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Abstract. For an almost product structure J on a manifoldM of dimension
6 with non-degenerate Nijenhuis tensor NJ , we show that the automorphism
group G = Aut(M,J) has dimension at most 14. In the case of equality G is
the exceptional Lie groupG∗

2. The next possible symmetry dimension is proved
to be equal to 10, and G has Lie algebra sp(4,R). Both maximal and sub-
maximal symmetric structures are globally homogeneous and strictly nearly
para-Kähler. We also demonstrate that whenever the symmetry dimension is
at least 9, then the automorphism algebra acts locally transitively.

1. Introduction and main results

An almost product structure J on a manifold M is an endomorphism of the
tangent bundle with J2 = 1. This is equivalent to a splitting TM = ∆− ⊕∆+,
J |∆± = ±1, and we assume this splitting is nontrivial, J 6= ±1. In this paper
we study real 6-dimensional manifolds M with non-degenerate J , i.e. such that
the Nijenhuis tensor NJ : Λ2TM → TM is an epimorphism (6 is the minimal
dimension when this is possible, and a generic almost product structure J with
tr(J) = 0 is non-degenerate). In this case rank ∆± = 3 (so tr(J) = 0), and the
restrictions of the Nijenhuis tensor give the curvature tensors of the distributions
Ξ± : Λ2∆± → ∆∓, X± ∧ Y± → [X±, Y±] mod ∆±, that are isomorphisms (notice
that if dimM > 6 the maps Ξ± cannot be isomorphisms simultaneously).

When ranks of ±1 eigenspaces of an almost product structure J on (then nec-
essarily even-dimensional) manifold M are equal, the structure is called almost
para-complex. Such structures with NJ = 0 and their Hermitian and Kähler
analogs originated in [20, 18], have been extensively studied in the literature
[6, 10, 21, 1] and they received various physical applications [3, 9].

Non-degenerate almost complex structures in dimension 6 were studied in great
detail in [12, 5, 13, 2, 16]. To our knowledge the corresponding almost product
geometry has not been addressed. We will call it non-degenerate para-complex
geometry (omitting the adjective "almost"). One might think that it should
be analogous to the almost complex case, but this is only partially true. The
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algebraic part of this study involves the split versions of the Lie algebras and their
representations, yet there are fewer symmetric geometries in this case.

Our first result is the maximal bound on the symmetry dimension, i.e. dimension
of the Lie algebra sym(M,J) = {X ∈ D(M) : LXJ = 0}: it is the same 14
as in the almost complex case. However while non-degenerate almost complex
geometry possesses two different maximally symmetric structures, the maximally
symmetric model in the para-complex case is unique.
Theorem 1. Let (M,J) be a connected non-degenerate para-complex mani-
fold. Then dim sym(M,J) ≤ 14, and in the case of equality the manifold is
locally homogeneous of the type g∗2/sl3. Moreover, if dim Aut(M,J) = 14, then
Aut(M,J) = G∗2 and M is the globally homogenous space G∗2/SL3, where G∗2 is
the algebraic (not simply-connected) exceptional Lie group with Lie algebra g∗2.

It is clear that dim Aut(M,J) ≤ dim sym(M,J). Note that for a subset of the
maximally symmetric model M ⊂M0 = G∗2/SL3 the symmetry algebra remains
the split exceptional Lie algebra g∗2, while the automorphism group decreases in
size. For instance, if M = M0 \ {point}, then Aut(M,J) = SL3.

Next we are interested in the submaximal symmetry, i.e. such (M,J) that its
symmetry algebra has the second largest dimension (accidentally in this geometry
this is the same dimension as the second largest dimension of the automorphism
group). Many geometric structures exhibit the gap phenomenon, namely there
are prohibited symmetry dimensions [15]. In the case of non-degenerate para-
complex structures the gap is four.
Theorem 2. Let (M,J) be a connected non-degenerate para-complex manifold
that is not locally equivalent to the maximal symmetry model of Theorem 1. Then
dim sym(M,J) ≤ 10; in the case of equality the manifold is locally homogeneous
of the type sp(4,R)/gl2. Moreover, if dim Aut(M,J) = 10, then the connected
component G = Aut(M,J)0 is either Sp(4,R) or SO+(2, 3) and M is globally
homogenous of the type G/(SL2 × R).

Let us note that (3, 6)-distributions, i.e. rank 3 distributions ∆ on M6 with
[∆,∆] = TM are parabolic geometries of type (B3, P3). They were studied by
the Cartan equivalence method in [4], and it was demonstrated that the maximal
symmetry dimension is 21. In [15] it was shown that the submaximal symmetry
dimension is 11. Non-degenerate para-complex structures can be considered as a
pair of transversal (3, 6)-distributions. We see that the maximal and submaximal
dimensions drop to 14 and 10 respectively.
Remark 1. The maximally symmetric model S3,3 = S3 × R3 is a topologically
trivial 3-dimensional bundle over 3-sphere. The submaximally symmetric model
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Sp(4,R)/(SL2×R) = S3×̃V 3 is a topologically non-trivial 3-dimensional bundle
over 3-sphere. The other submaximal model is obtained by the central quotient:
SO+(2, 3)/(SL2 × R) = RP 3×̃V 3, see Section 6.

In both the maximal and submaximal symmetric models above the isotropy
preserves not only the almost product structure J , but also a (unique up to scale)
metric g of signature (3, 3) such that J∗g = −g, so that ω(X, Y ) = g(X, JY ) is a
nondegenerate 2-form (almost symplectic structure). Thus we have an invariant
para-Hermitian structure (g, J, ω) on M . This structure is defined to be nearly
para-Kähler (an analog of the nearly pseudo-Kähler condition [8]) if

∇gω ∈ Ω3M,

and strictly nearly para-Kähler if in addition this 3-form is nonzero (this implies
that the Nijenhuis tensor is non-degenerate). In both highly symmetric models
(with the symmetry algebra g∗2 or sp(4,R)) this condition is satisfied.
Corollary 1. The gap between maximal and sub-maximal symmetry dimensions
of sym(J) for dimM = 6 is the same for non-degenerate para-complex structures
as for strictly nearly para-Kähler structures.

Finally consider the question of transitivity of the symmetry group action.
Theorem 3. Let (M,J) be a connected non-degenerate para-complex manifold
with symmetry algebra of dimension > 8. Then the structure J is locally homo-
geneous, i.e. near a generic point (M,J) is equivalent to a homogeneous model
G/H, where G is a Lie group of dimension d ∈ {9, 10, 14}, and H its subgroup
of dimension d− 6.

In other words, if a group of dimension d > 8 acts on a 6-dimensional non-
degenerate para-complex manifold, then in the case d = 10, 14 it has only one
orbit (global homogeneity), while for d = 9 it has open orbits and the union of all
open orbits is dense (local homogeneity; the singular orbits can be present).

There are many examples of non-degenerate para-complex structures with the
symmetry dimension 9, for instance, parametric families on U(1, 2)/SU(1, 1),
GL3/SL2, SU(2)3/SU(2)diag, SL3

2/SL2, etc. Those with semi-simple isotropy
can be obtained similarly (in technique) to the almost complex case [2]. Note
that among those listed the only compact manifold admitting a symmetric non-
degenerate para-complex structure is S3 × S3.

The rest of this paper constitutes a proof of the above theorems. Some compu-
tations in Maple are available as a supplement to this paper.

Acknowledgements: Both authors were partially supported by the Norwegian
Research Council and DAAD project of Germany.
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2. 1-jet determination and the possible isotropy

We begin with the following statement that is analogous to the almost complex
case [13, Theorem 2.1(i)].

Theorem 4. The symmetry pseudogroup of a non-degenerate para-complex man-
ifold (M6, J) is finite-dimensional. It is 1-jet determined at any point of M , i.e.
the isotropy representation is faithful everywhere.

We will need some facts from the formal theory of differential equations, see
[22, 14] for details. For a vector bundle π : E → M with the fiber F let Jkπ
be the space of k-jets of its local sections. These spaces are equipped with the
natural projections πk,k−1 : Jkπ → Jk−1π.

A system of differential equations of order 1 is a subbundle E ⊂ J1π. Its symbol
is the subbundle g1 = Ker(dπ1,0 : TE → TJ0) ⊂ T ∗ ⊗ F , where T = TM .
The Spencer-Sternberg prolongations of the symbol gk = g

(k−1)
1 are given by the

formula gk = Sk−1T ∗ ⊗ g1 ∩ SkT ∗ ⊗ F . We also let g0 = F .

Prolongations of E are defined as subsets Ek = E (k−1) ⊂ Jkπ, which are zero loci
of the differential corollaries of the PDEs defining E (obtained by differentiating
the defining relations by all variables ≤ k − 1 times). System E is formally
integrable (compatible) if Ek are vector subbundles of Jkπ and πk,k−1 : Ek → Ek−1
are submersions. It has finite type if eventually gk = 0. In this case the space of
solutions is finite-dimensional with dimension bounded by ∑ dim gk.

Proof. Let us consider the Lie equation on the 1-jets of infinitesimal symmetries
X ∈ DM (space of vector fields on M) at various points x ∈ M preserving the
structure J :

Lie(J) = {[X]1x : LX(J)x = 0} ⊂ J1(TM).
Its symbol is ḡ1 = ∑

ε=±∆∗ε ⊗∆ε ⊂ T ∗ ⊗ T , where ∆∗± = ∆⊥∓ ⊂ T ∗ for ∆± ⊂ T
and T = TM . This equation is formally integrable iff J is integrable (⇔ ∆± are
integrable). So we consider its first prolongation-projection E = π2,1(Lie(J)(1)),
which is the Lie equation for the pair (J,NJ) consisting of 1-jets of vector fields
preserving both tensors. Identifying NJ with Ξ±, the symbol of E is

g1 = {f ∈ T ∗⊗T : f(∆±) ⊂ ∆±, Ξ±(fξ, η)+Ξ±(ξ, fη) = fΞ±(ξ, η)∀ξ, η ∈ ∆±}.

The Spencer-Sternberg prolongation g
(1)
1 of this space equals:

g2 = {h ∈
∑
ε=±

S2∆∗ε ⊗∆ε : Ξ±(h(ξ, η), ζ) + Ξ±(η, h(ξ, ζ)) = h(ξ,Ξ±(η, ζ))}.
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Above we extend Ξ± to Λ2T ∗⊗T by letting Ξ±(ξ, η) = 0 if either of ξ, η belongs
to ∆∓. Then substituting ξ ∈ ∆+, η, ζ ∈ ∆− into the defining relation and using
the fact that Ξ± is onto ∆∓ we conclude vanishing of h ∈ S2T ∗ ⊗ T , so g2 = 0.

Thus Lie(J) has finite type and the automorphism pseudogroup G of J is finite-
dimensional with dimG = dim g0 + dim g1 < 6 + 2 · 9 = 24. �

Let us study in more detail the symbol of the equation E = π1(Lie(J)(1)) from
the preceeding proof.

Proposition 1. The symbol of E is g1 ⊂ sl3 ⊂
∑
ε=±∆∗ε ⊗∆ε ⊂ T ∗ ⊗ T .

Proof. Consider the map Ψ+ given by the following composition

∆+⊗Λ3∆+ → ∆+⊗∆+⊗Λ2∆+ → Λ2∆+⊗Λ2∆+
Ξ⊗2

+−→ ∆−⊗∆− → Λ2∆−
Ξ−−→ ∆+.

If J is non-degenerate then Ψ+ is an isomorphism and we uniquely fix volume
form Ω+ on ∆∗+ by the requirement det Ψ+(·,Ω+) = 1. Similarly we get a canon-
ical volume form Ω− on ∆∗−. This reduces the symbol ḡ1 = gl3 ⊕ gl3 of the Lie
equation Lie(J) to sl3 ⊕ sl3.

Moreover, a combination of the volume forms and Ξ± gives the canonical identi-
fication ∆+ = ∆∗−. This further reduces ḡ1 to its diagonal subalgebra sl3, and by
the identification above we conclude the form of the isotropy representation. �

Corollary 2. If a non-degenerate para-complex manifold (M,J) is connected
then dim sym(M,J) ≤ 14. In the case of equality the isotropy algebra h = sl3
and the isotropy representation is m = V ⊕V ∗, where V is the standard sl3-irrep.
In general, h ⊂ sl3 and the isotropy representation is the restriction of the above.

Exploiting Jordan normal forms of the isomorphism Ψ̄+ = Ψ+(·,Ω+) : ∆+ → ∆+
with det Ψ̄+ = 1 (Ψ̄+ uniquely determines the analogous map Ψ̄− : ∆− → ∆−)
we get (real) normal forms of the Nijenhuis tensors NJ = (Ξ+,Ξ−):s 0 0

0 ts−1 0
0 0 t−1

 ,

s
−2 0 0
0 s cos t s sin t
0 −s sin t s cos t

 ,

s
−2 0 0
0 s 1
0 0 s

 ,

1 1 0
0 1 1
0 0 1

 .

We see that the number of essential parameters (moduli) is 2, in exact correspon-
dence with the normal forms of the non-degenerate Nijenhuis tensors of almost
complex structures in 6D from [12]. Thus g1 is either sl3 or gl2, a 4-dimensional
solvable Lie algebra or a 2-dimensional Lie algebra. The only fact that we need
though is the inclusion h ⊂ sl3 from Corollary 2.
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3. Lie algebra Extensions of h-Modules

3.1. The h-module structure of g. In the event that g does not split into a
direct sum of h and m, we choose an arbitrary complement of h which we will
still denote by m, even though it is not a submodule. We have

[h,m] = ϕ(h)m+ hm ∈ h⊕m

for some ϕ : h → m∗ ⊗ h. Here hm denotes the action of h on the module
m = g/h. Let us change the complement m by some operator A : m→ h, so that
the new complement is mnew = {(Am,m) |m ∈ m}. Then

[h,Am+m] = (ϕ(h)m+ [h,Am]− Ahm) + (Ahm+ hm) ∈ h⊕m

and the first three terms describe ϕnew. Denoting by dh the Lie algebra differential
in the complex Λ•h∗ ⊗m∗ ⊗ h of Hom(m, h)-valued forms on h, this equals

ϕnew = ϕ+ dhA.

Moreover, from the Jacobi identity between elements m,h1, h2 we get dhϕ = 0,
so ϕ is a cocycle. This gives the following statement (it can also be seen as
a result of the isomorphism Ext1

h(m, h) = H1(h,Hom(m, h)) and the extension
obstruction for modules [7]).

Lemma 1. The equivalence classes of h-modules g with g/h ' m are given by
the Lie algebra cohomology H1(h,Hom(m, h)). In particular, if this cohomology
vanishes, then g = h⊕m is a direct sum.

3.2. Lie algebra structures on the h-module g. Let h be a Lie algebra and
g be an h-module such that h ⊂ g as a submodule. By a Lie algebra extension
of h on g, we mean a bracket operation

[, ] : Λ2g→ g

which satisfies the usual Lie algebra axioms and the restriction criteria that
[, ] : Λ2h→ h

[, ] : h ∧ g→ g

are respectively the Lie bracket of h and the module action of h on g. Specialize
to the case described in the previous subsection, g/h = m. We introduce two
operations on the cohomology representative ϕ.

Let δ : h∗ ⊗m∗ ⊗ h→ h∗ ⊗ Λ2m∗ ⊗m be given by
δϕ(h)(u1, u2) = ϕ(h, u1) · u2 − ϕ(h, u2) · u1.

Given θm ∈ Λ2m∗ ⊗m with δϕ = dθm, define the operator
Q : h∗ ⊗m∗ ⊗ h→ h∗ ⊗ Λ2m∗ ⊗ h
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by
Qϕ(h)(u1, u2) = ϕ(ϕ(h, u1), u2)− ϕ(ϕ(h, u2), u1)− ϕ(h, θm(u1, u2)).

Let us also define the linear operators q : m∗ ⊗ h→ h∗ ⊗ Λ2m∗ ⊗ h, σ 7→ qσ, and
p : (Λ2m∗ ⊗m)h → h∗ ⊗ Λ2m∗ ⊗ h, ν 7→ pν , by the formulae

qσ(h)(u1, u2) = dσ(ϕ(h, u1), u2)− dσ(ϕ(h, u2), u1) + ϕ(dσ(h, u1), u2)
− ϕ(dσ(h, u2), u1) + dσ(dσ(h, u1), u2)− dσ(dσ(h, u2), u1),
− ϕ(h, δσ(u1, u2))− dσ(h, θm(u1, u2))− ϕ(h, δσ(u1, u2));

pν(h)(u1, u2) =ϕ(h, ν(u1, u2)),

and also denote Πϕ = Im(pν) modB1(h,Λ2m∗⊗ h) ⊂ H1(h,Λ2m∗⊗ h). Then we
have the following result for the proof of which we refer to [17].

Theorem 5. The Jacobi identity Jac(v1, v2, v3) = 0 with 1 argument from h and
the other from m constrains the cohomology [ϕ] ∈ H1(h,m∗ ⊗ h) so:
(1) [δϕ] = 0 ∈ H1(h,Λ2m∗ ⊗m), whence δϕ = dθm;
(2) [Qϕ] ≡ 0 ∈ H1(h,Λ2m∗⊗h) mod Πϕ, so Qϕ = dθh for some choices of ϕ, θm.

Note that if h is semi-simple then H1(h,V) = 0 for any h-module V, so choosing
ϕ = 0, the solutions to the above constraints are equivariant θm, θh.

4. Maximally symmetric model

Let h = sl3 and m = V ⊕ V ∗ be as in Corollary 2. Since h is semi-simple, all
its modules are completely reducible, so we have g = h⊕m as an h-module. We
will classify the Lie algebra extensions of h on g by applying Theorem 5, and this
classification forms the first step of proving Theorem 1.

4.1. Reconstruction of the Lie algebra. The h-invariant decomposition
Λ2m = R⊕ V ⊕ V ∗ ⊕ h

gives the space of equivariant maps Λ2m→ g. It is identified with the space of in-
variant brackets B(h, g) and decomposes into horizontal and vertical parts

B(h, g) = (Λ2m∗ ⊗m)h ⊕ (Λ2m∗ ⊗ h)h,
The dimension of the spaces of horizontal and vertical brackets are 2 and 1,
respectively. The horizontal bracket is given by two maps Λ2V ∗ → V and Λ2V →
V ∗, that are contractions with h-invariant volume forms ω∗ on V ∗ and ω on V ,
and V ∗ ⊗ V → 0. The vertical bracket is given by Λ2V → 0, Λ2V ∗ → 0, and
V ∗ ⊗ V 3 θ ⊗ v 7→ Tr0(θ ⊗ v) := θ ⊗ v − 1

3θ(v)1V ∈ sl(V ).
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Consider now the Jacobi identities on m. Let v1, v2, v3 ∈ V and θ1, θ2, θ3 ∈ V ∗
be a basis and its dual co-basis; let ω∗ = α1 θ1 ∧ θ2 ∧ θ3 and ω = α2 v1 ∧ v2 ∧ v3.
We rescale the vertical bracket by the parameter β and then compute

Jac(v1, v2, v3) = [ω∗(v1, v2), v3] + [ω∗(v3, v1), v2] + [ω∗(v2, v3), v1]
= α1

∑
[θi, vi] = α1β Tr0(1V ) = 0,

and similarly get Jac(θ1, θ2, θ3) = 0. Next we compute
Jac(v1, v2, θ3) = [ω∗(v1, v2), θ3] + [[θ3, v1], v2] + [[v2, θ3], v1]

= α1[θ3, θ3] + β(θ3(v2) v1 − θ3(v1) v2) = 0,

and similarly get Jac(vi, vj, θk) = 0, Jac(vi, θj, θk) = 0 whenever the indices i, j, k
are distinct. Finally the identity

Jac(v1, v2, θ1) = [ω∗(v1, v2), θ1] + [[θ1, v1], v2] + [[v2, θ1], v1]
= α1[θ3, θ1] + β(θ1(v2) v1 − 1

3θ1(v1)v2 − θ1(v1) v2) = α1α2v2 − 4
3βv2 = 0

yields the equation β = 3
4α1α2. The same equation arises from all the identities

Jac(vi, vj, θk) = 0, Jac(θi, θj, vk) = 0 where k = i ∨ j. These are all the Jacobi
identities, yielding three families of solutions.

The first two are β = α1 = 0 and β = α2 = 0. In these two cases, m is realized
as a two-step nilpotent ideal in g. The image of the Nijenhuis tensor is contained
in the commutator subalgebra of m, whence NJ is degenerate.

The last solution is β 6= 0 can be normalized α1 = α2 = 2, β = 3. Then it is easy
to see that g is isomorphic to g∗2, as was claimed.

4.2. Global homogeneity. Let us demonstrate that a non-degenerate para-
complex manifold (M,J) with the symmetry g∗2 has no singular orbits.

Suggesting the opposite, let G be (even local) symmetry group with Lie algebra
g∗2 (in the next subsection we show G = G∗2). The singular orbit O = G·o = G/H
has the isotropy algebra h = Lie(H) ⊂ sl3 by Theorem 4 and Corollary 2. Since
dimO < 6, we get dim h > 14− 6 = 8 = dim sl3, which is impossible.

Thus M , whenever connected, is the unique orbit of the Lie group G action, and
so is globally homogeneous.

4.3. Uniqueness of the maximally symmetric model. Let dim Aut(M,J) =
14. Then M is a globally homogeneous space. One such choice is given by
M0 = G∗2/SL3. Since this has homotopy type of 3-sphere, it is simply-connected,
π1(M0) = 0, and moreover π2(M0) = 0.
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The group G∗2 does not have a center, and its double cover G̃∗2 is simply-connected
[11]. We claim that preimage of SL3 in this double-cover is the universal cover
S̃L3 (recall that π1(SL3) = Z2). Indeed, from the exact homotopy sequence of
the fibration giving M0

· · · → π2(M0)→ π1(SL3)→ π1(G∗2)→ π1(M0)→ · · ·

we conclude that a generator of the fundamental group of SL3 is also a generator
for that of G∗2, and this implies the claim.

Thus G̃∗2/S̃L3 = M0 and we proved this is the only maximally symmetric model
with the automorphism group of dimension 14.

5. Submaximally symmetric model

In this section we obtain the homogeneous models from Theorem 2.

5.1. Subalgebras of sl3. By Mostow’s theorem a proper maximal subalgebra
of a semi-simple Lie algebra is either parabolic or semi-simple or the stabilizer
of a pseudo-torus [19].

The pseudo-tori of sl3 are the Lie algebras t of circle-subgroups in SO(3), which
are all equivalent under conjugation, and have stabilizer t ⊕ R of dimension 2.
The semi-simple subalgebras of sl3 are sl2 and so3, both of dimension 3.

There are, up to conjugation, two maximal parabolic subalgebras p1 and p2, both
of dimension 6. These are equivalent under a outer automorphism of sl3, and
without loss of generality we restrict to p1, which is the stabilizer of a line in R3.
Hence we will consider the subalgebras of p1.

As an abstract Lie algebra, p1 = gl2nR2. Up to conjugation, it has two maximal
5-dimensional subalgebras. The first is p12 = (Rz⊕b2)nR2, the Borel subalgebra
of sl3, where b2 is a Borel subalgebra of sl2 ⊂ gl2 and z is the grading element of
p1, it generates the center of gl2. The second subalgebra is sl2 nR2 ⊂ p1.

There are two conjugacy classes of maximal 4-dimensional subalgebras of p1.
These are the classes of gl2, and of (Rz ⊕ Rt) n R2, where t ∈ sl2 has negative
Killing norm. The other 4-dimensional subalgebras of p1 (up to conjugation)
are then codimension 1 subalgebras of p12 or sl2 n R2. In fact, all of these will
be subalgebras of p12, because they must be solvable and contain no element of
negative Killing norm, and such subalgebras of sl3 are conjugate to subalgebras
of the Borel subalgebra.
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A 4-dimensional subalgebra of the 5-dimensional p12 must have at least a 2-
dimensional intersection with the 3-dimensional subalgebra Rz ⊕ b2. This inter-
section is a subalgebra. The first possibility is that the intersection is the whole
Rz ⊕ b2. This preserves a unique 1-dimensional subalgebra R of the ideal R2,
and hence the 4D subalgebra must be (Rz ⊕ b2) nR in this case.

If the intersection is 2-dimensional, then it can be either Abelian or non-Abelian.
If Abelian, it is of the form (Rz ⊕ Rt) for t ∈ b2, and there are two conju-
gacy classes, determined by whether t has positive or null Killing norm. The
4-dimensional subalgebras which realize this are of the form (Rz⊕Rt)nR2.

There is a 1-dimensional family of 2-dimensional solvable subalgebras s2 ⊂ Rz⊕
b2 not conjugate to each other: s2 = (R(h + l z)) n (Re), where l ∈ R is the
essential parameter, and e, h ∈ b2 with [h, e] = e. These realize the 4-dimensional
subalgebras s2 nR2 that also are pairwise non-conjugate.

We summarize the information about subalgebras h of sl3, considered up to outer
automorphism, with dim h ≥ 4 in the following table.

dim h h Notes
8 sl3 non-proper
6 p1, p2 has a non-trivial Levi factor
5 p12
5 sl2 nR2 has a non-trivial Levi factor
4 gl2 has a non-trivial Levi factor
4 (Rz ⊕ Rt) nR2 ||t|| < 0
4 (Rz ⊕ b2) nR
4 (Rz ⊕ Rt) nR2 ||t|| = 0
4 (Rz ⊕ Rt) nR2 ||t|| > 0
4 s2 nR2 depends on a parameter l

5.2. Cohomology of subalgebras of sl3. In this section we compute the equiv-
alence classes of h-modules g with g/h = m, where m is the module correspond-
ing to the restriction of the representation V ⊕ V ∗ of sl3 from Corollary 2 to h.
This means classifying representations φ such that the following diagram of non-
trivial Lie algebra homomorphisms commute and φ induces the adjoint action
on h.

h −−−→ sl3yφ y
Stab(h, g) −−−→ End(m)
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Here Stab(h, g) is the space of maps g→ g for which the subspace h is invariant
(upper block triangular in the vector space decomposition g = h ⊕ m). In the
bottom row, g and h should be considered as vector spaces.

The representation matrices of φ are then given by choosing cocycle representa-
tives of cohomology as described in Lemma 1. These representatives are elements
ϕ ∈ h∗⊗m⊗h. The contraction ϕ(x) with x ∈ h then gives the strictly upper di-
agonal block of the representation matrix of x corresponding to φ. The diagonal
blocks are given by the action on h and m, and does not depend on ϕ.

When the cohomology is 1-dimensional, we can rescale the m-component to
achieve [ϕ] = 0 or [ϕ] = 1. Computation of the cohomology was performed
in the DifferentialGeometry package of Maple.
Proposition 2. For the subalgebras h = p1, h = p12, h = (Rz ⊕ b2) n R,
h = gl2 and all subalgebras of the form h = (Rz ⊕ Rt) n R2 of sl3, we have
H1(h,Hom(m, h)) = 0.
Proposition 3. For the subalgebra sl2 nR2 we have dimH1(h,Hom(m, h)) = 1.

This gives the cohomology for all cases with dim h ≥ 4, except for those of the
form h = s2 nR2. These, defined in §5.1, depend on a parameter l ∈ R.
Proposition 4. Let h = s2 nR2 ⊂ sl3 be as above. Then H1(h,Hom(m, h)) = 0,
unless l ∈ {9

2 , 3,
3
2 ,

9
10 ,

3
4 , 0,

−3
10 ,

−3
4 ,
−3
2 }. We have dimH1(h,Hom(m, h)) = 1 for

all exceptional l save for l = 3
2 , in which case dimH1(h,Hom(m, h)) = 6.

Now we apply Theorem 5 to conclude that the majority of these non-trivial coho-
mologies do not correspond to modules admitting Lie algebra extensions;
Proposition 5. Let h = s2 n R2 be as above and let [ϕ] ∈ H1(h,Hom(m, h)). If
l 6= 3

2 , then [δϕ] = 0 if and only if [ϕ] = 0.

5.3. Inducing the Nijenhuis tensor. In this section, we solve the equations
from Theorem 5 to parametrize possible Lie algebra structures on g. In the case
h-module g splits this reduces to computing the space B(h, g) of h-equivariant
brackets (see Sections 3-4). Then we solve the remaining equations from the
Jacobi identity and check whether the invariant almost product structures on m
are non-degenerate.

Note that whenever the decomposition g = h⊕m is h-invariant, the space of h-
equivariant brackets is at least 2-dimensional, because it contains the space of sl3-
invariant horizontal brackets. These were already considered in Section 4, where
we showed that without a vertical bracket, the Lie subalgebra m is nilpotent and
the Nijenhuis tensor degenerates.
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We begin with the subalgebras of sl3 from Proposition 2, in which case the
module g = h⊕m splits.

Proposition 6. The subalgebras h = p1, h = p12, h = (Rz ⊕ b2) n R and all
subalgebras of the form h = (Rz ⊕Rt) nR2 satisfy B(h, g) = (Λ2m∗ ⊗m)sl3, i.e.
dimB(h, g) = 2 and there are no additional equivariant brackets.

The exception is h = gl2.

Proposition 7. For the subalgebra h = gl2 we have dimB(h, g) = 7, and there
are 4 horizontal and 3 vertical equivariant brackets. There is a family of solutions
to the Jacobi identity for which the invariant almost product structure is non-
degenerate. For all such solutions g ' sp(4,R).

Proof. The sl3-invariant decomposition m = V ⊕ V ∗ can be further decomposed
with respect to gl2. Let’s write W for the standard sl2-module, SkW for the
irreducible sl2-module of dimension k + 1, and SkW (λ) for the irreducible k +
1 dimensional gl2-module with λ being the weight of the center (3 times the
eigenvalue of the grading element z). We decompose the gl2-modules so

gl2 = S2W (0)⊕ R(0),
V = W (1)⊕ R(−2), V ∗ = W (−1)⊕ R(2).

Now Λ2m = Λ2V ⊕ V ⊗ V ∗ ⊕ Λ2V ∗ and because Λ2W = R we get

Λ2V = R(2)⊕W (−1)
V ⊗ V ∗ = S2W (0)⊕ R(0)⊕W (3)⊕W (−3)⊕ R(0)
Λ2V ∗ = R(−2)⊕W (1)

Except for W (3) and W (−3), all these submodules can be found in g = gl2⊕m,
and hence contribute linearly independent equivariant maps Λ2m → g. These
span the 7-dimensional space of equivariant brackets. We note that the vertical
brackets all arise from the term V ⊗V ∗, while the horizontal brackets come from
Λ2V and Λ2V ∗.

We parametrize the brackets by defining a basis of g. Let s = 3z be 3-times
the grading element of gl2, and let h, e, f be a standard basis of sl2, i.e. [h, e] =
2e, [h, f ] = −2f, [e, f ] = h. Let v1, v2 be a standard basis of W (1), i.e. eigen-
vectors of h with eigenvalues 1 and −1, respectively, and of s with eigenvalue
1. Let r be a basis of R(−2). Define θ1, θ2, ς to be the dual basis of v1, v2, r.
Then s, h, e, f, v1, v2, r, θ1, θ2, ς is a basis of g and the equivariant brackets on m
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are given by the formula
[v1, v2] = a1ς, [v1, r] = −a3θ2, [v2, r] = a3θ1; [r, ς] = b1s,

[v1, θ1] = −b2h+ b3s, [v1, θ2] = −2b2e, [v2, θ1] = −2b2f, [v2, θ2] = b2h+ b3s;
[θ1, θ2] = a2r, [θ1, ς] = −a4v2, [θ2, ς] = a4v1

with parameters a1, a2, a3, a4 ∈ R for the horizontal brackets and b1, b2, b3 ∈ R
for the vertical ones (as usual we omit the trivial brackets).

Computing the Jacobi identities of these brackets yields three families of solu-
tions. The first two correspond to nilpotent Lie algebra structures on m, and are
given by either all parameters zero except a1, a3, or all parameters zero except
a2, a4. In both cases, one of the distributions ∆+ = V or ∆− = V ∗ has vanishing
curvature, so the Nijenhuis tensor is degenerate.

The last solution is given by a1 = a3a2
a4
, b1 = a3a4, b2 = 1

2a3a2, b3 = −1
2a3a2. If

ai = 0 for some i = 1, 2, 3, 4, the Nijenhuis tensor degenerates. Thus assume
ai 6= 0, 1 ≤ i ≤ 4. Then the Lie algebra g is semi-simple, and hence simple
due to dimension. The signature of its Killing form is (6, 4) independently of the
parameters, whence g ' sp(4,R). In fact, all these parameters are equivalent
by an inner automorphism. The distributions V and V ∗ have non-degenerate
curvatures, resulting in a non-degenerate para-complex structure J . �

Now we consider the subalgebra h = sl2nR2 from Proposition 3. The cohomology
is 1-dimensional, so we distinguish the two cases [ϕ] = 0 and [ϕ] 6= 0.

Proposition 8. Let h = sl2 nR2 and [ϕ] = 0. Then dimB(h, g) = 9, and there
are 7 horizontal and 2 vertical equivariant brackets. These yield the following
possible structure equations for g (without Jacobi identity yet):
[v1, v2] = a1w3, [v1, v3] = −a1w2, [v2, v3] = a4v1 + a1w1, [v2, w2] = a6v1, [w2, w3] = a2v1,

[v1, w1] = (a7 + a6)v1, [v2, w1] = b1x2 + a3w3 + a7v2, [v3, w1] = −b1x1 − a3w2 + a7v3,

[v3, w3] = a6v1, [w1, w2] = b2x1 + a5w2 + a2v3, [w1, w3] = b2x2 + a5w3 − a2v2,

[x1, v2] = v1, [x1, w1] = −w2, [x2, v3] = v1, [x2, w1] = −w3, [e, v3] = v2, [e, w2] = −w3,

[f, v2] = v3, [f, w3] = −w2, [h, v2] = v2, [h, v3] = −v3, [h,w2] = −w2, [h,w3] = w3,

[x1, e] = x2, [x1, h] = x1, [x2, f ] = x1, [x2, h] = −x2, [e, f ] = h, [e, h] = −2e, [f, h] = 2f.

Here e, f, h, x1, x2 form a basis of h and v1, v2, v3, w1, w2, w3 a basis of m. If the
Jacobi identity is satisfied for g, then the Nijenhuis tensor is degenerate.

Proof. First, note that the brackets on the subspace R = R2 ⊕ m must be
equivariant with respect to sl2, since R is invariant. This decomposes as R =
W0 ⊕W+ ⊕ R+ ⊕W− ⊕ R−, with V = W+ ⊕ R+ and V ∗ = W− ⊕ R−, as an
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sl2-module (the indices indicate where the parts belong to, but W0 = W+ = W−
and R+ = R− as sl2-modules). We have

Λ2V = R⊕W
V ⊗ V ∗ = S2W ⊕ R⊕W ⊕W ⊕ R
Λ2V ∗ = R⊕W

with respect to sl2, which gives a space of sl2-equivariant brackets of dimension
21. One may then compute the subspace which is also equivariant with respect
to R2, which has dimension 9 and consists of the brackets given above.

Next, note that if a1 = 0, then V is involutive, and if a2 = 0, then V ∗ is involutive.
However, we have the Jacobi identity

Jac(v2, w2, w3) = a1a2w3

Hence a1a2 = 0 and so at least one distribution is involutive, and the Nijenhuis
tensor of the associated almost product structure is degenerate. �

Proposition 9. Let h = sl2 n R2 ⊂ sl3 and [ϕ] 6= 0. Then g = sl3 n V , where
V is the standard sl(3)-module, and the inclusion i : h → g is equivalent to the
composition of k : sl3 → sl3nV and j : h→ sl3, where j, k are the obvious subal-
gebra inclusions. The Nijenhuis tensor of the almost product structure associated
with this solution is degenerate.

Proof. We may assume that the complement m to h in the h-module g is sl2-
invariant, because modules of semi-simple Lie algebras are completely reducible,
and R2 is an sl2-submodule. Hence the cochain representative ϕ of [ϕ] vanishes
on sl2. Let e, f, h, x1, x2 be a basis of sl2 n R2, v1, v2, v3, w1, w2, w3 a basis of
m = V ⊕ V ∗ and θ1, θ2, θ3, σ1, σ2, σ3 the dual basis of m∗ = V ∗ ⊕ V . In these
bases the representation ρ ∈ h∗ ⊗m∗ ⊗m has the form:

ρ(e) = θ2 ⊗ v1 − σ1 ⊗ w2, ρ(f) = θ1 ⊗ v2 − σ2 ⊗ w1,

ρ(h) = θ1 ⊗ v1 − θ2 ⊗ v2 − σ1 ⊗ w1 + σ2 ⊗ w2,

ρ(x1) = θ3 ⊗ v1 − σ1 ⊗ w3, ρ(x2) = θ3 ⊗ v2 − σ2 ⊗ w3,

and the cocycle ϕ ∈ h∗ ⊗m∗ ⊗ h is (note ϕ(e) = ϕ(f) = ϕ(h) = 0):
ϕ(x1) = 2

3 σ2 ⊗ e+ 1
3 σ1 ⊗ h+ σ3 ⊗ x1,

ϕ(x2) = 2
3 σ1 ⊗ f − 1

3 σ2 ⊗ h+ σ3 ⊗ x2.

This gives the full action of h on the module g.

Since no parameters appear in ϕ, both the equations δϕ = dθm and equation (2)
from Theorem 5 are linear inhomogeneous. Solving these gives the following set
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of brackets on m, parametrized by a1, . . . , a7 ∈ R:
[v1, v3] = a1x1 + a2v1, [v1, w1] = −2

3v3 − a7w3 + a7h, [v1, w2] = 2a7e,

[v1, w3] = 1
3v1 + 2a7x1, [v2, v3] = a1x2 + a2v2, [v2, w1] = 2a7f,

[v2, w2] = −2
3v3 − a7w3 − a7h, [v2, w3] = 1

3v2 + 2a7x2,

[v3, w1] = −a3x2 − a4v2 + 3a7w1, [v3, w2] = a3x1 + a4v1 + 3a7w2,

[v3, w3] = −2
3v3 + 2a7w3, [w1, w2] = a5v3 + a6w3,

[w1, w3] = −a5v2 − a6x2 − w1, [w2, w3] = a5v1 + a6x1 − w2.

Note that it is possible to see that the curvature of the space 〈v1, v2, v3〉 is degen-
erate already here, before solving any non-linear equations, because [v1, v2] = 0.
The Jacobi identities between three elements of m yield a polynomial ideal, for
which a Gröbner basis is given by
− 4a7 + 3a2 = 0, a2

7 + 3a1 = 0, 3a5a7 + 2a4 + a6 = 0, a1a4 + 2a1a6 + a3a7 = 0,
a4a7 + 2a6a7 − 3a3 = 0, 6a1a5 − a4a7 − a3 = 0, 9a3a5 + 2a2

4 + 5a4a6 + 2a2
6 = 0.

There is a unique family of solutions, given by
a1 = 3a2

7, a2 = 4a7, a3 = − 3
10a6a

2
7 + 3

4a5a7, a4 = −3
5a7a6 − 1

2a5.

Once these are substituted into the brackets, g is a Lie algebra. A Levi decom-
position of g is then given by

gss = sl3 = 〈e, f, h, x1, x2, a5v1 − 4
3w2, a5v2 + 4

3w1, w3〉,
grad = V = 〈a7x1 − 1

3v1, a7x2 − 1
3v2, v3 − 3a7w3〉,

Now, h is embedded in gss, and all embeddings of h into sl3 are equivalent up to
an outer automorphism. Moreover one may verify that the subspace 〈v1, v2, v3〉
is involutive modulo h. Hence we obtain the result. �

Next, consider the subalgebras s2nR2 with a parameter l as in Proposition 4.

Proposition 10. Suppose h = s2 n R2 and let l 6= 3
2 . Then we may assume g

is decomposable, and we have B(h, g) = (Λ2m∗ ⊗ m)sl3, i.e. h has no additional
equivariant brackets, unless l ∈ {0, −3

10 ,
−1
2 ,
−3
4 ,
−3
2 }. If g = h⊕m is a Lie algebra,

then the Nijenhuis tensor of its associated almost product structure is degenerate.

Proof. Let t, e, x1, x2 be a basis of s2 n R2, v1, v2, v3, w1, w2, w3 a basis of m =
V ⊕V ∗ and θ1, θ2, θ3, σ1, σ2, σ3 the dual basis of m∗ = V ∗⊕V . In these bases the
representation ρ ∈ h∗ ⊗m∗ ⊗m has the form:

ρ(t) = ( l3 −
1
2)κ1 + ( l3 + 1

2)κ2 − 2l
3 κ3, ρ(e) = θ1 ⊗ v2 − σ2 ⊗ w1,

ρ(x1) = θ3 ⊗ v1 − σ1 ⊗ w3, ρ(x2) = θ3 ⊗ v2 − σ2 ⊗ w3,
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where κi = θi ⊗ vi − σi ⊗ wi.

By Proposition 5, g = h ⊕ m splits as an h-module. We induce the action on
the space Λ2m∗ ⊗ m. The action of the subalgebra h{1} = 〈e, x1, x2〉 does not
depend on l, and invariance with respect to this yields a subspace (Λ2m∗⊗m)h{1}

of dimension 16. Applying t to a basis of this subspace gives a system of 32
equations, where each equation can be factored into a product of linear equations.
Those factors that depend on l are 10l+ 3, 2l+ 1, 4l+ 3, 2l+ 3 or l. If l does not
solve any of these, then (Λ2m∗ ⊗ m)h = (Λ2m∗ ⊗ m)sl3 , but if l does solve some
factor, then (Λ2m∗ ⊗m)h properly contains (Λ2m∗ ⊗m)sl3 .

The space (Λ2m∗ ⊗ h)h is treated similarly, and leads to the same values of l.

Next we will show that the Nijenhuis tensor is degenerate. First consider the case
l = 0. In this case, s2 = b2 is the Borel subalgebra. The space of equivariant
brackets has dimension 9, of which 2 are vertical and 7 are horizontal. The most
general equivariant brackets are then:

[v1, v2] = a1w3, [v1, v3] = a8x1 + a3v1 − a1w2, [v2, v3] = a8x2 + a3v2 + a1w1,

[v1, w1] = (a7 − a9)w3, [v2, w2] = (a7 − a9)w3, [v3, w3] = a7w3,

[v3, w1] = −a4x2 − a5v2 + a9w1, [v3, w2] = a4x1 + a5v1 + a9w2,

[w1, w2] = a6w3 + a2v3, [w1, w3] = −a2v2, [w2, w3] = a2v1.

For l = −3
10 the space of equivariant brackets has dimension 4, of which 1 is

vertical and 3 are horizontal, and the most general equivariant brackets are:

[v1, v2] = a1w3, [v1, v3] = −a1w2, [v2, v3] = a1w1, [v3, w2] = a3w3,

[w1, w2] = a4x2 + a2v3, [w1, w3] = −a2v2, [w2, w3] = a2v1.

For l = −3
4 the space of equivariant brackets has dimension 4, of which 1 is

vertical and 3 are horizontal, and the most general equivariant brackets are:

[v1, v2] = a1w3, [v1, v3] = a3x2 − a1w2, [v2, v3] = a1w1, [v3, w2] = a4v2,

[w1, w2] = a2v3, [w1, w3] = −a2v2, [w2, w3] = a2v1.

For l = −3
2 the space of equivariant brackets has dimension 9, of which 2 are

vertical and 7 are horizontal, and the most general equivariant brackets are:

[v1, v2] = a1w3, [v1, v3] = a6v2 − a1w2, [v1, w1] = a7v2, [v1, w2] = −a9x2 − a3w3 + a8v1,

[v2, v3] = a1w1, [v2, w2] = (a7 + a8)v2, [v3, w2] = a9e+ a3w1 + a8v3, [v3, w3] = a7v2,

[w1, w2] = −a4e− a5w1 + a2v3, [w1, w3] = −a2v2, [w2, w3] = a4x2 + a5w3 + a2v1.
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For l = −1
2 the space of equivariant brackets has dimension 7, of which 3 are

vertical and 4 are horizontal, and the most general equivariant brackets are:

[v1, v2] = a1w3, [v1, v3] = a4w3 − a1w2, [v2, v3] = a1w1, [v1, w1] = (a5 − a7)x2,

[v1, w2] = a7x1, [v2, w2] = a5x2, [v3, w1] = a7e, [v3, w2] = a6x2 + a7t,

[v3, w3] = a5x2, [w1, w2] = a3v2 + a2v3, [w1, w3] = −a2v2, [w2, w3] = a2v1.

For all these cases, we get that the curvature of 〈v1, v2, v3〉 is degenerate if a1 = 0,
and the curvature of 〈w1, w2, w3〉 is degenerate if a2 = 0. However, we have

Jac(v1, v2, w1) = a1a2w3,

which yields the equation a1a2 = 0. Therefore at least one distribution has
degenerate curvature, and the Nijenhuis tensor degenerates. �

Finally we treat the last exceptional parameter l.

Proposition 11. Suppose h = s2nR2, l = 3
2 . If g is a Lie algebra with isotropy h,

then the Nijenhuis tensor of its associated almost product structure is degenerate.

Proof. Let t, e, x1, x2 be the usual basis of h, and v1, v2, v3, w1, w2, w3 a basis
of g as in the previous proof. By Proposition 4, dimH1(h,Hom(m, h)) = 6.
The following representation matrices of h on g realize a general element of this
cohomology in the basis t, e, x1, x2, v1, v2, v3, w1, w2, w3:

ρ(t) = diag(0, 1, 1, 2, 0, 1,−1, 0,−1, 1)

ρ(e) =



0 0 0 0 0 0 −3c4 0 11c1 0
−1 0 0 0 14c2 0 0 29c1 0 0
0 0 0 0 4c4 0 0 c3 0 0
0 0 1 0 0 5c4 0 0 0 17c1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,
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ρ(x1) =



0 0 0 0 0 0 11c2 0 3c5 0
0 0 0 0 c6 0 0 4c5 0 0
−1 0 0 0 −29c2 0 0 −14c1 0 0
0 −1 0 0 0 −17c2 0 0 0 5c5

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0


,

ρ(x2) =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3c2 0 c5 0
0 0 0 0 0 0 c4 0 −3c1 0
−2 0 0 0 2c2 0 0 −2c1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0


.

Due to the linear equation δϕ = dθm, we immediately get c3 = c4 = c5 = c6 = 0,
as only a 2D subspace of the cohomology satisfies [δϕ] = 0. Equation (2) from
Theorem 5 is then quadratic in c1 and c2, but a Gröbner basis computation
implies c1c2 = 0. Hence we may normalize to c1 = 0, c2 = 1 or c1 = 1, c2 = 0.

After this normalization, equation (2) from Theorem 5 is linear, and is easily
solved. In both cases the resulting brackets depend on one parameter α, and
satisfy the Jacobi identities on m without any further constraints.

In the case c1 = 0, c2 = 1, the brackets are the following:

[v1, v2] = αw3 − 51e− 28v2, [v1, v3] = −αw2 − 29v3, [v2, v3] = αw1, [v1, w1] = −20w1,

[v1, w2] = 11w2, [v1, w3] = 9w3, [v2, w2] = −17w1, [v3, w3] = −20w1,

[t, v2] = v2, [t, v3] = −v3, [t, w2] = −w2, [t, w3] = w3, [e, v1] = v2 + 14e, [e, w2] = −w1,

[x1, v1] = −29x1, [x1, v2] = −17x2, [x1, v3] = v1 + 11t, [x1, w1] = −w3, [x2, v1] = 2x2,

[x2, v3] = v2 + 3e, [x2, w2] = −w3, [t, e] = e, [t, x1] = x1, [t, x2] = 2x2, [e, x1] = x2.
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Note that 〈w1, w2, w3〉 is an Abelian subalgebra, hence it has vanishing curvature.
In the case c1 = 1, c2 = 0, the brackets are the following:
[v1, w1] = −20v1, [v2, w1] = 9v2, [v2, w2] = −20v1, [v3, w1] = 11v3, [v3, w3] = −17v1,

[w1, w2] = αv3 + 29w2, [w1, w3] = −αv2 + 51x1 + 28w3, [w2, w3] = αv1,

[t, v2] = v2, [t, v3] = −v3, [t, w2] = −w2, [t, w3] = w3, [e, v1] = v2, [e, w2] = −w1 + 11t,
[e, w1] = 29e, [e, w3] = 17x2, [x1, v3] = v1, [x1, w1] = −w3 − 14x1, [x2, v3] = v2,

[x2, w1] = −2x2, [x2, w2] = −w3 − 3x1, [t, e] = e, [t, x1] = x1, [t, x2] = 2x2, [e, x1] = x2.

In this case, 〈v1, v2, v3〉 is an Abelian subalgebra, and has vanishing curvature.
In both solutions, one of the distributions has vanishing curvature, and therefore
the associated Nijenhuis tensor is degenerate. �

5.4. The Submaximal model is globally transitive. In the previous sub-
section, we proved that the homogeneous space Sp(4,R)/(SL2×R) with unique
almost product structure is the only locally homogeneous non-degenerate para-
complex manifold (M6, J) with the symmetry algebra of dimension d ∈ [10, 14).
The isotropy algebra gl2 is embedded into sp(4,R) via the block-diagonal em-
bedding gl2 = sl2 ⊕ R = sp(2,R)⊕ so(1, 1) ⊂ sp(2,R)⊕ sp(2,R).

Our next goal now is to prove that no intransitive examples with symmetry
dimension 10 ≤ d < 14 exist, which means that the type sp(4,R)/gl2 gives
a submaximal model and that all submaximal structures are locally transitive.
Then we show that the submaximal model admits no singular orbits, which means
that the complete global submaximal models are homogeneous spaces.

When the symmetry group G is not locally transitive, the G-manifold M (or its
invariant open subset) is not (naturally, locally) homogeneous. Therefore the
full range of algebraic tools we used in the previous section is unavailable to us.
Instead, we can find a foliation by G-orbits in a neighbourhood of any regular
point x ∈ M . Each leaf is a local homogeneous space of G = Aut(J) in its
own right. We may therefore investigate the existence of lower dimension ho-
mogeneous spaces O whose isotropy algebra admits the existence of an invariant
non-degenerate Nijenhuis tensor on the tangent space m of a regular point of
M . This means that the full isotropy representation m must be one of those
discussed in the previous section.

Proposition 12. Let g = sym(J) be the symmetry algebra of a non-degenerate
para-complex structure J with dim g ≥ 10. Then g is locally transitive.

Proof. Let us exclude the case h = sl3 considered in Section 4. Suppose g is not
locally transitive. The tangent space ToO = o of the orbit through o ∈ M must
be an invariant subspace of m for the isotropy algebra h. The isotropy h is still
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represented effectively (now on o) as before, so the dimension of the symmetry
algebra g is dim g = dim o+dim h. This means the possible pairs (h, o) that have
combined dimension dim g ≥ 10 are the following:

• h = p1, dim o = 5 ∨ 4.
• h = p12, dim o = 5.
• h = sl2 nR2, dim o = 5.

The representation of h is via restriction of sl3-representation m = V ⊕V ∗ and it
is easy to see that in the first two cases m has no invariant subspace of dimension
4 or 5. In the last case there exists a unique 5-dimensional invariant subspace
o = U⊕∆−, where U ⊂ V = ∆+ is a plane, and we identify V (∗) ' ∆±. However
since ∆− ⊂ o, due to non-degenerate curvature of the distribution, at the regular
domain in M where the orbits foliate the space we get TM = [∆−,∆−] ⊂ o, a
contradiction. �

Proposition 13. Let g = sym(J) be the symmetry algebra of a non-degenerate
para-complex structure J , dim g ≥ 10. Then g has no singular orbits.

Proof. We can assume dim g∗ < 14 as the maximally symmetric case is already
resolved. Then the previous section and Proposition 12 imply that g = sp(4,R).

By Theorem 4, the isotropy representation (even at a singular point) is faithful,
and by Corollary 2 its image is a proper subalgebra h ⊂ sl3. Since dim g >
dim sl3, there are no invariant points, hence the isotropy algebra h is also a
proper subalgebra of sp(4,R). The proper subalgebras of g have dimension at
most 7, but sl3 has no such proper subalgebras.

Therefore 4 ≤ dimO ≤ 5 and dim h = 10− dimO ∈ [5, 6].

Consider the case dimO = 4, dim h = 6. The only subalgebras of sl3 of dimension
6 are p1 and p2, both of which are isomorphic to gl2 n R2. But sp(4,R) has no
subalgebra isomorphic to this, so this case is not realizable.

Now suppose dimO = 5. The subalgebras of sl3 of dimension 5 are p12 and sl2 n
R2. The latter cannot occur, because there is no embedding of sl2 into sp(4,R)
which normalizes a 2-dimensional abelian subalgebra (there are embeddings that
stabilize 2D submodules of the correct type, but these submodules generate
Heisenberg algebras). Thus we must have h = p12 ' R2 n heis(3). This can
be uniquely embedded, such that it is contained in p1 ⊂ sp(4,R), where p1 '
gl2 n heis(3), by mapping R2 to the diagonal subalgebra of gl2.

Let o = TxO ⊂ m be the invariant tangent space of the orbit. The decomposition
m = V ⊕ V ∗ is invariant. Let o+ = o ∩ V and o− = o ∩ V ∗. These are invariant
subspaces of dimension at least 2. Thus the isotropy representation o must
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admit either an invariant 2-plane with an invariant complement (3-plane), or two
distinct invariant 2-planes. The isotropy representation o = sp(4,R)/R2nheis(3)
admits one invariant 2-plane, but neither of the possible complements. This is
the final contradiction, and we are done. �

This concludes the proof of Theorem 2.

6. Topology and Geometry of the global models

In this section we discuss the maximal and submaximal symmetry models from
Theorems 1 and 2 in more detail, expanding on Remark 1.

6.1. Revising the models. Let us visualize the para-complex structure J via
the root diagram of the maximal and submaximal Lie algebras of symmetries.
Below are the root systems of g∗2 and sp(4,R) respectively.

The black (unmarked) arrows together with the Cartan subalgebra form the
root system of the subalgebra h. It is sl3 and gl2 respectively. The root vectors
corresponding to coloured (marked) roots span the representation space m (one
easily confirms that m is a module over h). The red vectors (marked with squares
at the endpoints) correspond to V and the blue ones (marked with circles at the
endpoints) correspond to V ∗ (up to interchange V ↔ V ∗).

Since the pairwise sums of the red vectors coincide with the blue ones and oth-
erwise around, we conclude that the brackets Λ2V → V ∗ and Λ2V ∗ → V are
isomorphisms. Thus the linear operator J : m→ m for which V and V ∗ are ±1
eigenspaces defines a non-degenerate para-complex structure.
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6.2. Topology description. For the maximal symmetry model let us explain a
diffeomorphism of G∗2/SL3 to S3,3 = S3×R3: G∗2 is represented as a subgroup of
SO(3, 4) acting on R3,4. The stabilizer of a point x with ‖x‖2 = ∑7

4 x
2
i−

∑3
1 x

2
i = 1

is SL3 (while that of a point x with ‖x‖2 = −1 is SU(1, 2) [11]). This unit sphere
x2

4 + x2
5 + x2

6 + x2
7 = x2

1 + x2
2 + x2

3 + 1 has the required topological type.

To approach the submaximally symmetric model, let us begin with the linear
group quotient Sp(4,R)/(SL2×R). By the results on the isotropy representation
from §5.4, the subgroup is embedded into Sp(4,R) as follows. Consider a splitting
R4 = R2 ⊕ R2 into a sum of two symplectic planes. Let SL2 = Sp(2,R) act on
the first summand and R = SO+(1, 1) ⊂ Sp(2,R) act on the second summand
(this explains why the action is not by GL2 but by SL2 × R).

The subgroup SL2×R is the reductive part (corresponding to the zero grading)
of the parabolic subgroup P1 ⊂ Sp(4,R) stabilizing a ray in R4. Clearly the
space of rays is S3 = Sp(4,R)/P1. The subgroup P1 determines |2|-grading on
the group, in particular the nilradical of P1 is the Heisenberg 3-group. This
implies that P1/(SL2 × R) is topologically a vector 3-space V 3, but it has an
invariant splitting V 3 = V 1 ⊕ V 2. Thus the exact sequence

e→ P1/(SL2 × R) −→ Sp(4,R)/(SL2 × R) −→ Sp(4,R)/P1 → e

implies that Sp(4,R)/(SL2 × R) = S3×̃V 3 is a non-trivial bundle. Due to
what was said above, this bundle splits into 1-dimensional trivial (V 1) and 2-
dimensional non-trivial (V 2) subbundles.

Let us pass to a description on all complete submaximal models, which are
those homogeneous spaces with the same isotropy data as for (sp(4,R), gl2) de-
scribed above. First notice that the subalgebra gl2 = sl2 ⊕ R ⊂ sp(4,R) is
self-normalizing. The normalizer of the subgroup H = SL2 × R ⊂ Sp(4,R)
is obtained by adding the element diag(1, 1,−1,−1) that coincides with −1 =
diag(−1,−1,−1,−1) modulo the subgroup (in other words, enlarging by it is
equivalent to passing fromH = SL2×R+ to SL2×R×). Thus the only centralizer
element not belonging to the subgroup is −1 (modulo the subgroup center that
is Z2×R). Consequently, the only quotient of Sp(4,R) = Spin(2, 3) carrying the
required geometry is Spin(2, 3)/Z2 = SO+(2, 3). The subgroup projects isomor-
phically (notice that if we take a larger subgroup H ′ = SL2×R×, the projection
has kernel Z2, and H ′ projects to the same SL2 ×R×/(Z2)diag = H); in fact the
embedding H ↪→ SO+(2, 3) is (A, λ) 7→ diag(λA, λ−1A, 1), where the diagonal
square blocks have sizes 2, 2, 1 and the signature of each 2×2 block is (1, 1). Con-
sequently we get the quotient SO+(2, 3)/H = Sp(4,R)/H ′ = RP 3×̃V 3.

The fundamental group of the linear symplectic group is π1(Sp(4,R)) = Z with
the generator being given through our subgroup embedding SO(2) ⊂ SL2 ⊂
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Sp(4,R). Thus when lifting the group the subgroup also lifts, and we get the quo-
tient of non-algebraic simply-connected groups equal to our above quotient

S̃p(4,R)/(S̃L2 × R) = Sp(4,R)/(SL2 × R).
Now S̃p(4,R) has center Z = Z ⊕ Z2 (generated by π1(SO(2)) and the ele-
ment −1 of Sp(4,R)), and since the normalizer of S̃L2 × R is generated by this
subgroup and −1, the only admissible quotients are by the subgroups of Z.
However any subgroup Γ of the first factor gives the same homogeneous space
(Γ \ S̃p(4,R))/(Γ \ S̃L2 × R) = Sp(4,R)/(SL2 × R). Thus the only non-trivial
quotient arises from the second factor (Z2), so the only two submaximal models
are S3×̃V 3 and RP 3×̃V 3.

6.3. Nearly para-Kähler geometry. Every non-degenerate para-complex ma-
nifold (M,J) has a compatible metric of signature (3, 3). Indeed, the tangent
space decomposes as TM = ∆− ⊕∆+ and the two summands are dual of each
other. Thus their pairing gives the required metric g(u, v) = 〈π−u, π+v〉, where
π± : TM → ∆± are the projections. This structure satisfies the relation g(u, v)+
g(Ju, Jv) = 0. Associated to this is the skew-symmetric form ω(u, v) = g(u, Jv).
Non-degeneracy of J implies that ω is almost symplectic. Thus non-degenerate
para-complex structures induce almost para-Hermitian geometry.

Since NJ is non-degenerate, the 2-form is never symplectic. In this case we
can address the issue of whether the structure (g, J, ω) on M is strictly nearly
para-Kähler, which means that ∇ω is totally skew-symmetric (equivalently this
means ∇X(J)(X) = 0). Since p(∇ω) = 1

3dω, where p : T ∗⊗Λ2T ∗ → Λ3T ∗ is the
projection, this implies that ∇ω = 1

3dω 6= 0.

Consider now the maximally symmetric model G∗2/SL3. In this case both h = sl3
modules m∗ ⊗ Λ2m∗ and Λ3m∗ contain precisely 2 trivial summands (for m =
V + V ∗ the decomposition is computed straightforwardly and verified in LiE).
Thus p̄ : (m∗ ⊗ Λ2m∗)h → (Λ3m∗)h is an isomorphism, and so the G∗2-invariant
structure (g, J, ω) is strictly nearly para-Kähler.

Next consider one of two models of submaximal symmetry, e.g. simply-connected
Sp(4,R)/(SL2×R). In this case the trivial module (m∗⊗Λ2m∗)h is 4-dimensional,
while dimension of (Λ3m∗)h is 2. Thus the corresponding projection p̄ is not in-
jective and we cannot conclude strict nearly para-Kähler property by pure repre-
sentation theoretic arguments. This however can be observed by straightforward
computations, and we exploited Maple to facilitate those. We conclude the
following.

Proposition 14. The maximal and both submaximal symmetry models are strictly
nearly para-Kähler.
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If the symmetry group of a non-degenerate para-Hermitian structure has dimG =
9, the homogeneous space G/H no longer needs be nearly para-Kähler: there are
models that satisfy the corresponding property and models that violate it.

7. Local homogeneity in the case dim g = 9

Assume that the action of the symmetry pseudogroup G on (M,J) or its Lie
algebra g is not locally transitive, i.e. there are no open orbits and so there are
local invariants I of the foliations by G-orbits. We continue writing m = ToM
for the tangent space representation of the isotropy algebra h (o ∈M is a chosen
point), and we write o ⊂ m for the tangent to the orbit To(G · o).

In what follows we restrict to the set Ureg ⊂M of regular points in a neighborhood
of which the orbits fiber the space; this set Ureg is open and dense inM . Assuming
o ∈ Ureg and denoting by h the isotropy at o, the following properties hold:

(1) The normal bundle ν = m/o is a trivial h-representation1 (this is because
the differentials of the invariants doI span ν∗, cf. [16, Lemma 3]).

(2) We have ∆+ 6⊂ o and ∆− 6⊂ o. Indeed, if ∆ε ⊂ o, then m = [∆ε,∆ε] ⊂
[o, o] = o (the tangent distribution to the foliation by orbits is integrable).

(3) We have o± = o ∩ ∆± 6= 0. Indeed, if say o+ = 0, then ∆+ ↪→ ν is a
trivial h-representation, whence ∆− = ∆∗+ and m are also trivial.

(4) The bundles ν± = ∆±/o± ⊂ ν are trivial h-representations.

The later claim follows from the following commutative diagram (and its twin
obtained by interchanging the signs) consisting of exact rows and columns

0 0 0
↓ ↓ ↓

0 −→ o− −→ o −→ ô+ −→ 0
↓ ↓ ↓

0 −→ ∆− −→ m −→ ∆+ −→ 0
↓ ↓ ↓

0 −→ ν− −→ ν −→ ν̂+ −→ 0
↓ ↓ ↓
0 0 0

where ô+ = o/o− and ν̂+ = ∆+/ô+.

From (2) and (3) we conclude that o± ⊂ ∆± are proper subbundles, so the rank
of each of them is either 1 or 2. If the rank of oε is 1, then the corresponding
representation of h ⊂ sl3 on Vε has matrix form with two rows zero, and since

1If o ∈M belongs to a singular orbit, this fact is usually false.
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the isotropy representation is faithful we get dim h ≤ 2. Then dim g = dim h +
dim o ≤ 2 + 5 < 9.

Thus we have to consider only the case when ranks of both o± is 2. In this case the
matrix representation of h has one trivial row, and so dim h ≤ 5. So if dim o < 4
we conclude dim g < 9. Consider the cases 4 ≤ dim o ≤ 5, dim o± = 2.

A plane o− in ∆− determines by duality a line NJ(∧2o−) ⊂ ∆+. If this does not
belong to o+, then ∆+ is split into the sum of a plane (non-trivial h-module)
and line (trivial h-module), whence dim h ≤ 3 that implies dim g < 9. Thus we
assume that the line belongs to o+, and so ∆+ has an invariant flag of subspaces.
Consequently h ⊂ p12 – the Borel subalgebra in sl3. Representation on ∆− is
dual, and we obtain the matrix form of the representation ρ : h→ End(m):

 a1 a2 a3
0 −a1 − a5 a4
0 0 a5

 0

0

 −a1 0 0
−a2 a1 + a5 0
−a3 −a4 −a5




The first 2×2 sub-block in the first diagonal 3×3 block (∆+) corresponds to o+,
and so by property (4) the last row of this 3×3 block vanishes: a5 = 0. Similarly,
the second 2× 2 sub-block in the second diagonal 3× 3 block (∆−) corresponds
to o−, and so by property (4) the first row of this 3× 3 block vanishes: a1 = 0.
Therefore dim h ≤ 3, and dim g ≤ dim h + 5 < 9.

We conclude that for dim g ≥ 9 the symmetry acts locally transitively (has an
open orbit) in Ureg. This finishes the proof of Theorem 3.

Remark 2. Thus non-degenerate para-complex 6D manifolds with the symmetry
of dimension at least 9 are locally homogeneous spaces and hence can be classified.
In particular, for dim g = 9 similarly to [2], one can obtain a classification of
such homogeneous spaces with a simple isotropy h.
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