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Calculations of the EPR g-tensor using unrestricted two- and four-

component relativistic approaches within the HF and DFT 

frameworks  

 

Abstract. Approaches and programs for calculations of EPR g-tensor in the 

framework of the two- and four-component methods are still very rare. There are 

three main reasons for this:  The wider community's unawareness of the importance of 

second- and higher order spin-orbit effects on the g-tensor, the methodological 

problems associated with performing such calculations, and the lack of understanding 

of these problems. This paper reports on the implementation of a method for 

calculation of the g-tensor in the framework of the unrestricted two- and four-

component Hartree-Fock and DFT relativistic approaches based on the Kramers pair 

formalism . This implementation allows us to analyze problems which arise when the 

g-tensor is calculated via Kramers pairs in the unrestricted framework. 
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I. Introduction 

EPR spectroscopy remains one of the major sources of information about the 

electronic structure of open-shell systems.  In recent decades there has been 

remarkable progress in experimental techniques, which has been, to a lesser extent, 

accompanied by progress in quantum chemical methods for calculations of EPR 

parameters (hyperfine structure tensor, g-tensor, zero-field-splitting (ZFS)). However, 

problems remain in the theoretical calculation of EPR parameters – especially the g-

tensor and zero-field-splitting. These problems are most pronounced for compounds 
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containing heavy elements; relativistic effects play a prominent role in these 

compounds and higher order, non-linear spin-orbit effects need to be taken into 

account.  In the following, only problems related to quantum chemical calculations of 

the g-tensor using the 2- and 4-component Hartree-Fock (HF) and density functional 

theory (DFT) methods are considered. If the reader is interested in the recent 

development of the state-of-the-art post-Hartree-Fock methods the current authors 

suggest looking at the recent publication of Vad, Pedersen, Nørager and Jensen1 and 

other publications cited therein. 

Contemporary methods for calculating the g-tensor can be roughly separated into 

two categories based on how they treat the spin-orbit interaction. In one-component 

approaches the g-tensor is calculated via the linear response theory (e.g. ref. [2]).  

Here the spin-orbit (SO) operator is included as a perturbation and only terms linear 

with respect to SO are considered. In the two- and four-component approaches the SO 

operator is included in the ground state Hamiltonian (i.e the SO operator is included 

variationally) and consequently all orders of SO interaction (with respect to the given 

SO operator) are taken into account when calculating the wave function. A number of 

publications have demonstrated that high-order spin-orbit effects can be important for 

accurate calculation of the g-tensor for heavy-element compounds 3,4,5,6,7,8 , which has 

drawn greater attention to two- and four-component relativistic approaches. However, 

despite the long history of such calculations  (thirty years if one takes into account an 

early publication on four-component calculation of the g-tensor by Case9) and the 

importance of the issue, the discussion on how best to account for higher-order spin-

orbit contributions is far from over. In a seminal paper on the topic3, van Lenthe, 

Wormer, and van der Avoird (LWA) presented a method for calculating the g-tensor 

in the framework of a restricted two-component ZORA (Zeroth Order Regular 

Approximation) approach. This approach was based on the representation of the 

operators responsible for the interaction with an external uniform magnetic field in the 

basis formed by the ground-state Kramers pair.  It was tested on a series of doublet 

systems at the Kohn-Sham level. Later an analogous approach was implemented in 

the four-component restricted Dirac-Hartree-Fock (HF) scheme.10 However, despite 

the advantages of the LWA approach the authors are unaware of any publications 

regarding its implementation in the framework of unrestricted HF or DFT methods. 

Patchkovskii and Schreckenbach wrote that the LWA approach works only “… for 
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the case of an effective spin-doublet, treated in the restricted approximation”2 but they 

did not provide any justifications for this statement. Indirectly, this statement is 

supported by the fact that the results of the LWA approach were published only for 

doublet systems and the calculation of the g-tensor with this method for triplets is not 

allowed in ADF program11 (the program in which the LWA approach was originally 

implemented). This is of course a very serious limitation; many transition metal 

complexes possess higher multiplicities. Furthermore, it was demonstrated (see ref. 

[2] and publications cited therein) that in many systems spin polarization, which is 

absent in the restricted scheme and hence in the LWA approach, is important for 

accurate calculations of the g-tensor. 

An alternative to the LWA approach was developed about the same time by 

Jayatilaka.12 His approach is based on the unrestricted two-component Hartree-Fock 

method but it is easily extendable to DFT. The basic difference between the LWA and 

Jayatilaka’s approach is the different choice of the unperturbed wave functions used 

for calculating different components of the g-tensor. In the LWA approach the 

Kramers pair formalism is utilized to calculate of all nine components of the g-tensor  

from a single unperturbed SCF solution, whilst in Jayatilaka's approach different 

solutions (i.e. wavefunctions) are used for different orientations of spin13. Jayatilaka 

argued that in the general case six SCF procedures are required to determine the six 

elements necessary to fully characterize a symmetric g-tensor; each SCF procedure 

being associated with a different spin-orientation. An important issue with this 

method is that the g-tensor is not always symmetric. This and other issues with 

Jayatilaka’s method will be discussed later. In Jayatilaka's method the elements of the 

g-tensor are always determined from the wavefunction calculated with the relevant 

orientation of spin. This contrasts with the LWA approach, which relies upon 

calculation of wave functions for different directions via a linear combination of the 

Kramers pair wavefunctions. Later, Malkins and Kaupp5 presented another method 

(3SCF) based on an unrestricted two-component approach (either HF or DFT). This 

approach follows the route suggested by Jayatilaka but requires only three 

unperturbed SCF calculations for evaluation of the principal components of the g-

tensor, although it requires that the principal axes are known in advance. The first 

implementation was done at the second order Douglas-Kroll-Hess level, and later 

generalized and implemented at the four-component Dirac-Kohn-Sham level.14 
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Recently, Autschbach and coworkers used an analogous two-component approach at 

the collinear DFT level within the unrestricted two-component relativistic ZORA 

approximation.6,7 Unfortunately, the problems associated with the above mentioned 

methods have not yet been analyzed in detail. The goal of the present work is to 

perform this analysis: To report on the implementation and performance of the 

Kramers pair based method within an unrestricted framework and to discuss some of 

the issues with these approaches in detail. Particular attention is paid to the drawbacks 

of the Kramers pair formalism in the context of calculations of the g-tensor using 

unrestricted Hartree-Fock and DFT methods.   

The paper is organized as follows: The Kramers pair formalism for calculations of 

the g-tensor in the restricted and unrestricted relativistic two- and four-component HF 

and DFT methods is recapitulated in Section II. Computational details of calculations 

are described in Section III. In Section IV an analysis of the consequences of using an 

unrestricted approach for g-tensor calculations is presented. Section V is devoted to 

benchmark calculations and discussions of the results for a series of small doublet 

systems, and followed by a Conclusions section and an Appendix, in which the 

derivation of working equations is described.  

 

II. Theory 

Throughout this paper the Hartree system of atomic units is used. Summation over 

repeated indices is assumed. The authors would like to note that ‘g-tensor’ is often 

considered as a symmetric matrix, which is somewhat unfortunate because it is known 

that the g-tensor does not exhibit the properties of a symmetric tensor.15  

We begin with a recapitulation of the LWA, Jayatilaka and 3SCF two- and four-

component approaches for the calculation of the g-tensor. In the framework of the 

restricted DFT method, van Lenthe et al.  implemented an approach which used only 

one SCF unperturbed calculation with spin quantization along z-axis to calculate the 

whole g-tensor.3 This approach relies upon the degeneracy of the Kramers pair in the 

absence of a magnetic field, and upon the properties of Pauli spinors. Due to the 

aforementioned degeneracy any linear combination of the wavefunctions in the 

Kramers pair will also be a solution. This fact, combined with the properties of the 

Pauli spinors, means that any Kramers pair with spin aligned along one axis can be 

represented in the basis formed by a Kramers pair with spin aligned along a different 
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axis. In other words, if an SCF is performed to obtain a Kramers pair of solutions with 

spin aligned along the z-axis, one can construct the solutions for x- and y-directions 

without doing any additional SCF calculations. Therefore, if 1 and 2 are a Kramers 

pair, whose spin is quantized along the z-axis, then the components of the g-tensor 

can be determined from the representation of Zeeman Hamiltonian (HZ) in the basis 

formed by this Kramers pair (here the authors closely follow the presentation of ref. 

[3]) 

    (1)  

Here u,v = x, y, z  , guv are the elements of the g-tensor, σv are the Pauli sigma 

matrices and B is the uniform external magnetic field. Note that in the original paper3 

the authors specify 1 and 2 as two spin-orbitals connected by time reversal 

symmetry 

       (2) 

and that this formalism is only strictly correct only for a one-electron system. 

However, in the framework of restricted HF or DFT only the singly-occupied 

molecule orbital (SOMO) contributes to the g-tensor and the one-electron formulation 

is justified. Equation 1 can be further simplified and the g-tensor elements can be 

obtained as follows 
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where c is the speed of light. It is important to recognize that only those components 

of the g-tensor which correspond to the z-direction of spin can be expressed via 1 

alone, i.e. without relying on the Kramers pair formalism. Elements associated with 
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the x and y orientations of spin are expressed as cross terms between the Kramers pair 

wave-functions. Unfortunately, it has been found that this elegant approach has a 

limited range of application, and in the following sections it will be demonstrated that 

when working in the framework of single determinant approaches (HF or DFT), use 

of the Kramers pair method is only justified in systems without spin polarization 

effects. In other words, errors may arise if the Kramers pair formalism is applied to 

unrestricted wavefunctions.   

Jayatilaka suggested a different strategy for evaluation of the g-tensor in the 

unrestricted framework12 , presumably to overcome this problem.  While his original 

derivation is quite extended and based on the evaluation of G = ggT  rather than the g-

tensor itself, the features of Jayatilaka’s method most relevant to this paper can be 

summarized as follows: After obtaining the wave function for an arbitrary 

quantization axis, e.g. the x-axis, the corresponding diagonal element of the g-tensor , 

e.g. gxx , is calculated as the expectation value of Hz using only 1, i.e. without relying 

on the Kramers pair formalism (c.f. Eq. 5). Since the G-tensor is symmetric, it can be 

fully characterized by six elements.16 Therefore, if the principal axes are not known in 

advance, the calculation of the G-tensor requires six independent SCF calculations for 

six different orientations of the spin-quantization axes. Jayatilaka suggested that 

directions along “the local molecular axis system, and also along the three bisectors of 

the local axes which lie in the local axis xy, xz, and yz coordinate planes” would be a 

convenient choice (see the original paper12 for more details). A solution with the spin 

along the desired quantization axis can be obtained by applying a finite external 

magnetic field along this axis, and then gradually reducing the magnitude of this 

magnetic field as the SCF procedure nears convergence.12  

Our two- and four-component unrestricted approaches5,14 are similar to Jayatilaka’s 

approach apart from one serious difference: We perform only three SCF calculations; 

one for each of the three principal axes of the g-tensor. We call this the 3SCF 

approach. This approach assumes that the principal axes of the g-tensor are known in 

advance. The principal axes could be obtained from a one-component calculation 

using perturbation theory provided that the higher-order SO contributions do not 

significantly change the orientation of the axes; in the authors’ experience this 

approximation is usually adequate. From the corresponding SCF solutions only the 

diagonal element of the g-tensor corresponding to this axis is evaluated, as the off 
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diagonal elements will be zero when the g-tensor is represented in the principal axes. 

Thus, as in Jayatilaka’s approach, each diagonal element of the g-tensor is evaluated 

using only a single wave function, 1, (as in Eq. (5)). A similar two-component 

approach for the unrestricted collinear ZORA formalism was recently used by 

Autschbach and Pritchard.6 Their work compares the different one- and two-

component approaches implemented in ADF program,11 but does not give any 

explanation as to why the approach requiring at least three SCFs is used instead of the 

more computationally efficient LWA method. In a later publication7 the same group 

extended this study to investigate effects of electron correlation and different DFT 

exchange-correlation functionals. 

This paper reports on our implementation of the Kramers pair based formalism in 

the framework of unrestricted two- and four-component approaches (DFT and HF). 

This method has some advantages; it takes into account important spin-polarization 

effects, and requires only one SCF run (in contrast to our 3SCF approach and the 

approach of Jayatilaka). However, such an implementation requires extension of the 

LWA technique; calculation of the elements of the spin Hamiltonian, expressed as the 

cross term of a one electron operator between the two unrestricted Kramers pair wave 

functions, cannot make use of the Slater-Condon rules. This is because the two, 

Slater-determinant wave functions comprising the Kramers pair are constructed from 

different molecular orbitals (MOs). The expression for the cross term was originally 

given by Löwdin17 and was recently used in ref. [18], but in the context of the present 

work it was rediscovered by one of the authors (PC) and reformulated for efficient 

implementation in ReSpect.  Here only the final expression is given; the derivation of 

working equations is presented in the Appendix. In the following the Slater 

determinant composed of the Kohn-Sham molecular orbitals will be used as an 

approximation to the many-electron wave function. Although it is only an 

approximation to the exact Kohn-Sham wave function (even for the exact exchange-

correlation functional), it has long been known that this pragmatic approach works 

reasonably well. 19   Recently this topic was discussed in ref. [20]. 

The cross term of a one-electron operator   V̂  between 1 and 2 is given by  
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where  V
k
 is a matrix with elements 
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where  and . Here it is assumed that determinant 1 is 

constructed from MOs 
 
and its Kramers partner 2 from MOs  (where  is the 

Kramers partner of ). Since the calculation of determinants scales as O(N3) and one 

has to calculate N determinants, the overall scaling of the procedure scales as O(N4), 

where N is the number of occupied molecular orbitals. 
 

 

III. Computation details  

The structures of light-atom radicals, H2CO+ and H2O+, were taken from ref. [21]. 

The structures for the 2 PdH radical was taken from the ZORA-based study of 

Belanzoni et al.,22 and the structure for  was taken from the MCSCF study of 

Manninen at al.23.  

All two-component Douglas-Kroll-Hess calculations were carried out with our old 

version of the ReSpect code24, in which the SO integrals were calculated using AMFI 

(as implemented in the AMFI code).25 Noncollinear DFT calculations were performed 

at the generalized gradient correction (GGA) level with Becke exchange26 and Perdew 

correlation27 functionals (BP86). In all DFT calculations, a FINER angular grid with 

128 radial shells (this corresponds to ca. 12000 points per atom) was employed. All 

calculations were performed without fitting the electron density or the exchange-

correlation potential. For all systems except for PdH, IGLO-II basis sets were 

employed.28 Since the IGLO-II basis is not available for Pd, the calculations of PdH 

were done with a modified Hirao basis as described in ref. [29]. As is common in 

DKH calculations, the basis sets were decontracted when resolutions of identity were 

applied. 

The calculations at the four-component Dirac−Kohn−Sham (DKS) level were 

carried out with the new ReSpect program package (version 3.3).30 A noncollinear 

Kramers-unrestricted formulation of the LDA functional31 was used. Dyall’s all-

  
I

2

-
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electron uncontracted basis sets of valence triple-ζ quality were employed. 32 In the 

four-component calculations, integration of the exchange−correlation parts was done 

numerically using the default option for a molecular grid with about 14000 points per 

atom.  

The present implementation of the g-tensor uses a common gauge origin (CGO) for 

the external uniform magnetic field. Our experience shows that in two- and four-

component calculations the use of CGO is much less problematic than in one-

component linear response calculations.  

The SO scaling technique developed in ref. [5] was employed to provide further 

insight into factors affecting components of the g-tensor, in particular to separate 

linear and second-order SO effects (it was assumed that third and higher-order effects 

were negligible). The SO scaling technique involves running a set of calculations with 

artificially modified strengths of the SO operator (one needs at least three calculations 

with different strengths). This modification is achieved by multiplication of the SO-

integrals by a constant , which typically has some value between 0 to 1. Varying  is 

equivalent to varying the speed of light, c, in the SO operator. For example, =0 

corresponds to c=∞, and no SO interaction. =1 corresponds to the normal value of c, 

and a normal strength of SO interaction. If g-values for a variety of different values of 

 are obtained, then it is possible to fit these values by a polynomial function of  (a0 

+ a1*O(SO) + a2*O2(SO)). The values of the coefficients a1 and a2 respectively 

indicate the linear and quadratic SO contributions to the g-tensor components. To 

obtain the separation between linear and quadratic effects at least three different 

strengths of operator, i.e. values of λ, are necessary. The contributions from 2S and L 

operators in Zeeman operator to the g-tensor shift (Δg) will be referred to as the S- 

and L-contributions. For H2O
+ and H2CO+ the X-axis is perpendicular to the 

molecular plane and Z-axis is the symmetry axis in YZ plane. 

 

IV. Consequences of using the Kramers pair formalism in unrestricted 

framework  

Before discussing the results of the calculations with the new approach 

presented above it is useful to address the consequences of using the unrestricted, as 

opposed to the restricted, scheme in the framework of HF and DFT methods. A major 
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advantage of the unrestricted approach over the restricted approach is the inclusion of 

spin-polarization effects. Notably, a restricted HF or DFT approach can yield only 

positive spin density for doublet systems (which contradicts experimental evidence), 

whereas the unrestricted approach can generate the spin density of both signs. The 

spin polarization in two- and four-component relativistic calculations leads to new 

features that have not been discussed before, though they are of tremendous 

importance to the topic of the current paper.   

A disadvantage of using unrestricted one-determinant non-relativistic or 

scalar-relativistic methods to describe spin-polarization effects is the presence of spin-

contamination; the resulting wave function is not an eigenfunction of S2 operator.33 

When the spin-orbit interaction is switched on the above mentioned  problem, i.e. the 

non-physical admixture of higher multiplets to the ground state doublet wave 

function, is still present. The issue is there even though spin is not a good quantum 

number in the two- and four-component calculations; it is just more difficult to 

quantify. Therefore, spin-contamination and the problems associated with it do not 

disappear when the spin-orbit operator is switched on, but become enmeshed with 

real, physical effects. Recently Bučinský et. al. 34 discussed possible definitions of 

“relativistic” spin-contamination. Without further discussing definitions of spin-

contamination in the relativistic case the following will demonstrate that the use of 

unrestricted one-determinant wavefunctions in the context of the present approach 

leads to new problems in calculations of the g-tensor.  

In the absence of the SO-interactions the calculated g-tensor should be 

isotropic and its three principal components should all be equal to the free-electron g-

value. However, this is found not to be the case when the Kramers pair method is used 

in conjunction with wavefunctions obtained from unrestricted HF or DFT 

calculations. The relevant matrix elements for the Zeeman operator obtained from 

Eqs. 3, 4 and 5 will give different results. Only the results obtained from Eq. 5, i.e. 

those which do not rely on the Kramers pair formalism, will consistently exhibit zero 

g-shift and have a value equal to the free-electron g-value.  In other words: it can be 

proven analytically that even in the absence of the SO interaction (λ=0), i.e. when the 

g-shift components must be zero, eqs. 3 and 4 will erroneously give non-zero values 

of the g-shift. The error is approximately equal to twice the spin-contamination, and in 

case of a three-electron system this equivalence is no longer an approximate but exact. 
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Thus the corresponding cross term between Kramers pair wave functions from x  (or 

y) for a doublet system can be expressed as  

     (8)

 

where 1 and 2 represent a Kramers pair of unrestricted Slater determinants 

obtained using a non-relativistic or scalar relativistic Hamiltonian, 
 
and  are 

the number of  and  electrons (with and 
 
being their indices), and  is 

an N-electron operator constructed as the sum of one-electron operators. In the 

restricted case only the singly-occupied MO will contribute to the g-tensor. However, 

when the wavefunction is unrestricted all MOs will contribute due to the non-

orthogonality of the alpha and beta MOs. The contribution from each MO to the 

component of the g-tensor is determined by the overlap of the MOs in Φ1 with those 

in Φ2. Analysis of how these MOs contribute to the cross-term reveals that the 

difference between the free electron g-value and the spin-Zeeman contribution, 

calculated via the cross-term method in eq. 8, will be approximately equal to twice the 

spin-contamination (see the numbers below). This error in the cross term between 
 
F

1

and 
 
F

2
for λ=0 (Eq. 8) is not a direct consequence of the spin-contamination but a 

consequence of the fact that the MOs in 
 
F

1
are not orthogonal to those in 

 
F

2
. Note 

that the use of eq. 5 for calculating  with λ=0 does not exhibit this 

error despite Φ1 being affected by the spin-contamination. Because this error is caused 

by the use the Kramers pair formalism in the unrestricted one-determinant approach 

we will call it the UKP error.   

A numerical example of the UKP error due to use of Eqs. 3 and 4 with the 

unrestricted approach is provided by the 
  
I

2

- radical. For this radical the spin-

contamination in the non-relativistic calculation is equal to 0.00179966 (DFT case) 

whereas the exact evaluation of  for λ=0 (i.e. no SO interaction) 

yields 1 - 0.00179986. Note that in Hartree units the sigma contribution to the Zeeman 

Hamiltonian HZ is (1/2c) , thus in combination with equation 3 one will obtain an 

error in the g-tensor as twice the spin-contamination. Therefore, on top of the usual, 
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typically very minor (especially in the DFT case) error in the g-tensor due to spin-

contamination in the case of unrestricted methods, the use of equations 3 and 4 leads 

to an additional, and often much more pronounced, inaccuracy in the calculations of 

the matrix elements of the Zeeman operator. Thus spin-contamination always plays a 

role in the unrestricted approach, even in the 3SCF method, but usually does not cause 

such significant problems as the UKP error.   

 When calculating these matrix elements, the following pragmatic corrections 

to help compensate for the UKP error are suggested by the authors: 

  (9) 

   (10) 

where the overlap matrix elements are taken from an additional calculation with the 

SO operator switched off (since in this case the  are  MOs are well defined). In 

principle one can attempt to identify the corresponding pairs of MOs in the two- 

and/or four-component calculations, and do similar corrections using relativistic MOs, 

i.e. from the same calculation with SO operator included. In such cases the additional 

calculation with zero SO interaction would not be necessary. From the other side, the 

calculations without the SO interaction are often used as the initial guess for more 

expensive 2- and 4-component calculations. Consequently, the above described 

correction often incurs no additional computational cost. As will be demonstrated in 

the next section, the UKP error noticeably affects the g-tensor calculated in the 

unrestricted framework using the Kramers pair formalism. Note that a) the UKP 

correction to the S contribution  (the UKP S-correction) described by Eq. (10) is not 

exact even in the limiting case of zero SO effects; b) it is likely that the correction is 

less accurate when SO effects are included; and as a result of a) and b) even with the 

correction one may get different (hopefully only slightly different) results by choosing 

a different direction of spin during the SCF procedure. This is one of the major 

drawbacks of the UKP method. The next section investigates whether this method can 

still yield sufficiently reasonable results for it to be considered as a computationally 

cheaper alternative to the more rigorous 3SCF approach.  
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 There is another important issue in unrestricted calculations which can best be 

described as “energy anisotropy”. When doing two- or four-component calculations at 

the HF or DFT level for a doublet or higher multiplet system, the resulting wave 

function can be characterized by the direction of the spin magnetization (“spin”).  The 

spin magnetization is defined as the sum of the expectation values of one-electron 

Pauli spin operators.35  In calculations using unrestricted approaches the dependence 

of the total energy on the orientation of the spin magnetization was observed. For a 

triplet and higher multiplicity systems this dependence is the well known phenomena 

of zero-field-splitting (ZFS), however, in doublets this dependence is unexpected. The 

common explanation of ZFS is based on the consideration of the SO interaction 

between two different unpaired electrons, however, this argument is not applicable to 

a doublet system. Since the authors had no consensus on the nature of the effect its 

discussion is postponed to a forthcoming publication36 and only present the 

corresponding data without lengthy discussion.  

To illustrate the dependence of total electronic energy on the spin-orientation, 

the calculated total energies for the 
  
I

2

-  radical for 3 orientations of spin are presented 

in Table 1. The calculations were done at the unrestricted two-component Hartree-

Fock and DFT levels. Both methods show different energies for orientations of spin 

parallel and perpendicular to the molecular axis, and for the Hartree-Fock method 

these differences are significantly larger than the numerical errors in the calculations. 

The DFT results have greater numerical inaccuracy due to numerical noise arising 

from the use of numerical integration.  

 

Insert Table 1 here.  

 

The radical is orientated along the Z-axis, therefore, the X and Y directions are 

equivalent due to symmetry. Hence the difference between the energies for the X and 

Y directions indicates the numerical accuracy of the 2-component HF (and DFT) 

methods as implemented in the ReSpect code24. The difference between the energies 

for orientations of spin parallell and perpendicular to the bond (i.e. the axis of 

rotational symmetry) is much larger: It is approximately 22.4 cm-1 for 2-component 

unrestricted HF method. The 2-component unrestricted DFT method gives a smaller 
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value of about  3.7 cm-1 for LDA and 0.7 cm-1 for BP86. A similar effect was 

observed in calculations for other doublet systems. This effect could be much more 

pronounced in molecules featuring heavier elements. Further discussion on this topic, 

as well as additional data will be presented elsewhere.36 Here it is only noted that such 

dependence, whether it is physical or an artefact of the one-determinant approach, 

casts doubt on the applicability of the approach based on the Kramers pair: A linear 

combination formed from a Kramers pair corresponding to a certain direction of spin 

magnetization may have a different energy than a wave function obtained from an 

SCF where the spin was magnetized in that direction throughout. This energy 

anisotropy also explains why ease of SCF convergence, if convergence is possible at 

all, is dependent upon the orientation of the spin with respect to the molecule. These 

convergence issues arise even when employing the methodology suggested by 

Jayatilaka. 12  

 

V. Results and Discussion  

The main goal of this work was to analyze the problems associated with the newly 

implemented unrestricted method based on Kramers pair (UKP) approach for 

calculations of the g-tensor, and to compare its performance with that of the 3SCF 

approach. The 3SCF method was chosen as a reference since it was designed to avoid 

using Eqs. 3 and 4 and to rely only on Eq. 5, i.e. the 3SCF method does not use the 

Kramers pair formalism and is therefore free from the problems described in the 

previous section. Readers who are interested in the results of other approaches can 

find them in refs. [2, 6, 7]. The main practical difference between 3SCF and the new 

method is that in the 3SCF method one SCF calculation is performed for each of the 3 

principle axes, whereas in the UKP method the whole g-tensor is evaluated from a 

single SCF calculation (obtained for a particular direction of spin magnetization), by 

applying equations 3-7. As follows from the discussion in the previous section, it is 

expected that the results of the UKP approach will depend on the direction of spin 

magnetization used in the SCF calculation. This is also seen from equations 3-5 and 

6: The expression for the spin magnetization direction Z (eq. 5) is different for the 

other 2 directions (eqs. 3 and 4, which in turn require eq. 6).  

The results of the calculations with the UKP and 3SCF methods, both at two- and 

four-component levels, are presented in Table 2 and compared with available 
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experimental data. Since all the calculations were performed in the axes of symmetry 

of the chosen molecules only the diagonal elements of the g-tensor (i.e. the deviation 

of the principal components of the g-tensor from the free-electron g-value) are 

collected in Table 2. For the H2O
+ and H2CO+ radicals the x axis is perpendicular to 

the radical plane and the z axis is the symmetry axis in this plane. For each of the 

components, guu, the results are separated into three rows depending on the 

orientation of the spin magnetization selected for the unperturbed SCF run. The 

notation Uv indicates that the SCF for the spin magnetization along U-axis was 

used to calculate the gvv component. In the case where U=v the results are by 

definition identical to those of the 3SCF method. In Table 2 these results are marked 

in bold.  

The results in parentheses have been corrected for the UKP error using the 

approximation  described in Eqs. 9 and 10; for calculations with 0, the UKP S-

correction for the λ=0 case was used. The agreement between the corrected UKP 

results, the 3SCF method, and experimental data was reasonable for all molecules 

studied (bearing in mind that the well known limitations of DFT, such as the 

dependence of the results on the exchange-correlation functional, and the fact that 

some experiments were performed using a host crystal). A detailed investigation of 

the significance of the choice of exchange correlation functional is beyond the scope 

of this study.  The 4-component UKP approach gives similar trends to the 2-

component approach for all molecules considered in Table 2. However, the 

corresponding UKP related errors (estimated as the difference between 3SCF and 

UKP data) are somewhat smaller than in the 2-component case probably due to the 

use of different functionals in 2- and 4-component calculations.  

 

Insert Table 2 here.  

 

The first system to be considered is the H2CO+ radical. This system is too light to 

manifest significant scalar relativistic and higher-order relativistic SO effects. At the 

same time, the use of MOs obtained from unrestricted approach within Kramers pair 

formalism (i.e. the use of the UKP method) has a significant effect on the g-tensor. 

For the two-component unrestricted DFT approach the UKP S-corrections (Eqs. 9 and 
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10) are about 11 ppt (the difference between the numbers in front of the parentheses 

and the numbers inside them in Table 2) and applying the correction significantly 

improves agreement with both the 3SCF approach and experimental data. Without 

this correction the UKP results are rather poor; all three principal components are off 

by about 11 ppt.  

The SO scaling method described above was used, with λ varying between 0 to 4, 

to verify the prediction that second order SO effects would be small for this system. 

The results for the H2CO+ radical are presented on Figs. 1a (for the yy-component of 

g-shift) and 1b (for the xx-component of g-shift). The results for the zz-component of 

the g-shift are very close to those of the yy-component and may be found in the 

supplementary material.  

 

Insert Fig. 1 here.  

 

The difference between the S-contributions to the Xy, Zy and Yy results for 

this molecule are mainly due to the UKP S-error. This is supported by the numerical 

analysis of the g-tensor calculations with SO scaling, i.e. analysis of the results 

obtained with different values of λ. When S-contributions obtained for Xy and Zy 

are corrected for the UKP S-error the corresponding curves (Fig. 1a) become very 

similar to that obtained for the Yy component. This finding is reflected by the 

numbers in parentheses given in Table 2. Exactly the same results are obtained for 

other directions of spin magnetization in this molecule. It is worth noting that the S-

contribution is practically independent from the  coefficient in all cases with U≠v, 

which is to be expected for such a light radical.  

The unexpected dependence of the L-contribution (the orbital momentum-

contribution) on the spin magnetization direction was observed: The linear 

contribution to the Xy and Zy results deviates significantly from the linear 

contribution to the Yy results, whereas all three L-contributions to the xx-

component (Xx, Yx, Zx) are in good mutual agreement (see Fig. 1b). The 

linear coefficient in the polynomial obtained from the regression indicates that in all 

cases there is an undesirable difference of the order of 10-4 to 10-5 between the 

components calculated via eqs. 3-4 and those calculated via equation 5. However, 
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since there are no quadratic SO effects, this is probably just a consequence of the non-

orthogonality of the MOs used for construction of 1 and 2, i.e. evidence of the 

UKP L-error. Therefore, while 1 and 2 are properly normalized and each of them is 

constructed from orthonormal MOs, their cross term used to determine the associated 

L-contribution to the Hz operator differs from what is obtained from eq. 5. This is the 

case even if the appropriate Im or Re parts are taken; compare eqs. 3, 4, and 6 with 

eq. 5. Consequently, when equations 3 and 4 are used in the UKP approach there are 

always unwanted numerical errors in the L-contributions due to the mismatch of the 

MOs in 1 with those in 2. Fortunately, the effect of the UKP L-error is rather small 

and is almost negligible when the L contribution is large (see Fig. 1b). The total g-

shift components with U≠v corrected for the UKP S-error are in good agreement with 

the corresponding Uu components as can be seen from Table 2. This demonstrates 

that, at least for H2CO+ radical, the UKP L-error does not seriously reduce the 

accuracy of the results, and that the UKP data corrected for the UKP S-error are close 

to those of the 3SCF method.  

The next system studied was the H2O
+ radical. The SO-scaling analysis is 

presented in Figs. 2a (for the yy-component of the g-shift) and 2b (for the xx-

component). The results for the zz-component of the g-shift are very close to those of 

the yy-component and may be found in the supplementary material.  

 

Insert Fig. 2 here.  

 

The shapes of the dependencies of the S- and L-contributions to the g-shift on λ for 

the yy-component are very similar to those presented in Fig.1a for the xx-component 

for the H2CO+ radical.  Hence the issues discussed for  H2CO+  also apply to H2O
+. 

However, the curves and data in Fig. 2b demonstrate that the second-order spin-orbit 

effects are more significant. To better examine these effects λ was varied over an 

extended range of 0 to 4. Both the S- and L-dependences are noticeably nonlinear. 

This is confirmed by the relatively large coefficients in front of the second-order SO 

contribution in the polynomial obtained from the regression analysis. Consequently, 

there are three sources of error in the UKP method which are not present in the 3SCF 

method: The UKP S-error, the UKP L-error and, potentially, the dependence of the 
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wave function on the direction of spin magnetization (the energy anisotropy discussed 

at the end of section IV). The effect of the UKP L-error in Fig. 2b is responsible for 

an important contribution to the difference in the linear terms. The absolute values of 

the second order SO effects are also very small, and do not cause large problems for 

the UKP approach. Following a correction for the UKP S-error the g-shift results are 

in good agreement with 3SCF data (see Table 2). 

 

Insert Fig. 3 here.  

 

 The next system studied was the 
  
I

2

-

 
radical; a system, which earlier studies 

have shown, exhibits strong second-order SO effects.5 The scaling analysis is 

presented in Fig. 3a for the parallel component (the ||-component). In this case the 

results for Xz and Y z are equivalent so the latter is not shown. Fig. 3b shows the 

perpendicular component (the -component) of the g-shift. In all graphs the nonlinear 

dependence of the g-shifts and the corresponding S- and L-contributions is clearly 

visible.  Compared to the very large overall g-shifts the effect of both UKP S- and L-

errors is small and can reasonably be neglected.  The spin-orientation dependence of 

linear SO contributions is quite noticeable but less pronounced than that of quadratic 

contributions, which are also larger in absolute values. The consequences of the 

dependence of the wave function on the spin-orientation are very large and could not 

be neglected - see the difference between components with U≠v (corrected for the 

UKP S-error) and those with Uu in Table 2. Therefore, for heavy systems with 

significant non-linear SO contributions to the g-tensor, the presence of “energy 

anisotropy”, whether this effect is physical or methodological in origin, is one of the 

major disadvantages of the UKP approach in comparison with the 3SCF method.   

Nonetheless, as it can be seen from Figs. 3a and 3b, for this system the results 

obtained with the UKP approach give a reasonable estimation of those of the 3SCF 

approach.  

 It is interesting to note that for the parallel component of the g-tensor the 

absolute value of the L-contribution is half that of the S-contribution, and has the 

opposite sign. The relation is exact for Z->z and approximate for X->z.  Moreover, 

this relation holds even when the linear and quadratic terms are considered separately. 
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This is a consequence of quantization of the total angular momentum J = L + S for 

diatomic systems in the presence of the spin-orbit interaction. The results also 

demonstrate that the quantization of the total angular momentum is preserved in the 

unrestricted framework. See also eq. 38 in ref. [37] for additional rationalization of 

the observed phenomenon.  

  

Insert Fig. 4 here.  

 

 The last system studied in this work was the PdH molecule (see Figs 4a and 

4b). Since for the parallel component (see Fig. 4a) the results with Xz and Yz are 

equivalent the latter is not shown.  The conclusions are similar to those for the 
  
I

2

-

 

radical, however, the overall data allows more positive conclusions to be drawn. The 

inaccuracies associated with the UKP S- and L-errors are present but they do not 

affect the final results as significantly. The effects due to the dependence of wave 

function (and energy) on the spin magnetization orientation are less pronounced here 

than in the 
  
I

2

-

 
radical. It can be rationalized by the facts that the distribution of the 

spin density in PdH is more spherical and that the spin-polarization in PdH is likely 

less prominent than in the 
  
I

2

-

 
radical. For this system the UKP method gives results 

that are rather close to those obtained using the 3SCF method. It remains to be seen 

whether the UKP approach is capable of reliably providing reasonable results for 

other compounds with elements as heavy as Pd. Again, for this linear molecule the 

parallel component of the g-tensor the L-contribution is half the size of the S-

contribution and has the opposite sign.   

 

VI. Conclusions 

This paper reported upon the development and implementation of a method for 

calculation of the g-tensor based on the Kramers pair formalism in the framework of 

the unrestricted two- and four-component relativistic approaches (the UKP method). 

Analysis of benchmark calculations, as well as of calculations with artificially 

modified strengths of the SO interaction, reveal that there are several problems with 

the UKP approach. These problems are caused primarily by issues surrounding 
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evaluation of matrix elements of the S and L contributions to the spin-Hamiltonian 

using cross terms between the Kramers pair wavefunctions. The corresponding errors 

are named as the UKP S-error and UKP L-error. Another important issue is the 

dependence of the energy of the one-determinant unrestricted wave function on the 

orientation of spin magnetization during the SCF calculation. It was found that for this 

set of molecules the largest source of error is the UKP S-error, but that this error can 

be approximately corrected for. The absolute value of the UKP error in the L-

contribution was always found to be small, and thus may be disregarded. The errors 

arising due to the energy anisotropy may be important for some systems, and a study 

of this effect is underway.36 Despite all the disadvantages of the UKP method the 

UKP results for the molecules studied were reasonably good when the suggested 

correction was applied. Therefore, this method still can be considered as a cheaper 

alternative to the computationally more expensive 3SCF method. 
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Appendix 1. 

 

Evaluation of a cross term of a one electron operator between the two 

unrestricted wave functions, build from mutually non-orthogonal MOs  

 

1  General Terms and Definitions  

 

Consider two N-electron single determinant wave functions,  
  
Y(x

1
,x

2
,...,x

N
) and 

  
F(x

1
,x

2
,...,x

N
)composed of 1-electron molecular orbitals  and  

i.e. 

   (1)  

    (2)  

Where N is the number of electrons in the system and xi  is the position of electron i. 

C is the permutation operator. Each action of C exchanges two of the indices of the 

molecular orbitals, while   is the number of times C must act on the original ordering 

of orbital indices.  

The inner product of 
  
Y(x

1
,x

2
,...,x

N
) and 

  
F(x

1
,x

2
,...,x

N
) is then given by:  

  (3)  

where  

         (4)  

and the permutation operator CR only acts on the right indices (i) of Sij , whilst CL 

only acts on the left indices (j) of the Sij . It will be useful to define 

       (5) 

so that  
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     (6)  

Given any combination of matrix elements it is possible to rearrange these elements 

so that the left indices are arranged in ascending order from left to right. e.g. 

  
S

3a
S

4b
S

2c
S

5d
S

1e
= S

1e
S

2c
S

3a
S

4b
S

5d
       (7) 

where a, b, c, d, e  are indices between 1 and 5. Rearranging the matrix elements in 

this manner will not affect the sign of the combination when it is included in the sum 

in (3). Therefore, 

         (8) 

and the summation over   is unnecessary and (3) can be rewritten 

 (9)  

where S is the matrix with elements Sij .  

 

2  One-electron Operators 

The expectation value of a one-electron operator   V̂ is given by 

             (10)  

Unlike in (3), not all the operators in the combination are the same (the matrix 

elements Sij are best thought of as the elements of the matrix representation of the 

identity operator). However, all but one operator is equivalent (there are (N-1) identity 

operators, and a single 1-electron operator   V̂ ). Therefore, it is possible to write 
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(11) 

where  V
k  is a matrix with elements 

 
V

ij

k  defined by 

  

V
ij

k =
V

ij
, if k = i

S
ij

, otherwise

ì

í
ï

î
ï

        (12)  

Calculation of determinants scales as O(N3). Here, N determinants are being 

calculated, so this method (11) will scale as O(N4), where N is the number of 

occupied molecular orbitals. 
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Table 1. Dependence of the total energy (in a.u.) on the orientation of the spin 

magnetization for the  radical. The radical is oriented along Z axis.  

 

Method Spin magnetization direction Total Energy  

HF 

X -14136.63640906211 

Y -14136.63640906205 

Z -14136.63651116250 

DFT (LDA) 

X -14129.435772741383 

Y -14129.435772748609 

Z -14129.435789680208 

DFT (BP86) 

X -14143.334271495194 

Y -14143.334271739557 

Z -14143.334274989187 

 

 

  

  
I

2

-



 26 

Table  2. Principal components of the g-shift tensors (in ppt) calculated with 2- and 4-

component UKP method in comparison with experimental data. Values in parentheses 

are corrected to compensate for the UKP S-error. For H2O
+ and H2CO+: X-axis is 

perpendicular to the molecular plane and Z-axis is the symmetry axis in YZ plane.  

 

System  SCFguu 2-comp 4-comp Exp. 

H2CO+ Δgxx Xx  4.9 6.9 4.6a 

  Yx -6.1 (4.9) -0.8 

 Zx -6.1 (4.9) -0.8 

Δgyy Xy -11.0(-0.01) -7.9 0.2a 

  Yy   0.2 0.04 

 Zy -11.0(-0.01) -7.9 

Δgzz Xz -11.9(-0.9) -9.6 -0.8a 

 Yz -11.9(-0.9) -9.6 

 Zz -0.9 -2.0 

H2O
+  Δgxx Xx 0.01 -0.3 0.2b 

 Yx -4.7 (-0.03) -4.8 

 Zx -4.7 (-0.03) -4.8 

Δgyy Xy 6.4 (11.1) 16.8 18.8b 

 Yy 10.7 21.2 

 Zy 6.4 (11.1) 16.8 

Δgzz Xz -0.9 (3.7) 1.5 4.8b 

 Yz -0.9 (3.7) 1.5 

 Zz 3.7 5.9 

 
I

2

-  Δgxx Xx 249.1 248.0 307.7c 

 Yx 198.9(202.5) 257.0 

 Zx 198.0(201.6) 254.0 

Δgyy Xy 198.9(202.5) 257.0 307.7c 

 Yy 249.1 248.0 

 Zy 198.0(201.6) 254.0 

Δgzz Xz -63.7(-60.1) -82.4 -143.9c 

 Yz -63.7(-60.1) -82.4 

 Zz -46.0 -82.4 

PdH  Δgxx Xx 230.7 267.9 290.9d 

 Yx 225.2(227.0) 275.9 

 Zx 217.3(219.1) 274.1 

Δgyy Xy 225.4(227.0) 275.9 290.9d 

 Yy 230.7 267.9 

 Zy 217.4(219.2) 274.1 

Δgzz Xz -16.8(-15.1) -24.3 -37.3d 

 Yz -16.8(-15.1) -24.3 

 Zz -13.6 -23.7 
aNe:H2CO matrix isolation result, see ref. [38]; b Gas phase results derived from spin 

rotation data, see ref. [39]; c see ref. [40];d  see ref. [41]. 
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