOMECHANICAL MODELS 371

where C1 = C1(‖T ∗ε (e(uεe))‖L2(ΩT×Ye), ‖e(ue)+ey(u1
e)‖L2(ΩT×Ye), ‖T ∗ε (cεe)‖L2(ΩT×Ye),

‖T ∗ε (bεe)‖L2(ΩT×Ye), ‖c‖L2(ΩT ), ‖be‖L2(ΩT )) and the constants C1 and C2 are indepen-
dent of ε. Combining the estimates in (79), the definition of Ωεe, and the strong
convergence of cεe and bεe in L2(ΩT ) and of T ∗ε (e(uεe)) in L2(ΩT × Ye), along with the
properties of the unfolding operator, we obtain

lim
ε→0

∫
Ωεe,T

gb(c
ε
e, b

ε
e, e(uεe))ψ

(
t, x,

x

ε

)
dxdt =

1

|Y |

∫
ΩT

∫
Ye

gb(c, be, e(ue) + ey(u1
e))ψdydxdt

+
1

|Y |
lim
ε→0

∫
ΩT

∫
Ye

[
gb(T ∗ε (cεe), T ∗ε (bεe), T ∗ε (e(uεe)))− gb(c, be, e(ue) + ey(u1

e))
]
T ∗ε (ψ)dydxdt

=
1

|Y |

∫
ΩT

∫
Ye

gb(c, be, e(ue) + ey(u1
e))ψ dydxdt(80)

for all ψ ∈ C∞0 (ΩT ;Cper(Y )). Thus using the estimate for ‖gb(cεe, bεe, e(uεe))‖L2(Ωεe,T )

in (79), we conclude

gb(c
ε
e, b

ε
e, e(uεe))→ gb(ce, be, e(ue) + ey(u1

e)) two-scale.

To show the convergence of the boundary integral over Γε, we used the Lipschitz
continuity of P and the trace estimate
(81)

ε‖bεe − be‖2L2(ΓεT ) ≤ C1

(
‖bεe − be‖2L2(Ωεe,T ) + ε2‖∇(bεe − be)‖2L2(Ωεe,T )

)
≤ C2

(
‖bεe − be‖2L2(Ωεe,T ) + ε2

[
‖∇bεe‖L2(Ωεe,T ) + ‖∇be‖2L2(Ωεe,T )

])
.

Then due to the strong convergence of bεe in L2(ΩT ), the regularity of be, i.e., be ∈
L2(0, T ;H1(Ω)), and the boundedness of ∇bεe in L2(Ωεe,T ), uniformly in ε, we obtain

lim
ε→0

ε‖P (bεe)− P (be)‖2L2(ΓεT ) ≤ C lim
ε→0

ε ‖bεe − be‖2L2(ΓεT ) = 0.

Taking in (78) first φ1 ≡ 0 and then φ2 ≡ 0 and considering φ1 such that φ1(0) = 0, we
obtain macroscopic equations for be in (75). The standard arguments for parabolic
equations imply that ∂tbe ∈ L2(0, T ;H1(Ω)′). Combining this with the fact that
be ∈ L2(0, T ;H1(Ω))(see Lemma 4.2), we conclude that be ∈ C([0, T ];L2(Ω)). Then
from (78) we obtain that be satisfies the initial condition.

The properties of Ωεf and of the unfolding operator T ∗ε,f for the domain Ωεf yield

lim
ε→0

∫
Ωεf,T

G(∂tu
ε
f )ψ(t, x, x/ε) dxdt = lim

ε→0

1

|Y |

∫
ΩT

∫
Yf

G(T ∗ε,f (∂tu
ε
f ))T ∗ε,f (ψ)dydxdt

=
1

|Y |

∫
ΩT

∫
Yf

G(∂tuf )ψ dydxdt

+
1

|Y |
lim
ε→0

∫
ΩT

∫
Yf

[
G(T ∗ε,f (∂tu

ε
f ))− G(∂tuf )

]
T ∗ε,f (ψ) dydxdt

for all ψ ∈ C∞0 (ΩT ;Cper(Y )). Using the Lipschitz continuity of G and the strong
convergence of T ∗ε,f (∂tu

ε
f ), ensured by the strong two-scale convergence of ∂tu

ε
f , we

obtain

lim
ε→0

∫
ΩT×Yf

[
G(T ∗ε,f (∂tu

ε
f ))− G(∂tuf )

]
T ∗ε,f (ψ)dydxdt

≤ C lim
ε→0
‖T ∗ε,f (∂tu

ε
f )− ∂tuf‖L2(ΩT×Yf )‖ψ‖L2(ΩT×Yf ) = 0.
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372 ANDREY PIATNITSKI AND MARIYA PTASHNYK

Thus taking into account the boundedness of G(∂tu
ε
f ), we conclude

G(∂tu
ε
f )→ G(∂tuf ) two-scale.

In the same way as for gb, the assumptions in A4 ensure that

(82)

‖ge(T ∗ε (cεe), T ∗ε (bεe), T ∗ε (e(uεe)))− ge(c, be, e(ue) + ey(u1
e))‖L1(ΩT×Ye)

≤ C
(
‖T ∗ε (cεe)− c‖L2(ΩT×Ye)

+ ‖T ∗ε (bεe)− be‖L2(ΩT×Ye) + ‖T ∗ε (e(uεe))− e(ue)− ey(u1
e)‖L2(ΩT×Ye)

)
,

where C = C(‖T ∗ε (e(uεe))‖L2(ΩT×Ye), ‖e(ue) + ey(u1
e)‖L2(ΩT×Ye), ‖T ∗ε (cεe)‖L2(ΩT×Ye),

‖T ∗ε (bεe)‖L2(ΩT×Ye), ‖c‖L2(ΩT ), ‖be‖L2(ΩT )). The a priori estimates for cε, bεe, and uεe
and assumptions on g in A4 imply

‖ge(cεe, bεe, e(uεe))‖L2(Ωεe,T ) ≤ C,

with a constant C independent of ε. Then estimate (82) and the strong convergence
of cεe and bεe in L2(ΩT ) and of T ∗ε (e(uεe)) in L2(ΩT × Ye), together with calculations
similar to (80), yield

ge(c
ε
e, b

ε
e, e(uεe))→ ge(c, be, e(ue) + ey(u1

e)) two-scale.

Considering ϕ2(t, x) = ψ1(t, x) + εψ2

(
t, x, xε

)
, with ψ1 ∈ C∞0 (0, T ;C∞(Ω)) and ψ2 ∈

C∞0 (ΩT ;C∞per(Y \ Γ̃)), as a test function in (11), we obtain

−〈cεeχΩεe
, ∂tϕ2〉ΩT + 〈Dc∇cεe,∇ϕ2χΩεe

〉ΩT − 〈gc(cεe, bεe, e(uεe)), ϕ2χΩεe
〉ΩT

−〈cεfχΩεf
, ∂tϕ2〉ΩT + 〈Df∇cεf − G(∂tu

ε
f )cεf ,∇ϕ2χΩεf

〉ΩT − 〈gf (cεf ), ϕ2χΩεf
〉ΩT

= 〈Fc(cεe), ϕ2〉(∂Ω)T .

The two-scale and the strong convergences of cεe and cεf together with strong two-scale
convergence of e(uεe) and ∂tu

ε
f ensure that

− 〈|Ye|c, ∂tψ1〉ΩT + 〈Dc(∇c+∇yc1),∇ψ1 +∇yψ2〉ΩT×Ye
− 〈|Yf |c, ∂tψ1〉ΩT + 〈Df (∇c+∇yc1)− G(∂tuf )c,∇ψ1 +∇yψ2〉ΩT×Yf
− 〈gc(c, be, e(ue) + e(u1

e)), ψ1〉ΩT×Ye − 〈gf (c), ψ1〉ΩT×Yf = |Y |〈Fc(c), ψ1〉(∂Ω)T .

Letting ψ1 = 0 yields

(83)
〈Dc(∇c+∇yc1e),∇yψ2〉ΩT×Ye + 〈Df (∇c+∇yc1f ),∇yψ2〉ΩT×Yf

−〈G(∂tuf )c,∇yψ2〉ΩT×Yf = 0,

where c1l (t, x, y) = c1(t, x, y) for y ∈ Yl and (t, x) ∈ ΩT , with l = e, f . Taking into
account the structure of (83), we represent c1 in the form

c1e(t, x, y) =

3∑
j=1

∂xjc(t, x)ωj(y) for (t, x) ∈ ΩT , y ∈ Ye,

c1f (t, x, y) =

3∑
j=1

∂xjc(t, x)ωj(y) + c(t, x) z(t, x, y) for (t, x) ∈ ΩT , y ∈ Yf ,
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HOMOGENIZATION OF BIOMECHANICAL MODELS 373

where ωj , with j = 1, 2, 3, and z are solutions of the unit cell problems (73) and (74),
respectively. Then choosing ψ2 = 0, we obtain the macroscopic equations for c in
(75).

8. Well-posedness of the limit problem. Uniqueness of a weak solution.
To ensure that the whole sequence of solutions of microscopic problem converges, we
shall prove the uniqueness of a solution of the limit problem (47)–(49), (75). In fact
we are going to prove, using the contraction arguments, that the limit problem is
well-posed and in particular has a unique solution.

We consider an operator K on L∞(0, T ;H1(Ω)) × L∞(0, T ;L2(Ω)) given by
(uje, ∂tu

j
f ) = K(uj−1

e , ∂tu
j−1
f ), where for given (uj−1

e , ∂tu
j−1
f ) we first define bje, c

j as a

solution of (75) with (uj−1
e , ∂tu

j−1
f ) in place of (ue, ∂tuf ) and then (uje, p

j
e, u

j
f , π

j
f ) are

solutions of (47)–(49) with bje in place of be. We denote c̃j = cj− cj−1, b̃je = bje− bj−1
e ,

ũj−1
e = uj−1

e − uj−2
e , p̃j−1

e = pj−1
e − pj−2

e , and ũj−1
f = uj−1

f − uj−2
f . To prove the

existence of a unique solution of problem (47)–(49), (75), we derive a contraction
inequality and show that the operator K has a fixed point.

First we obtain estimates for solutions of the reaction-diffusion-convection system
(75).

Lemma 8.1. Any two consecutive iterations

(uj−1
e , ∂tu

j−1
f ), (bje, c

j) and (uj−2
e , ∂tu

j−2
f ), (bj−1

e , cj−1)

for the limit problem (47)–(49), (75) satisfy the following estimates:

(84)

‖bje‖L∞(0,T ;L∞(Ω)) + ‖cj‖L∞(0,T ;L∞(Ω)) + ‖bj−1
e ‖L∞(0,T ;L∞(Ω))

+ ‖cj−1‖L∞(0,T ;L∞(Ω)) ≤ C,

‖b̃je‖L∞(0,s;L∞(Ω)) + ‖c̃j‖L∞(0,s;L2(Ω))

≤ C
[
‖e(ũj−1

e )‖
L1+ 1

σ (0,s;L2(Ω))
+ ‖∂tũj−1

f ‖L2(Ωs×Yf )

]
with an arbitrary s ∈ (0, T ] and any 0 < σ < 1/9, the constant C being independent
of s.

Proof. The boundedness of bje and bj−1
e can be obtained in the same way as the

corresponding estimate for bεe in (16). To show the boundedness of cj , we consider
(cj −M)+, where M ≥ max{‖c0‖L∞(Ω), 1}, as a test function in the equation for cj

in (75). Using assumptions A4 on ge, gf , and Fc, we obtain

‖(cj(s)−M)+‖2L2(Ω) + ‖∇(cj −M)+‖2L2(Ωs)

≤M
[
‖bje‖L∞(Ωs) + 1

]
‖(cj −M)+‖L1(Ωs)

+M
[
‖vj−1
f ‖L∞(Ωs) + 1

]
‖∇(cj −M)+‖L1(Ωs)

+ C
[
‖bje‖L∞(Ωs) + Cδ‖vj−1

f ‖L∞(Ωs) + 1
]
‖(cj −M)+‖2L2(Ωs)

+ ‖e(uj−1
e )‖L∞(0,s;L2(Ω))‖W j‖L∞(Ωs;L2(Ye))‖(c

j −M)+‖2L2(0,s;L4(Ω))

+ ‖e(uj−1
e )‖2L2(Ωs)

‖W j‖2L∞(Ωs;L2(Ye))
(1 +M2)

∫ s

0

|ΩM (t)| 12 dt

for s ∈ (0, T ), where ΩM (t) = {x ∈ Ω : cj(t, x) > M} for t ∈ (0, T ). Here vj−1
f

is defined in the following way: first we replace ∂tuf in the unit cell problem (74)
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374 ANDREY PIATNITSKI AND MARIYA PTASHNYK

with ∂tu
j−1
f to obtain zj−1, and then we use the third line of (71) with zj−1 instead

of z to obtain vj−1
f . The definition of vj−1

f and of W j = W (bje,3, y) in (76) to-

gether with assumptions A1 and A3 on E and G ensure that ‖vj−1
f ‖L∞(Ωs) ≤ C and

‖W j‖L∞(Ωs;L2(Ye)) ≤ C1‖bje,3‖L∞(Ωs) ≤ C2. Using the embedding H1(Ω) ⊂ L4(Ω),
we obtain

‖(cj −M)+‖2L∞(0,s;L2(Ω)) + ‖∇(cj −M)+‖2L2(Ωs)
≤ CM2

∫ s

0

[
|ΩM (t)|+ |ΩM (t)| 12

]
dt

for some s ∈ (0, T ]. Then applying Theorem II.6.1 in [22] with q = 4(1+γ), r = 5(1+
γ)/2 and iterating over time intervals yields the boundedness of cj in L∞(0, T ;L∞(Ω)).
The same calculations ensure also the boundedness of cj−1.

Considering the equations for b̃je and c̃j and using b̃je and c̃j as test functions in
these equations, we obtain

(85)

‖b̃je(s)‖2L2(Ω) + ‖∇b̃je‖2L2(Ωs)
≤ C1‖cj−1‖L∞(0,s;L2(Ω))‖b̃je‖2L2(0,s;L4(Ω))

+ ‖b̃je‖2L2(Ωs)
+ C2‖bje‖L∞(Ωs)

[
‖b̃je‖2L2(Ωs)

+ ‖c̃j‖2L2(Ωs)

]
+ C3‖bj−1

e ‖L∞(Ωs)

[
‖e(ũj−1

e )‖2L2(Ωs)
+ ‖W̃ j‖2L2(0,s;L4(Ω;L2(Ye)))

+ ‖b̃je‖2L2(Ωs)

+ ‖b̃je‖2L2(0,s;L4(Ω))

]
+ C4‖e(uj−1

e )‖L∞(0,s;L2(Ω))‖b̃je‖2L2(0,s;L4(Ω)),

where W̃ j = W (bje,3, y)−W (bj−1
e,3 , y), and

(86)

‖c̃j(s)‖2L2(Ω) + ‖∇c̃j‖2L2(Ωs)

≤ C1

[
1 + ‖bj−1

e ‖L∞(Ωs) + ‖cj‖L∞(Ωs)

] [
‖c̃j‖2L2(Ωs)

+ ‖b̃je‖2L2(Ωs)

]
+ C2‖e(uj−1

e )‖L∞(0,s;L2(Ω))

[
‖b̃je‖2L2(0,s;L4(Ω)) + ‖c̃j‖2L2(0,s;L4(Ω))

]
+ C3

(
‖bj−1
e ‖L∞(Ωs) + ‖cj−1‖L∞(Ωs)

) [
‖e(ũj−1

e )‖2L2(Ωs)

+‖W̃ j‖2L2(0,s;L4(Ω;L2(Ye)))
+ ‖c̃j‖2L2(Ωs)

+ ‖c̃j‖2L2(0,s;L4(Ω))

]
+ Cµ

[
‖vj−1
f ‖2L∞(Ωs)

‖c̃j‖2L2(Ωs)
+ ‖cj−1‖2L∞(Ωs)

‖ṽj−1
f ‖2L2(Ωs)

]
for s ∈ (0, T ]. Here we used assumptions A4 on the nonlinear functions gb, ge, gf , P ,

Fb, and Fc. From the definition of vj−1
f and W j−1, the Lipschitz continuity of G and

assumptions on E, it follows that

‖ṽj−1
f ‖L2(Ωs) ≤ C‖∂tũ

j−1
f ‖L2(Ωs×Yf ), ‖W̃ j‖L2(0,s;L4(Ω;L2(Ye))) ≤ C‖b̃

j
e‖L2(0,s;L4(Ω)).

Adding the inequalities (85) and (86), considering the compactness of embedding
H1(Ω) ⊂ L4(Ω), and using the Hölder and Gronwall inequalities yields

(87)
‖b̃je‖L∞(0,s;L2(Ω)) + ‖∇b̃je‖L2(Ωs) + ‖c̃j‖L∞(0,s;L2(Ω)) + ‖∇c̃j‖L2(Ωs)

≤ C
[
‖e(ũj−1

e )‖L2(Ωs) + ‖∂tũj−1
f ‖L2(Ωs×Yf )

]
.
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HOMOGENIZATION OF BIOMECHANICAL MODELS 375

To derive the estimate for the L∞-norm of b̃je we use (̃bje)
p−1 as a test function in (75):

(88)

1

p
‖b̃je(s)‖

p
Lp(Ω) +

4(p− 1)

p2
‖∇|̃bje|

p
2 ‖2L2(Ωs)

≤ C1

[
‖cj‖L∞(0,s;L2(Ω))

+ ‖e(uj−1
e )‖L∞(0,s;L2(Ω))‖W j−1‖L∞(Ωs;L2(Ye))

]
‖|̃bje|

p
2 ‖2L2(0,s;L4(Ω))

+ C2‖b̃je‖
p
Lp(Ωs)

+ C3‖bj−1
e ‖2L∞(Ωs)

〈
|e(ũj−1

e )|, |̃bje|p−1
〉

Ωs

+ C4‖bj−1
e ‖L∞(Ωs)

〈
|e(uj−1

e )|‖W̃ j‖L2(Ye), |̃b
j
e|p−1

〉
Ωs

+ C5‖bj−1
e ‖L∞(Ωs)

[
1

p
‖c̃j‖pL∞(0,s;L2(Ω)) +

p− 1

p
‖|̃bje|

p
2 ‖2L2(0,s;L4(Ω))

]
for s ∈ (0, T ]. Using the Gagliardo–Nirenberg inequality

‖w‖L4(Ω) ≤ C‖∇w‖αL2(Ω)‖w‖
1−α
L1(Ω),

with α = 9/10, and making calculations similar to those in (118) in the appendix, we
obtain the following estimate:

(89)

〈|e(ũj−1
e )|, |̃bje|p−1〉Ωs ≤ δ

p− 1

p2
‖∇|̃bje|

p
2 ‖2L2(Ωs)

+ Cδ
(p− 1)pβ

p
‖|̃bje|

p
2 ‖2L∞(0,s;L1(Ω)) + C

1

p
‖e(ũj−1

e )‖p
L1+ 1

σ (0,s;L2(Ω))
,

where β = α
1−α , 0 < σ < 1/9, and δ > 0 can be chosen arbitrarily. The definition of

W̃ j implies

〈|e(uj−1
e )| ‖W̃ j‖L2(Ye), |̃b

j
e|p−1〉Ωs≤C‖e(uj−1

e )‖L∞(0,s;L2(Ω))‖|̃bje|
p
2 ‖2L2(0,s;L4(Ω)).(90)

Incorporating the estimate (87) for ‖c̃j‖L∞(0,τ ;L2(Ω)) together with (89) and (90) into

(88), using the Gagliardo–Nirenberg inequality to estimate ‖b̃je‖
p
Lp(Ωs)

by ‖|̃bje|
p
2 ‖2L1(Ωs)

,

and iterating over p = 2k, with k = 2, 3, . . . , as in the Alikakos lemma [2, Lemma 3.2],
we finally get

‖b̃je‖L∞(0,s;L∞(Ω)) ≤ C
[
‖e(ũj−1

e )‖
L1+ 1

σ (0,s;L2(Ω))
+ ‖∂tũj−1

f ‖L2(Ωs×Yf )

]
for s ∈ (0, T ] and any 0 < σ < 1/9.

The macroscopic equations for elastic deformation and pressure are coupled with
the two-scale problem for fluid flow velocity. Thus the derivation of the estimates for
ue and ∂tuf is nonstandard and is shown in the following lemma.

Lemma 8.2. For two iterations

(uj−1
e , pj−1

e , ∂tu
j−1
f , πj−1

f ), (bj−1
e , cj−1) and (uje, p

j
e, ∂tu

j
f , π

j
f ), (bje, c

j)

for limit problem (47)–(49), (75), we have the following estimates:

(91)

‖∂tũje‖L∞(0,s;L2(Ω)) + ‖e(ũje)‖L∞(0,s;L2(Ω))

+ ‖p̃je‖L∞(0,s;L2(Ω)) + ‖∇p̃je‖L2(Ωs) ≤ C‖b̃
j
e‖L∞(0,s;L∞(Ω)),

‖∂tũjf‖L∞(0,s;L2(Ω×Yf )) + ‖ey(∂tũ
j
f )‖L2(Ωs×Yf ) ≤ C‖b̃je‖L∞(0,s;L∞(Ω))

for s ∈ (0, T ], where ũje = uje − uj−1
e , p̃je = pje − pj−1

e , ∂tũ
j
f = ∂tu

j
f − ∂tu

j−1
f , b̃je =

bje − bj−1
e , and the constant C is independent of s and solutions of the macroscopic

problem.
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376 ANDREY PIATNITSKI AND MARIYA PTASHNYK

Proof. We begin with the two-scale model for fluid flow velocity. Taking ∂tũ
j
f −

∂tũ
j
e as a test function in the equation for the difference ∂tũ

j
f , we obtain

(92)

〈
Ehom(bj−1

e,3 )e(ũje(s)), e(ũje(s))
〉

Ω
−
〈
∂tE

hom(bj−1
e,3 )e(ũje), e(ũje)

〉
Ωs

+ 2
〈
(Ehom(bje,3)−Ehom(bj−1

e,3 )) e(uje(s)), e(ũje(s))
〉

Ω

− 2
〈
∂t(E

hom(bje,3)−Ehom(bj−1
e,3 ))e(uje), e(ũje)

〉
Ωs

− 2
〈
(Ehom(bje,3)−Ehom(bj−1

e,3 ))∂te(uje), e(ũje)
〉

Ωs

+ ρe‖∂tũje(s)‖2L2(Ω) + ρf‖∂tũjf (s)‖2L2(Ω×Yf ) + 2µ‖ey(∂tũ
j
f )‖2L2(Ωs×Yf )

+ 2

〈
∇p̃je, ∂tũje +

∫
Yf

∂tũ
j
f dy

〉
Ωs

= 2〈p̃1,j
e , ∂tũ

j
f · n〉Ωs×Γ + ρe‖∂tũje(0)‖2L2(Ω)

+ ρf‖∂tũjf (0)‖2L2(Ω×Yf ) +
〈
Ehom(bj−1

e,3 ) e(ũje(0)), e(ũje(0))
〉

Ω

+ 2
〈
(Ehom(bje,3)−Ehom(bj−1

e,3 )) e(uje(0)), e(ũje(0))
〉

Ω
,

where p̃1,j
e = p1,j

e − p1,j−1
e . Equation (47) for pje and pj−1

e yields

(93)
ρp‖p̃je(s)‖2L2(Ω) + 2〈Khom

p ∇p̃je,∇p̃je〉Ωs
= 2〈Ku ∂tũ

j
e +Q(x, ∂tu

j
f )−Q(x, ∂tu

j−1
f ),∇p̃je〉Ωs + ρp‖p̃je(0)‖2L2(Ω).

Due to the assumptions in A1 on E, we have

‖Ehom(bje,3)−Ehom(bj−1
e,3 )‖L∞(Ωs) + ‖∂t(Ehom(bje,3)−Ehom(bj−1

e,3 ))‖L∞(Ωs)

≤ C‖b̃je‖L∞(0,s;L∞(Ω))

for s ∈ (0, T ]. The expression (50) for p1,j
e and p1,j−1

e and the estimates for the
H1-norm of the solutions of the unit cell problems (43), (44), and (46) yield

‖p̃1,j
e ‖L2(Ωs×Γ) ≤ C

(
‖∇p̃je‖L2(Ωs) + ‖∂tũje‖L2(Ωs) + ‖∂tũjf‖L2(Ωs×Γ)

)
.

From the compactness of the embedding H1(Yf ) ⊂ L2(Γ) we obtain

‖∂tũjf‖L2(Ωs×Γ) ≤ Cδ‖∂tũjf‖L2(Ωs×Yf ) + δ‖∇y∂tũjf‖L2(Ωs×Yf )

for any δ > 0. Adding (92) and (93) and applying the Hölder and Gronwall inequalities
yields

‖∂tũjf‖L∞(0,s;L2(Ω×Yf )) + ‖ey(∂tũ
j
f )‖L2(Ωs×Yf ) + ‖∂tũje‖L∞(0,s;L2(Ω))

+ ‖e(ũje)‖L∞(0,s;L2(Ω)) + ‖p̃je‖L∞(0,s;L2(Ω)) + ‖∇p̃je‖L2(Ωs) ≤ C‖b̃
j
e‖L∞(0,s;L∞(Ω))

for all s ∈ (0, T ].

The estimates in Lemmas 8.1 and 8.2 together with a fixed-point argument imply
the existence of a unique solution of the strongly coupled limit problem (47)–(49), (75).

Lemma 8.3. There exists a unique weak solution of the limit problem (47)–(49)
and (75).
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HOMOGENIZATION OF BIOMECHANICAL MODELS 377

Proof. Considering the equations for the difference of two iterations for (47)–
(49), (75) and using estimates in Lemmas 8.1 and 8.2 yields

(94)

‖∂t(uje − uj−1
e )‖L∞(0,s;L2(Ω)) + ‖e(uje − uj−1

e )‖L∞(0,s;L2(Ω))

+ ‖∂t(ujf − u
j−1
f )‖L∞(0,s;L2(Ω×Yf )) + ‖ey(ujf − u

j−1
f )‖L2(Ωs×Yf )

≤ C1‖bje − bj−1
e ‖L∞(0,s;L∞(Ω))

≤ C
[
‖e(uj−1

e − uj−2
e )‖

L1+ 1
σ (0,s;L2(Ω))

+ ‖∂t(uj−1
f − uj−2

f )‖L2(Ωs×Yf )

]
for s ∈ (0, T ) and any 0 < σ < 1/9, where C is independent of s and iterative solutions
of the limit problem. Considering a time interval (0, T̃ ), such that CT̃

σ
1+σ < 1 and

CT̃ 1/2 < 1, and applying a fixed-point argument, we obtain the existence of a unique
solution of the coupled system (47)–(49), (75) on the time interval [0, T̃ ]. Iterating this
step over time intervals of length T̃ yields the existence and uniqueness of a solution
of the macroscopic problem (47)–(49), (75) on an arbitrary time interval [0, T ].

9. Incompressible case. Quasi-stationary poroelastic equations in Ωε
e.

Problem (6)–(8) was derived under a number of assumptions on plant tissue. In some
cases these assumptions should be changed, and system (6)–(8) should be modified
accordingly.

In this section we consider two possible modifications of problem (6)–(8):
(i) the incompressible case, when the intercellular space is completely saturated

with water and we have the elliptic equation for pεe;
(ii) the quasi-stationary case for the displacement uεe. In this case we can consider

both compressible and incompressible fluid phases in the elastic part Ωεe.
In the first case the equation for pεe in (7) is replaced with the following elliptic

equation:

(95) − div(Kε
p∇pεe − ∂tuεe) = 0 in Ωεe,T .

In the second situation we consider in (7) the quasi-stationary equations for uεe,

(96) − div(Eε(bεe,3)e(uεe)) +∇pεe = 0 in Ωεe,T .

In the incompressible case, i.e., pεe satisfies (95), Definition 2.4 of a weak solution of
microscopic problem (6)–(8) should be modified. Namely, we assume that

(97) pεe ∈ L2(0, T ;H1(Ωεe)) with

∫
Ωεe

pεe(t, x) dx = 0 for t ∈ (0, T )

and no initial conditions for pεe are required. Additionally we assume that∫
∂Ω

Fp(t, x) dx = 0 for t ∈ (0, T ).

The analysis of the quasi-stationary problems considered in this section is very
similar to the analysis of (6)–(8) presented in the previous sections. The only part
that should be slightly modified is the derivation of a priori estimates.

For the incompressible case, in the same way as in the proof of Lemma 3.2, but
now with (95) for pεe, we obtain

(98)

‖∂tuεe(s)‖2L2(Ωεe)
+ ‖e(uεe(s))‖2L2(Ωεe)

+ ‖∇pεe‖2L2(Ωεe,s)
+ ε2‖e(∂tu

ε
f )‖2L2(Ωεe,s)

+ ‖∂tuεf (s)‖2L2(Ωεf ) ≤ δ
[
‖uεe(s)‖2L2(∂Ω) + ‖pεe‖2L2((0,s)×∂Ω)

]
+ C1‖e(uεe)‖2L2(Ωεe,s)

+ Cδ
[
‖Fu‖2L∞(0,s;L2(∂Ω)) + ‖∂tFu‖2L2((0,s)×∂Ω) + ‖Fp‖2L2((0,s)×∂Ω)

]
+ C2
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378 ANDREY PIATNITSKI AND MARIYA PTASHNYK

for s ∈ (0, T ] and arbitrary δ > 0. Then, as in the proof of Lemma 3.2, applying the
trace and Korn inequalities [33] and using extension properties of uεe and assumptions
A5 on initial data uεe0, u1

e0, and u1
f0, we obtain estimates (19), (20), and (22). The

trace and Poincare inequalities together with the constraints in (97) and properties
of an extension of pεe from Ωεe to Ω (see Lemma 3.1) ensure that

(99) ‖pεe‖2L2((0,s)×∂Ω) ≤ C‖∇p
ε
e‖2L2(Ωεe,s)

for s ∈ (0, T ]. Then applying the Gronwall inequality, we obtain from (98) the esti-
mates for uεe, ∂tu

ε
e, p

ε
e, and ∂tu

ε
f in (21).

Differentiating the equations in (7) and (95) with respect to time t and taking
(∂2
t u

ε
e, ∂tp

ε
e, ∂

2
t u

ε
f ) as test functions in the weak formulation of the resulting equations,

we obtain

(100)

ρe‖∂2
t u

ε
e(s)‖2L2(Ωεe)

+ 〈Eε(bεe,3)e(∂tu
ε
e(s)), e(∂tu

ε
e(s))〉Ωεe

+ 2〈Kε
p∇∂tpεe,∇∂tpεe〉Ωεe,s + ρf‖∂2

t u
ε
f (s)‖2L2(Ωεf )+ 2µ ε2‖e(∂2

t u
ε
f )‖2L2(Ωεf,s)

=2〈∂tFu, ∂2
t u

ε
e〉(∂Ω)s + 2〈∂tFp, ∂tpεe〉(∂Ω)s + ρe‖∂2

t u
ε
e(0)‖2L2(Ωεe)

+ ρf‖∂2
t u

ε
f (0)‖2L2(Ωεf ) + 2

〈
∂tE

ε(bεe,3)e(uεe(s)), e(∂tu
ε
e(s))

〉
Ωεe

+
〈
Eε(bεe,3)e(∂tu

ε
e(0))− 2∂tE

ε(bεe,3(0))e(uεe(0)), e(∂tu
ε
e(0))

〉
Ωεe

−
〈
2∂2
tE

ε(bεe,3)e(uεe) + ∂tE
ε(bεe,3)e(∂tu

ε
e), e(∂tu

ε
e)
〉

Ωεe,s

for s ∈ (0, T ]. As before, applying the Korn inequality and the Poincare inequality
together with the constraint in (97), we obtain the estimates for ∂2

t u
ε
e, ∂tp

ε
e, and ∂2

t u
ε
f

stated in (15). The equations for ∂tu
ε
f and uεe and calculations similar to those in the

proof of Lemma 3.2 ensure the estimate for pεf .
To derive the a priori estimates in the second case, when uεe satisfies the quasi-

stationary equations (96), we have to check that the Korn inequality holds for uεe.

Lemma 9.1. For uεe(s) ∈ H1(Ωεe), with s ∈ (0, T ], we have the following estimate:

(101)
‖uεe(s)‖H1(Ωεe)

≤C
[
‖e(uεe(s))‖L2(Ωεe)

+ ε
1
2 ‖Πτ∂tu

ε
f‖L2(ΓεT ) + ‖uεe(0)‖H1(Ω)

]
,

‖∂tuεe(s)‖H1(Ωεe)
≤C

[
‖∂te(uεe(s))‖L2(Ωεe)

+ ε
1
2 ‖Πτ∂tu

ε
f (s)‖L2(Γε)

]
.

Proof. Consider first Ye and V = {v ∈ H1(Ye)
3 : Πτv = 0 on Γ}. Then since

V ∩R(Ye) = {0}, where R(Ye) is the space of all rigid displacements, we have

(102) ‖v‖2H1(Ye)
≤ C

[
‖e(v)‖2L2(Ye)

+ ‖Πτv‖2L2(Γ)

]
.

Considering scaling x = εy and summing over ξ ∈ Ξε, we obtain

(103) ‖v‖2
L2(Ω̂εe)

+ ε2‖∇v‖2
L2(Ω̂εe)

≤ C
[
ε2‖e(v)‖2

L2(Ω̂εe)
+ ε‖Πτv‖2L2(Γε)

]
,

where Ω̂εe = Int(
⋃
ξ∈Ξε ε(Y e + ξ)). Using the fact that Πτ∂tu

ε
e = Πτ∂tu

ε
f on Γε and

estimating uεe by ∂tu
ε
e and the initial value uεe(0), we obtain

‖Πτu
ε
e(s)‖L2(Γε) ≤ C

[
‖Πτ∂tu

ε
f‖L2(ΓεT ) + ‖uεe(0)‖L2(Γε)

]
.

Hence applying (103) to uεe and using the fact that ε‖uεe(0)‖2L2(Γε) ≤ C‖uεe(0)‖2H1(Ω),
we have

‖uεe(s)‖2L2(Ω̂εe)
≤ C

[
ε2‖e(uεe)(s)‖2L2(Ω̂εe)

+ ε‖Πτ∂tu
ε
f‖2L2(ΓεT ) + ‖uεe(0)‖2H1(Ω)

]
.
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HOMOGENIZATION OF BIOMECHANICAL MODELS 379

Then considering the extension of uεe from Ωεe to Ω (see, e.g., [33]) and applying the
Korn inequality in Ω yields the estimate stated in the lemma.

Then, in the same way as in the proof of Lemma 3.2, applying the Korn inequal-
ities proved in Lemma 9.1 and using extension properties of uεe and the regularity of
the initial data u1

f0 ∈ H2(Ω)3, we obtain the following a priori estimates for solutions
of the quasi-stationary problem:

(104)

‖uεe‖L∞(0,T ;H1(Ωεe))
+ ‖∂tuεe‖L∞(0,T ;H1(Ωεe))

≤ C,
‖pεe‖L2(0,T ;H1(Ωεe))

+ ‖∂tpεe‖L2(0,T ;H1(Ωεe))
≤ C,

‖∂tuεf‖L∞(0,T ;L2(Ωεf )) + ‖∂2
t u

ε
f‖L∞(0,T ;L2(Ωεf ))

+ ε‖∇∂tuεf‖H1(0,T ;L2(Ωεf )) + ‖pεf‖L2(Ωεf,T ) ≤ C,

where the constant C is independent of ε. Notice that in the incompressible and
quasi-stationary case, i.e., in the case of (95) and (96) for pεe and uεe, respectively,
problem (7), (8), (95), and (96) is well-posed without the initial conditions for uεe and
pεe. In this case uεe(0, ·) and ∂tu

ε
e(0, ·) are determined from the corresponding elliptic

equations and the initial values for the fluid flow u1
f0.

In contrast with the limit equations given by (47), in the quasi-stationary and
incompressible case the macroscopic equations for effective displacement and pressure
do not contain time derivatives and take the form

(105)

− div(Ehom(be,3)e(ue)) +∇pe + ϑfρf−
∫
Yf

∂2
t uf dy = 0 in ΩT ,

− div
(
Khom
p ∇pe −Ku ∂tue −Q(x, ∂tuf )

)
= 0 in ΩT ,

Ehom(be,3)e(ue)n = Fu on (∂Ω)T ,

(Khom
p ∇pe −Ku ∂tue) · n = Fp +Q(x, ∂tuf ) · n on (∂Ω)T ,

together with the two-scale equations (49) for uf and πf .

10. Appendix. Here we provide proofs of the estimates for ‖bεe‖L∞(0,T ;L∞(Ωεe))
,

‖cε‖L∞(0,T ;L4(Ωε)) and for the difference ‖b̃ε,je ‖L∞(0,T ;L∞(Ωεe))
of two iterations for sys-

tem (6)–(8).

Lemma 10.1. Under assumptions A1–A5 solutions of the microscopic problem
(6)–(8) satisfy the following estimates:

(106)
‖bεe‖L∞(0,T ;L∞(Ωεe))

≤ C,
‖cεe‖L∞(0,T ;L4(Ωεe))

+ ‖cεf‖L∞(0,T ;L4(Ωεf )) ≤ C,

where the constant C is independent of ε.

Proof. To show that |bεe|p for p ≥ 2 is an admissible test function for (10), we
set bεe,N (t, x) = min{bεe(t, x), N} for (t, x) ∈ Ωεe,T , where N > ‖be0‖L∞(Ω), and derive
estimates for |bεe,N |p independent of N . Then letting N → ∞, we obtain the desired

estimates for bεe. Taking (bεe,N )p−1 as a test function in (10) and applying simple
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380 ANDREY PIATNITSKI AND MARIYA PTASHNYK

calculations, we obtain

(107)

‖bεe,N (s)‖pLp(Ωεe)
+ ‖∇|bεe,N |

p
2 ‖2L2(Ωεe,s)

≤ C1

[
‖e(uεe)‖L∞(0,s;L2(Ωεe))

+ ‖cεe‖L∞(0,s;L2(Ωεe))
+ 1
] ∫ s

0

‖bεe‖L2p(Ωεe)
‖bεe,N‖

p−1
L2p(Ωεe)

dt

+ C2‖be0‖pLp(Ωεe)
+ C3‖bεe‖L∞(0,s;L2(Ωεe))

‖|bεe,N |
p
2 ‖2

p−1
p

L2(0,s;L4(Ωεe))

+ C4

[
‖|bεe,N |

p
2 ‖2L2(0,s;L4(Ωεe))

+ ‖cεe‖
p
Lp(0,s;L2(Ωεe))

+ ‖e(uεe)‖
p
Lp(0,s;L2(Ωεe))

]
+ ε〈|P (bεe)|, |bεe,N |p−1〉Γεs + 〈|Fb(bεe)|, |bεe,N |p−1〉(∂Ω)s

for s ∈ (0, T ]. Here we used the fact that the definition of bεe,N implies

〈∇bεe,∇(bεe,N )p−1〉Ωεe,s = 〈∇bεe,N ,∇(bεe,N )p−1〉Ωεe,s

and that due to the inequality bεe ≥ 0 in Ωεe,T we have

〈∂tbεe, |bεe,N |p−1〉Ωεe,s ≥
1

p
‖bεe,N (s)‖pLp(Ωεe)

− 1

p
‖be0‖pLp(Ωεe)

− ‖be0‖pLp(Ωεe)

+ 〈bεe(s), |bεe,N (s)|p−1〉Ωεe\Ωε,Ne (s) ≥
1

p
‖bεe,N (s)‖pLp(Ωεe)

− (1 + 1/p)‖be0‖pLp(Ωεe)
.

Here Ωε,Ne (t) = {x ∈ Ωεe,s : bεe(t, x) ≤ N} for t ∈ (0, T ). Applying the Gagliardo–
Nirenberg inequality, we can estimate

(108) ‖|bεe,N |p‖L2(Ωεe)
= ‖|bεe,N |

p
2 ‖2L4(Ωεe)

≤ C‖∇|bεe,N |
p
2 ‖2αL2(Ωεe)

‖|bεe,N |
p
2 ‖1−αL1(Ωεe)

with α = 9/10. Using the embedding L2(0, s;H1(Ωεe)) ⊂ L2(0, s;L6(Ωεe)), in space-
dimensions two and three, and applying the Gagliardo–Nirenberg inequality to
‖|bεe,N |

p
2 ‖L4(Ωεe)

yields∫ s

0

‖bεe‖L2p(Ωεe)
‖bεe,N‖

p−1
L2p(Ωεe)

dt

≤
∫ s

0

(
‖bεe‖L 2p

3 (Ωεe)
+ ‖∇|bεe|

p
3 ‖

3
p

L2(Ωεe)

)
‖bεe,N‖

p−1
4

Lp(Ωεe)
‖∇|bεe,N |

p
2 ‖

3(p−1)
2p

L2(Ωεe)
dt.

Then using the Hölder inequality on the right-hand side of the last estimate, we obtain

(109)

∫ s

0

‖bεe‖L2p(Ωεe)
‖bεe,N‖

p−1
L2p(Ωεe)

dt

≤ C
[ ∫ s

0

(
‖bεe‖

2p
3

L
2p
3 (Ωεe)

+ ‖∇|bεe|
p
3 ‖2L2(Ωεe)

)
dt

] 3
2p

× sup
(0,s)

‖bεe,N‖
p−1
4

Lp(Ωεe)

[ ∫ s

0

‖∇|bεe,N |
p
2 ‖

3
2

(2p−2)
2p−3

L2(Ωεe)
dt

] 2p−3
2p

.

For p ≥ 3 we can estimate

(110)
‖∇|bεe|

p
3 ‖2L2(Ωεe,s)

≤ ‖∇bεe‖2L2(Ωε,1e,s)
+ ‖∇|bεe|

p−1
2 ‖2

L2(Ωεe,s\Ω
ε,1
e,s)

≤ ‖∇bεe‖2L2(Ωεe,s)
+ ‖∇|bεe|

p−1
2 ‖2L2(Ωεe,s)

,
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HOMOGENIZATION OF BIOMECHANICAL MODELS 381

where Ωε,1e,s = {(t, x) ∈ Ωεe,s : bεe(t, x) ≤ 1}. Also notice that for p ≥ 3 we have
3
4

(2p−2)
2p−3 ≤ 1 and 2p

3 ≤ p− 1. Thus applying the Young inequality in (109) yields

(111)

∫ s

0

‖bεe‖L2p(Ωεe)
‖bεe,N‖

p−1
L2p(Ωεe)

dt ≤ δ1 sup
(0,s)

‖bεe,N‖
p
Lp(Ωεe)

+ δ2‖∇|bεe,N |
p
2 ‖2L2(Ωεe,s)

+Cδ

(
1 + ‖bεe‖

p−1
Lp−1(Ωεe,s)

+ ‖∇bεe‖2L2(Ωεe,s)
+ ‖∇|bεe|

p−1
2 ‖2L2(Ωεe,s)

) 3
2

for any δ1 > 0 and δ2 > 0. Using the trace inequality, we estimate the integral over
Γε as

(112)

ε〈|P (bεe)|, |bεe,N |p−1〉Γεs ≤ C1ε〈1 + |bεe|, |bεe,N |p−1〉Γεs

≤C2(ε)

s∫
0

[
1 + ‖|bεe|

p
3 ‖

1
4

L2(Ωεe)
‖∇|bεe|

p
3 ‖

3
4

L2(Ωεe)
+ ‖|bεe|

p
3 ‖

1
6

L2(Ωεe)
‖∇|bεe|

p
3 ‖

5
6

L2(Ωεe)

] 3
p

×
[
‖|bεe,N |

p
2 ‖L2(Ωεe)

‖∇|bεe,N |
p
2 ‖L2(Ωεe)

] p−1
p

dt

≤ C3(ε)

[
1 + ‖|bεe|

p
3 ‖

1
2p

L∞(0,s;L2(Ωεe))
‖∇|bεe|

p
3 ‖

5
2(p+1)

L2(Ωεe,s)

]
× sup

(0,s)

‖|bεe,N |
p
2 ‖

p−1
p

L2(Ωεe)
‖∇|bεe,N |

p
2 ‖

p−1
p

L2(Ωεe,s)
.

Applying the Young inequality on the right-hand side of (112) and using (110), to-
gether with the uniform estimate of ‖∇bεe‖L2(Ωεe,s)

obtained in Lemma 3.2, yields

ε〈|P (bεe)|, |bεe,N |p−1〉Γεs ≤ C(ε)

[
1 + ‖|bεe|

p
3 ‖

1
2

L∞(0,s;L2(Ωεe))

(
1 + ‖∇|bεe|

p−1
2 ‖

5p
2(p+1)

L2(Ωεe,s)

)]
+ δ1 sup

(0,s)

‖|bεe,N |
p
2 ‖2L2(Ωεe)

+ δ2‖∇|bεe,N |
p
2 ‖2L2(Ωεe,s)

.

The same calculations together with (110) ensure that

〈|Fb(bεe)|, |bεe,N |p−1〉(∂Ω)s ≤ C(ε)
[
1 + ‖|bεe|

p−1
2 ‖3L∞(0,s;L2(Ωεe))

+ ‖∇|bεe|
p−1
2 ‖3L2(Ωεe,s)

]
+ δ1 sup

(0,s)

‖bεe,N‖
p
Lp(Ωεe)

+ δ2‖∇|bεe,N |
p
2 ‖2L2(Ωεe,s)

.

Considering p = 3 and using the standard a priori estimates (27) for bεe yields

(113)

∫ s

0

‖bεe‖L6(Ωεe)
‖bεe,N‖2L6(Ωεe)

dt ≤ C
[ ∫ s

0

(
‖bεe‖2L2(Ωεe)

+ ‖∇bεe‖2L2(Ωεe)

)
dt

] 1
2

× sup
(0,s)

‖bεe,N‖
1
2

L3(Ωεe)

[ ∫ s

0

‖∇|bεe,N |
3
2 ‖2L2(Ωεe)

dt

] 1
2

≤ Cδ + δ1 sup
(0,s)

‖bεe,N (s)‖3L3(Ωεe)
+ δ2‖∇|bεe,N |

3
2 ‖2L2(Ωεe,s)

.
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382 ANDREY PIATNITSKI AND MARIYA PTASHNYK

For the boundary integrals, for p = 3, we have

(114)

ε〈|P (bεe)|, |bεe,N |2〉Γεs + 〈|Fb(bεe)|, |bεe,N |2〉(∂Ω)s

≤ C1(ε)
[
1 + ‖bεe‖

1
6

L∞(0,s;L2(Ωεe))
‖∇bεe‖

5
8

L2(Ωεe,s)

]
· sup

(0,s)

‖|bεe,N |
3
2 ‖

2
3

L2(Ωεe)
‖∇|bεe,N |

3
2 ‖

2
3

L2(Ωεe,s)

≤ C2(ε)
[
1 + ‖bεe‖

1
2

L∞(0,s;L2(Ωεe))
‖∇bεe‖

15
8

L2(Ωεe,s)

]
+ δ1 sup

(0,s)

‖bεe,N (s)‖3L3(Ωεe)
+ δ2‖∇|bεe,N |

3
2 ‖2L2(Ωεe,s)

.

Considering (107) for p = 3 and using the estimates (108), (113), and (114) together
with the standard a priori estimates for bεe, c

ε
e, and uεe shown in Lemma 3.2, we obtain

‖bεe,N (s)‖3L3(Ωεe)
+ ‖∇|bεe,N |

3
2 ‖2L2(Ωεe,s)

≤ C(ε) + δ1 sup
(0,s)

‖bεe,N (s)‖3L3(Ωεe)
+ δ2‖∇|bεe,N |

3
2 ‖2L2(Ωεe,s)

with s ∈ (0, T ], a constant C(ε) independent of N , and arbitrary 0 < δ1 ≤ 1
2 and

0 < δ2 ≤ 1
2 . Considering the supremum over (0, s) and taking the limit N →∞ yields

that bεe ∈ L∞(0, T ;L3(Ωεe)) and ∇|bεe|
3
2 ∈ L2(Ωεe,T ). Taking iteratively p = 4, 5, . . .

and choosing δ1 > 0 and δ2 > 0 sufficiently small for each fixed p and for fixed ε, we
obtain estimates for ‖bεe,N‖L∞(0,T ;Lp(Ωεe))

and ‖∇|bεe,N |
p
2 ‖2L2(Ωεe,T ) independent of N .

Letting N → ∞ yields that |bεe|
p
2 ∈ L2(0, T ;H1(Ωεe)) and bεe ∈ L∞(0, T ;Lp(Ωεe)) for

every fixed p ≥ 2.
Now we consider (bεe)

p−1 as a test function in (10) and obtain

(115)

1

p
‖bεe(s)‖

p
Lp(Ωεe)

+
4(p− 1)

p2
‖∇|bεe|

p
2 ‖2L2(Ωεe,s)

≤ 1

p
‖be0‖pLp(Ωεe)

+ ‖bεe‖
p
Lp(Ωεe,s)

+C1

(
‖cεe‖L∞(0,s;L2(Ωεe))

+ ‖e(uεe)‖L∞(0,s;L2(Ωεe))
+ 1
)
‖|bεe|

p
2 ‖2L2(0,s;L4(Ωεe))

+
C2

p

(
‖cεe‖

p
Lp(0,s;L2(Ωεe))

+ ‖e(uεe)‖
p
Lp(0,s;L2(Ωεe))

)
+ ε〈|P (bεe)|, |bεe|p−1〉Γεs + 〈Fb(bεe), |bεe|p−1〉(∂Ω)s

for s ∈ (0, T ]. The integral over Γε is estimated as

ε〈|P (bεe)|, |bεe|p−1〉Γεs ≤ C1ε〈1 + |bεe|, |bεe|p−1〉Γεs
≤ C2

(
1 + ‖|bεe|

p
2 ‖2L2(Ωεe,s)

+ ε2‖∇|bεe|
p
2 ‖2L2(Ωεe,s)

)
.

Using the properties of extension of bεe from Ωεe to Ω and applying the Gagliardo–
Nirenberg inequality

‖w‖L2(Ω) ≤ C‖∇w‖α1

L2(Ω)‖w‖
1−α1

L1(Ω), ‖w‖L4(Ω) ≤ C‖∇w‖α2

L2(Ω)‖w‖
1−α2

L1(Ω),

with α1 = 3
5 and α2 = 9

10 , we obtain

ε〈|P (bεe)|, |bεe|p−1〉Γεs ≤ Cδ
(
1 + ‖|bεe|

p
2 ‖2L1(Ωεe,s)

)
+ (ε2 + δ)‖∇|bεe|

p
2 ‖2L2(Ωεe,s)

,

〈|Fb(bεe)|, |bεe|p−1〉(∂Ω)s ≤ C
(
1 + ‖|bεe|

p
2 ‖2L2((0,s)×∂Ω)

)
≤ Cδ

[
1 + ‖|bεe|

p
2 ‖2L1(Ωεe,s)

]
+ δ‖∇|bεe|

p
2 ‖2L2(Ωεe,s)

.
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HOMOGENIZATION OF BIOMECHANICAL MODELS 383

Then applying the Gagliardo–Nirenberg inequality and the extension lemma, Lemma
3.1, to ‖|bεe|

p
2 ‖2L2(Ωs)

and ‖|bεe|
p
2 ‖2L2(0,s;L4(Ωεe))

in (115) and using the estimates (27)

yields

‖bεe(s)‖
p
Lp(Ωεe)

+ ‖∇|bεe|
p
2 ‖2L2(Ωεe,s)

≤ Cp1 + C2(1 + p10)

∫ s

0

‖|bεe|
p
2 ‖2L1(Ωεe)

dt,

where the constants C1 and C2 are independent of ε. Then the Alikakos iteration
lemma implies the boundedness of bεe, uniformly in ε.

We turn to cε. Considering first (cεe,N )p−1 and (cεf,N )p−1, where cεj,N (t, x) =
min{cεj(t, x), N} for (t, x) ∈ Ωεj,T with j = e, f and N > 0, as test functions in (11)
and performing calculations similar to those in the derivation of (107), we obtain

‖cεe,N (s)‖pLp(Ωεe)
+ ‖cεf,N (s)‖pLp(Ωεf ) + ‖∇|cεe,N |

p
2 ‖2L2(Ωεe,s)

+ ‖∇|cεf,N |
p
2 ‖2L2(Ωεf,s)

≤ ‖cεe(0)‖pLp(Ωεe)
+ ‖cεf (0)‖pLp(Ωεf ) + C1

[
1 + ‖G(∂tu

ε
f )‖2L∞(Ωεf,T )

]
‖cεf,N‖

p
Lp(Ωεf,s)

+C2

[
‖bεe‖

p
Lp(Ωεe,s)

+ ‖cεe,N‖
p
Lp(Ωεe,s)

]
+ C3

∫ s

0

(
1 + ‖cεe‖Lp(∂Ω)

)
‖cεe,N‖

p−1
Lp(∂Ω)dt

+C4‖e(uεe)‖L∞(0,s;L2(Ωεe))

∫ s

0

[
‖|bεe|p‖L2(Ωεe)

+ ‖cεe‖L2p(Ωεe)
‖cεe,N‖

p−1
L2p(Ωεe)

+ ‖|cεe,N |p‖L2(Ωεe)

]
dt+ C5‖cεe‖L∞(0,s;L2(Ωεe))

‖|cεe,N |
p
2 ‖2

p−1
p

L2(0,s;L4(Ωεe))

+C6‖cεf‖L∞(0,s;L2(Ωεf ))‖|cεf,N |
p
2 ‖2

p−1
p

L2(0,s;L4(Ωεf )).

Similar to (111) we estimate∫ s

0

‖cεe‖L2p(Ωεe)
‖cεe,N‖

p−1
L2p(Ωεe)

dt ≤ δ1sup
(0,s)

‖cεe,N (s)‖pLp(Ωεe)
+ δ2‖∇|cεe,N |

p
2 ‖2L2(Ωεe,s)

+Cδ

(
1 + ‖cεe‖

p−1
Lp−1(Ωεe,s)

+ ‖∇cεe‖2L2(Ωεe,s)
+ ‖∇|cεe|

p−1
2 ‖2L2(Ωεe,s)

) 3
2

.

The boundary integral can be estimated in the same way as in (112):∫ s

0

(1 + ‖cεe‖Lp(∂Ω))‖cεe,N‖
p−1
Lp(∂Ω)dt ≤ δ1sup

(0,s)

‖cεe,N (s)‖pLp(Ωεe)
+ δ2‖∇|cεe,N |

p
2 ‖2L2(Ωεe,s)

+C(ε)
[
1 + ‖|cεe|

p−1
2 ‖3L∞(0,s;L2(Ωεe))

+ ‖∇|cεe|
p−1
2 ‖3L2(Ωεe,s)

]
.

Considering p = 3, . . . , 6 iteratively, using estimates (27), and making the calculations
similar to those for bεe,N yields

‖cεe,N‖L∞(0,T ;L6(Ωεe))
+ ‖cεf,N (s)‖L∞(0,T ;L6(Ωεf ))

+ ‖∇|cεe,N |3‖L2(Ωεe,s)
+ ‖∇|cεf,N |3‖L2(Ωεf,s)

≤ C,

where the constant C depends on p and ε and is independent of N . Letting N →∞,
we obtain that (cεj)

p−1 ∈ L2(0, T ;H1(Ωεj)) with j = e, f and p = 3, . . . , 6. Thus we
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384 ANDREY PIATNITSKI AND MARIYA PTASHNYK

can consider (cεe)
p−1 and (cεf )p−1, with p = 3, 4, as test functions in (11):

‖cεe(s)‖
p
Lp(Ωεe)

+ ‖cεf (s)‖pLp(Ωεf ) + ‖∇|cεe|
p
2 ‖2L2(Ωεe,s)

+ ‖∇|cεf |
p
2 ‖2L2(Ωεf,s)

≤ ‖cεe(0)‖pLp(Ωεe)
+ ‖cεf (0)‖pLp(Ωεf ) + C1

[
1 + ‖G(∂tu

ε
f )‖2L∞(Ωεf,T )

]
‖cεf‖

p
Lp(Ωεf,s)

+ C2‖e(uεe)‖L∞(0,s;L2(Ωεe))

[
‖|bεe|

p
2 ‖2L2(0,s;L4(Ωεe))

+ ‖|cεe|
p
2 ‖2L2(0,s;L4(Ωεe))

]
+ C3

[
1 + ‖bεe‖

p
Lp(Ωεe,s)

+ ‖cεe‖
p
Lp(Ωεe,s)

+ ‖cεe‖
p
Lp((0,s)×∂Ω)

]
.

In the same way as in (115), applying the Gagliardo–Nirenberg inequality to |cεj |
p
2

in L2(Ωεj) and L4(Ωεj) and using properties of the extension of cεe from Ωεe to Ω and

of cε from Ω̃ef to Ω, we obtain

‖cεe‖L∞(0,T ;L4(Ωεe))
+ ‖cεf‖L∞(0,T ;L4(Ωεf )) + ‖∇|cεe|2‖L2(Ωεe,T ) + ‖∇|cεf |2‖L2(Ωεf,T ) ≤ C,

where the constant C is independent of ε.

Next we present the proof of the estimate for ‖b̃ε,je ‖L∞(0,s;L∞(Ωεe))
.

Lemma 10.2. For the difference of two iterations b̃ε,je = bε,j−1
e − bε,je , ũε,j−1

e =
uε,j−2
e −uε,j−1

e , and ∂tũ
ε,j−1
f = ∂tu

ε,j−2
f −∂tuε,j−1

f for the microscopic system (6)–(8),
defined in Theorem 3.3, we have

‖b̃ε,je ‖L∞(0,s;L∞(Ωεe))
≤ C‖e(ũε,j−1

e )‖
L1+ 1

σ (0,s;L2(Ωεe))

+ Cδ‖∂tũε,j−1
f ‖L2(Ωεf,s)

+ δ‖e(∂tũ
ε,j−1
f )‖L2(Ωεf,s)

for s ∈ (0, T ), any δ > 0, and 0 < σ < 1/9, where the constants C and Cδ are
independent of s and j.

Proof. Considering (̃bε,je )p−1 as a test function in the weak formulation of (31)
yields

(116)

1

p
‖b̃ε,je (s)‖pLp(Ωεe)

+
2(p− 1)

p2
‖∇|̃bε,je |

p
2 ‖2L2(Ωεe,s)

≤ C1‖b̃ε,je ‖
p
Lp(Ωεe,s)

+ C2

[
‖cε,je ‖L∞(0,s;L2(Ωεe))

+ ‖e(uε,j−1
e )‖L∞(0,s;L2(Ωεe))

]
‖|̃bε,je |

p
2 ‖2L2(0,s;L4(Ωεe))

+ C3‖bε,j−1
e ‖L∞(Ωεe,s)

[
1

p
‖c̃ε,je ‖

p
L∞(0,s;L2(Ωεe))

+
p− 1

p
‖|̃bε,je |

p
2 ‖2L2(0,s;L4(Ωεe))

]
+ C4‖bε,j−1

e ‖L∞(Ωεe,s)
〈|e(ũε,j−1

e )|, |̃bε,je |p−1〉Ωεe,s

for s ∈ (0, T ). Applying the Hölder inequality, we estimate

(117)

〈|e(ũε,j−1
e )|, |̃bε,je |p−1〉Ωεe,s ≤

∫ s

0

‖e(ũε,j−1
e )‖

L
2p
p+1 (Ωεe)

‖b̃ε,je ‖
p−1
L2p(Ωεe)

dt

≤ C1

∫ s

0

‖e(ũε,j−1
e )‖L2(Ωεe)

‖b̃ε,je ‖
p−1
L2p(Ωεe)

dt

≤ C2

(∫ s

0

‖e(ũε,j−1
e )‖

p(1+σ)
(pσ+1)

L2(Ωεe)
dt

) (pσ+1)
p(1+σ)

(∫ s

0

‖|̃bε,je |
p
2 ‖2(1+σ)
L4(Ωεe)

dt

) (p−1)
p(1+σ)

for some σ > 0. Applying the Gagliardo–Nirenberg inequality

‖w‖L4(Ω) ≤ C‖∇w‖αL2(Ω)‖w‖
1−α
L1(Ω)
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HOMOGENIZATION OF BIOMECHANICAL MODELS 385

with α = 9
10 , we obtain for 0 < σ < 1/9(∫ s

0

‖|̃bε,je |
p
2 ‖2(1+σ)
L4(Ωεe)

dt

) 1
1+σ

≤ C
(∫ s

0

‖∇|̃bε,je |
p
2 ‖2(1+σ)α
L2(Ωεe)

‖|̃bε,je |
p
2 ‖2(1+σ)(1−α)
L1(Ωεe)

dt

) 1
(1+σ)

≤ C2‖∇|̃bε,je |
p
2 ‖2αL2(Ωεe,s)

(∫ s

0

‖|̃bε,je |
p
2 ‖

2(1+σ)(1−α)
1−α(1+σ)

L1(Ωεe)
dt

) 1−α(1+σ)
1+σ

≤ δ

p
‖∇|̃bε,je |

p
2 ‖2L2(Ωεe,s)

+ Cδp
α

1−α

(∫ s

0

‖|̃bε,je |
p
2 ‖

2(1+σ)(1−α)
1−α(1+σ)

L1(Ωεe)
dt

) 1−α(1+σ)
(1+σ)(1−α)

(118)

≤ δ

p
‖∇|̃bε,je |

p
2 ‖2L2(Ωεe,s)

+ Cδp
α

1−α ‖|̃bε,je |
p
2 ‖2L∞(0,s;L1(Ωεe))

for any δ > 0. Hence we have the following estimate:

(119)

〈|e(ũε,j−1
e )|, |̃bε,je |p−1〉Ωεe,s ≤ δ

p− 1

p2
‖∇|̃bε,je |

p
2 ‖2L2(Ωεe,s)

+ Cδ
(p− 1)pβ

p
‖|̃bε,je |

p
2 ‖2L∞(0,s;L1(Ωεe))

+ C
1

p
‖e(ũε,j−1

e )‖p
L1+ 1

σ (0,s;L2(Ωεe))
,

with β = α
1−α . We incorporate inequality (119) in (116), estimate ‖b̃ε,je ‖

p
Lp(Ωεe,s)

and ‖|̃bε,je |
p
2 ‖2L2(0,s;L4(Ωεe))

in terms of ‖|̃bε,je |
p
2 ‖2L2(0,s;L1(Ωεe))

and ‖∇|̃bε,je |
p
2 ‖2L2(Ωεe,s)

by

applying the Gagliardo–Nirenberg inequality, and then use the estimate (35) for
‖c̃ε,je ‖

p
L∞(0,s;L2(Ωεe))

and the boundedness of bε,j−1
e , which can be shown in the same

way as the L∞-estimates in (106), to obtain

‖b̃ε,je (s)‖pLp(Ωεe)
+ ‖∇|̃bε,je |

p
2 ‖2L2(Ωεe,s)

≤ C1p
10 sup

(0,s)

‖|̃bε,je |
p
2 ‖2L1(Ωεe)

+ Cp2‖e(ũε,j−1
e )‖p

L1+ 1
σ (0,s;L2(Ωεe))

+ δp‖e(∂tũ
ε,j−1
f )‖pL2(Ωεf,s)

+ Cpδ ‖∂tũ
ε,j−1
f ‖pL2(Ωεf,s)

.

Using (35) and iterating in p = 2k for k = 2, 3, . . . , similarly to [2, Lemma 3.2], we
obtain the estimate stated in the lemma.
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