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Abstract

This thesis focuses on the use of multi-polarization synthetic aperture radar
(sAR) for characterization of marine oil spills. In particular, the potential of
detecting internal zones within oil slicks in SAR scenes are investigated by a
direct within-slick segmentation scheme, along with a sensitivity study of SAR
measurements to the evolving nature of oil slicks. A simple, k-means clustering
algorithm, along with a Gaussian Mixture Model are separately applied, giving
rise to a comparative study of the internal class structures obtained by both
strategies. As no optical imagery is available for verification, the within-slick
segmentations are evaluated with respect to the behavior of a set of selected
polarimetric features, the prevailing wind conditions and weathering processes.
In addition, a fake zone detection scheme is established to help determine if the
class structures obtained potentially reflect actual internal variations within
the slicks. Further, the evolving nature of oil slicks is studied based on the
temporal development of a set of selected geometric region descriptors.

Two data sets are available for the investigation presented in this thesis, both
captured by a full-polarization L-band airborne SAR system with high spatial-
and temporal resolution. The results obtained with respect to the zone detection
scheme developed supports the hypothesis of the existence of detectable zones
within oil spills in SAR scenes. Additionally, the method established for studying
the evolving nature of oil slicks is found convenient for accessing the general
behavior of the slicks, and simplifies interpretation. It was observed that there
seemingly exist a correlation between increasing oil fraction for mineral oil
emulsions and increasing slick extent. Further, both the circularity ratio and
slick complexity provided a good separation between mineral oil emulsions
and plant oil, as the plant oil rapidly tended towards a circular shape whereas
the emulsions became elongated.
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Introduction

This thesis focus on the application of L-band synthetic aperture radar (SAR) for
analyzing the internal variations and the evolving nature of already detected
marine oil spills. This introductory chapter presents the motivation behind
the study presented in this thesis, previous work done on the field, the main
objectives, the contributions and findings made, and the thesis outline.

1.1 Motivation

As the world has been tied closer together through globalization, emission of
environmentally damaging substances has experienced an extensive increase.
Especially transportation, in the form of shipping account for a considerable
amount of the greenhouse gasses emitted into the atmosphere. In addition, ac-
cidental and illegal discharges of oil from ships and tankers occur on a regular
basis all over the world, posing an immense threat to the marine environment.
As this activity often occurs at remote areas, the problem is difficult to approach.
However, remote sensing systems has provided an alternative. Especially SAR
has the potential of aiding a stricter regulation, by its unique capability of
monitoring large-scale areas during both day and night. Further, by establish-
ing precise oil spill detection schemes, along with robust analyzing tools for
extraction of detailed oil slick information, oil spill recovery operations have
the potential of becoming much more efficient. So far, research in general has
focused on optimizing the oil spill detection schemes as false alarm rates are
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still high. This thesis attempts to go one step further, proceeding towards the
detailed analysis of already detected oil spills, in search of valuable information
that might streamline current oil spill recovery operations.

Improvements in technology and tools engineered for recovery operations occur
continuously, but does not help much if the procedure itself is not optimal. A
common issue arises already during the earliest stages of an oil spill recovery
operation, where the lack of information about the oil formation and zoning
makes the decision about where to initialize the clean-up hard. Intuitively, if
the clean-up is initialized in the denser regions of oil, there is a significantly
higher chance of recovering more oil. Therefore, information about the internal
variations within oil spills can be used to direct oil spill responders to the more
critical areas of oil, thereby providing a more efficient clean-up. This thesis
offers an attempt in investigating the existence of potential radar zones within
marine oil spills for such purposes. Further, a fundamental understanding of
the temporal development of oil spills is important to maintain and customize
effective clean-ups. Hence, this thesis also focuses on the evolving nature oil
slicks.

1.2 Previous Work

To the authors knowledge, research focusing on detecting potential zones
within oil slicks in SAR scenes is scarce. Jones et al. in [42] investigated the
potential of using the damping ratio (DR) for detecting zones for three different
mineral oil emulsions and a plant oil. It was found that all the emulsions initially
exhibited zoning, which persisted longest for the highest oil content emulsion,
while zoning was not apparent in the plant oil slick. It was concluded that
since the oil slicks studied were relatively thin, the observed zoning was most
likely a result of alteration of the surface wave spectrum with different slick
thicknesses and not a change in the dielectric properties [42]. It is important
to note that this zone detection scheme was based upon visually inspecting the
behavior of the DR, whereas a more automatic method is developed to reduce
the human factor in this thesis.

In [41], Jones et al. also conducted a study focusing on modeling the oil slick
transport for the same data set. The main objective in this investigation was to
simulate the transport of oil at the ocean surface with respect to the prevailing
meteorological and oceanic conditions, and compare it to the SAR observations
acquired. In addition, some SAR observations were made directly related to
the appearance of the slicks. In summary, the slick extent of the oil emulsions
was found to increase more compared to the biogenetic slick simulant studied.
Further, the biogenetic slick was also found to rapidly tend towards a more
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compact and circular shape which stabilized in a form of equilibrium shape and
size in contradiction to the oil emulsions. Again, these observations was directly
deducted by visually inspecting the slicks. The same data set will therefore be
subject to investigation in this thesis, as the approach for analyzing the evolving
nature of the slicks is slightly different. In this thesis, the evolving nature of
the oil slicks is quantified based on studying the temporal development of a set
of numerical region descriptors. The features selected in this thesis include the
area, perimeter, circularity ratio, slick complexity, and Hu’s 1st planar moment
invariant. In particular, these geometric features have been tested in the context
of classification. Skrunes in [68] shed light on the opportunity of using the
area, perimeter and circularity ratio as measures for discrimination between
marine targets, whereas Brekke in [6] included the area, perimeter and slick
complexity for classification of detected dark spots in SAR scenes. This thesis
does not include the regional descriptors for direct classification purposes, but
attempts to find trends in SAR time series with respect to the evolving nature
of oil slicks.

1.3 Objectives

This thesis provides a sensitivity study of L-band SAR measurements to the
internal variations and the evolving nature of oil slicks. The superior objectives
are to investigate the existence of potential zoning within oil slicks in SAR
scenes by performing a direct within-slick segmentation, along with studying
the evolving nature of oil slicks. Two unsupervised segmentation approaches
are suggested in the search of the existence of potential radar zones, namely
a k-means clustering algorithm and a Gaussian Mixture Model (GMM). The
k-means clustering algorithm will be preset to search for a fixed number of
classes based on the framework established by optical imagery introduced
later on, whereas a model selection criterion will be used for the GMM to
find the best fit. Since no optical imagery are available for verification of
the actual appearance of the oil slicks under observation, the class structures
provided by the segmentation strategies will be evaluated with respect to
environmental conditions, weathering processes, and polarimetry. The evolving
nature of oil slicks will be studied by analyzing a set of selected oil slick
features, i.e., geometric region descriptors based on the appearance of the
slick. These features will be computed across several scenes with high temporal
resolution, allowing a qualitative analysis of how the slicks behave as a function
of time.
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1.4 Contributions
The main contributions from the work presented in this thesis include:

* A simple and extendable method for detecting potential radar zones
within oil spills in SAR scenes.

* A strategy of analyzing the evolving nature of oil slicks based upon
numerical geometric region descriptors.

* A study demonstrating the sensitivity of multi-polarization SAR features
to looser/tighter segmentation of oil slicks.

1.5 Thesis Outline
This thesis is organized in 7 chapters including the introduction.

Chapter 2 reviews the basic principles of remote sensing by SAR, including
e.g., the radar imaging geometry, speckle, polarimetry, and scattering
mechanisms.

Chapter 3 introduces SAR for oil spill monitoring, including e.g., the most
important properties of oil, external sources acting on oil in ocean, and
the oil spill detection scheme by SAR.

Chapter 4 presents the data sets available for the investigation conducted in
this thesis.

Chapter 5 outlines the methodology developed for the investigation presented
in this thesis, including e.g., the multi-polarization SAR features studied,
the within-slick segmentation strategies applied, and the selected oil slick
features inspected as a function of time.

Chapter 6 presents and discusses the results obtained when carrying out
the investigation presented in this thesis, including e.g., the within-slick
segmentations, and the temporal development of the oil slick features
selected.

Chapter 7 summarizes the work presented, lists observations, and attempts
to draw conclusions from the investigation conducted in this thesis.
Additionally, uncertainties with respect to the investigation are discussed,
and some ideas regarding future work on this topic are suggested.



Remote Sensing by SAR

Remote sensing has become a crucial tool for monitoring and performing mea-
surements of vast areas, and specific targets that are unpractical or impossible
to cover by manual fieldwork. The term is used to describe the science of
extracting information about some target of interest, without ever being in
direct contact. The type of remote sensing data acquired is related to the
information being sought, as well as the size and dynamics of the target being
studied.

There exist several remote sensing systems with different technological archi-
tectures for various applications. SAR account for a vast amount of the deployed
remote sensing systems that operate today. It is an active radar system provid-
ing high-quality resolution imagery along with all-day monitoring capabilities
during almost any weather conditions. In contradiction to passive systems de-
pending on external sources, a radar system generates the signal itself, and
is therefore not sensitive to variations in solar illumination. The generated
electromagnetic radiation is transmitted and the complex backscattered signal
is recorded coherently, forming the basis of 2D-images representing the targets
in focus. The high spatial resolution is a result of advanced signal processing
techniques producing a synthesized antenna array, hence the name synthetic
aperture. The upcoming chapter presents the underlying theory of remote sens-
ing by SAR systems, including e.g., a brief introduction to the basic principles
of SAR, SAR imaging geometry and acquisition principles, polarimetry, and the
scattering mechanisms that occur when radar pulses interact with targets to
gain necessary prerequisites before proceeding to successive chapters.
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2.1 Basic Principles of SAR

SAR systems are often characterized by their operational wavelength and po-
larimetric architecture. This is mainly because different wavelengths interact in
different manners with opposing targets, and that the amount of polarimetric
information retrieved limits the system. An important property describing the
interaction between the transmitted electromagnetic pulse and the target in
focus is the penetration depth. Intuitively, the penetration depth is a distance
measure describing how far an electromagnetic wave can propagate into a
media. More specifically, it is defined as the distance an electromagnetic wave
can penetrate before the magnitude is reduced by % [8]. In general, the pene-
tration depth of an electromagnetic wave increases as a function of increasing
wavelength. On the contrary, as the wavelength decreases, smaller elements
within the target interacts with the signal causing a decreasing penetration
depth.

SAR systems operate with wavelengths covering the microwave region of
the electromagnetic spectrum, spanning from around 1 mm to about 1 m.
Microwaves have the favorable property of being able to penetrate through
most of the composition of the atmosphere, hence avoids being altered when
propagating. This spectral region is again split into different bands. The most
common operational bands are C (4-8 cm)-, X (2.5-4 cm)- and L (15-30 c¢m)-
band [58]. The investigation presented in this thesis will be based upon data
collected using L-band.

2.1.1 Radar Imaging Geometry

The main objective of SAR systems is to form 2D-images of the ground by
transmitting coherent electromagnetic pulses, and recording the complex re-
flectivity, i.e., backscattered signal. Figure 2.1 illustrates the configuration of
such a radar system. The flight direction of the sensor platform is defined as the
azimuth direction. As the platform moves in azimuth, the antenna illuminates
the ground in the range direction. The total area illuminated on the ground is
referred to as the antenna footprint determined by the beam width in azimuth,
and swath width in range. The incidence angle 0 varies with respect to range,
stretching from near range (closest to the antenna) to far range (furthest away
from the antenna). A target is first observed when it enters the near edge of
the antenna beam, and remains within the beam until the radar has moved
a distance equal to the beam width. For targets located in the middle of the
beam, this distance corresponds to the synthetic aperture length L [21].
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o
&

SAR antenna

Dr

/L = synthetic aperture length

Antenna footprint

Figure 2.1: Illustration of SAR imaging geometry from figure 2.3 in [23]. D, D4, 0, 6,,
and f is the antenna width, antenna length, look angle, opening angle in
range, and beam width, respectively.

The backscattered signal is segmented as the sensor platform moves, forming
a two-dimensional matrix in range and azimuth. Since the time of arrival is
proportional to the distance, objects at different distances from the sensor
are distinguished by the arrival time. This forms the dimension in range.
The second dimension is proportional to the along track distance in azimuth,
taking the Doppler history into account. Each pixel within the image will then
represent the scattering targets contained in the corresponding resolution cell
on the ground.

2.1.2 Resolution

The quality of the output image is determined by the spatial resolution provided
by the system. The spatial resolution is defined as the minimum distance targets
within the antenna beam can be near each other while still being separable in
the output image. Further, the spatial resolution is decomposed into resolution
in the azimuth and range direction, describing the quality in both dimensions.
For Real Aperture Radar (RAR) systems, the ground range resolution is given
as [21]
c

X, = —o .
2Bsin(6)) (2.1)
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where c is the speed of light, 6; is the look angle, and B is the bandwidth of
the transmitted pulse related to the pulse length by 7 = %. Thus, a broader
bandwidth or a short pulse produce a higher resolution. However, due to noise
effects it is desired to work with high-energy pulses [23]. In order to solve
this conflict of interest, the chirp principle is introduced. The chirp principle
is a pulse compression technique that produces a short pulse spanning over a
broad bandwidth, i.e., creates a high-energy pulse [21].

The resolution in the azimuth direction is given as [21]

RA

X = —,
Arar DA

(2.2)
where R is the sensor-target distance, A is the operational wavelength, and
D, is the antenna length. The real-aperture imaging technique provides an
azimuth resolution that is linearly proportional to the distance between the
sensor and the target. This is the main disadvantage with such an imaging
system. A spaceborne RAR system would demand an impractical antenna size
to output an image with tolerable resolution. It is this adverse property that
SAR confronts.

The main idea behind SAR is to synthesize an array of antennas with respect to
the Doppler history. It utilizes the fact that an array of antennas is equivalent
to a single antenna moving along the array line as long as the received signals
are coherently recorded [21]. The Doppler effect changes during the time
period in which targets are within the antenna footprint, making it possible to
separate them. At first the Doppler effect is large while decreasing as the sensor
moves towards the target, reaching its minimum when the target is located
in the middle of the beam, and then start increasing again [15]. Considering
the hardware, SAR systems are equal to RAR systems. The main difference
between the two systems lies within the software, more specifically in the
signal processing method used for resolution optimization in azimuth. The
resolution in the azimuth direction for a SAR system is given as [21]

Dq

XaSAR = 7 (2'3)

Hence, the azimuth resolution for a SAR system is only determined by the
dimension of the antenna, while the sensor-target distance R becomes negligi-
ble.
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2.1.3 Speckle

Although SAR systems has some very favorable properties compared to other
existing remote sensing systems, it is certainly not perfect. The main disadvan-
tage of SAR is the inherent property of speckle noise. Speckle is a multiplicative
noise, appearing as a highly unordered and chaotic noise pattern contaminating
the output images [5]. For most types of natural terrain, each scattering target
within a pixel is slightly displaced relative to each other. If the displacement is
random in nature, the targets will cause constructive and destructive interfer-
ence, giving rise to the granular noise pattern known as speckle. Speckle is not
considered as noise as in the classical sense, but is, as mentioned, an inhered
property of the backscattered signal itself, and can therefore be statistically
modeled as a random walk in the complex plane [69].

Speckle is a highly unwanted property as the resulting degradation pose diffi-
culties on automatic feature extraction, and other image processing operations.
Hence, a number of filtering techniques have been developed for despeckling.
The arguably most common technique is multi-looking, either in the spatial- or
frequency domain [8]. Since speckle in fact are pixels abruptly deviating from
the surrounding pixels, an averaging box-car filter can be used in the spatial
domain. The idea behind such a filter is to slide an averaging window over the
entire image, whereas pixel values are assigned by taking the mean of a set of
neighboring samples. This reduces the variance, thus result in less pronounce
speckle. In the frequency domain, the equivalent operation is done by dividing
the image into sub-looks in the azimuth direction, and then average over these.
The standard deviation of the speckle is then reduced by a factor of /Ny,
where N is the number of looks extracted from the full aperture image [54].
These methods are very effective in reducing speckle, but comes at the cost
of reduced spatial resolution. Another disadvantage is the induction of mixed
pixels, especially at boundaries and edges which becomes less defined.

A common measure indicating the quality of the image with respect to the noise
present, is the signal-to-noise ratio (SNR). The SNR is desired to be as large
as possible, i.e., the data should preferably consist of a lot of signal compared
to noise. The SNR varies as a function of incidence angle, being maximized
in the middle of the antenna swath, and lowest at the edges. This is a direct
consequence of the antenna pattern, as the strongest response is at this exact
location. Another relevant parameter considering noise, is the noise-equivalent
sigma zero (NESZ). It is a measure indicating if a polarimetric channel holds
reliable information with respect to the amount of noise present.
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2.2 Polarimetry

The fact that electromagnetic waves oscillates transverse relative to the di-
rection of propagation introduces the aspect of polarimetry. Polarimetry is
an important domain to consider when operating with remote sensing sys-
tems as it might potentially reveal information about physical properties of the
target under observation [69]. The polarization of electromagnetic waves is
contained within the elements of the vector amplitude of the electric field [21].
Polarized waves can be defined as where the electric field oscillates in one
direction or in a specific pattern. The upcoming section gives a brief review
of the diversity of polarimetric architectures, before proceeding to elaborate
about full-polarization (FP) SAR systems as will be studied in this thesis.

2.2.1 Polarization Diversity

Utilizing the polarimetric information encoded within the electromagnetic
radiation have become a crucial part of both active and passive remote sensing
systems. The fundamental quantity measured by a polarimetric SAR system is
the complex scattering coefficient S;; from the target, where i and j define the
polarization on transmit and receive [76]. In the linear basis, an electromagnetic
wave can have horizontal (H) or vertical (V) polarization. H is usually defined
as the state at which the electric vector component oscillates perpendicular
to the plane of incidence, while v is where the electric field is orthogonal to
the propagation direction and the horizontal polarization [21]. Other forms
of polarization states include e.g., circular and elliptical polarization. Circular
polarization occurs when two linear horizontal and vertical polarized waves are
transmitted simultaneously, with 9o° out of phase for the vertical polarized wave.
Intuitively, elliptical polarization occurs when these waves are not orthogonally
transmitted.

Different polarization architecture acquires different polarimetric information
based on the channels on transmit and receive. Most commonly, polarimetric
SAR systems have operated with linear polarization basis including the HH,
HV, HH and vV channels. Single-polarization (SP) SAR systems transmit and
receive on the same polarization channel. Dual-polarization (DP) SAR systems
also transmit one polarization, but receive on two channels. The combination of
channels received depends on the polarization of the transmitted wave. Further,
FP SAR systems both transmit and receive on horizontal and vertical, while
retrieving all four polarization combinations, i.e., HH and vv, and HV and VH,
often referred to as the co- and cross polarization channels, respectively [69].
There also exist SAR systems utilizing the property of circular/elliptical polar-
ization. Such systems are most commonly referred to as hybrid polarization or
compact polarization SAR systems, and can be further explored in [23].
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2.2.2 Full-Polarization SAR

In recent years, SAR systems have developed from operating with a single
channel to cover all possible polarization combinations. Such FP SAR systems
provide the unique capability of measuring the complete scattering matrix,
often referred to as the Sinclair matrix, allowing a more precise identification
and extraction of the scattering properties within a given resolution cell [22].
The Sinclair matrix contains complex scattering coefficients for each pixel,
characterizing the scattering mechanisms occurring at that specific point on
the ground. The matrix relates the electric field incident onto the target to the
electric field scattered from the target [78]

ol -
E, R |Spq Sqq| |Eq

where E! denotes the incident electric field and E° is the scattered electric
field, k is the wavenumber defined as k = 27”, and subscript q and p denotes
the orthogonal linear polarization states. The total backscattered signal for
an FP system can then, in the linear horizontal-vertical basis, be expressed
mathematically as the Sinclair matrix [46]

S = (2.5)

Sva Svv

Sun SHV]

The four terms can be reduced to three if reciprocity is assumed, meaning that
the interaction between the target and the electromagnetic wave is equal for
the cross-polarization channels, namely that Sy = Syg [46][60]. This is
usually done when dealing with monostatic! systems where the internal state
of the target is unaltered by the polarization of the probing wave [69].

From this Sinclair matrix, various polarimetric target descriptors have been
developed for interpreting and relating the polarimetric information collected
to target properties. The Lexicographic scattering vector is a common polarimet-
ric target descriptor, and provides the basis for the much desired covariance
matrix. The Lexicographic target vector is given as [46]

st = [Sur V2Suv Syv]?, (2.6)

1. A monostatic system transmits and receive the signal with the same antenna.
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where T denotes the transpose operation. The covariance matrix is defined as
the multi-looked Hermitian outer product of this scattering target vector, given
by the following equation [46]

L
% ]' *
C = <SL,SLT> = I? Z SLSLT, (2.7)

where (-) indicates spatial averaging (multi-looking), and * denotes the com-
plex conjugate. Thus, the multi-looked complex (MLC) covariance matrix is
given as [46]

(ISuul®  V2(SuuSyy)  (SuuS})
C=|V2(SuvSyy)  2USuvI®)  V2(SuvSi)|- (2.8)
SvvSyy) \/§<SVV5}}V> (ISvv]?)

The covariance matrix is arguably the most common reference point regarding
the interpretation of FP SAR data, as a wide diversity of multi-polarization
SAR features can be extracted by decomposing this matrix. Another common
reference point is the coherency matrix, operating in the Pauli space originating
from the Pauli target vector. The reader is referred to [46] and [58] for further
reading regarding this topic.

As mentioned, FP SAR systems extract more polarimetric information com-
pared to SP and DP systems, but comes at the cost of typically smaller spatial
coverage or reduced spatial resolution, along with requiring more power [22].
The smaller swath is a result of fulfilling the Nyquist criteria, since the pulse
repetition frequency is higher for FP SAR systems. The type of polarization ar-
chitecture and which channels that are active vary and depends upon the field
of application. Previous studies have suggested that the HH-channel is more
suited for sea ice surveillance [17], compared to the vv-channel which is more
suited for ocean surface sensing [2][28][34]. Therefore, since this thesis works
with oil spills in marine environments, the vv-channel will be preferred.
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2.3 Scattering Mechanisms

If electromagnetic radiation is subject to an interface separating two media with
different dielectric or magnetic properties, the electromagnetic radiation will be
altered. This interaction leads to scattering mechanisms. The type of scattering
mechanism occurring is strongly related to the property of the incident wave,
and the physical characteristics of the target under observation. In general, we
separate between three different types of scattering mechanisms, i.e., surface-,
double bounce-, and volume scattering. These scattering mechanisms will be
the subject of discussion in remaining part of this chapter.

2.3.1 Surface Scattering

Surface scattering is the scattering mechanism referred to when the incoming
electromagnetic radiation only disperse once at the surface boundary between
two media, hence it is often called single bounce scattering. It occurs at surfaces
that are considered reasonably flat relative to the wavelength of the incoming
radiation [23]. The backscattered response from surface scattering is closely
related to the roughness of the surface, which again is related to its geometry,
i.e., physical shape. The wavelength of the incoming electromagnetic radiation
determines the scale at which the roughness of the target is detected. By
nature, waves interact more significantly with objects having a geometry of the
same order of magnitude as the wavelength. This causes short wavelengths
to be more sensitive to small variations at the surface compared to longer
wavelengths.

In the case of very smooth surfaces relative to the incident wavelength, the
reflection occurs in the specular direction, and is described by Snell’s law [21]

nisind = nysin 0,5. (2.9)

Here, n; denotes the index of refraction related to the dielectric constant by
Maxwell’s relation n; = \/Ei, and Hrf is the refraction angle [13][23]. Hence,
for perfectly smooth surfaces no backscatter will be detected as the radiation is
reflected away from the sensor [69]. Intuitively, in order for a remote sensing
system to be able to collect any information, the surface needs to be rough
to some extent. Whether or not a surface is considered rough is commonly
determined by the Rayleigh Criteria, given as

Sp = s cos 0, (2.10)

where sy, is the standard deviation of the surface height. The surface is con-
sidered rough if the equality holds [23]. For rough surfaces, the scattering
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consists of one coherent reflection component in the specular direction and
one diffuse (incoherent) component occurring randomly in all directions. As
the roughness of the surface increases, the coherent scattering component
becomes negligible and the scattering tends towards a Lambertian pattern, i.e.,
completely diffuse and independent of the incidence angle of the incoming
radiation [23][69].

2.3.2 Double Bouncing Scattering

Double bounce scattering refers to the scattering mechanism that occurs when
electromagnetic radiation undergoes two bounces when interacting with an
interface. This scattering mechanism occurs in general from dihedral cor-
ner reflectors like e.g., buildings. For ideal corner reflectors, the complete
backscattered response lies completely within the copolarization channels, i.e.,
no contribution exist in the cross-polarization channels [13][23]. In general,
man-made structures produces double bounce scattering. This makes vessels
traveling at seas distinguishable from its surrounding, and easy to detect by
SAR imagery and other remote sensing systems.

2.3.3 Volume Scattering

Volume scattering is the result of interaction between electromagnetic radia-
tion and media with local variations in the dielectric properties [13]. Recall
the ability of electromagnetic radiation to penetrate into media (discussed in
Section (2.1)). Volume scattering occurs when the electromagnetic radiation
penetrates into the interface, creating backscattering contributions from differ-
ent layers within the media. L-band, which is the operational wavelength on
the sensor providing the data for this thesis, lies in the far microwave region,
and therefore have a relatively large penetration depth compared to e.g., C-
and X-band. Thus, when studying oil in marine environments, there is a risk
that a portion of the backscattered response originate from the underlying sea
water.



SAR for Oil Spill Monitoring

Spaceborne remote sensing SAR systems have paved the way for global coverage
monitoring, with high spatial resolution on a repeated basis. This has provided
the opportunity of regulating large-scale areas, along with the possibility of
extracting endless information, giving rise to climate models, weather forecast-
ing, meteorological- and oceanographic research, and pollution monitoring.
These branches have become increasingly dependent on the services provided
by SAR systems. Especially for oil spill monitoring, SAR has proven to be a very
favorable sensor due to its characteristics. This chapter introduces the topic of
marine oil spills, including an overview of the most important oil properties,
the mechanisms that determine the fate and behavior of oil slicks in the marine
environment, and the application of SAR for oil spill monitoring.

3.1 Oil Spills in the Marine Environment

The release of oil into the marine environment occurs frequently all over
the world, with the evident majority originating from natural seeps from
geological strata below the sea floor and anthropogenic sources related to oil
production, transportation and consumption. Hence, the occurrence of oil spills
correlate well with the major production cites and transport routes, along with
geologically active areas. Annually, it has been estimated that about 1.2 million
tons of oil are exposed to the marine environment [67]. Releases in connection
with reported ship accidents only account for a small part of this, whereas a

15
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larger portion emerges from both legal and illegal deliberated discharges from
ships during routine operations [69]. The environmental impacts associated
with oil spills is complex and depends on several factors like e.g., the volume
and type of oil spilled, the ambient weather conditions, and the presence and
sensitivity of ecological life. In general, various types of oil interacts differently
with the marine environment, thereby causing different slicks to behave and
develop independently over time. This temporal evolvement is often strongly
correlated to the properties of the oils, along with various weathering processes
and environmental conditions. This upcoming section introduces and discusses
these factors.

3.1.1 Properties of Qil

Oil describes a wide selection of both natural and synthetic compounds, used
especially as lubricants and fuel. There exist a wide selection of oil types with
different composition, causing their properties to vary significantly from type
to type. The most important properties to recognize when dealing with oil
spills in marine environments are viscosity, density, and solubility, along with
the dielectric constant [14][69].

Viscosity can be defined as a substance resistance to flow, where low viscosity
indicates an easier flow compared to a high viscosity substance [14].
In terms of oils, the viscosity depends on the relative fraction of light
and heavy components, whereas the viscosity increases as a function of
increasing heavy components. Consequently, oil spills with low viscosity
are more likely to spread out and form a thin layer over a larger area on
the ocean surface compared to high viscosity oil. In general, the viscosity
of oil increases approximately exponentially as a function of decreasing
temperature [24].

Density is defined as a substances mass per unit volume. Oils are defined as
light or heavy, depending on their density. The property is important
because it indicates whether a specific oil will float or sink when exposed
to water. The average sea water has a density slightly larger then most
oils, hence oils will in general float on the ocean surface [14][24].

Solubility is a measure indicating the amount of oil that will dissolve in the
water column on a molecular basis [14]. In general, the solubility of oil in
water is low, but the soluble parts can potentially be toxic to the aquatic
life [14]

Dielectric constant (relative permittivity) is defined as the ratio between
a substances permittivity and the permittivity of vacuum [69]. The
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dielectric constant of oil is much lower than that of sea water [56].
Therefore, if the oil is mixed sufficiently into the water column, the
effective dielectric constant at the ocean surface is expected to decrease.
In terms of remote sensing, the backscattered signal tends to increase
as a function of increasing dielectric constant [8o]. Hence, oil spills are
expected to produce a lower backscatter than clean ocean.

3.1.2 Weathering Processes

Oil spills are subject to a number of weathering processes immediate after
release. Weathering denotes a variety of physical, chemical, and biological
processes that transforms the oil spill as a function of time. Consequently,
weathering processes are crucial in determining the fate and behavior of oil
spills. As a part of the objective in this thesis is to study the temporal evolve-
ment of oil spills, it is essential to understand the concepts behind the most
important weathering processes. Intuitively, the impact of the different weath-
ering processes depends on environmental conditions, but the oil properties
are in fact more decisive [69].

The most important weathering processes acting on oil spills include evapora-
tion, emulsification, dispersion, dissolution, spreading, oxidation, and biodegrada-
tion. In general, these processes can be sorted into two chronological categories
based on when they have their dominant effect, i.e., the early stage and the
later stage of an oil spill [40]. Figure 3.1 illustrates these processes and how
they influence oil in marine environments.

Spreading

Oxidation
Evaporation Spreading
Emulsification t l —)

Figure 3.1: Overview of the most important weathering processes acting on oil at sea.
Ilustration from figure 2.1 in [69], adapted from [1].
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The dominant weathering processes in the early stage of an oil spill are spread-
ing, evaporation, dispersion, emulsification and dissolution, whereas oxidation,
sedimentation and biodegradation are long term processes [40]. It is these
long term processes that ultimately determines the fate of an oil spill. The
weathering processes are listed and elaborated below.

Spreading is an important weathering process in the initial phase after release,
and refers to the oils ability to spread out on the ocean surface. The spread
is closely correlated to the viscosity of the oil and the environmental
conditions such as wind and ocean current. Typically. the spread of oil
is not uniform, indicating that the formation of various zones will occur
[47]1[69]. In fact, it has been found that more than 9o % of the oil can
potentially be located in less than 10 % of the slick area [37].

Evaporation involves the loss of preferentially light compounds of the oil into
the atmosphere. This especially influence the mass balance between
heavy and light compounds, causing the density and viscosity to increase
[47]. Light crude oils can potentially lose up to 75 % of the initial volumes
within a few days, while medium crudes might lose as much as 40 %. On
the contrary, heavy or residual oils only looses 10 % of its initial volume
[14]. The loss of volume due to evaporation is hard to model as most oils
consist of a mixture of hundreds of compounds.

Emulsification involves the mixing of water into the oil spill. Typically, this
will thicken and increase the volume, which again contributes to the
persistence of oil spills [63]. Emulsification might also increase the oil
viscosity up to three orders magnitude [14].

Dispersion occurs when oil spills are subject to turbulent ocean states, causing
parts of the oil to break up and mixed vertically, down into the water
column. This weathering process becomes dominant for low viscosity oil
spills, where as much as 9o % or more of the slick might potentially be
dispersed. The dispersibility decreases in line with increasing viscosity.

Dissolution involves the chemical stabilization of oil components in the ocean.
Although it only accounts for a small portion of the oil loss, it is considered
an important weathering process as the soluble components of oil can
be toxic to aquatic species [14].

Oxidation causes the organic compounds of oil to form new compounds, along
with rearranging the distribution of residual compounds. These oxidized
products are more soluble in water compared to the compounds they
originate from [14].
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Biodegradation of hydrocarbons has been considered one of the principal
removal mechanisms in the aquatic environment. The biodegradation
rate is correlated to the environmental conditions, including oxygen
concentration, nutrients, temperature, salinity and pressure, as well as
oil properties [14].

Sedimentation is the sorption of oil to suspended sediments that eventually
settle out of the water column and accumulate on the seafloor [14].

Later on, in the investigation presented in this thesis, the within-slick segmen-
tations will be evaluated with respect to the weathering processes outlined
above, along with an attempt in correlating these to the evolving nature of the
oil slicks studied.

3.1.3 Environmental Impacts

Environmental and oceanic processes also influences the temporal development
of oil slicks. Especially the transport and movement are controlled by drift from
varying components of winds and currents, the turbulent movement of oil in the
upper ocean, along with weathering [59]. In general, the horizontal movement
of oil slicks is controlled by the ambient current, wave-induced Stoke drift, and
wind drag at the ocean surface [41].

Typically, oil slicks on the ocean surface are transported along with the ocean
current with a drift speed of a few percent (~3.5%) of the wind speed for
low to moderate wind speeds (3-7 m/s), and a drift angle of ~15° right/left of
the wind direction when at the north/south hemisphere [14][41]. For higher
winds, an increasing occurrence of wave breaking and vertical mixing slows
the drift to about 0.5% of the wind speed, and a slightly larger deflection angle
[20].

The particles within oil slicks are affected by surface Stoke drift, which involves
the cyclic motion of particles moving up and down into the water-column,
depending on their location within the water column, with respect to the
ocean state. Also, as oil slicks in general remain on the ocean surface, they
are subject to forcing by wind. This introduces the exposure to Langmuir
Circulation. Langmuir Circulation, often expressed as windrows, are a common
oceanic phenomenon generated by the ambient wind conditions in combination
with Stoke drift [14]. This phenomenon induce the accumulation of divergence
and convergence bands on the ocean surface, creating windrows parallel to
the wind direction. With respect to oil slicks, windrows can potentially have
many effects. It can enhance the movement of the slick, affect the oil thickness
by creating convergence and divergence zones on the surface, and enhance
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the vertical dispersion of oil droplets [14]. Typically, windrows are observed
along the upwind end of oil slicks, where the layer of oil is relatively thin, while
oil in general accumulates in the downwind direction, where viscous effects
dominate the dynamics [48]. Thus, oil slicks are often experience to have a
relatively well-defined leading edge in the downwind direction, along with a
streaky trailing edge or feathered appearance in the upwind edge of the slick

[2][66].

3.2 Oil Spill Detection Scheme by SAR

A variety of remote sensing systems have been used for detecting and classifying
marine oil spills. Traditionally, SAR systems have been used for monitoring
and detection, while optical systems have been used for classification and
verification. Optical systems have the advantage of capturing data equivalent
to the human eye, making it easy to detect oil spills and observing potential
zones. The downside of using optical systems is the strict limitation to variation
in solar illumination and vulnerability to environmental conditions. Therefore,
it is desired to explore if SAR systems are able to reveal the same information as
optical systems for detecting potential zones in oil spills. The upcoming section
presents the principles behind using SAR for oil spill monitoring, and outlines
the framework regarding oil spill zoning established by optical systems, here
also being sought for SAR systems.

3.2.1 Scattering at the Ocean Surface

Oceans and open water are in general considered rough surfaces, hence exhibit
surface scattering (see Section (2.3.1)) of incoming electromagnetic radiation.
The scattering occurring at clean ocean surfaces for typical SAR incidence
angles! can be described through Bragg theory [38][81].

The presence of waves mainly characterizes the dynamics at the ocean surface.
These waves span over a wide spectrum, with wavelengths of several hundred
meters to capillary waves of a few millimeters. For typical SAR incidence angles,
when small-scale waves dominate at the ocean surface, the backscattered
response is characterized by Bragg scattering. Bragg scattering occurs when
the wavelength of the incidence electromagnetic radiation is in resonance with
the wavelength of the ocean facet [23][46]. In addition to Bragg scattering,
large-scale gravity waves on the ocean surface cause an in-plane tilt and out-
of-plane tilt of the facet, which adds a response in the cross polarized channels,

1. Incidence angles in the range of ~18°-50° [69]
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and alters the response in the copolarized channels [22]. The tilted Bragg model
accounts for this, and is therefore commonly used to model the backscattered
response when observing marine environments.

The radar backscatter from the ocean also varies as a function of incidence
angle, yielding an increasing signal for decreasing incidence angles. When
approaching large incidence angles, the backscatter may also be limited by
the system noise floor [69]. The incidence angle dependency is related to the
operational wavelength and polarization, in addition to the current environ-
mental conditions at the ocean surface. Figure 3.2b illustrates a scene from
Data Set 2 (which will be introduced later on in Chapter 4, along with the
sensor used) showing the averaged backscattered response as a function of
incidence angle. As the figure shows, the backscatter decreases as a function
of increasing incidence angle. The slight increase when approaching far range
is a result of approaching the system noise floor. In general, the most useful
incidence angles spans from 20° to 45° [34].
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Figure 3.2: Radar backscatter as a function of incidence angle for ocean surface
sensing. a) VV intensity image of marine oil spill, and b) average intensity
in dB as a function of incidence angle. The light blue lines represent the
profile for 100 azimuth pixels around the dashed white line in a), whereas
the black line represent the average of those profiles.
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3.2.2 Detectability of Oil Spills in SAR Images

The backscattered response from oil spills collected by SAR systems is complex
and dependent on several factors. This includes oil spill properties, e.g., dielec-
tric properties, viscosity, extent, and composition, environmental conditions,
e.g., wind, sea state, and temperature, and sensor properties, e.g., frequency,
resolution, coverage, and SNR. In general, two factors mainly provides the
contrast that allows for detectability of oil spills in SAR images, namely the
damping effect and reduction in the dielectric property (see Section (3.1.1)).
Typically, oil will spread out, forming a thin layer covering the ocean surface.
This will dampen the small-scale surface roughness, thereby smoothing the
ocean surface. This smoothing results in reduced backscatter compared to the
surrounding clean ocean [22], thus provides a contrast. In addition, the dielec-
tric property is found to change significantly when water is polluted by oil. If
the oil spill is relatively thick and/or the concentration of oil droplets within the
water column is relatively high, a reduction in the dielectric property occurs
resulting in less radar backscatter [56][72]. Oil spills will therefore appear as
dark regions in SAR images.

In general, literature regarding remote sensing of oil spills in the marine
environment primarily focuses on oil spill detection schemes (see e.g.,
[71[33][51]1[52]1[76]). Several automatic and semi-automatic oil spill detection
schemes have been established, with varying successes. False alarms are a
common issue, as so-called look-alikes often occur at the ocean surface. Look-
alikes is the term used to describe phenomena occurring at the ocean surface
that produces a backscattering response similar to oil spills. This includes
natural films, low wind, heavy rain, grease ice, etc. [36]. Until now, the research
has proceeded towards optimizing these automatic oil spill detection schemes.
In fact, literature investigating potential radar zones detection and evolving
nature of oil slicks is scarce. However, in this thesis, it is desired to move one
step further, and investigate if potential zones can be detected within oil spills
by using SAR instead of optical system, and if SAR measurements can be used
to quantify the fate and behavior of oil spills.
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3.2.3 Challanges and Limitations

Several challenges arise when using SAR systems for monitoring oil spills in
marine environments. The arguably most encountered problem with using
SAR for monitoring oil spills in marine environments is the challenge of dis-
tinguishing oil spills from look-alikes. Look-alikes are, as mentioned, other
natural phenomena with similar SAR signatures as oil spills. Hence, appearing
as dark patches on the sea surface. A number of classification schemes have
been developed for separating actual oil spills from look-alikes based upon the
shape, texture, edges, and contrast, along with the presence of natural slicks
in the vicinity, and SAR derived wind speed [7]. Also, a technique involving
log-cumuluants have been developed for separating biogenic slick from mineral
oil with success for low resolution (50 meters) SAR images [70]. This field of
study is still ongoing, as no perfect method have been found. In this thesis, the
risk of encountering look-alikes is minimal as the oil slicks under observation
are intentionally discharged, and thereby verified.

The environmental conditions also introduce limitations when using SAR for
oil spill monitoring. Especially wind constrains the opportunity of performing
reliable measurements, as it effectively influences the dynamics at the ocean
surface. Thus, the backscattered level and the visibility of oil spills and look-
alikes are also influenced [76]. The operational wavelength of a SAR system
determines the range of wind speeds that the instrument "tolerates". As the
wind increases, the contrast between oil spills and the surrounding water
decreases. In high wind, only thick regions of oil are visible [7]. Look-alikes
are often encountered in local low wind areas, where the lack of roughness
on the ocean surface produce a low backscattered response. Intuitively, higher
wind speeds causes a rougher ocean surface, thereby decreasing the possibility
of detecting look-alikes [3]. There is no universal upper limit agreed upon
regarding wind conditions for SAR imagery, but e.g., the Kongsberg Satellites
Services based in Tromsg operates with 15 m/s as an upper limit for their oil
spill detection report [3].
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3.2.4 Bonn Agreement Oil Appearance Code

The Bonn Agreement Oil Appearance Code is an international standard developed
to classify regions within oil spills in marine environments. Typically, five
distinct classes have been used to map oil spills based upon thickness and
volume. Table 3.1 outlines the different classes.

Classes Layer Thickness Interval (um) | Volume (liters of oil per km?)
Shine 0.04 t0 0.30 40 to 300

Rainbow 0.30 t0 5.0 300 to 5000

Metallic 5.0 to 50 5000 t0 50 000

Discontinuous True Color | 50 to 200 50 000 t0 200 000

True Color 200< 50 to 300

Table 3.1: Overview of the class labels for internal zoning within oil slicks established
in the Bonn Agreement Oil Appearance Code [49].

The names of the five categories are related to the visual appearance of oil
with the properties listed. Shine and rainbow often correspond the to thin,
outermost layers in oil spills, while the true color often appears in relatively
dense regions. Figure 3.3 shows two optical acquisitions of oil spills where
zones are labeled with respect to the Bonn Agreement Oil Appearance Code.
Recall that a part of the objective of this thesis is to inspect the possibility of
detecting similar radar zones in oil spills. Therefore, later on, a portion of the
within-slick segmentation scheme will be based on these five distinct categories.
Note that the number of zones detectable by using radar imagery might not
necessarily have to be the same as with optical systems.
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Figure 3.3: Optical acquisitions of marine oil spills with internal zoning labeled ac-
cording to the Bonn Agreement Oil Appearance Code. Photographies
are curtesy of NOFO (Bonn Agreement Aerial Surveillance data obtained
during NOFO Oil-On-Water exercise).



Dataset

In general, data for oil spill remote sensing scientific purposes is scarce. Since
oil spills in fact pose an environmental threat, it is difficult to obtain permission
for deliberate and controlled experiments. An exception is the annual Oil-On-
Water (OOW) exercise conducted by the Norwegian Clean Seas Association for
Operating Companies (NOFO). During these campaigns, several oil spills are
deliberately discharged with the solid purpose of training the preparedness for
oil spill recovery. Although the fundamental motivation behind these campaigns
is to test procedures and technology for oil spill recovery, it simultaneously
provides an unique opportunity for collecting data for remote sensing research
purposes. The work presented in this thesis is based on data collected during
the OOW exercise conducted in 2015. The upcoming sections introduces the
campaign itself before proceeding to the dedicated scientific experiments that
were embedded into the 2015 0OW campaign. The data used throughout this
thesis were obtained during these scientific experiments.
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4.1 The Oil-On-Water Campaign

NOFO is an organization for operators on the Norwegian continental shelf
specialized in reducing the environmental damage by efficient and robust oil
spill response. Its mandate is to "ensure that oil recovery preparedness is always
dimensioned in keeping with the needs and contingency plans of the operating
companies" [26]. To achieve such an optimal preparedness, they conduct several
exercises involving oil spill recovery under realistic conditions every year. The
OOW campaign is one of the few large-scale exercises involving several vessels,
aircrafts and representatives from the oil industry, research and development
companies, pollution authorities, the coast guard, the coastal administration
and research institutes [69]. To pose minimum damage and disturbance to the
surrounding environment, the operation takes place at the abandoned Frigg
field located in the North Sea (59° 59" N, 2° 27" E) (see figure 4.1) during the
part of the year when the presence of birds and marine life is minimal.

f
4°E

Figure 4.1: The annual OOW exercise is located at the abandoned Frigg field, marked
with a red square (figure from figure 6.1 in [69]).

The OOW exercise in 2015 was conducted over a four-day period from 8-11
of June. In total, NOFO had permission of releasing 130 tons of oil during
the campaign [44]. Multiple spills with different oil emulsion? and volume
were released spread over all days. Despite relatively high wind conditions, all
planned spills were conducted. In total, two data sets acquired on separate
dates during OOW 2015 by the same sensor are available for this thesis. The
following sections present the sensor technology, introduces the experimental
setups, and the data collection.

1. Dispersion of one liquid in another immiscible liquid. In this case, an oil/water mixture.
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4.2 Sensor

During the OOW 2015, several remote sensing systems were deployed to col-
lect measurements of the experiments conducted, including the well-known
Radarsat-2, RISAT-1, TerraSAR-X, ALOS-2, as well as the National Aeronautics
and Space Administration’s (NASA’s) FP L-band airborne Uninhabited Aerial
Vehicle Synthetic Aperture Radar (UAVSAR). The data provided for this thesis
was acquired by the latter sensor while mounted on a GulfStream-III aircraft.
Figure 4.2 shows the sensor platform setup.

(a) GulfStream-III aircraft. (b) uAavsAR mounted on the aircraft.

Figure 4.2: Photographies of the UAVSAR mounted on the GulfStream-III aircraft taken
by Camilla Brekke.

The UAVSAR system is unique as it provides high spatial resolution imagery
with a significantly low noise floor compared to other existing remote sensing
SAR systems. An exception might be the German Aerospace Center’s multi-
frequency (X-, C-, S-,L-, and P-band) FP F-SAR with even better spatial resolution,
and more or less equivalent NESZ (for L-band) [64]. The fact that the UAVSAR
sensor is airborne allows for frequent, repetitive acquisitions, thereby providing
high temporal resolution if needed. Important properties of the UAVSAR sensor
are listed in table 4.1. The UAVSAR is, as mentioned, an FP system resulting in
the Sinclair matrix (see Section 2.2.2) being collected. The reader is referred
to [27] and [45] for further reading regarding the sensor technology of the
UAVSAR.

Mode Polarization | Wavelength Incidence NESZ Resolution Swath Look
[em] angle [dB] (range X width direction
azimuth)
PoISAR HH, HV, VH, L-band 19.5° to 67.5° ~ -48 t0 -33 25mX1m 20 km Left
| i | | | |

Table 4.1: Overview of important properties of the UAVSAR sensor [27].
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4.3 Data Set 1 (NORSE2015)

The first data set provided for this thesis was collected during the Norwe-
gian Radar oil Spill Experiment 2015 (NORSE2015), conducted on June 10.
NORSE2015 was a joint experiment between the UiT The Arctic University
of Norway (UiT) and the Jet Propulsion Laboratory (JPL)/NASA performed
in collaboration with NOFO. The motivation behind the experiment was to
systematically collect multisensor- and multifrequency (X-, C-, and L-band)
SAR data of surface oil slicks with different known properties. A comparative
study between the sensors is presented in [74], which found the UAVSAR to
provide the best visual slick-sea contrast and slick detectability, along with
superior SNR. Before proceeding, note that the UAVSAR scenes illustrated
throughout this thesis have been geocoded with the reference system WGS84
and epsg:4326.

4.3.1 Experimental Setup

The experiment was designed to collect data for studying the polarization-
dependent electromagnetic signals and their relationship to varying oil-water
mixtures and dielectric properties, as well as the slicks evolving nature as a
function of time [22]. In total, four substances were released close in time
with a spatial separation of about 0.5 nautical miles. Three of these substances
was oil emulsions produced by NOFO with equal composition (Troll crude oil,
Oseberg crude oil, and One-Mul emulsifier) with varying volumetric fraction of
oil, namely 40% (E40), 60 % (E60), and 80% (E80). The fourth substance was
plant oil (P) simulating a natural biogenetic slick. Table 4.2 presents important
properties of the discharges.

Release  Time (UTC) Substance Volume

P 04:48 Plant oil: Radiagreen ebo 0.2m°

E40 04:59 Emulsion (40 % oil) 0.5 m?
300 L water + 100 L Troll + 100 L Oseberg + 0.2 L One-Mul

E60 05:15 Emulsion (60 % oil) o.5m?
200 L water + 150 L Troll + 150 L Oseberg + 0.2 L. One-Mul

E8o 05:30 Emulsion (80 % oil) 0.5 m3

100 L water + 200 L Troll + 200 L Oseberg + 0.2 L. One-Mul

Table 4.2: Properties of the four substances released during NORSE2015 [74].

The first substance released was the plant oil, followed by the oil emulsions
with increasing volumetric oil fraction. Following release, all four slicks were
left untouched on the ocean surface. The experiment was designed in a way
that provided consistency regarding the incidence angle by aligning the dis-
charges approximately parallel to the flight (azimuth) direction of the various
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spaceborne sensor platforms, and acquisitions were made when the slicks
were located in the middle of their swaths to maximize the SNR. The flight
path of the aircraft carrying the UAVSAR was then preprogrammed to col-
lect measurements accordingly. In total, 22 scenes were acquired in a parallel
ascending-descending (heading 7°/187°) manner during two flights as the air-
craft needed refueling midway. The first flight collected 16 scenes and lasted
from 05:32-08:53 UTC, while the second flight captured 6 scenes lasting from
11:45-13:18 UTC [74]. An exception is the last scene from the first flight, which
was capture with a heading of 142°. Figure 4.3 shows the incidence angle span
for each slick for the entire UAVSAR time series.
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Figure 4.3: Overview of the incidence angle range for each slick along the UAVSAR
time series. Figure adapted from figure 2 in [22].

Figure 4.4 shows the geocoded intensity images of the 22 scenes collected
during NORSE2015 with the time of acquisition labeled below its respective
scene. Labels with normal fonts correspond to scenes acquired while ascending,
whereas bold fonts indicate scenes acquired while descending. The cross-flight
acquisition captured at 08:53 UTC clearly stands out, and is indicated with a
* symbol. As the figure shows, the E8o was not released in time of the first
acquisition (05:32 UTC). Therefore, the slick labels are indicated in the second
scene where all the discharges was completed.
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05:32 UTC 05:46 UTC 05:59 UTC 06:13 UTC

06:26 UTC 06:39 UTC 06:52 UTC 07:06 UTC

07:17 UTC 07:31 UTC 07:44 UTC 07:57 UTC

08:11 UTC 08:24 UTC 08:37 UTC 08:53* UTC

11:45 UTC 12:00 UTC 12:14 UTC 12:29 UTC

13:03 UTC 13:18 UTC

Figure 4.4: Geocoded intensity images of the vv channel of the 22 scenes in acquired
during NORSE2015. The time of acquisition is labeled below the images,
where normal fonts correspond to scenes captured while ascending, bold
fonts correspond to scenes captured while descending, and * denotes the
cross-flight acquisition. The E8o is the northernmost slick, followed by the
E60, E40, and P, respectively. The bright white objects in the scenes are
nearby vessels. UAVSAR data are courtesy of NASA/JPL-Caltech.
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In addition, in situ data, including meteorological and oceanographic informa-
tion was collected from different platforms during the experiment. Multiple
measurements were acquired on board of the release vessel, while additional
information was captured by weather balloons, drifters and buoys released from
the same vessel. The drifters and buoys were deployed simultaneously with the
oils, while the weather balloons were released at different times throughout
the day [74]. The weather conditions were harsh during the experiment. While
discharging the oils, the vessel measured wind speeds of 9-11 m/s from a west-
southwest direction, a wave height of 2.5 m, and a temperature of 9 °C. Such
wind conditions are in the upper part of the range where oil spill detection is
considered possible [25][75].

Time Sensor Wind Speed Hs Temperature air
(UTO) Platform [m/s] (direction) [m] (sea surface)
04:30 Ship 12 2.5 10 °C
04:50 Ship 11 2.5 19 °C
05:34 Ship 9 (248°)

06:18 Ship 12 (260°)

06:52 Balloon 10.2°C
05:00-23:50  Drifters (9.9-10.2 °C)

Table 4.3: Measurements of the meteorological and oceanographic conditions during
NORSE2015 [74].

The primary focus for this data set is to investigate the evolving nature of
the oil slicks due to the number of acquisitions available along with the high
temporal resolution. The potential of detecting radar zones have already been
investigated in [42] for this data set, which found that the slicks showed
tendencies of exhibiting some zoning in the early stages of the releases, but few
or no zoning as time went by. Note that no direct within-slick segmentation was
performed in that investigation. Hence, an attempt in detecting radar zones
within these oil slicks is still carried.
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4.4 Data Set2

The second data set available for this thesis was acquired during the last day of
the OOW 2015 campaign, i.e., on June 11. Whereas NORSE2015 was rigorously
designed and planned over an extensive time period, the data collected during
this experiment became a bonus flight.

4.4.1 Experimental Setup

The exercise included the release of two mineral oil emulsions, both of the
type Oseberg Blend. The main motivation behind this experiment was to test
the performance of an oil spill recovery system. Thus, it was not in any way
facilitated the collection of remote sensing data, which is noticeable by the
lack of preferred in situ measurements and number of acquisitions.

The first spill was released at 08:06 UTC and was a test release of 6 m>. The
release of the second main spill ended at 08:53 UTC south of the test release
with a volume of 16 m>. Several acquisitions were made with the UAVSAR, but
only three acquisitions contained the actual discharges. Each of these three
acquisitions were made with different imaging geometry. The first acquisition
was made at 08:46 UTC with a heading of 187°. The second acquisition was
made at 09:03 UTC with a heading of 277°, while the last scene was captured at
09:18 UTC while heading 142°. The geocoded product of the intensity images of
the three acquisitions are shown in figure 4.5, where 4.5a, 4.5b, and 4.5c shows
the first, second and third acquisition, respectively. The images are oriented
with north pointing upward, such that the left, uppermost slick correspond to
the test release while the right, lowermost slick is the main slick. In addition,
the scenes are scaled equally to preserve their sizes relative to each other. Note
that the test release is somewhat split in all scenes. Throughout this thesis only
the larger (left) part of the test release will be studied.
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(a) (b) ()

Figure 4.5: Geocoded intensity images of the vv channel of the a) 08:46 UTC, b)
09:03 UTC, and c) 09:18 UTC acquisition included in Data Set 2. The
test release correspond to the leftmost slick, while the main slick is the
rightmost slick. The bright white objects correspond to nearby vessels.
The images are oriented with north pointing upward, and scaled equally
to preserve their size relative to each other. UAVSAR data are courtesy of
NASA/JPL-Caltech.

During the experiment, some in situ data was also collected. The wind speed
was measured to be 7-9 m/s between 07:00-11:00 UTC, causing a relatively
rough surface. In addition, the wind direction at 09:40 UTC was measured to
be 237°. Figure 4.6 shows the range of incidence angles which the oil slicks span
over for each acquisition. Note that the imaging geometry during the second
flight causes the slicks to span over a relatively narrow range of incidence
angles, compared to the other acquisitions.
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Figure 4.6: Overview of the incidence angle range for each slick in the scenes included
in Data Set 2. The test release is indicated with blue, while the main slick
is represented by red.
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4.5 Speckle Filtering

The intensity images of each channel obtained by an FP SAR system, assuming
reciprocity, can be represented as the diagonal of the covariance matrix (see
equation (2.8)), and can be referred to as Cy1, Cas, and C33 depending on
the channel of interest. These elements are computed from the single-look
complex (SLC) SAR data, and must therefore be filtered in order to reduce
speckle.

Speckle filtering is the most fundamental step within image processing of SLC
SAR data. Recall that a common way of reducing speckle is by multi-looking
(see Section 4.5), often referred to as smoothing in the spatial domain or
incoherent averaging in the frequency domain. For simplicity, a mean filter
with the proper dimension will be used throughout this thesis. The size of
the filter mask is crucial as it balances the trade-off between noise reduction
and preservation of spatial resolution. Recall from table 4.1 that the UAVSAR
instrument provides a slant range resolution 2.5 times greater than the azimuth
resolution (2.5 m X 1.0 m). Hence, in order to obtain a square resolution cell,
the filter mask should have the same aspect ratio. Previous studies have applied
a 15 x 60 filter mask size with success, corresponding to a ratio of 1:4 between
pixels in range and azimuth. As one of the main objectives of this thesis is
to investigate the potential of detecting zoning within the oil slicks, a high
spatial resolution is wanted, meaning that a small filter mask with the same
aspect ratio should be used. The vv-channel is in general less affected by noise
compared to the other polarization channels due its significant level above the
noise floor [2][34][69], making it even more favorable for the application in
this thesis.



Methodology

In this chapter, central aspects of the method used to investigate the objectives
outlined in Section (1.3) will be presented. The data sets available for this
thesis are unique as they include acquisitions of controlled discharges of oil
with different, known properties and in situ measurements. The airborne
UAVSAR instrument used for the data collection provides scenes that have
both high spatial- and temporal resolution with a significantly low noise floor.
This permits a detailed analysis of the internal variations within the slicks,
and their temporal development over time. The upcoming sections introduce
relevant multi-polarization SAR features, the strategies used for the within-
slick segmentation in search of the existence of potential radar zones, and the
geometric oil slick descriptors used to quantify the behavior of the oil slicks as
a function of time.

35



36 CHAPTER 5 / METHODOLOGY

5.1 Multi-Polarization SAR Features

Radar polarimetry has become an important domain within SAR remote sens-
ing for extracting information about the observed media. Consequently, by
rigorous research over time, many multi-polarization SAR features (polarimet-
ric features) have been defined and used to reveal valuable information for
different applications. Polarimetric features are basically parameters defined
by individual or combinations of polarimetric channels. Thus, the diversity of
polarimetric features is only constrained by imagination. Different polarimetric
features can be computed by e.g., decomposing the covariance- and coherency
matrix. Since this thesis considers oil in a marine environment, the selection
of polarimetric features is based on previous studies that have found certain
features valuable for this application [22].

5.1.1 The Damping Ratio

Oil dampens the capillary waves on the ocean surface, causing regions infested
by oil to return less radar backscatter. This dampening effect introduces the
damping ratio (DR). The DR is a common polarimetric feature that has been
extensively studied and tested for the application of monitoring oil in marine
environments (see e.g., [22][42][69][83]). It is defined as the ratio between
the backscattered response from clean, homogenous ocean and oil-infested
ocean, thereby quantifying the contrast. Mathematically it can be expressed as

[57]

<|S§;)cean)|2>

DR;j = 10log; | ——-——
(Ism2)

ije {HH,HV,VH,VV}  (5.1)

where SEJO.ZI) is the complex scattering coefficient from oil-infested ocean,
Sg.’cea") is the corresponding complex scattering coefficient from clean, ho-
mogenous ocean, and subscript i and j denotes the polarization on transmit

and receive, respectively.

The DR is an attractive polarimetric feature as it only requires single polar-
ization SAR data as input. However, the literature is divided regarding the
importance of the polarimetric architecture chosen when using the DR. Some
studies have suggested that the DR is independent of polarization architecture
[31][83], while others have found that the vv-channel provides an enhanced
contrast between oil-infested ocean and clean ocean [52][62]. Jones et al. in
[42] found only minor differences between the DRs sensitivity to the detection
of zoning within oil spills in SAR scenes as measured using the vv, HH, and
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HV modes. The obvious disadvantage with the DR is that it requires the user
to construct an area that simulates the backscattered response from a homoge-
nous, clean ocean area corresponding to the oil spill area. This introduces
uncertainties, as well as room for errors. Ideally, this region should completely
represent the radar backscatter with respect to the current wind and sea state,
along with spanning over the same incidence angles as the oil spill. In practice,
such a region is impossible to construct, but an accepted approximation is
to crop a homogenous, clean ocean region shifted in the azimuth direction,
spanning over the same incidence angles relative to the oil spill.

The DR has been found to increase with increasing oil viscosity and thickness,
and decrease as a function of increasing windspeed [12][29]. This implies
that it might potentially exist a correlation between the existence of zones
within oil spills and the behavior of this polarimetric feature. In addition, the
contrast has been reported to increase with incidence angle, but have been
found independent of the radar look-direction relative to wind for wind speeds
between 6-10 m/s [83]. However, Skrunes et al. in [73] found that the DR
was sensitive to the look-direction with respect to upwind/downwind, which
in fact also is demonstrated in this thesis. For mineral oil slicks, the DR has
been observed to increase with increasing wave number [32], causing the DR
to provide a larger response for shorter wavelengths [42].

In the pilot project of this thesis, the behavior of the copolarization difference
(PD) defined as [72]

PD = <|SVV|2> - <|SHH|2> . (5.2)

was also studied. The results obtained showed a somewhat similar trend in the
class structures obtained when using the DR and PD as input for the within-
slick segmentation. With that in mind, before proceeding to investigate both
the DR and PD, a correlation test between the two polarimetric features is
carried out based on Pearsons correlation coefficient. The correlation test can
be found in Appendix A, and provided a significant correlation (p > 0.85) for
the majority of the slicks in Data Set 2. Based on this observation, the PD will
not be included further in this thesis.
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5.1.2 Copolarization Power Ratio

In addition to the dampening effect, the dielectric properties of the ocean
surface might also potentially be altered when exposed to oil. Recall from
Section (3.2.2) that if the oil spill is relatively thick and/or if the concentration
of oil droplets within the water column is relatively high, a reduction in the
dielectric constant occurs resulting in less backscatter. With that in mind,
internal variations of the dielectric constant within oil slicks might potentially
correspond to variations in oil slick thickness.

In the tilted Bragg regime, the contribution from the ocean wave spectrum is
independent of the polarization. This causes ratios of polarimetric channels to
be a function of only surface slope, incidence angle and the dielectric constant
[57]. Consequently, such ratios are independent of the dampening effect of
capillary waves induced by oil. Additionally, since the long wavelength ocean
waves that govern the surface slope are largely unaffected by the presence of
oil or other surface contaminates [57], local variations with respect to ratios
of polarimetric channels are likely to correspond to local variations in the
dielectric constant. Hence, in order to investigate the internal variations within
oil slicks with respect to the dielectric properties, the copolarization power
ratio (PR) is introduced, and defined as [57]
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Minchew et al. in [57] investigated the theoretical PR for different concen-
trations of oil when using the tilted Bragg model, and found that a higher
concentration resulted in a higher PR. This implies that there might be rea-
sonable to believe that there exist a correlation between variations in PR and
potential oil slick zones. In addition, a relation between increasing SNR and
increasing PR was also established. The PR was also found to differ signifi-
cantly as a function of incidence angle, yielding a higher PR for lower incidence
angles.
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5.2 Segmentation Strategies

In the pursuit of identifying potential zones within oil spills in SAR scenes, some
choices must be made. Perhaps the most limiting choice of all is the strategy
that actually carries out the final segmentation within the oil slicks. Since the
existence of zones within oil slicks in SAR scenes is currently at a hypothetical
stage, i.e., not yet established, the number of zones and their respective labels
are unknown. Therefore, methods based on unsupervised machine learning
is essential. In this thesis, two unsupervised segmentation strategies will be
presented, giving rise to a comparative analysis. The first method involves a
simple k-means clustering algorithm where the number of predefined classes
is based on the framework established in the Bonn Agreement Oil Appearance
Code (recall Section (3.2.4)), thereby constraining the number of zones to five.
However, in the second approach, the model itself will identify the number
of classes. This will be done by using a GMM in combination with a model
selection criterion. The upcoming section introduces the concept behind both
strategies, and discusses their strengths and weaknesses.

5.2.1 K-means Clustering

K-means is an unsupervised clustering technique that partitions observations
into a predefined number of clusters based on spatial position in an [-dimensional
feature space. It is an attractive clustering technique due to its conceptual and
computational simplicity. The k-means clustering algorithm is in fact a special
case of the Generalized Hard Algorithmic Scheme (GHAS) [79]. The main idea
behind GHAS is to initialize a set of cluster representatives, corresponding to
the predefined number of clusters, and assign data points to clusters based on
distance measures. From the set of clusters formed, new cluster representatives
are computed and the data points are once again reassigned. This procedure
is iteratively repeated until the cluster representatives become stable, hence
the optimal clusters have been reached.

The cost function used for this two-step optimization problem is defined as
[79]

N K
J@,U) = > udxiyy), (5.4)

i=1 j=1

where u;; are hard membership coefficients, N is the number of observations
in the data set, K is the number of predefined clusters, and d(x;,¥;) is some
optional distance measure defined between data point x;, ...,xn and cluster
representatives ¥, ..., ¥k, in an [-dimensional feature space. Recall that data
points are assigned to the "most similar" cluster, such thatu;; = 1ifx; belongs to
¥, and O else. After the data points have been assign to the closest cluster, each
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cluster representative is updated, and data points are once again reassigned.
The new cluster representatives are computed by minimizing the cost function,
i.e., by solving the derivative of equation (5.4) in the following manner.
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The distance measure used for the k-means clustering scheme is the Euclidean
distance defined as [79]

dixi, ¥;) = llxi — ¢;11% (5.6)

where a data point is classified to a specific cluster if the Euclidean distance
is smallest for this particular cluster [79]. By inserting equation (5.6) into
equation (5.5), and solving with respect to fixed cluster representatives, i.e.,
individually for each j € [1, K], the expression becomes
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which basically states that the updated cluster representative is equal to the sum
of all data points within the cluster divided by the number of data points within
the cluster, i.e., the mean (centroid). For K predefined clusters, the algorithm
computes K means, hence the name. Keep in mind that this procedure is
iteratively repeated until the cluster representatives converges, i.e., becomes
stable.



5.2 / SEGMENTATION STRATEGIES A1

Figure 5.1 shows the step-by-step procedure for the k-means clustering algo-
rithm. In the illustration, circular data points correspond to cluster representa-
tives, while squares are data points. First and foremost, if K number of clusters
are predefined, the k-means algorithm initialize K centroids representing each
cluster. Further, data points are assigned to the class with the closest centroid.
After the data points have been assigned, the centroids are updated with re-
spect to the current data points within each cluster. The data points are again
reassigned to the class with the closest centroid. This procedure is repeated
until the optimal clusters have been reached.
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(a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4.

Figure 5.1: Illustration of the concept behind the k-means clustering method. a) k = 3
clusters are predefined, and k = 3 initial, arbitrary cluster representatives
are generated, b) clusters are formed based upon the position between
data points and the cluster representatives, c) new cluster representatives
are computed as the centroid/mean by minimizing the cost function, and
d) the optimal clusters have been reached by iteratively repeating step 2
& 3 until the cost function is minimized and stable. Figure from [82].

The k-means clustering algorithm has been extensively used for different ap-
plications and found quite robust in many cases [11][53]. Skrunes et al. in
[71] provided a systematic investigation of eight polarimetric features for the
specific purpose of discriminating between mineral oil slicks and monomolecu-
lar biogenetic films, and found that k-means performed at least as good as a
standard Wishart clustering of the covariance matrix. It is important to note
that the clustering technique does not take the underlying statistics of the
data into account. Therefore, if the data is assumed to consist of a mixture of
distributed classes, k-means might not be the correct approach. The obvious
weakness of the method is that the number of cluster must be predefined by
the user, and that a poor estimate might prevent the algorithm to unravel the
underlying clustering structure [79]. Also, the k-means clustering algorithm
search for spherical clusters that are equal in size, which is not necessarily true
in most cases. However, this segmentation strategy is still tested in this thesis to
see if any reasonable results can be obtained with such a simple method.
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5.2.2 Gaussian Mixture Model

The GMM is another unsupervised clustering technique that partitions the data
into clusters (components) based on fitting a set of sub-distributions into the
data. The model is a special case within the field of mixture models, where
the set of density components fitted are assumed to be Gaussian distributed.
Unlike the k-means algorithm, the GMM is a probabilistic model. However, the
GMM is an attractive option for unsupervised clustering as it is relatively fast,
simple to understand, computationally tractable, and built-in to many analysis
softwares [19][55].

The basic definition of a mixture model can be expressed as [79]

K
px) = > pxli)P;, (5.8)
j=1

where p(x|j) is the likelihood function of class j with respect to data point
x € {x1,x3,...,xN}, and Pj is the a priori probability of class j. Further,

ZPJ- =1, and /p(x|j)dx =1, (5.9)

j=1

meaning that the sum of the probabilities for each class must be equal to 1, and
that the total class-conditional probability of the data points in x belonging to
class j must sum to 1. Hence, by looking at equation (5.8), a mixture model
attempts to create a linear combination of K density functions to express the
overall density function p(x) of the data set.

The unknown parameters of the density functions being fit to p(x) can be
estimated by the expectation-maximization algorithm with respect to the max-
imum likelihood method. By assuming statistical independence between the
observations within the data, the likelihood function can be expressed as in
[79]

N
POGY) = plerxa, o xn; ) = | | plis ). (5.10)
k=1

where { represent the unknown parameters estimated from the random sam-
ples X € {x1,x3, ...,xn} drawn from p(x; {'). The maximum likelihood method
estimates the unknown parameters { with respect to maximizing the likelihood
function, that is [79]

N
$yy = arg max l_[ pxi; ). (5.11)
k=1
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The likelihood function is maximized when the gradient with respect to the un-
known parameters { is zero. For mathematical convenience, the log-likelihood
function is defined due to the monotonicity of the logarithmic function [79]

N
L@ =In| | plei; ). (5.12)
k=1

The estimated unknown parameters { can now be computed by solving the
following equation [79]

oLQ)

o7
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Lets consider the GMM. The log-likelihood function of a finite mixture model,
defined as in equation (5.8), can be expressed as

(5.13)

N K
LE) = ), > n(pxeljs§)P)), (5.14)
k=1 j=1
where
1 _ 1 -
pixelj;0) = WIZ]-I 12 exp (_E(xk —pj)TZj Yoo — 1)) (5.15)

for multivariate Gaussian distributions. Here, y; and ¥ ; represent the unknown
mean vector and covariance matrix of class j, respectively. The unknown pa-
rameters, y;, %; and P;, can now be iteratively estimated by the two-step
expectation-maximization algorithm. The first step involves estimating the
expectation of the log-likelihood function in equation (5.14), whereas the sec-
ond part maximizes the estimated log-likelihood function with respect to each
unknown parameter. The desired output of the expectation-maximization algo-
rithm is then K estimated Gaussian density functions with means, variances,
and prior probabilities fitted with respect to the data set. The full mathematical
derivation of the expectation-maximization algorithm is not within the scope of
this thesis, and the reader is referred to [55] and [79] for detailed information
concerning this topic. Further, data points are assigned on a probabilistic basis
to the Gaussian component (class) that it has the highest posterior probability
of belonging to.

Doulgeris in [19] presented a simple and extendable segmentation method for
polarimetric SAR images based on a GMM, which produced good, smooth, fast
and robust results for image segmentation and interpretation. Further, Espeseth
et al. in [22] applied the same method to extract the oil slick masks for their
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respective study with success. The advantage of using the GMM compared to the
k-means is that it can account for elliptical clusters, i.e., that clusters can have
different covariance structures, along with different cluster sizes. Similar to the
k-means clustering algorithm, the GMM also requires the number of clusters to
be predefined. Luckily, several methods have been developed in order to help
determine the number of classes that fits best to the distribution of the data.
The Bayesian Information Criterion (BIC) and the Akaike Information Criterion
(A1c) have both been extensively used within model selection [30][65][77].
The criteria are quite similar, as they are both based on the optimized negative
log-likelihood, but, in general, the BIC penalizes the number of estimated
parameters (i.e., the model complexity) harder then the AIC. Consequently,
the BIC is biased in favor of simpler models, i.e., models with less components,
and might therefore potentially underfit. On the contrary, the AIC criteria might
suggest an overfitted model [10][43].

If there in fact exist zones within oil slicks in SAR scenes, the number of
detectable zones is expected to be relatively low. Therefore, to prevent the
GMM to provide an overestimated model, the BIC score will be the determining
factor in this thesis. The BIC score for a fitted mixture model can be defined
as [55]

BIC = In(N)v — 21n(L), (5.16)

where [ is the maximized value of the likelihood function of the model, and
v is the number of free parameters estimated by the model, i.e., the mean,
variance, and prior probability of each Gaussian component. Another restriction
is introduced to avoid small classes relative to the size of the data set to be
included in the final segmentation. Due to speckle and transitions between
regions, the GMM is likely to detect regions of mixed pixels as separate classes
in SAR scenes. These "zones" are not of interest, and causes the GMM to obtain
models with redundant classes. To avoid this, a merging procedure with resepct
to a separability criterion is introduced. This criterion will be used to quantify
the separability between the classes provided by the model. The smaller class
are then merged with the larger regions that they are most similar to. Hence,
only the large prominent classes is outputted. The upcoming section introduces
the separability criterion used in this merging procedure.

5.2.3 The Jeffries and Matusita Separability Criterion

The Jeffries and Matusita (JM) separability criterion is a common between-
class separability measure within pattern recognition and feature selection.
The basic concept behind separability measures is to evaluate the proximity
between the distribution of different classes. The JM separability measure is
valid under the assumption of samples drawn from Gaussian distributions, and
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is therefore very well suited for the sake of measuring the separability between
the components obtained by the GMM.

If w; and w; are members of a set of classes i, j = 1,2, ..,K where i # j, then
the JM separability criterion is given as [16]

JM = 2(1 — e”%), (5.17)

where d;; is an arbitrary distance measure. In this thesis, the Bhattacharyya
distance measure will be used, defined as [4]

1Z; + %]

1 1
dij= =i —p) (S + )7y — i) + <o
j 4(111 H i) — 5 g WES

) . (5.18)
This separability measure outputs a value in the range between 0 and 2, where
0 indicates low separability (high similarity) and 2 indicates high separability
(low similarity). Figure 5.2 illustrates an example of how the JM will be used
in this thesis. Figure 5.2a shows an image containing three regions, i.e., two
large regions and one boundary region in between. In this case, it is of interest
to merge the boundary region (2) with either of the two larger regions (1 and
3). Figure 5.2b shows the distributions of each region, with the JM between
region 1 and 2, and between 2 and 3 indicated. The JM value between region
1 and 2 is higher then for region 2 and 3, i.e., region 2 and 3 are more similar
and should therefore be merged. Figure 5.2c shows the resulting structure after
merging region 2 and 3.

(o)

Figure 5.2: Example of using the JM separability criterion to merge boundary re-
gions with their most similar neighboring region. a) image with object
containing three regions, i.e., two large regions and one boundary region,
b) distribution of the regions with the JM separability indicated, and c)
resulting structure after merging.

Carvalho et al. in [9] studied the possibility of segmenting speckled SAR
images by using a statistical region growing procedure. This resulted in an
overestimated number of small homogenous regions, such that a hierarchical
merging procedure in combination with the Kolmogorov-Smirnov (KS) test
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was introduced to reduce the number of segments. Li and Chen in [50] used
k-means clustering to obtain a large number of clusters in SAR images, followed
by a merging procedure based on a similarity measure, a validity measure, and
a KS test, and found the method to produced clusters that compared favorable
to the actual features in the scenes. The motivation behind the suggested
merging procedure in this thesis is similar.

The flowchart below summarizes the most important steps for both segmenta-
tion strategies applied in this thesis. The oil slick masks are segmented with
the DR as input for both the k-means and GMM. The k-means segmentation
is fairly simple, where the output segments are sorted with respect to their
average DR, resulting in the class with the highest average DR to have the
largest index value. As for the GMM, the BIC score determines which model
that should be used, followed by the merging procedure and sorting before
the final segmentation is ready. Further, a comparative study between the
segmentations obtained from both strategies is conducted.

‘ il Slick Masks

Damping Ratio

/\

K-means Gaussian Mixture Model

Merging

—

[ Results

Figure 5.3: Flowchart illustrating the most important steps for the within-slick seg-
mentation strategies applied in this thesis.
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5.3 Oil Slick Features

Immediately after the oil is released into the ocean and continuing throughout
its lifetime, it is exposed to forcing from a number of external processes like
e.g., weathering, wind and ocean currents, that influence both the physical and
radiometric appearance of the slick. As the diversity of oils is rather large, and
the fact that their properties varies significantly, it is expected that different
oil slicks behave and develop individually. Consequently, it might potentially
be possible to recognize certain oil slicks if there exist knowledge about their
expected behavior. This is what the second part of this thesis focuses on.
It is wanted to examine if there exist certain numerical descriptors, i.e., oil
slick features, that are sensitive and/or explain the evolving nature of the
oil slicks under observation. These features will be computed with respect
to the segmented masks of the oil slicks, and will be studied over a series of
acquisitions in search of general trends. The upcoming section presents and
discusses each of the features selected.

5.3.1 Geometric Features

The features presented in this section are derived directly from the geometry
of the oil slick masks, and will be used to study the temporal development of
the physical shapes of the oil slicks under observation. Such geometric features
are often separated in two categories, namely contour-based and region-based
geometric shape description, whereas the first studies the periphery of regions,
while the latter includes the total region in the analysis. The geometric features
studied in this thesis include the area, perimeter, circularity ratio, and slick
complexity.

In image processing, the area is a region-based feature defined as the number
of pixels contained within a certain region of interest. This feature is simply

derived as
A= Z Z I(x,y), (5.19)
x oy

where I(x,y) is a binary image function, and x and y are connected column
and row pixels, respectively. For the purpose of analyzing oils in the marine
environment, this geometric feature is particularly useful to quantify slick
extent and its temporal development. This development is further controlled
by weathering processes such as spreading and emulsification, along with the
ambient environmental conditions. Therefore, by studying how this geometric
feature behaves as a function of time, it might be possible to say something about
e.g., the oil viscosity or the oils ability to emulsify (see Section (3.1.2)).
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The perimeter is a contour-based descriptor as it describes the extent of the
region boundary. It can be defined as [79]

N-1

P =" |lxier = xill + [lxn = xll, (5.20)

i=1
where x; for i = 1,2, ..., N are samples on the region boundary. It is difficult
to extract any valuable information when studying oil slicks from this feature
alone, but in combination with e.g., the area it might be useful. Oil slicks with
a small area and small perimeter often have compact, non-complex shapes,
whereas a corresponding small area with a large perimeter might indicate a
very complex shape. Further, these two geometric features can be combined to
define the circularity ratio and the slick complexity, derived as [6][35]

4T A
Re = —7 (5.21)
and =
C=—, .
a1 (5.22)
respectively.

The circularity ratio, R., provides an indication of how circular a region is,
where a value of 1 correspond to a perfectly circular region and a value of
~ /4 correspond to a square. Further, very low values are associated with
involuted regions and highly elongated shapes [68]. Jones et al. in [42] found,
when studying the same data set as in Data Set 1, that the plant oil rapidly
tended towards a more compact and circular shape compared to the emulsions.
This behavior is quite interesting, and expected to be detected when studying
the temporal development of the circularity ratio for this data set. Intuitively,
the slick complexity, C, quantifies the complexity of image regions, and is
expected to be relatively low for regions with non-complex shapes and high
for regions with complex shapes. For the purpose of analyzing oil slicks, this
geometric feature is particularly useful to detect fragmented oil slicks with
complex shapes, i.e., oil slicks with a lot of branches. By looking at equation
(5.21) and (5.22), the circularity ratio and the slick complexity are inversely
proportional, and are therefore expected to reveal similar trends to some
extent.

As already mentioned in the introductory chapter of this thesis, Skrunes in [68]
shed light on the potential of using the area, perimeter and circularity ratio
as geometric measures for discrimination between marine targets, whereas
Brekke in [6] included the area, perimeter and slick complexity for classification
of detected dark spots in SAR scenes. This thesis does not include the regional
descriptors for classification purposes, but attempts to find trends in SAR time
series with respect to the evolving nature of oil slicks.
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5.3.2 Geometric Moments

An alternative oil slick descriptor involves geometric moments. Due to the
various external impacts, the slicks are likely to translate, rotate and change in
size as a function of time. Therefore, the geometric features examined should
preferably be invariant under these geometric transformations. However, there
exist a set of moments especially developed for invariant pattern recognition.
Hu’s seven moments invariants are in fact invariant under the action of transla-
tion, rotation, and scaling [39]. The upcoming section derives these moment
invariants.

The seven moment invariants presented by Hu in 1962 originates from the two-
dimensional (p + q)th order raw moments of a density distribution function
p(x,y), which can be defined in terms of Riemann integrals as [39]

mpq - / / xpyqp(x’ y)dxdy’ P, q = 0, 1, 2, ceey (523)

where x and y are observations. This can further be adopted to the application
of image processing by discretizing, that is [35]

Mpg = Z Z xPylI(x,y), (5.24)
x oy

where m,, is the 2D (p + g)th geometric image moment. Geometric moments
are popular features within pattern recognition as they provide rich infor-
mation about the features within an image. The moments are unique as the
information they provide represents the image, and that the image itself can
be reconstructed by its moments of all orders [61]. For instance, for the Oth
geometric moment, equation (5.24) is equivalent to equation (5.19), thereby
providing the area.

The corresponding central moments are defined as [35]

S S

X 1 - _ Mo S ( (7o}
:qu = ; ;(X — x)P(y - y)ql(x, y), where x = rh_oo and j= rh_oo
(5.25)

The central moments does not change when regions within an image are
shifted, i.e., they are invariant under translation [39]. Further, the normalized
central moments can be defined as [79]

7 +q+2
Npq = %, where y = P—Z (5.26)
Foo

which are invariant to both translation and scaling. By combining these normal-
ized central moments, Hu defined seven moments invariant under translation,
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scaling and rotation. The seven moments are listed below and the reader is
referred to [39] for the full derivation.

$1 = n20 + No2 (5.27)
$2 = (120 — Mo2)* + 417, (5.28)
¢3 = (30 — 3712)° + (3721 — 7o3)’ (5-29)
¢4 = (130 + 112)* + (721 + No3)” (5.30)
¢s = (30 — 3m2)(M30 + M12) [(30 + 112)> = 3(721 + M03)°] (5.31)

+ (3721 — N03)(M21 + No3) [3(30 + M12)* — (21 + 103)*]

b6 = (1120 — M02) [(130 + 112)* — (921 + 1103)°] (5.32)
+ 4n11(n30 + 112)(N21 + Mo3)

¢7 = (3121 — 103)(1130 + M21) [(M30 + 721)* = 3(M21 + 103)*] (5.33)
+ (3112 — 130)(21 + M03) [3(n30 + 112)* — (21 + 103)*]

The 1st and 2nd moments (i.e., ¢ and ¢5) are a combination of second order
normalized central moments, while the remaining moments also include third
order normalized central moments. The first six moments are also invariant
to reflection, while the 7th moment changes sign. Note that the invariance
properties of the moments listed are only approximately true, hence the mo-
ments will change slightly under the different geometric transformations [35].
For the sake of the investigation presented in this thesis, Hu’s 1st invariant
planar moment will be used. This moment holds information about the elon-
gatedness of a region, and Brekke in [6] found this geometric descriptor useful
for separating dark features with thin, piecewise elongated shapes and other
arbitrary shapes. Further, Skrunes in [68] used the same geometric moment
for classifying marine targets, like e.g., ships and icebergs.
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Figure 5.4 illustrates the behavior of the circularity ratio, slick complexity, and
Hu’s 1st planar moment invariant as a function of varying geometric region
shape. The circularity ratio seems to detect the circular object perfectly by
giving it a value of 1, while decreasing as the geometric shape becomes more
elliptical and elongated. The slick complexity and Hu’s 1st planar moment
invariant provides a remarkably similar trend, and it will be interesting to
see how much these parameters correspond when studying more arbitrary
shapes.
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Figure 5.4: Behavior of the circularity ratio, slick complexity, and Hu’s 1st planar
moment invariant as a function of geometric shape.






Results and Discussions

This chapter presents the results obtained from the investigation conducted
based on the methodology outlined in chapter 5. The suggested segmentation
strategies are performed on both data sets, and an effort in detecting potential
radar zones is made. Further, the selected geometric region descriptors are
computed across all scenes for both data sets, and their temporal development
are analyzed for each slick. The first part of this chapter focuses on the radar
zone detection scheme, while the second part studies the evolving nature of
the slicks. Keep in mind that this thesis works with already detected oil slicks.
Hence, no detailed elaboration will be given in exactly how the initial oil slick
masks were obtained, besides that it was semi-automatically extracted using
the DR as input. In summary, the oil slick mask for the time series acquired
during NORSE2015 was extracted using a modified GMM, further elaborated
in [18] and [19], whereas a k-means clustering algorithm was used to obtain
the masks of the oil slicks in Data Set 2.

53
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6.1 Results from the Pilot Study

The pilot project of this thesis focused on investigating properties within an
already detected oil spill by an FP SAR system. The sole objective was to
examine the possibility of detecting potential zones within oil spills in scenes
captured by such a radar system. Two approaches were presented in pursuing
evidence backing this hypothesis. The first approach included a progressive
morphological segmentation strategy used to inspect the gradient or rate at
which the selected polarimetric features, i.e., the DR, PD and PR (see Section
(5.1)), changed within the oil slick under observation. The second approach
involved a direct within-slick segmentation scheme, providing the basis for
a rigorous analysis of how the selected polarimetric features behaved with
respect to the segments obtained. Only one scene was studied in the pilot,
namely the main slick in the last acquisition in Data Set 2 (see figure 4.5¢).
The study found tendencies of zoning by studying the internal behavior of the
polarimetric features within the slick and the contrast to the surrounding clean
ocean. Further, it was insinuated that the number of detectable zones might
not necessarily have to correspond to the framework established by optical
systems, i.e., the Bonn Agreement Oil Appearance Code using five main class
labels.

With respect to detecting potential radar zones, the main extension to the
investigation presented in the pilot project is that an additional segmentation
strategy is added. This enables a comparative study to be conducted, causing
the results to be more credible. The separability measure will not be used
to investigate the contrast to the surrounding clean ocean, but more as a
processing tool in a merging procedure (recall section 5.2.3). The investigation
is also carried out on multiple oil slicks, such that the oil slick zoning detection
scheme is tested for various situations. In addition, since the data sets available
for this thesis have a relatively high temporal resolution, the evolving nature
of the slicks are also studied.



©.2 / DETECTION OF POTENTIAL RADAR ZONES 55

6.2 Detection of Potential Radar Zones

In this section, the results obtained when investigating the existence of potential
radar zones in SAR scenes are presented. The within-slick segmentations
are carried out on both data sets with the DR as input, and a comparative
analysis between the final segmentations obtained using the k-means clustering
algorithm and the GMM is conducted. Most importantly, the class structures
obtained are rigorously evaluated with respect to the ambient environmental
conditions, the behavior of the polarimetric features outlined in Section (5.1)
and weathering processes, to see if the segmentations potentially reflects the
expected internal variations within the slicks. Keep in mind that the k-means is
set to search for five classes, while the GMM is set to fit models with a maximum
of ten components, as it is unrealistic that oil will contain more zones.

Before the segmentations are carried out, each scene is filtered to reduce
speckle. Intuitively, the segmentation will depend on the degree of filtering
as it directly alters the spatial resolution. For Data Set 1, i.e., the scenes from
NORSE2015, a 9 X 36 filter mask is used as these scenes contain relatively small
slicks, making them quite sensitive to smoothing. As the scenes in Data Set 2
contained relatively larger slicks, we allow a 15 X 60 filter mask to be used for
more speckle reduction. An illustration of the segmentation as a function of
various filter mask sizes can be viewed in Appendix B for the second acquisition
of the main slick in Data Set 2.

Before proceeding, recall some of the general behaviors of oil slicks and potential
indicators of oil slick zoning:

* Qil accumulates in the downwind direction where viscous effects domi-
nate the dynamics. Consequently, oil slicks are often experienced to have
a relatively well-defined leading edge in the downwind direction, along
with a streaky trailing edge in the upwind end of the slick (see Section

(3.1.3)).

* Windrows caused by Langmuir circulation are typically observed in the
upwind end of oil slicks where the layer of oil is relatively thin (see
Section (3.1.3)).

* Oil dampens the capillary waves and decreases the effective dielectric
constant on the ocean surface, causing less backscatter to return from
oil-infested regions. Hence, the DR is expected to be higher in such oil-
infested regions compared to clean ocean, and further increase with oil
viscosity and thickness (see Section (5.1.1)). The PR is also expected
to be higher in these oil-infested regions compared to clean ocean, and
further increase with oil thickness or concentration (see Section (5.1.2)).
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6.2.1 Results from Data Set 1

This section presents the results concerning the within-slick segmentations
of the SAR scenes included in the extensive times series collected during
NORSE2015. Recall that the scientific experiment giving rise to this data set
involved the release of three mineral oil emulsions with varying oil fraction and
a plant oil simulating a biogenetic slick, i.e., E4o0, E60, E80 and P, respectively.
Also, keep in mind the low volume of the releases, i.e., 0.5 m® for the emulsions
and 0.2 m® for the plant oil, and that the experiment was conducted during
relatively high wind (9-11 m/s) coming from a west-southwest direction.

As already mentioned, Jones et al. in [42] also investigated the potential of
detecting radar zones by visually inspecting the internal variations of the DR
within the oil slicks for this particular data set, and found that zones of thicker oil
was identifiable using the Vv, HV or HH intensities in the mineral oil emulsions.
These zones were only observable in the initial phase after release, and was
claimed to most likely be a result of alteration of the surface wave spectrum with
different slick thicknesses and not a change in the dielectric properties. It was
also concluded that a higher oil content emulsion maintained zoning longest.
However, no apparent zoning was observed for the plant oil, potentially caused
by the vertical mixing into the water column being so dominant as modeled
in [41]. As this data set include 22 acquisitions, only a few scenes will be
illustrated to shed light on the overall trend observed, namely the second
acquisition captured at 05:46 UTC and the fifteenth acquisition captured at
08:37 UTC. This section discusses the results obtained for the second acquisition
first, before proceeding to the latter.

Figure 6.1 and 6.2 shows the k-means and GMM segmentation of the four slicks
in the second acquisition, respectively. Note that the effect of the merging pro-
cedure is also illustrated for the GMM, where figure 6.2a is the segmentation
before, and figure 6.2b represents the final segmentation after the merging
procedure is implemented. As can be observed, three of the slicks obtain fewer
classes, while preserving much of the same class structure. This demonstrate
that the merging procedure works for its intended purpose. The overall im-
pression is that the mineral oil emulsions obtain class structures that might
potentially correspond to actual zoning. All the emulsions have a very defined
class structure, with a region of relatively high DR located centrally in the slicks,
surrounded by continuous region(s) of lower DR. As the oil slicks in this ac-
quisition are relatively fresh, external sources have yet to make any significant
impact. It is therefore expected that the denser regions are still located in these
central parts, as the oil is still spreading out on the ocean surface. The class
structure obtained for the plant oil is more random and discontinuous, and it
is hard to see any apparent pattern indicating the presence of zoning.
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In general, the GMM provide fewer classes compared to the k-means segmenta-
tion, while providing much of the same class structure. This might indicate that
the k-means segmentation includes some redundant classes, which is likely a
result of the k-means consistently preset to fit five classes. This claim is further
supported by studying the behavior of the DR for the k-means segmentation
shown in figure 6.1b. The increase from class to class is suspiciously steady, and
the standard deviation is more or less equal for all classes. This illustrates the
effect of using k-means, which basically forces the fit of five clusters covering
approximately the same range. However, it is interesting to see how separable
the oil emulsions and the plant oil are. The emulsions are remarkably gathered,
with an overall trend of higher DR in each class compared to the plant oil. This
is most likely a result of the more significant vertical mixing of oil into the water
column for the plant oil, causing less damping on the ocean surface, compared
to the emulsions as observed in [41]. This further demonstrates the value
of inspecting the internal structures of oil slicks, as a very clear separability
between the emulsions and the plant oil can be observed. Proceeding to study
the DR for the classes obtained with respect to the GMM, the increases are
more significant between classes, and the standard deviation is more varied.
As this segmentation strategy in general is less constrained, it is more likely
that the classes obtained are more representative.
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Figure 6.1: K-means segmentation of the slicks in the acquisition captured at 05:46
UTC. The segmentations of each slick is illustrated in a), whereas b) and
¢) shows the behavior of the DR and PR as a function of class index,
respectively. The errorbars plotted shows the mean + 1 standard deviation
of the DR/PR, and the dashed line represent the average DR/PR for clean,
homogenous ocean.
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The behavior of the PR, shown in figure 6.1c and 6.2d for the k-means and GMM
segmentation, respectively, does not seem to provide any clear indications of the
presence of zoning within the slicks. Here, the errorbars represents the mean +
1 standard deviation of the DR and PR as a function of class index. Still, some
trends are observed. Itis interesting to see that the PR in general is higher for the
classes in the oil emulsion with the largest oil fraction, i.e., the E8o, and further
decreases as a function of decreasing oil fraction. Hence, there is seemingly a
correlation between increasing oil fraction and increasing PR. Another possible
explanation of this behavior might be related to the PR sensitivity to the slicks
being located at slightly different incidence angles. However, the value of
investigating within the slicks is yet again demonstrated.
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Figure 6.2: The corresponding GMM segmentation a) before, and b) after applying
the merging procedure for the slicks in the acquisition captured at 05:46
UTC. ¢) and d) shows the behavior of the DR and PR as a function of class
index obtained in b). The errorbars plotted shows the mean + 1 standard
deviation of the DR/PR, whereas the dashed line represent the average
DR/PR for clean, homogenous ocean.
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The k-means and GMM segmentation of the slicks in the scene acquired at
08:37 UTC, i.e., ~ 3 hours later, is shown in figure 6.3 and 6.4, respectively.
As the figures shows, the segmentations are quite chaotic, with no apparent
structure that might indicate the presence of zoning, especially for the E4o,
E60 and P. As for this scene, the classes obtained within the slicks are both
discontinuous and fragmented, potentially caused by the slicks exposure to
wind and weathering processes. The only slick that might potentially show
tendencies of actual zoning is the E8o. Here, there seem to exist some region
of higher DR stretching out centrally in the slick, especially when studying
the GMM segmentation. The impression that this zone in fact correspond to a
thicker region of oil is further enhanced when studying the plots showing the
behavior of the DR for both segmentations shown in figure 6.3b and 6.4b. Here,
this class is clearly indicated with a significant increase in DR. Further, the PR
also shows a significant decrease in standard deviation for this particular class
compared to the other classes. Hence, this indicate that there might still be
at least one zone visible in this slick. This actually correspond well with the
findings in [42], where it was found that some zoning was still apparent in the
E8o ~ 3 hours after release. Again, the relation between increasing oil fraction
and increasing PR is observed.
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Figure 6.3: Overview of the k-means segmentation on the slicks in 08:37 UTC ac-
quisition. The segmentations of each slick is illustrated in a), whereas b)
and c) shows the behavior of the DR and PR as a function of class index,
respectively. The errorbars plotted shows the mean + 1 standard deviation
of the DR/PR, and the dashed line represent the average DR/PR for clean
ocean.
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Figure 6.4: Overview of the GMM segmentation a) after applying the merging pro-
cedure for the slicks in the 08:37 UTC acquisition. b) and c) shows the
behavior of the DR and PR as a function of class index obtained in a). The
errorbars plotted shows the mean =+ 1 standard deviation of the DR/PR,
and the dashed line represent the average DR/PR for clean ocean.

To further evaluate the class structures obtained, and either back up or reject
the claims made in the previous discussions, a fake zone detection scheme is
established. The motivation behind introducing this scheme is to see how dis-
tinctive the within-slick segmentations are compared to a segmentation of the
surrounding clean ocean. Hence, this fake zone detection scheme is based on
segmenting a clean, homogenous ocean in the same scene, preferably covering
an area of the same order, while spanning over the same incidence angles, for
visual comparison. Figure 6.5 illustrates this for the second acquisition captured
at 05:46 UTC, where figure 6.5a shows the DR image with a cropped section
representing the area segmented by k-means and GMM in figure 6.5b and 6.5c¢,
respectively. In this image, the plant oil is the rightmost slick, followed by the
emulsions with increasing oil fraction towards the left. Figure 6.6 illustrates the
same for the 08:37 UTC acquisition, but the slicks are now mirrored, i.e., the
plant oil is the leftmost slick, due to the 180° difference in heading. Considering
the second acquisition, the clean ocean segmentation does not resemble the
within-slick segmentations. In fact, the presence of zoning in the oil emulsions,
and lack of zoning for the plant oil, is actually apparent just by studying the DR
images. As for the acquisition captured at 08:37 UTC, the dissimilarity between
the within-slick segmentations and clean ocean segmentation is not as obvious.
Here, the DR image does not seem to provide any solid indication of zoning,
excluding some darker regions within the E8o.
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Figure 6.5: Result of segmenting clean ocean in the acquisition captured at 05:46 UTC.
a) shows the DR image with a cropped section covering clean, homogenous
ocean segmented using b) k-means, and ¢) GMM.
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Figure 6.6: Result of segmenting clean ocean in the acquisition captured at 08:37 UTC.
a) shows the DR image with a cropped section covering clean, homogenous
ocean segmented using b) k-means, and ¢) GMM.
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In summary, with respect to the findings and discussion presented above, all
the oil emulsions are potentially found to exhibit zoning in the earlier stages
after release, exemplified by the results for the second acquisition. Further, the
presence of zoning maintained longest for the emulsion with the highest oil
fraction, i.e., the E8o, where tendencies of zoning was still apparent ~ 3 hours
following release. In general, the resulting segmentations of the plant oil did
not at any time seem to provide any clear indication of zoning.

The PR did, in some cases, experience a slight decrease in standard deviation
for the presumably thickest region of oil, i.e., the zones with the highest DR.
Additionally, an increasing trend in PR with increasing oil fraction was observed
for the classes obtained for the mineral oil emulsions in both acquisitions. This
observation shed light on the potential value of proceeding to investigate
the properties within slicks after detection. Further, the DR showed clear
trends, and extensive increases between classes that most likely corresponds
to actual internal variations within the slicks. Therefore, the zoning observed
is most likely a result of variations in damping of the capillary waves, further
correlated to oil thickness, and not a result of reduction in the dielectric constant.
Additionally, a reasonable separability was observed between the oil emulsions
and plant oil in the first acquisition when zoning was still apparent. However,
this trend was not observable in the 08:37 UTC acquisition.

The fake zone detection scheme supported the statement made about the slicks
in the 05:46 UTC acquisition actually exhibiting zones, as the segmentation
obtained for clean ocean deviated a lot from the within-slick segmentations.
It also supported the claim saying that the E4o, E60 and P did not exhibit
zoning in the 08:37 UTC acquisition, as there was a slight similarity between
the random patterns observed in the segmentation of clean ocean and within
the slicks.
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6.2.2 Results from Data Set 2

This section presents the within-slick segmentation of the SAR scenes included
in Data Set 2. The scientific experiment giving rise to this data set involved the
release of two mineral oil emulsions with significantly larger volume (6 m® and
16 m? for the test release and main slick, respectively) compared to NORSE2015
(see Section 4.4), and was conducted during calmer wind conditions. Hence,
there might be a higher chance of detecting potential zoning within the oil
slicks in these scenes.

The k-means and GMM segmentation of the test release and main slick are
shown in figure 6.7 and 6.10, respectively. The figures are structured in columns,
with the resulting k-means segmentation shown to the left and the correspond-
ing GMM segmentation shown to the right. The slicks are oriented with north
pointing upward, and scaled equally to preserve their sizes relative to each
other. Also, the ambient wind direction is indicated by the blue arrow, and the
flight direction (FD) by the green arrow for each acquisition. The behavior of
the DR and PR as a function of classes in the segmentations obtained using
k-means and the GMM is shown in figure 6.8 and 6.11 for the test release and
main slick, respectively. Here, the errorbars represents the mean + 1 standard
deviation of the DR and PR as a function of class index. In these plots, informa-
tion with respect to the DR is colored with blue, while the PR is represented
by orange. The errorbars with a full line and circular marker represent the
classes obtained by segmenting using k-means, whereas the dashed errorbars
with a star marker correspond to the segmentation obtained by the GMM. Ad-
ditionally, a horizontal line plotted in blue and orange represents the average
DR and PR for clean, homogenous ocean, respectively. Again, a segmentation
of clean, homogenous ocean is provided for visual comparison in figure 6.12,
6.13 and 6.14 for the first, second and last acquisition, respectively. This section
starts by presenting the results obtained for the test release, before proceeding
to the main slick.

The immediate impression when studying the figures is that both segmentation
strategies seem to provide similar class structures for the majority of the slicks,
excluding the resulting segmentation of the very first acquisition of the test
release (see figure 6.7a and 6.7b). For this particular scene, it is difficult to draw
any comparison between the two segmentations as the GMM segmentation
provides one major class surrounded by two relatively small regions, whereas
the k-means segmentation provides a more detailed structure. This seemingly
more detailed structure is most likely a result of the k-means being forced
to fit five clusters, thereby chopping the distribution studied into five classes
spanning over the same range. Hence, as already mentioned, as the GMM is
less constrained it might be more representative. Figure 6.8a shows that the
average DR of the classes are large compared to the average DR of clean ocean,
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and that the DR increases from class to class for both segmentations. However,
this between-class increase is not that significant compared to segmentations
discussed later on. As for the PR, it is hard to observe any indications of zoning
for this slick in this scene.

Proceeding to the segmentation of the second scene for the test release, shown
in figure 6.7c and 6.7d, both segmentation strategies seem to be fairly in agree-
ment on the class structure. The results are quite interesting, as it somewhat
resembles something that could be expected with respect to the prevailing
wind conditions. There seem to exist a zone of higher DR located centrally,
shifted towards the downwind edge of the slick, with fragmenting tendencies
in the upwind end. This potentially denser zone of oil is further surrounded by
larger, continuous zones of oil with lower average DR, i.e., potentially zones
with thinner oil. When studying the behavior of the DR and PR with respect to
each class, shown in figure 6.8Db, it is clear that the obtained classes are quite
distinctive. The average DR within the classes experience a moderate increase
from class to class, while preserving a relatively low standard deviation. In
addition, the PR also experience a slight increase as a function of increasing
class index, with a fairly stable standard deviation for each class.

Moving on to the last acquisition, the test release has changed quite significantly
over a period of only 15 minutes. Now, the slick is starting to become quite
elongated and fragmented as shown in figure 6.7e and 6.7f. Again, the two
segmentation strategies provide very similar class structures, but the GMM has
fewer classes. As already discussed, this might indicate that there exist some
redundant classes in the k-means segmentation induced by the constraint of
consistently seeking five classes. The potentially denser region is still located
towards the downwind edge of the slick, while the majority of the potentially
thinnest region of oil is located in the upwind end of the slick. This is good, as
it shows correlation to the segmentation in the previous scene. The behavior of
the DR and PR with respect to each class for both strategies are plotted in figure
6.8c. This time, the DR increases more significantly between the classes, while
the PR also shows an increasing trend. This increasing trend is more prominent
for the GMM segmentation, which might support the claim of the k-means
segmentation having redundant classes. It is interesting that the average PR
of the presumably densest zone stands out so clearly, at least with respect to
the k-means segmentation.
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Figure 6.7: Overview of the k-means and GMM segmentation of the test release for
the acquisitions in Data Set 2 after filtering with a 15 X 60 filter mask. The
indices on the colorbar shows the colorcoding of the classes, along with
the number of classes found by the GMM. Additionally, the images are
scaled equally to preserve their sizes relative to each other, and oriented
with north point up. The wind direction is indicated by the blue arrow in
a) and apply to all scenes, whereas the flight direction (FD) is indicated
by the green arrow.
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Figure 6.8:

Overview of the behavior of the DR and PR as a function of segmentation
provided by the k-means and GMM for a) the first acquisition, b) the
second acquisition, and c) the third acquisition of the test release in Data
Set 2. Information with resect to the DR is colored with blue, while the
PR is represented by orange. The errorbars, representing the mean + 1
standard deviation, with a full line and circular marker correspond the
segmentation obtained by k-means, whereas the dashed errorbars with a
star marker correspond to the segmentation obtained by the GMM.
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The k-means and GMM segmentation of the main slick is shown in figure
6.10, with the behavior of the DR and PR for the classes obtained plotted in
figure 6.11. Recall that the release of the main slick ended at 08:53 UTGC, i.e.,
after the first acquisition was captured. Hence, the slick is relatively small
in the first scene compared to the two following acquisitions. Despite this,
the k-means and GMM provide quite similar class structures for this scene,
which resembles something that is expected, with a thicker layer of oil in the
center and a potential sheen around the edges. Figure 6.11a shows the behavior
of the DR and PR for this scene. The DR increases steadily for the k-means
segmentation. Intuitively, the GMM segmentation with one less class, shows a
slightly larger increase from class to class. The PR also seem to show a slight
increase, especially between class index 3 and 4, and 2 and 3 for the k-means
and GMM segmentation, respectively. Additionally, the standard deviation of
the PR decrease slightly for the potentially thickest regions of oil, i.e., the region
with the highest DR in both segmentations.

Proceeding to the next acquisition, captured 17 minutes later, it is clear that the
slick extent and shape has changed significantly. The resulting segmentation
of the oil slick mask is shown in figure 6.10c and 6.10d using k-means and the
GMM, respectively. Again, both segmentation strategies seem to provide very
similar class structures that really resembles the expected internal appearance
of the oil slick. The zone with highest DR is pushed towards a very well-defined
leading edge in the downwind direction, with regions of thinner oil located in
the upwind end of the slick. Such a class structure is expected as oil in general
accumulates in the downwind direction leaving behind thinner regions of oil.
Further, the behavior of the DR and PR for the different classes obtained is
shown in figure 6.11b. The average DR increases quite significantly from the,
presumingly, thinnest region of oil to the thickest region of oil. However, in
the HH channel for this particular scene, the main slick is contaminated by
the signal of a nearby vessel, illustrated in figure 6.9. Hence, since the PR is
a function of the HH-channel, the PR will not be discussed for this particular
slick in this scene.
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Figure 6.9: Intensity image of the HH channel for the 09:03 UTC acquisition in Data
Set 2. The red ring marks the smeared out signal from the vessels
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The obtained segmentations of the main slick in the final acquisition correlates
very well with the segmentation provided for the previous scene discussed
above, and is shown in figure 6.10e and 6.10f. The slick continues to increase in
size while keeping much of the same shape. The obtained class structures for
both segmentation strategies are more or less identical to the naked eye. The
slick has, still, a very well-defined leading edge in the downwind direction, with
a zone of relatively high average DR accumulated towards it. Consequently,
regions of thinner oil are left behind, just as seen in the previous segmenta-
tion. The main difference between the segmentation obtained for this scene
compared to the previous scene, is that the slick now shows tendencies of
being fragmented, both in the outer edge and internally, in the upwind end
of the slick. This is potentially caused by Langmuir circulation, which tends
to cause such a feathering effect in the upwind end of the slick (see Section

(3.1.3)).

By studying the behavior of the polarimetric features with respect to the classes
obtained, shown in figure 6.11c, it is apparent that the classes might potentially
correspond to actual internal variations within the slick. The DR experience a
significant increase as a function of increasing class index, while preserving a
relatively low standard deviation. The average PR also seem to increase more
for the classes obtained in this segmentation compared to all slicks studied so
far in this thesis, while preserving a relatively constant standard deviation. This
increasing trend is interesting, as this polarimetric feature is independent of the
segmentation and sorting of the classes. In fact, this might indicate that the class
structures obtained represent zones of higher damping and a reduction in the
dielectric constant. Hence, this observation supports the hypothesis of zoning
being detectable within oil slicks in SAR scenes. In summation, as the class
structure correlates so well with the segmentation of the previous scene, along
with being structured as expected with respect to the prevailing wind conditions,
and the fact that the DR and the PR experience such increases between the
classes, it is reasonable to believe that the segmentations potentially reflect the
internal structure of the oil slick with respect to oil thickness.
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Figure 6.10: Overview of the k-means and GMM segmentation of the main slick in
Data Set 2 after filtering with a 15 X 60 filter mask. The indices on the
colorbar shows the colorcoding of the classes, along with the number of
classes found by the GMM. Additionally, the images are scaled equally to
preserve their sizes relative to each other, and oriented with north point
up. The wind direction is indicated by the blue arrow in a) and apply
to all scenes, whereas the flight direction (FD) is indicated by the green
arrow.
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Figure 6.11: Overview of the behavior of the DR and PR as a function of segmentation

provided by the k-means and GMM for a) the first acquisition, b) the
second acquisition, and ¢) the third acquisition of the main slick in Data
Set 2. Information with resect to the DR is colored with blue, while the
PR is represented by orange.The errorbars, representing the mean =+ 1
standard deviation, with a full line and circular marker correspond the
segmentation obtained by k-means, whereas the dashed errorbars with
a star marker correspond to the segmentation obtained by the GMM.
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Segmentation of clean, homogenous ocean is yet again provided in figure 6.12,
6.13 and 6.14 for the first, second and last acquisition included in this data set,
respectively. Considering the first scene, figure 6.12a shows the DR image with
a cropped out section segmented by k-means in figure 6.12b and the GMM
in figure 6.12c. Figure 6.13 and 6.14 are structured equally, and illustrates the
same for the second and last acquisition, respectively. In general, none of the
segmented water regions resembles any of the within-slick segmentations in
their corresponding scenes. This support the claims made about the within-
slick segmentations of the slicks actually representing internal variations of
thickness.
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Figure 6.12: Result of segmenting clean, homogenous ocean using k-means and GMM
in the first acquisition (08:46 UTC). a) shows the DR image with a
cropped section segmented by using b) k-means, and ¢) GMM.
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Figure 6.13: Result of segmenting clean, homogenous ocean using k-means and GMM
in the second acquisition (09:03 UTC). a) shows the DR image with a
cropped section segmented by using b) k-means, and ¢) GMM.
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Figure 6.14: Result of segmenting clean, homogenous ocean using k-means and GMM
in the last acquisition (09:18 UTC). a) shows the DR image with a cropped
section segmented by using b) k-means, and ¢) GMM.
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In summary; it is reason to believe that the majority of class structures obtained
from the within-slick segmentations of the oil slicks discussed in this section
might reflect actual internal variations within the slicks, excluding the very
first acquisition of the test release (see figure 6.7a and 6.7b). The k-means
and GMM segmentation strategy are both fairly in agreement about the class
structures, although the k-means in most cases provides more classes (due
to the constrain of seeking five classes). In general, the DR increases with
increasing class index, and the increase is observed to be generally higher
in the main slick compared to the test release. This is most likely a result of
the volumetric differences between the slicks, causing the larger main slick to
produce more damping on the ocean surface. However, the PR only seem to
react on the, assumed to be, densest zone of oil by either a relatively significant
increase in mean value or by a decrease in standard deviation. Especially the
segmentation of the second and last acquisition of the main slick provided clear
and correlated class structures. Here, the DR varies from ~2 to 8 dB between the
outer, thinnest region and the inner, densest region. For the second acquisition
of the main slick, the standard deviation becomes much lower for the densest
region, whereas the PR shows a steady increase between the classes for the
segmentation of the main slick in the last acquisition. Consequently, the classes
obtained for this last segmentation of the main slick might reflect zones with
both a higher damping and reduced dielectric properties.
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6.3 Studying the Evolving Nature of the Slicks

The upcoming section presents the results obtained when studying the temporal
development of the various geometric features selected (see Section (5.3)) for
the slicks in both data sets. The goal of this investigation is to become familiar
and form an understanding of how oil slicks evolve as a function of time. Such
knowledge can be used to model the fate and behavior of detected oil spills,
estimate oil spill lifetimes, and potentially discriminate and classify different
oil types as some might act differently. The geometric features are computed
across all scenes for the respective slicks, and their behavior is analyzed and
discussed in an attempt to observe distinctive trends.

6.3.1 Results from Data Set 1

This section presents the results obtained when studying the temporal develop-
ment of the geometric features over the extensive UAVSAR time series collected
during NORSE2015. The geometric features are computed across all scenes for
each slick, and can be viewed in figure 6.15-6.19. In these figures, the E4o0, E60,
E8o and P is indicated by blue, red, black, and green, respectively. Additionally,
dashed arrows are added on top of the plots to show which flight each acquisi-
tion belong to. Still, normal fonts on the x-axis correspond to acquisitions made
while ascending, bold fonts represent scenes captured while descending, while
the cross-flight acquisition is denoted by a * symbol. This ascending-descending
imaging geometry is likely to influence the results as the geometric features
are computed with respect to the oil slick masks extracted with the DR as input.
Skrunes et al. in [73] investigated the dependency of oil spill observations in
polarimetric SAR data on imaging geometry, and found indications of higher
DR for mineral oil slicks in scenes captured while looking downwind compared
to upwind. Note that the E80 is not represented in the very first acquisition, as
the release was not completed before the time of acquisition.

The temporal development of the area is plotted in figure 6.15 for the four slicks.
As discussed, the alternating look-direction from scene to scene seems to affect
the geometric features quite significantly, shown as the oscillating pattern. In
general, the oil emulsions experience a larger increase in area compared to the
plant oil, with the E8o tending towards the largest slick extent. As mentioned,
since the E8o was released so late, this slick has a very low extent in the earliest
acquisitions, but catches up with the other slicks within the first hour. Most of
the increase seems to occur in the scenes captured during the first flight (05:32
- 08:53 UTC). In fact, in the second flight (11:45 - 13:18 UTC), the slicks seem to
experience a slight decrease in area. Here, the oscillating patterns also become
more severe. Jones et al. in [41] observed a similar trend, and resonated that
this alternating behavior was most likely a result of the look-direction relative
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to the wind direction, as discussed. Why the oscillation becomes more severe
for the second flight was not specifically discussed, but a possible explanation
is that the slicks become more difficult to segment in these scenes as the slicks
have been exposed longer to the ocean surface, thereby being more affected
by weathering processes.

As mentioned, the overall trend observed in figure 6.15 is that the oil emulsions
tend towards a larger slick extent compared to the plant oil. Hence, this trend
might indicate that the emulsions are more affected by spreading compared
to the plant oil. This behavior corresponds well with the observations made
by Jones et al. in [41], which found that the biogenetic slick simulant (P) was
entrained more quickly as the vertical mixing into the water column was more
dominant. An even more interesting observation is that the E8o emulsion
experiences the largest increase in slick extent, followed by E60 and E4o0, re-
spectively. Hence, there is seemingly a correlation between higher oil fraction
and larger slick extent. This is potentially correlated to the ongoing emulsi-
fication of the oil slicks, where the oil emulsion with the highest oil content
has the potential of capturing more water, thereby having the opportunity of
expanding more.
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Figure 6.15: Overview of the temporal development of the area for the slicks in Data
Set 1. The slicks are denoted by color, where blue, red, black and green
correspond to E40, E60, E8o, and P, respectively. Normal fonts on the
x-axis correspond to acquisitions made while ascending, bold fonts repre-
sent scenes captured while descending, while the cross-flight acquisition
is denoted by a * symbol.
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The temporal development of the perimeter, i.e., the length of the oil slick
periphery, is plotted in figure 6.16. This geometric feature seems to show much
of the same tendency as observed for the temporal development of the area,
which is expected as the perimeter is fairly correlated to the area. Intuitively,
a large area produces a large perimeter, while a small area results in a small
perimeter. However, this is true if the region of interest has a fairly smooth
i.e., non-complex shape. Consider a small region of interest with an irregular
shape, e.g., with a shape similar to the oil slick mask in figure 6.7e. The total
area covered would be relatively small, but the complex shape would lead to a
relatively large perimeter. Hence, since the trends are so similar for both the
area and perimeter, the shape of the oil slick masks might be fairly smooth. By
manual inspection, this is in fact true for the majority of the oil slick masks. As
discussed earlier, the oil emulsions spread significantly more out on the ocean
surface compared to the plant oil, thereby providing a good separation when
studying the temporal development of the area. Consequently, in this case,
the perimeter also provides a fairly good separation between the mineral oil
emulsions and the plant oil ~ 2 hours after release.
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Figure 6.16: Overview of the temporal development of the perimeter for the slicks
in Data Set 1. The slicks are denoted by color, where blue, red, black
and green correspond to E40, E60, E80, and P, respectively. Normal fonts
on the x-axis correspond to acquisitions made while ascending, bold
fonts represent scenes captured while descending, while the cross-flight
acquisition is denoted by a * symbol.
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The temporal development of the circularity ratio is plotted in figure 6.17.
Recall that this geometric feature is a ratio between the area and perimeter of a
region, and expected to say something about how circular a region is. The plot
shows that the oil emulsions initially are "more" circular compared to the plant
oil. This initial behavior agrees well with the slicks appearances in the intensity
images shown figure 4.4, where the oil emulsions are more compact compared
to the plant oil. Intuitively, the circularity decreases relatively fast in line with
the fact that the emulsions becomes elongated. Recall figure 5.4 that showed a
clear connection between increasing elongatedness and decreasing circularity
ratio. Hence, this behavior is expected. However, the circularity ratio increases
as a function of time for the plant oil. This implies that the plant oil tends
towards a more circular and compact shape as time goes by. This correspond
well with the observation made in [42], which, as already mentioned, found
that the plant oil to rapidly tended towards a more circular shape. As figure 6.17
shows, the circularity ratio provides a clear separation between the mineral
oil emulsions and the plant oil 1h 22 minutes after release and throughout the
entire time series. In addition, the alternating variations seem more sever for
the plant oil compared to the oil emulsions. However, this geometric feature
might be suited for the application of separating oil emulsions from biogenetic
oil slicks, but further testing is required to validate this.
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Figure 6.17: Overview of the temporal development of the circularity ratio for the
slicks in Data Set 1. The slicks are denoted by color, where blue, red,
black and green correspond to E40, E60, E80, and P, respectively. Normal
fonts on the x-axis correspond to acquisitions made while ascending, bold
fonts represent scenes captured while descending, while the cross-flight
acquisition is denoted by a * symbol.
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Proceeding to the next geometric feature, the temporal development of the slick
complexity is studied in this section. As this geometric feature is somewhat
inversely proportional to the circularity ratio (see equation (5.21) and (5.22))
discussed in the previous paragraph, it is expected that this feature also provides
a reasonable separation between the plant oil and the oil emulsions. The slick
complexity is computed across all scenes and plotted in figure 6.18, and, as
expected, shows more or less the inverse of the trend observed for the circularity
ratio. Initially, all slicks are more or less equally "complex". As time goes by,
the oil emulsions experience an increase trend, while the plant oil is more or
less stable. Again, this is increasing trend is expected when considering the
elongated shapes the oil emulsions tends towards, and the relation illustrated
between increasing elongatedness and increasing slick complexity in figure 5.4.
The stable slick complexity for the plant oil is most likely a result of the plant
oil reaching an equilibrium shape and size relatively fast. Again, the separation
between the oil emulsions and the plant oil is very good 1h and 22minutes
after release. In this case the alternating variations are more severe for the
oil emulsions compared to the plant oil. However, due to the apparent trend
observed, this feature might also be suited for separating mineral oil emulsions
and plant oil, but further testing is still needed to validate this.
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Figure 6.18: Overview of the temporal development of the slick complexity for the
slicks in Data Set 1. The slicks are denoted by color, where blue, red,
black and green correspond to E40, E60, E80, and P, respectively. Normal
fonts on the x-axis correspond to acquisitions made while ascending, bold
fonts represent scenes captured while descending, while the cross-flight
acquisition is denoted by a * symbol.
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At last, the temporal development of Hu’s 1st planar moment invariant is plotted
in figure 6.19. This feature is expected to hold information about a regions
elongatedness, and is expected to separate thin, piecewise elongated shapes
and other arbitrary shapes. This is not really the case for the slicks studied
in this thesis, as no apparent separation is can be observed between the oil
emulsions tending towards elongated shapes and the plant oil tending towards
a circular shape. The oscillating pattern seem to be less sever across all scenes
for this feature, indicating that this feature might not be as affected to the
flight tracks, i.e., different look-direction. This is somewhat expected, as this
geometric moment is translation, scaling and rotational invariant. What is
interesting is how severely this feature react on the cross-flight acquisition,
especially for the E8o emulsion. However, it is hard to extract any valuable
information from this feature, indicating that this geometric feature might not
be suited for this type of sensitivity study.
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Figure 6.19: Overview of the temporal development of Hu’s 1st planar moment invari-
ant for the slicks in Data Set 1. The slicks are denoted by color, where
blue, red, black and green correspond to E4o, E60, E80, and P, respec-
tively. Normal fonts on the x-axis correspond to acquisitions made while
ascending, bold fonts represent scenes captured while descending, while
the cross-flight acquisition is denoted by a * symbol.

In summary, the area indicated that there might exist a correlation between
increasing oil fraction in mineral oil emulsions and increasing slick extent.
Further, the perimeter, plant oil, and slick complexity was found to provide a
good separation between the emulsions and the plant oil ~ 2 hours following
release. In contrast, Hu’s 1st planar moment invariant did not provide any inter-
esting trends. The sensitivity of segmenting oil slicks with respect to the DR in
upwind/downwind conditions was also indirectly illustrated by the alternating
patterns observed for most of the geometric region descriptors.
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6.3.2 Results from Data Set 2

This section presents the results obtained when analyzing the evolving nature
of the slicks in Data Set 2. Since the time series included in this data set only
consisted of three acquisitions, it will be hard to deduct any solid conclusions
from the trends observed. Nevertheless, the investigation is carried out to
verify if the geometric features behaves as expected, and a brief discussion is
therefore presented. Figure 6.20 shows the temporal development of all the
selected geometric features for both slicks. The blue and red color represent
the test release and main slick, respectively.
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Figure 6.20: The temporal development for both slicks in Data Set 2, plotted as a func-
tion of the a) area, b) perimeter, ¢) circularity ratio, d) slick complexity,
and d) Hu’s 1st invariant planar moment.
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The temporal development of the area is plotted in figure 6.20a. The results
are quite interesting, showing that the test release is fairly stable in size,
with a slight increase followed by a slight decrease over the three acquisitions.
However, the main slick experiences an almost linear increase. A possible reason
to why this increase is not continuous for the test release might be because
of the slicks longer exposure to the ocean surface, causing more forcing from
weathering processes. Another, more intuitively, reason arises from the fact
that there is a significant difference in volume between the slicks, where the
main slick is almost three times larger then the test release (6/16 m3). This
implies a larger spread, and also gives the potential of a larger amount being
emulsified.

The temporal development of the perimeter, plotted in figure 6.20b seems to
show much of the same tendency as for the area. The minor difference is the
increase from the second to the last acquisition for the test release. This is most
likely caused by the complex shape that the oil slick mask of the test release in
this last acquisition has (see figure 6.7e).

The temporal development of the circularity ratio and the slick complexity is
plotted in figure 6.20c and 6.20d. The figures are more or less inversions of
each other, which is expected by the inverse relation between these parameters.
In general, the plot indicates that both slicks tends towards a less circular and
more complex shape, which correspond well with the appearance of the oil
slicks in figure 4.5, and the isolated oil slick masks which can be viewed in
figure 6.7/6.10. The irregular shape of the oil mask of the last acquisition for
the test release (again see figure 6.7¢) is well detected by the slick complexity,
indicated with a large value.

Last but not least, the temporal development of Hu’s 1st invariant planar moment
is plotted in figure 6.20e. Both slicks seems to behave similarly with respect
to this parameter, with an increase followed by a decrease. By studying the
oil slick masks shown figure 6.7 and 6.10 for the test release and main slick,
respectively, it is hard to explain why. One potential reason might be that the
mask of the first and last acquisition for both slicks are generally more irregular,
or in other words, the oil slick mask of the second acquisition for both slicks
are smoother then in the other acquisitions.
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6.4 Sensitivity of the Polarimetric and Geometric
Features to Segmentation

In this section, the sensitivity of the selected polarimetric features and geometric
region descriptors previously discussed are tested with respect to segmentation.
The goal is to examine how the features changes with respect to varying
looseness/tightness of the masks. The extraction of oil slick masks are in
general quite sensitive to the amount of despecke filtering performed, where
more smoothing are likely to produce a looser oil slick masks with smoother
shapes. Opposite, less speckle filtering is likely to produce a tighter mask with
more complex shapes. Segmenting every single slick in every scene with respect
to different filter masks would be time consuming, hence another method is
proposed. To simulate oil slicks with various sizes and smoothness, a dilation
and erosion procedure is introduced. The same progressive morphological
method as developed in the pilot project will be used. This thesis will not go into
detail on the exact method, but in summary, a structuring element is constructed
and applied to the initial masks causing a pixel-by-pixel dilation/erosion in
all directions. The main effect of dilation is that the shape of the masks, in
addition to becoming larger, tends towards a smoother shape as more dilation
is performed. A demonstration of the morphological procedure with respect
to dilation is shown in figure 6.21 for the complex mask of the test release in
the last acquisition of Data Set 2 (see figure 6.7e/6.7f). Figure 6.21a shows the
initial oil slick mask, while figure 6.21b and 6.21c shows the obtained mask when
dilating the initial mask with 20 and 40 pixels in all directions, respectively.
As the figure shows, more dilation produces a smother shape, as intended.
On the contrary, the morphological erosion procedure does not preserve the
shape of the region as much as when dilating. This is not a problem when
inspecting the polarimetric features, as just a more central area within the slick
is desired. However, this might cause problems when studying the sensitivity
of the geometric features.

As mentioned, the low number of acquisitions included in Data Set 2 makes
it hard to observe any solid trends. Hence, this data set is discarded, and the
investigation is only carried out on the extensive time series collected during
NORSE2015. In this section, the sensitivity of the polarimetric features, i.e.,
the DR and PR are considered first, before proceeding to the geometric region
descriptors.
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Figure 6.21: Concept of using morphological dilation to expand and smooth oil slick
masks. a) shows the initial oil slick mask of the test release in the last
acquisition of Data Set 2, b) shows the resulting mask after a 20 pixel
dilation, and c¢) shows the resulting mask after a 40 pixel dilation.

The sensitivity with respect to the oil slick masks of the E8o will be illustrated,
as equal trends are observed for the E40, E60 and P. Figure 6.21 illustrates how
the average DR and PR changes when varying the looseness/tightness of the
E80 masks. The continuous line represents the average DR and PR within the
initial oil slick masks, while the red/blue dotted line represent the oil masks
after a 20 pixel dilation/erosion, and the red/blue dashed line represents the
oil masks after a 40 pixel dilation/erosion. Additionally, a light blue continuous
line indicating the average DR and PR for clean ocean, covering the same area
while spanning over the same incidence angels, is added for comparison.

As shown in figure 6.22a, the average DR decreases steadily when dilating
the mask with 20 and 40 pixels. This is expected as more water pixels are
included in the dilated masks. In contrast, the DR increases almost equally
when eroding inwards towards central parts of the slicks. Further, the DR
of the slicked masks have a significantly larger value compared to the clean
ocean. The trend observed demonstrates the sensitivity and importance of
the strictness of the oil slick segmentation. There is a significant difference
in DR just by introducing a slight dilation and erosion of 20 pixels. Further,
the difference between the initial mask and the manipulated masks seem to
decreases as time goes by. This is a result of the relative fraction between initial
pixels and dilated/eroded pixels decreases as the slick grows. In general, at
least for the mineral oil emulsions, the slick extent increases as a function of
time, while the pixel dilation/erosion is kept constant. Hence, as an example,
the effect of including water pixels by a 20/40 pixel dilation is larger for the
relatively smaller oil masks in the initial phase after release. Another interesting
observation is that the average DR within the masks decreases as a function of
time. This is potentially a result of various weathering processes affecting the oil
slick appearance, i.e., the contrast as time goes by. The sensitivity of looking up-
and downwind under acquisition with respect to the DR is yet again observed
by the alternating pattern, corresponding well with the findings in [73].
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However, as shown in figure 6.22b, the average PR is seemingly unaffected by
varying the strictness of the oil slick masks. This indicates that the PR does not
provide a very good contrast for the slicks studied and the surrounding clean
ocean. This is supported by the fact that the light blue line representing the
behavior of the PR in clean ocean provide a more or less identical trend. This is
potentially correlated to the low amount of oil discharged for each substance,
and the relatively rough ambient wind conditions. Again, the upwind/down-
wind effect is observed. In general, this polarimetric features seem to be more
sensitive to the look-direction as the alternation is more apparent, and the fact
that the cross-flight acquisition clearly stands out.
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Figure 6.22: Behavior of the average DR and PR as a function of looser/tighter oil slick
masks. The continuous line shows the behavior with respect to the initial
oil slick masks, the red/blue dotted line represent the oil masks after a
20 pixel dilation/erosion, and the red/blue dashed line represent the oil
masks after a 40 pixel dilation/erosion. In addition, a continuous light
blue line is added to represent the behavior of the polarimetric features
for clean ocean.

Similarly, the sensitivity of the geometric region descriptors to varying oil slick
masks was also investigated. The effect of dilating the masks did not affect the
overall trend of the features, as previously shown in figure 6.15-6.19 in Section
(6.3.1), any particularly, as the shape in general was very well preserved. On
the contrary, as the shape of the masks were severely sensitive to eroding, the
results became quite chaotic and incomparable. Hence, no apparent trends
were possible to observe, and no conclusions are drawn.



Conclusions

This thesis adds to the on-going discussion of the application of multi-polarization
SAR data for oil slick characterization (see e.g., [22][42][561[69]). The thesis
began with presenting the fundamental theory behind remote sensing by SAR,
before embedding it into the application of monitoring marine oil spills in
Chapter 3. Further, the data sets available for this thesis was presented in
Chapter 4, followed by Chapter 5 which outlined the methodology developed
for the investigation presented. At last, the investigation was carried out on the
data sets available, and the results were presented and discussed in Chapter
6.

7.1 Contributions and Findings

The observations and conclusions drawn from the investigation presented in
this thesis are summarized below:

* The availability of detailed and accurate information concerning ma-
rine oil spills provides several benefits. Especially information about the
internal structure within oil spills can be used to optimize oil spill re-
covery operations by directing responders to the most crucial areas. The
potential of detecting zones within oil spills in multi-polarization SAR
scenes was investigated in this thesis by performing a direct within-slick
segmentation, using a simple k-means clustering algorithm and a GMM
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combined with a merging procedure based upon JM separability. Two
data sets were studied with different oil slick properties, captured under
different environmental conditions. The results obtained with respect
to the extensive time series collected during NORSE2015 were found to
limit the hypothesis of the existence of radar zones in the general case,
as zoning was only apparent in the mineral oil emulsions for a restricted
time period, most likely due to high winds and the low volume of oil
released. The emulsion with the highest oil content maintained zoning
longest, while the plant oil did not provide any clear indication of zoning
during the entire time series. In general, the observations made corre-
sponded well with the findings in [42]. As for Data Set 2, the presence of
potential radar zones was well detected, and encourages a more extensive
study on more data for detecting oil spill zoning using SAR. The reason
why zoning is more prominent in these scenes is most likely due to the
significantly higher amount of oil released, and the slightly calmer wind
conditions. Further, the value of inspecting internal variations within oil
slicks for discrimination purposes was also demonstrated, as tendencies
were observed with respect to separating mineral oil emulsions from
plant oil.

The motivation behind using two segmentation strategies was to provide
basis for a comparative study between the within-slick segmentations
obtained. In general, the simple and more constrained k-means cluster-
ing algorithm provided segmentations very similar to the GMM for the
majority of the slicks studied in this thesis. As for the GMM, the BIC
model selection criteria tended to recommend models with empty and
relatively small classes, most likely representing regions of mixed pixels.
Consequently, the merging procedure was implemented to entrain the
number of zones to a realistic level. Hence, the BIC might not be the
best model selection criteria for this application, but the lack of time
prevented a thorough study of other criteria. However, future studies
should definitely consider using others. The main difference between the
two strategies was that the GMM in general outputted fewer classes that
seemingly showed much of the same class structures as for the k-means.
Hence, the k-means was more prone to include redundant classes, in-
duced by the constrain of consistently seeking five clusters. However, if
only a fast and rough estimate of the internal variations within oil slicks
is needed, the k-means clustering algorithm might provide sufficient
results.

As no optical imagery was available for verification, an evaluation of
the classes obtained by the segmentation strategies was conducted with
respect to the DR in the Vv channel and the PR, along with the prevailing
environmental conditions. The DR provided a clear increase between
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classes in the within-slick segmentations assumed to reflect internal
variations in oil slick thickness. The PR did not show as prominent trends,
but seem to detect the thickest regions of oil in most cases. Further, a fake
zoning detection scheme was also established by comparing the obtained
within-slick segmentations of the oil slicks to segmentations of clean,
homogenous ocean in their respective scenes. This simple extension
helped decide whether or not the obtained within-slick segmentations
potentially did reflect the wave spectrum at the ocean surface or actual
internal variations within the slicks.

* The within-slick segmentations are highly sensitive to the choice of
despeckling filter mask, as shown in figure B.1. The trade-off between
spatial resolution and denoising is crucial, and the size of the filter mask
should therefore be rigorously chosen based on the relative size of the
slick in the scene studied.

* A comprehensive understanding of the evolving nature of oil slicks is also
of interest for several parties. Multiple dark feature detection schemes
have been established for marine applications, but the lack of detailed
information about the actual phenomenon observed causes false alarm
rates to be high. Satellite imagery provides snapshots of oil spills, with
no information about the history and future aspects. Hence, by being
familiar with the fate and behavior of various marine oil spills, it might
be possible to classify and discriminate between different spills, estimate
lifetimes, and predict future behaviors, which potentially might be useful
for customizing recovery operations. The temporal development of a set
of selected geometric features was studied in this thesis for both data
sets available. The results obtained indicated that there seemingly is a
correlation between increasing oil fraction for mineral oil emulsion and
increasing slick extent during the 8h period of time studied after release.
Further, by studying the temporal development of the circularity ratio,
a good separation between oil emulsions and plant oil was observed.
The slick complexity was also found to provide a reasonable separation
between the oil emulsion and the plant oil, and seem to detect complex
oil slicks very well.

* The effect of look-direction relative to the wind under acquisition in
SAR scenes was clearly observed for both polarimetric features and,
consequently, the geometric features. Skrunes et al. in [73] investigated
the effect of wind direction and incidence angle on multi-polarization
SAR observations, and found that all multi-polarization SAR features
investigated, e.g., the DR, PR, PD, etc., had some degree of dependency
on the imaging geometry, i.e., incidence angle and look-direction relative
to the wind. Similarly, in this thesis, the DR and PR were found to alternate
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between scenes with alternating heading (7°/187 °), i.e. alternating look-
direction (see figure 6.22). The PR was observed to be more sensitive to
upwind/downwind compared to the DR, as the alternations were more
severe, and the fact that the cross-flight acquisition clearly stood out.
However, the geometric features was also observed to provide alternating
patterns, most likely a result of being dependent on the oil slick masks,
which again is extracted by using the DR.

* The importance of the looseness/tightness of the oil slick segmentation
is demonstrated with respect to the DR and PR. The average DR was
observed to decrease when dilating the initial oil slick masks, i.e., when
including more clean ocean pixels, while increasing when eroding in-
wards towards more central regions of the slicks in the extensive time
series captured during NORSE2015. However, the PR was not found to
deviate at all, indicating a poor contrast between the slicks and the sur-
rounding clean ocean for this particular data set. This is most likely due
to the low volume of the releases in combination with the relatively high
wind.

7.2 Uncertainties

The lack of optical data for verification leads to a speculative investigation
with respect to detecting potential radar zones within oil spills, and prevents
the opportunity of presenting any firm conclusions. Another common problem
within research of remote sensing data is that, often, fundamental information
about the targets observed are unknown. As the oil slicks studied in this
thesis are deliberately discharged for experimental purposes, their properties
and release time is known, along with complementary in situ measurements.
Hence, few or no uncertainties are directly related to the actual targets under
observation. By evaluating potential uncertainties related to the methodology
developed, a few comes to mind. The fundamental assumption when using a
GMM, is that the data studied is assumed to be Gaussian distributed. Although
the within-slick distribution was observed to be somewhat a composition of
Gaussians for the slick studied in the pilot project, it is uncertain that this is true
in general. The chance of the within-slick segmentation strategies converging
towards local minimums instead of global minimums when optimizing will
always be there, hence there is a chance of the segmentations being imperfect.
In addition, the merging procedure developed might not be sufficiently robust
to provide the desired output for all cases investigated in this thesis.
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7.3 Future Work

There are several possible improvements and extensions to the investigation
outlined in this thesis. Most importantly, optical data should be available for
verification when pursuing the existence of potential radar zones. The simple
and extendable method developed for the investigation in this thesis should
also be extensively tested on more data, preferably collected by a variety of air-
borne and spaceborne SAR sensors. Suggestions to direct improvements on the
method develop for the application of detecting zones within SAR scenes might
include other finite mixture models assuming non-gaussian distributed data,
other model selection criteria, and a more comprehensive merging procedures
depending on factors like e.g., shape, in addition to just size and similarity as
used in this thesis.

As for studying the evolving nature of oil slicks, the geometric region descriptors
selected for the investigation in this thesis should be further tested to potentially
reject or build confidence in the observations made in this thesis. Also, there
exist an extensive selection of parameters within this field, and many more
should preferably be included in future studies.
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A Correlation Test: Damping Ratio vs.
Copolarization Difference

The Person’s correlation coefficient measures the strength of the linear corre-
lation between two variables [23]. The coefficient varies from 1 to —1 [79],
where 1 indicate a perfect positive linear correlation, O is no linear correlation,
and —1 is a perfect negative linear correlation between the variables studied.
Figure A.1 shows scatter plots between the DR and PD for both oil slicks over
the three acquisitions in Data Set 2. The figure is structured in rows, where
the blue scatter plots represent the test release, while the red scatter plots
represent the main slick over the three acquisitions. Additionally, the Pearson’s
correlation coefficient is added in the subcaption of each figure to quantify
their correlation. As the figures and their respective subcaptions indicate, the
DR and PD shows a high, negative linear correlation for the majority of the
slicks.
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Figure A.1: Scatter plot showing the correlation between the DR and PD for the scenes
in Data Set 2. The blue scatter plots correspond to the test release, while
the red scatter plot correspond to the main slick. The time of acquisition is
labeled above each column of figures. The Persons correlation coefficient
between the DR and PD is added in the subcaption of their respective
plots.



B Filter Mask Dependency on the Within-Slick
Segmentation

The importance of the descpeckling filter mask size is demonstrated for the main
slick in the second acquisition (09:03 UTC) of Data Set 2 in figure B.1. The figure
is vertically structured with the segmentation strategy labeled for each column,
along with the size of the filter masks indicated in the subcaption. The results
deviates much across the different filter masks, where larger masks results
in smoother and more uniform class structures. Consequently, a significant
amount of detail is lost. The 15 X 60 filter mask seems to provide the best
trade-off between noise reduction and preservation of spatial resolution, and
will therefore be used for the scenes in Data Set 2.

K-means GMM

(a) 9x 36 (b) 9 x 36

(c) 15x 60 (d) 15 x 60

(e) 30 x 120 (f) 30 x 120

(8) 60 x 240 (h) 60 x 240

Figure B.1: Overview of the importance of the descpeckling filter mask size when per-
forming the within-slick segmentation for the second acquisition (09:03
UTC) of the main slick in Data Set 2. The figure is vertically structured
and labeled with the segmentation strategy used in each column of fig-
ures, along with the size of the respective filter masks indicated in the
subcaption.
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