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Highlights 

Absorption, emission, and fluorescence quenching in various conformers of the dimetridazole and 

tryptophan residue complex in the binding cavity of Human Serum Albumin (Dmz&Trp214@HSA) were 

calculated with implementing the two-scale model of MD simulation and various quantum-mechanical 

approaches in order to generate statistical spectra that are then used for studying the charge transfer 

processes between the non-bonded Trp214 donor and the Dmz acceptor where types of these 

intermolecular processes were identified. 

 

 

Spectroscopy is an important tool for detecting drug binding to amino acid sequences. One such 

important spectroscopic process is the fluorescence quenching due to charge transfer (CT) processes 

between a drug molecule and the chromophore centre of Human Serum Albumin (HSA).  We present a 

theoretical investigation of the CT occurring upon electronic excitation when a dimetridazole (Dmz) 

molecule  incorporated  in HSA interacts with tryptophan residue (Trp214). Structures of the donor–

acceptor complexes were optimized using density-functional theory in vacuum as well as extracted from 

molecular dynamics (MD) trajectories of the Dmz and Trp214 complexes in HSA (Dmz&Trp214@HSA). 

Absorption, emission, and fluorescence quenching of the Trp214&Dmz complex in a large number of 

MD conformers were calculated using various quantum-mechanical approaches in order to generate 

statistical spectra that are then used for studying the CT between the non-bonded donor and the acceptor. 

Keywords: Human Serum Albumin; tryptophan residue; dimetridazole acceptor; molecular dynamics; 

quantum-mechanics; charge transfer. 

Introduction 

Spectroscopic methods used in medicine and pharmacology can provide valuable insight into 

the electronic and structural properties of biological polymers based on their photo-physical and 

photo-chemical reactions [1]. Spectroscopy can also be used to monitor, control, test, and develop 

protein chains and drug compounds [2–6]. Chemical and morphological properties of amino acid 

sequences can be investigated in situ using luminescent (fluorescent or phosphorescent) markers 

or using molecular probes possessing easily identifiable spectral signatures [7,8]. Theoretical 

methods have been used to interpret and unravel the complicated structural and electronic origins 

of experimental spectra [9–11]. A perfect benchmark for verifying, developing, and applying 

theoretical methods in the investigation of spectral properties is the tryptophan aromatic amino 

acid (Fig. 1) that is contained in numerous biological chains. 

 The tunable fluorescence maxima and intensity of tryptophan (2-Amino-3-(1H-indol-3-

yl)propanoic acid) is widely used as a probe of the electrostatic microenvironment produced by 

surrounding solvents and proteins. Absorption in the near- and far-ultraviolet regions (220-190 

nm) of protein spectra arises from the aromatic amino acids phenylalanine (Phe), tyrosine (Tyr), 

the highly intense Lb bands of tryptophan (Trp), and histidine (His) residues and coincides with 

the absorption region of peptide or the amide chromophores [1,12–15]. Tyr and the less intense La 

bands of Trp mainly contribute to the spectral region between 240-280 nm [16,17]. In contrast, 

the fluorescence maximum is due only to UV-excited Trp [18–20], but varies between 307 and 

370 nm and in some cases even longer wavelengths depending on the microenvironment. In 

particular, the single Trp214 chromophore side residue is solely responsible for the long-

wavelength wing of the HSA (Trp214@HSA) spectrum starting from 300 nm (Figures 2 and 3) 

[19,21].  

 It is well established that the chromophore core of tryptophan is the methyl-terminated form 

of 3-methylindole fragment, also known as skatole [2,3,22,23]. At room temperature, the 



maximum of the fluorescence spectrum is located near  = 308-310 nm in non-polar solvents and 

significantly shifted towards longer wavelengths in more polar solvents, reaching a fluorescence 

wavelength of 340-350 nm in water, consistent with the observed fluorescence from Trp214 in 

HSA.  

The single Trp214 residue in HSA is located within a hydrophobic binding pocket of the 

molecule [24,25] in subdomain IIA of drug site I, where most potential drug molecules can be 

bonded. This fact, combined with the very characteristic absorption and fluorescence properties of 

the Trp214 residue, allow for detecting whether drug molecules are bonded to HSA and to follow 

their transport with the blood flow. A bio-ligand trapped at the drug site near Trp214 can thus be 

considered a photochemical probe of the complexation state of HSA if it induces fluorescence 

quenching due to charge transfer (CT) between the Trp214 donor and the ligand acceptor of this 

complex. 

It has been reported that a dimetridazole (Dmz; C5H7N3O2, 1,2-dimethyl-5-nitroimidazole) 

embedded in this pocket leads to a quenching of the strong HSA fluorescence in the wavelength 

region λem=342345 nm (Fig. 3) due to excited-state energy transfer from the chromophore center 

to Dmz [19]. This complex can thus serve as a model system for studying the CT between spatially 

close, non-bonded fragments of a complex trapped in the tight space of HSA.    

We will here investigate the mechanism for redistributing the excitation energy and the transfer of 

charge from Trp214 to the Dmz ligand trapped in the same subdomain of HSA using MD simulation and 

quantum-mechanical (QM) calculations. This will allow us to understand how the separation and relative 

orientation of the donor and the ligand acceptor influence the spectral shifts and the excited-state energy 

deactivation through fluorescence quenching of the fluorescence spectrum of this complex. 

The rest of the paper is organized as follows. In the next section, we will summarize our 

computational approach, before we in Section 2 discuss our results, both for the isolated chromophore and 

for the chromophore embedded in the protein structure and interacting with the ligand. In the last section, 

we give some concluding remarks and an outlook. 

1 Computational methods 

We will in Section 1.1 describe the approach used for the QM optimization of the chromophore 

centers in the ground and excited states; the computational details of the MD simulations are described in 

Section 1.2; and the Statistical Quantum-Mechanical/Molecular-Dynamics (SQMMD) method for 

generating the optical spectra is described in Section 1.3.   

1.1 Geometry optimization and Spectral properties 

Indole and 3-methylindole (skatole) were used to calculate excitation and emission spectra. The 

ground and the two lowest excited states of these molecules as well as Dmz were optimized 

separately in vacuum using time-dependent DFT (TDDFT) in Gaussian 09 (G09) [26]. This was 

done using the aug-cc-pVDZ basis set [27] and the hybrid, long-range (LC) corrected CAM-

B3LYP functional [28] (CMB/aug). The CAM-B3LYP functional has been shown to perform 

well for CT excitations [29,30]. These optimized structures were also used to calculate the excited 

states and the transfer of charge between the non-bonded donor and the acceptor. In addition, the 

sequence of three amino acids Ala213–Trp214–Ala215 of HSA and tryptophan itself were 

constructed starting from the ground- and excited-state optimized indole core structures calculated 

with CMB/aug (vide infra). 

TDDFT vertical excitation energies were calculated for skatole in vacuum using CMB/aug in 

Dalton2013.4 [31,32] and G09. Several calculations using CAM-B3LYP and the PBE0 

exchange–correlation functional [33] in combination with various basis sets such as SVP, 6-

311++g(d,p) and def2TZVP were carried out to estimate the sensitivity of the TDDFT results on 

basis set and choice of exchange-correlation functional. However, all basis sets and functionals 

gave very similar results, showing deviations of about 3 nm for the lowest states. Equation-of-



motion coupled cluster with single- and double-excitations (EOM-CCSD) with the aug-cc-pVDZ 

basis set were also calculated for a few of the smallest systems to assess the quality of the DFT 

results.  

The spectroscopically oriented semi-empirical  Intermediate Neglect of Differential Overlap (INDO) 

method in a sp-basis (INDO/sp), which is similar to the ZINDO method and successfully applied by 

Callis and coauthors in numerous works for decades [3,34,35], has been adjusted to provide correct 

transition energies to Franck-Condon states by calibrating multi-center Coulomb and exchange integrals 

to spectroscopic data for organic compounds. This has been implemented in a standalone code and in a 

development version of GAMESS-09 [36] as the Quantum Chemistry of Organic Photonics (QOP) blocks 

[10,22,36]. The parameters were calibrated against experimental data for representative molecules in the 

ground state geometry in a non-polar aprotic solvent at low temperature, as previously described in Ref. 

[37]. QOP has options for calculating the rates of radiative, internal conversion [38,39] and intersystem 

crossing (cross-section) transition [40,41], allowing the quantum yields of photoprocesses to be estimated. 

The probability of internal conversion between non-bonded parts in a super-molecule can be used to 

estimate the rate of CT between these two fragments. Excited states are calculated using a Configuration 

Iteration Singles (CIS) approach in which the number of MOs involved in the electronic configurations 

can be selected. In order to use the same MOs in the isolated molecules and in the corresponding 

bimolecular complex, the following CIS settings were applied: 20 highest occupied MOs and the 25 

lowest unoccupied MOs (2025 for skatole (Skt) and Dmz, 4045 for their Skt&Dmz complex). 

1.2 System preparation and MD simulation 

The 1H9Z crystal structure of HSA [42] was obtained from the Protein Data Bank [43] and 

preprocessed using GROMACS [44] to prepare an initial structure of 1H9Z, which originally contains the 

warfarin ligand in subdomain IIA of drug site I, 28 crystal water molecules and 6 unsaturated myristic 

fatty acids in addition to the HSA protein [42].  

The protein structures were solvated in an orthorhombic box filled with a NaCl buffer with distances 

of 10 Å between the protein atoms and the edges of the box. The TIP3P approach [45] was used to model 

the water molecules. Force field parameterization of skatole and DMZ molecules was performed on the 

basis of the OPLS-AA force field by use of the Tppmktop software [46] and calculated ESP partial 

charges (Table 2,3). GROMACS was used with slightly modified idealized stretching and bending OPLS-

AA force field parameters for the indole ring. These optimal distances and angles were calibrated against 

the optimized structures of the ground- and excited-states of this fragment in order to produce reliable 

spectra of the indole chromophore in both the excited and the ground electronic states (see Table 2 and 

the discussion in Section 2.1). 

1 ns of initial equilibration was performed in an NVT ensemble by gradually heating to 300 K with 

integration steps of 1 fs and all covalent bonds constrained by the LINear Constraint Solver (LINCS) 

algorithm [47]. After this step, a 5 ns MD trajectory with a Nose-Hoover thermostat (300 K), NPT 

ensemble and integration step of 2 fs, was run and sampled for representative structures. Hydrogen-heavy 

atom covalent bond lengths were constrained using the LINCS algorithm. Electrostatic interactions were 

computed using the Particle Mesh Ewald (PME) method with a Fourier spacing of 0.12. All calculations 

were done employing periodic boundary conditions.  

As classical point charges cannot be unambiguously defined based on QM principles, there are a number 

of methods in use for representing a quantum-mechanical electron density in terms of classical point 

charges, such as the Mulliken, Hirshfeld, or Natural Bond Orbital population analysis [44–46]. 
The electrostatic potential (ESP) method implemented in G09 is based on calculated potentials in all 

points of space using a charged probe [51], and is used here as it can be expected to represent the relevant 

electrostatic interactions in the Dmz and Trp@HSA complexes. All the different indole fragments 

produce very similar point charges, allowing us to use the same set of averaged charges on the atoms for 

all the different structures, and these charges are listed in Tables 2 and 3. The use of averaged embedding 

potentials was also recently proposed as a cost-effective approach to multiscale modeling of molecular 



properties [52]. These calculated point charges were kept fixed during the MD simulations because the 

total molecular charge distribution dominates the interaction with other surrounding particles at the VdW 

distances important for the complexes rather than any minor charge changes on the individual atoms. It 

has for instance been shown that feeding the QM-calculated point charges back to the MD simulation 

only lead to minor improvements in the description of the interaction of the indole chromophore with the 

microenvironment [53].  

Optimized and standard OPLS-AA structures and charges for the DMZ ligand provide similar 

energies for the lowest excited states acting as acceptor states for the CT from the fluorescent state of the 

tryptophan donor. For this reason, only the optimized Dmz ground-state structure was used in the MD 

simulations.  

1.3 Generating statistical optical spectra 

The Statistical Quantum-Mechanical/Molecular-Dynamic (SQMMD) [10] technique was used 

to generate vibronic (electronic-vibrational) absorption spectra. In this approach, stereochemical 

structures, transition energies, and photophysical properties of each conformer extracted from a 

fluctuating molecular fragment along a MD trajectory are extracted and calculated at each time-

step ∆t. The effective spectral width is defined by the highest and lowest transition energies and 

divided into wavelength bins  that is determined by the instrumental and experimental 

conditions. When modeling, this interval should be in the range 0.54.0 nm and is estimated from 

the number of MD snapshots, N, the effective spectral width, and also the lifetime of the excited 

states of distorted molecular structures [10]. In a 5 ns MD simulation, the spectra would have 

2.5 nm if the spectral properties of all N = 1000 conformers are used in the calculation. 

An averaged band absorption intensity on a given  bin corresponds to the relative absorptivity 

ε = pf, where p = N/N is the probability of finding the fluctuating molecule in an excited 

state in this energy interval, and the averaged oscillator strength f is defined by the oscillator 

strength of the N conformers in this  interval [10,22,36]. The relative emission intensity is 

estimated as the product of probabilities I = pkr[10] where = kr/(kr+kst) is the quantum 

yield. The rate of fluorescence is defined by the oscillator strength and energy gap between the 

excited and ground states of the same multiplicity, using the formula kr=21/2f(ESnESo)2 where the 

energy is given in cm1. The rate of internal conversion kic is determined in an approximate 

manner by only including C-H vibrations for organic compounds [10,38,39,54]. The rate of cross-

section transition kst is omitted in this work because this process is much less important than 

internal conversion for the system studied here, as will be shown later. If the intensity is 

normalized [55,56], the probability distribution is not needed. The statistical spectrum is obtained 

as an envelope over the intensities.  

 

 

 

2. Results and discussion 

The selection of a representative model for the chromophore in HSA able to correctly describe 

the lowest excited singlet states of the observed absorption profile will be discussed in Section 

2.1. Tryptophan (Trp), 3-alanyl-indole (Trp without the OH group), Trp214 together with the two 

neighboring alanine Ala213 and Ala215 amino acids (Trp2Ala) as they are present in HSA, 

skatole, and the indole unit itself will be considered. The excited states, intensities, and dipole 

transition moments obtained using different QM methods in vacuum are discussed in subsection 

2.1.1 for the ground-state structures and absorption properties, and in subsection 2.1.2 for the 

excited-state structures.  



The MD trajectories of HSA obtained with two different OPLS-AA force fields scaled to 

reproduce absorption and emission spectra, respectively, of the indole chromophore were 

calculated and are discussed in subsection 2.2.1, together with the procedure for extracting 

snapshots of the complexes of skatole with Dmz (Skt&Dmz) along the MD trajectory. Subsection 

2.2.2 focusses on a structural analysis of the selected donor-acceptor complexes in order to 

estimate the electronic coupling between them, as this will affect their potential for supporting 

charge-transfer excitations. Finally, in subsection 2.2.3, we present the SQMMD absorption and 

fluorescence spectra of skatole as well as the overlap of the skatole fluorescence and absorption 

bands with those of the Dmz ligands. Throughout the discussion, we will compare our results to 

available experimental data. 

2.1 Isolated chromophore 

2.1.1 Absorption structures 

In order to reproduce spectral features of amino acid sequences that contain a tryptophan 

residue, an adequate chromophore model and computational methods capable of correctly 

calculating the energies of the excited states and their photo-physical properties are needed. A 

particular challenge is the presence of two overlapping and relatively weakly absorbing * 

transitions to the low-lying excited singlet states of the tryptophan residue, conventionally 

denoted as 1Lb and 1La. The wavelength of these absorption bands display a strong dependence on 

the environment, giving rise to a complex profile for the long-wavelength absorption band (240–

300 nm) [2,57]. The key photophysical problem when studying indole-based compounds is to 

correctly detect, identify and separate these weak and close-lying 1Lb and 1La absorption bands by 

determining their oscillator strengths fi and the orientations of the transition dipole moments i. 

From a computational point of view, it is also important to describe the MOs involved in these 

excitation processes and their spatial structure. We will use electron density difference (EDD) 

maps between the electronic excited and ground states to obtain this insight. 

To determine the smallest chromophore center capable of describing the relevant spectral properties of 

these absorption bands, five different models were prepared based on the indole topology, taken from 

Refs. [16,17]. Trp2Ala (Fig. 4), tryptophan (Fig. 1), 3-alanyl-indole, skatole (Fig. 5a) and indole (Fig. 5b) 

all give very similar results at the CMB/aug level of theory (Table 1). However, a reversal of the ordering 

of the two levels can be observed when the hydrogen is substituted by a methyl group or larger 

substituents at the 3-position of the C atom. This is due to the fact that only the 1La state involves MOs on 

the substituent, leading to a shift in the 1La energy level and an overall reversal of the ordering of the 1La 

and 1Lb states (see Fig. 5). In Fig. 5 and in the rest of the paper, EDD isodensity surfaces are plotted using 

a threshold of 0.004 e/bohr3 unless otherwise noted. As noted previously [17], the dipole moment of 

the1La state and the interaction of this state with polar solvents are enhanced by internal CT between the 

conjugated five-membered pyrrole and six-membered benzene rings, whereas 1Lb arises mainly from 

electron redistribution within the benzene unit. The shift in the electron density (ED) from the pyrrole 

ring to the benzene ring upon excitation to the 1La state is very sensitive to the environment due to the 

involvement of the polar nitrogen atom in this transition, as have been confirmed by numerous 

experimental studies and quantum-mechanical computations [3,53,57].  

The EDD in skatole (Fig. 5) shows that the excitation to the 1La state leads to a shift of the 

electron density from the pyrrole ring, and an opposite CT process would take place in the case of 

fluorescence. In contrast, the EDD of 1Lb is complicated and involves a stronger ED redistribution 

but within a smaller part of the molecule. The methyl group in indole introduces a more 

complicated localization pattern for both states, but dominated by CT from the pyrrole end, and in 

particular from the N atom. The dipole moment of the 1La excited state is oriented approximately 

through the pyrrole N atom, making an angle with the 1Lb dipole moment LaLb of 65 in 

skatole (Fig. 5a) whereas the same angle in indole is 102 (Fig 5b). This is in good agreement 



with experiment, where the transition dipoles for these states are nearly perpendicular to each 

other, and where the dipole transition moment of the 1Lb state is much smaller than for 1La [57]. 

Another useful tool for identifying a chromophore is to compare EDDs for the same states in different 

structural models. For all compounds investigated, the coordinates of the indole units were the same. 

Skatole is the smallest adequate model of the chromophore, reproducing the main spectral features of the 

Trp residue in biological polymers. The ED distributions in indole, skatole, and Trp2Ala were compared 

in their relaxed ground electronic states as well as in both of the spectroscopically active 1La and 1Lb 

excited states. EDDGS for all these molecules in their ground states (Fig. 6) were obtained by subtracting 

the ED of the larger structure from that of the smaller one, i.e. EDtrp or EDskt from EDind and EDtrp from 

EDskt. The excited-state EDDLa or EDDLb for each pair are presented without their corresponding EDDGS 

to clearly show the difference between these states. For clarity, hydrogen atoms are not shown in Fig. 6, 

and in all cases, only the Cβ atom are included, thus not showing the methyl group or the two alanine 

residues. Even though the EDGS differ only in the bond with the Cβ atom, we observe significant ED 

redistribution in the excited states of indole when compared to skatole and Trp2Ala. In contrast, the EDD 

between Trp2Ala and skatole is insignificant for both states. Thus, skatole reproduces more correctly the 

spectral features of Trp than a simple indole model due to the presence of the methyl group at the 3-

position, mimicking the effect of alanyl and other residues. Thus, skatole is the appropriate chromophore 

for the Trp residue, in agreement with an earlier study [3].  

   The spectroscopic properties of indole and its methyl-substituted forms have been extensively studied 

both experimentally and theoretically, as it is the most spectroscopically active region of biological 

molecules. However, there are only a few studies in which the optimized excited-state structures and 

excitation energies of the 1La and 1Lb states in indole and skatole have been calculated using accurate ab 

initio methods. One of these studies have used the CASPT2/CASSCF/ANO-S (C,N[4s3p1d]/H[2s]) 

approach, which is often found to work well for small molecules [16,58]: with a level shift of 0.30 

Hartree, the level-shifted CASPT2 approach has been shown to give excellent agreement with measured 

data for indole, 1La=262 nm (f=0.08) and 1Lb=280 nm (f=0.05), to be compared with experimental 

observations of 1La=260 nm (f=0.11) and 1Lb=284 nm (f=0.05), respectively.  

An alternative approach that has been successfully used to calculate the spectral properties is the 

semi-empirical ZINDO approach [3,18,34,59]. Zerner's spectroscopically calibrated semi-empirical 

INDO-CIS approach, which is designed to correctly reproduce low-lying excited states, has been 

successfully used for a series of combined MD and QM studies [3,34]. However, there have been no 

reports of successful TDDFT investigations, and we here aim to close this gap.  

The good agreement between the CASPT2/ANO results and the experimental data allows us to 

consider this method as a benchmark for studying other structures based on the indole core. However, the 

method is very expensive and cannot be used to calculate the hundreds or even thousands of conformers 

needed to generate even a single statistically averaged absorption or emission spectrum. In contrast, in the 

parameterized INDO-CIS method, hundreds of calculations can be carried out rather quickly, but it 

requires that the method is calibrated against the results of high-level ab-initio calculations.  

The existence of two nearly isoenergetic, low-lying excited singlet states is a complicating factor, 

which gets further complicated by the fact that either of them can be the lowest state depending on the 

environment, as discussed above. The weakest 1Lb state has normally the lowest excitation energy for 

structures derived from indole. This trend is reproduced by almost all computational methods for indole 

itself. However, at the CMB/aug level of theory, the 1La and 1Lb energy ordering are consistently reversed 

when a substituent is attached to the third C site of indole, as it leads to a reduction in the excitation 

energy of 1La, making this the lowest state even though the indole backbone remains the same (Table 2), 

in disagreement with both experimental and theoretical data [3,17]. Published structural parameters 

obtained with different electronic-structure methods are collected in Table 2. 

For all structures reported in Table 2, which in addition to literature values include structures 

optimized at the CAM/aug level of theory and structures obtained from a scaling procedure to reach 



inversion of these states with minimum changes in the bond lengths, we have calculated the excitation 

energies of the 1La and 1Lb states using both CMB/aug and QOP. For comparison, these states were also 

calculated using CAM-B3LYP with the ANO-RCC basis set [60,61] and the aug-cc-pVDZ basis set in the 

EOM-CCSD approach [62]. The values of the excitation energies and the oscillator strengths do not 

depend strongly on whether the aug-cc-pVDZ or ANO-RCC basis sets are used, but there is a significant 

difference in the computational time between these two basis sets, with ANO-RCC being the significantly 

more computationally expensive. 

The excited states obtained with these different structures are all acceptable, but all TDDFT calculations 

exhibit the same weakness in that the lowest state is the 1La state, and the excitation energies are 

overestimated by up to 20 nm. Several hybrid and long-range corrected functionals were tested using 

various basis sets all giving the same incorrect ordering of the excited states but with insignificant shifts 

of a couple of nm. In contrast, EOM-CCSD provides the correct ordering of these states, though also in 

this case the absorption bands are overestimated by about 20 nm. We would expect CASPT2 or 

EOMCCD with the aug-cc-pVDZ and ANO-RCC basis sets to be of similar quality, but the EOM-CCSD 

results are notably higher than the experimental and benchmark results of the excited states [17].  

In practical calculations involving a large number of conformations, as is the case in the statistical 

SQMMD approach, a compromise must be made between accuracy and computational cost. None of the 

TDDFT approaches we explored were able to give excitation energies in good agreement with 

experiment, in all cases overestimating the excitation energies, however, the correct energy ordering of 

the states could be recovered. When exploring the dependence of the excitation energies on the changes in 

the pyrrole bonds, the excitation energies changes only moderately, but the ordering of the 1La and 1Lb 

states changes when increasing the N1-C2 bond distance, decreasing the C2-C3 bond length, and also to 

some extent the N1-C8 bond of the scaled structure (Fig.1, Table 2). This explains the reversal of the 

energy ordering of the states when a methyl group is attached, because the MOs on pyrrole involving the 

attached fragment also has orbital contributions from the C2-C3 bond (Fig. 7). Changing the C-C bonds in 

the benzene ring does not significantly shift the excited states, i.e. a change in the bond length of 0.01Å 

gives an energy lowering of about 3-4 nm.  

Comparing the semi-empirical QOP-CIS approach to TDDFT, QOP-CIS is found to be less sensitive 

to geometry changes due to the calibration of individual integrals and it also give results in good 

agreement with available data (Table 2). Both QOP-CIS and ZINDO-CIS are parametrized to give good 

excitation energies for the lowest excited states of organic compounds, and in particular the 1La and 1Lb 

states of indole and skatole. Using the CMB/aug optimized structures for skatole gives QOP-CIS 

calculated excitation energies of 1La(=265nm; f=0.18) and 1Lb(=291nm; f=0.02) (Table 2 and Fig. 8). In 

Fig. 8, we report the weights of the CIS configurations, and the MOs are plotted using isolines = 0.040 

e/bohr3. The corresponding intramolecular CT is illustrated by plotting the isosurface of squared MOs 

Differences (sqMOD) with a threshold of 0.004 e/bohr3 in each point of the surface, as EDDs could for  

technical reasons not be obtained for these systems. The difference between the total electronic densities 

of states may differ significantly from that obtained from sqMOD, but the main features are reproduced, 

as can be seen from a comparison of these methods (Fig. 7 and 9). EDD gives more detailed information 

because it takes the entire ground or excited electron distribution into account, whereas sqMOD is less 

accurate since it only invokes MOs involved in the formation of molecular configuration for the truncated 

CIS wave function, omitting small contributions. Both methods give a qualitative picture of the changes 

in the electron density. 

 Using the same geometry, the excitation energies calculated at the CMB/aug level of theory are 

respectively 1La(=257nm; f=0.08) and 1Lb(=249nm; f=0.04) (Table 2 and Fig. 9), and give qualitatively 

similar MOs. Whereas 1La changes by  less than 10 nm compared to the QOP results, 1Lb changes by 55 

nm. This is due to a difference of the EDD on the C2-C3 bond. Based on the discussion above and the 

results in Table 2, we see that only the semiempirical INDO-CIS can be used to calculate the lowest 



excited states of skatole at the ground-state geometry to generate absorption spectra with an acceptable 

accuracy. 

2.1.2 Emission structures  

The dependence of the Trp fluorescence on the polarity of the environment makes the modeling of the 

spectral profile for the emission spectrum difficult. This is further complicated by the presence of 

transitions overlapping with the 1La state showing a stronger solvent sensitivity than the 1Lb state and 

which produce not only mono-exponential emission, but also bi-, or even many-, folded fluorescence. The 
1La emission shifts to longer wavelengths in polar solvent [18] due to the involvement of the active polar 

nitrogen atom in the pyrrole ring. Kasha’s rule defines fluorescence to occur from the lowest excited 

state, and the 1Lb state is therefore suggested to dictate the fluorescence spectrum in vacuum, dilute gases 

and completely non-polar environments, whereas the most common fluorescence state is 1La in the more 

commonly encountered polar environments, such as water and biologic objects [1,3,18]. The observed 

complicated emission decay has been proposed to be due to fluorescence from various rotamers of 

tryptophan rather than a simultaneous emissions from the two excited states [1,2], in accordance with 

Kasha’s rule. Due to the proximity of the two lowest * excited states  fluorescence can be occurred 

from both of the 1La and 1Lb states, as the ordering of the states may differ for individual conformers of 

tryptophan. The structure of the chromophore in both excited states, their photophysics, and a scheme for 

studying the excited-state energy decay have to be established before we can investigate more closely the 

CT arising from an intermolecular electron transition from Trp to a non-bonded ligand. 

As both excited states can be expected to be involved in the emission depending on the given 

conformer, in particular rotamer, we consider the geometry of both of these states, optimized for 

each excited state and reported in Table 3. Even very small changes in bond angles and lengths, 

the largest shift in bond length being less than 0.08Å, lead to significant spectral shifts and a 

reversal of the ordering of the 1Lb and 1La states (Table 2 and 3). The electron distribution in the 

ground state and the 1Lb state are similar, but very different in the 1La state. The largest changes in 

the excited-state geometry of the 1La compared to the optimized ground-state geometry occurs in 

the pyrrole ring at the N1-C2-C3 end, where at the CMB/aug level of theory, N1-C2 becomes 

significantly shorter and C2-C3 has the largest bond-length increase of all bonds, 0.05Å and 

+0.08Å, respectively. The benzene ring also is deformed by stretching along the short molecular 

axis, but this does not significantly affect the spectral shifts. At the optimized geometry of the 1La 

state, the calculated emission wavelength is very close to experiment. CT occurs in the opposite 

direction of that seen for the absorption process in the emission process (Figures 5, 7-9). The 

EDD in Fig. 10 is calculated as extracting the initial fluorescent state S1, which is the 1La state, 

from the ground state S0. The calculated CIS for the emission is marked by an asterisk superscript 

and is expressed by a back-arrow associated with the transfer of an excited electron to the 

“parent” occupied MO. For 1La(295nm;f=0.12)* it is found to be 0.95|HOMOL+1*. The pyrrole 

nitrogen atom actively participates in the CT, making the molecule sensitive to its 

microenvironment as discussed previously.   

The TDDFT calculations reproduce the 1La energy levels quite accurately, but overestimate 1Lb by 

about 20-30 nm [63]. A series of TDDFT calculations of the 1La excited-state structures using different 

functionals, from the simpler PBE0 through long-range corrected functionals as well as CAM-B3LYP, in 

combination with different basis sets such as SVP, def2TZVP, 6311++g(d,p),  aug-cc-pVDZ and  ANO-

RCC gave only very minor changes in the calculated fluorescence wavelengths, the differences not 

exceeding a few nm for either state allowing us to focus on only one of these methods. The CMB/aug 

calculated fluorescence of the 1La state with =300 nm and f=0.11 is in very good agreement with the 

CASPT2/ANO benchmark values of =295 nm and the same oscillator strength (Table 3). This suggests 

that TDDFT can be used for the calculation of the fluorescence of different conformers extracted from a 

MD trajectory. 



As noted, the 1La emission is the most probable in water and amino acid sequences, whereas the 1Lb 

transition was proposed to contribute to the complicated fluorescence profiles observed [1,2]. Both states 

calculated at the 1Lb excited-state structure are significantly overestimated compared to absorption 

wavelengths. At the 1Lb excited-state geometry, the two excited states, i.e. 
1La(266nm;0.12)*=0.82|HOMOL+1* and 1Lb(263nm;0.12)*= 0.61|H1L+1*&0.22|HOMOL+7, 

are found to be almost degenerate and this could explain the complicated emission manifolds in vacuum 

or neutral media. However, we will in the following focus on Trp in the presence of either amino acid 

sequences or water, where 1La fluorescence is preferable.  

Despite the perfect agreement of the TDDFT calculations with the experimental data for the 1La 

fluorescence, we will nevertheless use the QOP-CIS approach as it gives a balanced description of both 

absorption and emission photo-processes, and gives in general rates of internal conversion that more 

accurately reflects the excited-state energy dissipation. The rate of internal conversion kic between close-

lying states of the same * type is in the range of 1012 s1 to 1014 s1 and are thus several orders of 

magnitude larger than the rate of fluorescence kr, which is about 108 s1, making emission from the higher 
1Lb energy level impossible. As the QOP-CIS states of skatole are almost degenerate, the approach can 

correctly account for the fact that fluorescence may occur from both states all depending on the 

conformers occurring in the trajectory of the fluctuating molecule. Secondly, the agreement between the 

excitation energies calculated for skatole optimized in the 1La fluorescence state with experiment allows 

the topological parts of the FF to be scaled a little for the MD simulation. 

2.2 SQMMD spectra 

2.2.1 Dynamic models.  

The long wavelength bands of the absorption and emission spectra of HSA are fully 

determined by the Trp214 chromophore, which in turn is very sensitive to the chemical and 

structural features of its microenvironment. The absorption and fluorescence regions can be found 

at wavelengths of 240-280 nm and 307-370 nm, respectively. Moreover, as discussed in the 

previous sections, the ordering of the close-lying 1Lb and 1La energy levels depend on the polarity 

of the surrounding media, and this delicate balance will define the intensity profile of the 

observed spectra. Ligands trapped in subdomain IIA of drug site I of HSA near the Trp214 can 

cause a quenching of the fluorescence due to electron excitations from the Trp chromophore to 

the ligands. Depending on the types of electronic transitions, CT can occur when the tryptophan 

donor and a trapped acceptor molecule are separated by less than 8 nm [64,65], that requires 

partial overlaps of donor fluorescence with absorption bands between donor and acceptor and that 

the electronic transition between them are allowed by the selection rules. The types of transitions 

from Trp214 to the ligand are defined by possible wave functions, describing either the 

interactions between the excited states, the degree of overlap of the states and even mixing their 

MOs arising - stacking. This spectral tenability of these CT properties is a unique tool for 

studying the photochemical process and migration of ligands in biological systems. 

In the case of the Dmz ligand, the long wavelength absorption band was reported to fully 

overlap with the fluorescence band of tryptophan [19]. In the MD simulations, the Dmz ligand 

trapped by HSA is moving within the subdomain IIA, but never very away from the Trp214 

chromophore fragment and close enough to provide MO overlap and allow for - stacking  of 

the ligand with the chromophore (Fig 11).  

Both absorption and fluorescence spectra of the isolated molecules and the donor-acceptor complex 

were generated using all conformers extracted from the MD simulations of the dynamically fluctuating 

system. The total MD simulation time of 5 ns to sample the conformational space provided 1000 

snapshots. The extracted snapshots were used directly without structural relaxation in QM calculations of 

their spectral properties. This simulation period is much longer than the time needed for a molecular 

vibration cycle (responsible for internal conversions), which is of the order of 1010s11014s1 and 



comparable to the rate of absorption 108s1. These time-scales also makes it possible for us to not discuss 

in detail how the MD trajectory covers the total excited-state relaxation.  

The average distance between the center of mass of the donor and the acceptor rcm is 5.4 Å 

and varies from 4.3 Å to 6.9 Å. The smallest interatomic separations rmin are 2.5Å, and varies 

between 1.9Å and 3.9 Å (Fig. 11a). The conformers of the Trp214-Dmz complex are all restricted 

to the HSA pocket and are stabilized by a hydrogen bond between the oxygen atom of the nitro 

group in Dmz and the methyl group of Trp214, at the same time as there is steric repulsion 

between the methyl groups of the fragments compounds (Fig. 11b). The stability of the complex 

is strengthened by strong Van-der-Waals interactions between the two fragments and --

stacking, preventing the acceptor from leaving the donor unless an external force is applied. The 

short Van-der-Waals distances are close to the interatomic distances observed in covalent bonds, 

providing the necessary intermolecular interactions to allow for the CT excitations that would 

lead to fluorescence quenching. 

2.2.2 Types of charge transfers 

In contrast to previously reported processes in which intramolecular electron excitations are 

accompanied with CT arising from the fluorescent indole state to a lower excited state localized 

on attached amide groups [1,3], we here consider intermolecular CT to a non-bonded molecule 

trapped at the same HSA pocket and which gives rise to additional effects compared to the case of 

covalently bonded fragments.  

A Dmz molecule is embedded into the subdomain IIA of HSA where Trp214 resides. This 

cavity is quite large and has sufficient space to allow us to neglect the electric field of the 

microenvironment in the QM calculation. These effects will be considered in future work. The 

majority of the 1000 structures of the complexes extracted from the MD trajectory are close to the 

parallel-displaced type, with different degree of MO overlap and - stacking. The NO2 group has 

a significant influence on the formation of the two excited Dmz states that are lower in energy 

than the fluorescent 1La state. As a consequence, these states are sensitive to the proximity of the 

indole ring due to the formation of hydrogen bonds with the nitro group that contributes 

significantly to the interaction between these molecules (Figures 12 and 13).  

Several representative conformers of the Skt&Dmz complex were extracted from the MD 

trajectory performed on subdomain IIA of HSA in order to study different types of CT between 

the skatole donor and the ligand acceptors. One of these conformers were chosen because it had 

the smallest interatomic separations and thus the largest overlap of the MOs between the acceptor 

and the donor, leading to a large stabilization of the - stacking.  

There are no standard force field parameters for MD simulations of molecular electronic excited 

states. Rather, molecules are assumed to be in their structurally relaxed electronic ground states. We have 

constructed an artificial skatole molecule from the optimal stretching and bending parameters of the 

OPLS-AA force field. CAM-B3LYP calculations of this molecule using the aug-cc-pVDZ and ANO-

RCC basis sets give the same excitation wavelengths and oscillator strengths of (1La) = 267 nm, f = 0.09 

and (1Lb) = 252 nm, f = 0.03. PBE0/svp gave rather similar results: (1La) = 270 nm, f = 0.07 and (1Lb) = 

249 nm, f = 0.01. On contrast, QOP-CIS gives a more realistic description of the absorption structure, 

where the most intense level (1La) = 272 nm, f = 0.20 is almost the same as that of the DFT calculations, 

whereas the other state is changed dramatically, now being the lowest excited state, with (1Lb) = 294 nm, 

f = 0.02. As discussed previously, none of the ground-state structures gives results at the TDDFT level 

that are correct compared to experiment, and even though the scaled structure (see Table 2) reversed the 

ordering of the states into the correct ordering, their energies are far from correct. It thus appears that the 

statistical absorption spectra can currently only be generated using the semiemiprical INDO-CIS 

approach in order to get qualitative and quantitative agreement with experimental observations. 



Fluorescence quenching is determined by the CT from the excited state of the skatole donor to the 

Dmz acceptor, and this requires a different set of stretching and bending parameters for the 1La excited 

skatole structure and the ground-state Dmz absorption structure. We focus on the 1La state as this 

corresponds to the dominating fluorescent state for biologic media in water. The CT process is significant 

for this donor-acceptor pair as these fragments are always very close to each in the HSA pocket (see the 

discussion in the previous section), and their emission and absorption spectra almost fully overlap. In 

order to be able analyze the CT probability, we need a way to describe the excited states involved and to 

compare different ways of excited-state energy relaxation. For this purposed, we have selected three 

conformers that are representative examples of different structures (a) an “ordinary” sample that involves 

neither of the two other cases, namely (b) coinciding states and (c) strong - stacking. (Table 4 and Fig. 

13).  

As noted previously, since the fluorescent 1La excited states of these small individual molecules 

calculated at the CMB/aug level of theory give results in good agreement with experiment, this approach 

could be used to investigate the CT processes. However, DFT functionals still struggle with the 

description of CT excitations, and even more so for non-bonded complexes with large intermolecular 

separations [29,66], often yielding too long wavelengths. The INDO/sp-CIS approach implemented in the 

QOP block provides not only the correct wavelengths for the lowest excited states, but also allows the 

rates of electron transitions to be calculated, and this approach was therefore used in the following. 

The isolated skatole has a strong fluorescence with kr about 1008 s1 that is quenched in the complex 

with Dmz by CT to this acceptor. This CT process can be interpreted as an internal conversion kic 

calculated in the “super-molecule” approach [10,67] and ranges from 1010 s1 to 1012 s1 depending on the 

conformer. The wavelengths of the excitations in the isolated molecules are closely related to the 

corresponding values in the corresponding complexes, though with some notable exceptions that are due 

to interactions between MOs in the two fragments that can be expressed in terms of the CIS expansions in 

the paired and isolated molecules. The CIS wave functions are presented for the three molecular 

configurations in Table 4, giving the largest configurations with a weight of more than 0.1 (squared 

coefficients) with a few important exceptions, using the notation described in Section 2.1.2. Emission or 

intermolecular CT from the 1La state to a lower-energy state of the acceptor is accompanied by energy 

relaxation from higher- to lower-energy singly occupied MOs. These MOs are related to the parent 

doubly occupied and vacant MOs which formed the corresponding configuration |OMOUMO. 

The a-conformer is the most common. In this case, the distance between the donor and the acceptor is 

so long that there are only weak MO interactions, but nevertheless short enough to assume some 

contribution of - stacking. The excited states of the individual molecules are shifted slightly in the 

complex, though the lowest excited state in Dmz and its corresponding oscillator strength is hardly 

changed. The probability of internal conversion through CT is significantly larger than the emission 

process, leaving less than 1% for fluorescence (Table 4). The MOs forming the corresponding states are 

primarily localized on the fragments (Fig 13a), but close-lying states also include contributions from the 

neighboring molecule. For example, the Dmz state =332 nm has a small “intermolecular configuration” 

of 0.05|HOMOLUMO, where the HOMO is primarily localized on skatole.  

In the b-conformer, there is an accidental degeneracy of the excited-state energies of the different 

fragments, giving rise to a much stronger rate of internal conversion due to the small energy gap and the 

admixture of the configuration 0.07|HOMOL+2, which is localized on skatole, in the Dmz-excited 

state with =325 nm (Table 4 and Fig 13b). A similar picture is seen for the rare instances when the Dmz 

acceptor state is lowest in energy and almost coincides with the 1La state, also giving rise to fluorescence 

in this complex (the d-conformer). The donor and acceptors are non-bonded parts of a super-molecule, 

but if they are close enough to each to other, then the MOs distributed on one fragment can interact with 

the neighboring fragment through “mixed configurations” involving different fragments or even an 

“intermolecular configuration” in which the MOs are delocalized over both fragments. 



Both types of electronic exchange between the fragments are found in the c-conformers, where is 

strong - stacking due to the short distance between the -electrons of the different fragments. When the 

separation becomes as short as 4.0-3.5Å, there is substantial delocalization between the two fragments 

and a significant shift in the energy levels. In this case, another “virtual” state with a wavelength of 

=363 nm also appears, arising from the “intermolecular configuration” 0.57|HOMOLUMO (Table 4) 

obtained by exciting an electron from the occupied orbital of skatole to the virtual Dmz orbital. This state 

is unique to the complex and cannot be observed in the isolated molecules (Fig, 13c). The CIS wave-

function of the 1La =323 nm state contains a substantial contribution of the Dmz configuration 0.14|H-

2LUMO, whereas the state =330 nm, to which the CT is transferred to, includes both types of 

electronic mixing, such as the skatole configuration 0.15|HOMOL+2 and “intermolecular 

configuration” 0.12|HOMOLUMO. Thus, the complex with strong MOs interactions exhibits all three 

types of energy exchange between the non-bonded donor and the acceptor, that is, intermolecular 

“interstate CT”, and electron redistribution in both fragments in the form of “intrastate 

interconfigurational CT” and finally “intrastate intermolecular configuration CT”. In all cases, there is a 

very low probability of skatole fluorescence in the presence of Dmz in the HSA pocket.  

2.2.3 Generating absorbance, fluorescence, and charge transfer spectra 

There are two different ways optical spectra of a dynamically fluctuating molecule experiencing the 

forces produced in a MD simulation can be calculated. One is a time-resolved approach in which the 

“temporal” spectral response is obtained directly from the MD fluctuating chromophore fragment [1,3]. 

The second approach is a bandwidth resolution technique where the “band” of the statistically generated 

spectrum is obtained as implemented in the SQMMD approach [10,11]. In this latter approach, we 

assume that we can convert the time propagation into an instantaneous ensemble with a low concentration 

of uncorrelated active spectral regions parts, in line with the ergodic hypothesis. The “temporal” method 

can be used to describe the spectral properties of individual molecules selected by a focused laser beam, 

whereas the “band” method allows the photophysics of numerous identical molecules in a broad focal 

spot to be investigated in an efficient manner.    

MD runs were carried out with the optimal stretching and bending parameters for the indole ring 

scaled to the CMB/aug optimized bond lengths and angles of both the absorptive and fluorescent 

geometries (Tables 2, 3). All spectra where normalized so that the largest absorption band in all the 

conformers was set to one.  

As discussed earlier, TDDFT is unable to correctly reproduce the absorption bands in the long 

wavelength region, whereas the lowest excited state of the 1La optimized structure (Table 3) has an 

excitation wavelength in perfect agreement with the calculated and measured fluorescence in the gas 

phase of 295 nm [58]. In contrast, the semi-empirical QOP-CIS provides acceptable results for both 

photophysical processes, allowing both absorption and fluorescence spectra to be modeled, including both 

the 1Lb and 1La transitions (see Fig. 14). The weak 1Lb transition contributes to the absorption intensity and 

to the quantum yield of fluorescence if this state is the lowest for a given conformer, but the strong 1La 

transition which almost fully overlaps with the 1Lb band, defines the spectral shapes of both processes. 

The 1La transition dipole moment i is directed from “the center of the electronic charge” to the N atom of 

the pyrrole ring (see Fig. 14) and defines the main polarization of fluorescence through the oscillator 

strength fi, which can be expressed as fi =2/3K(E2  E1) i
2 where the energies E are in cm-1 and the 

coefficient K=me/ħ
2 is given in SI units [68]. This information is very useful if a polarized emission can 

be observed in external fields or induced by nonlinear many-photon pumping, such as degenerate or non-

degenerate two-photon  absorption [69].  

 Ideally, the fluorescence spectra should be generated from averaged unitless quantum yields = 

kr/(kr+kst) for each energy bin, where kst is the cross-section transition from the lowest singlet state to one 

or more triplet levels [10,70] rather than the plain emission rate  However, as the CT from the donor to 

the acceptor through internal conversion in the super-molecule system are more than four orders of 



magnitude more likely than the integrated transition to the triplet sub-system, we will here only consider 

the plain emission process as the decay through intersystem crossings will be negligible for the overall 

emission process.  

Since TDDFT using CMB/aug works well for the isolated Dmz in the ground state and for the 1La 

excited-state structure of tryptophan, the corresponding fluorescence spectra were calculated using the 

same conformers in order to compare with the QOP-CIS results. Both the “band” and “temporal” spectra 

were calculated (see Fig. 15 for a comparison). We note that the CMB/aug calculated 1La and 1Lb 

transitions overlap to a lesser extent and are more easily separated than in the QOP calculation. 

Nevertheless, also in this case the intense 1La state defines the fluorescence band. There are only very few 

conformers for which 1Lb can emit on the blue (shorter) side of the long-wavelength band, but this 

nevertheless does not change the dominant 1La contribution (Fig. 15a). For the majority of the conformers, 

the 1La fluorescence dominates because the internal conversion from the higher-lying 1Lb level is 2-4 

orders of magnitude faster than the emission from the 1La state (see Tables 4). We observe the two typical 

fluorescent peaks for indole, though the 1Lb band contributes almost nothing to fluorescence (Fig. 15b). 

The fluorescent profile arises from the fluctuation of the molecules, producing groups of conformations, 

and in particular rotamers, that are responsible for the inhomogeneous intensity distribution in the long 

wavelength spectral region. This fluorescence spectrum overlaps completely with the Dmz absorption 

band, as is necessary for an efficient CT process.  

Earlier studies have reported different angles between the 1La and 1Lb dipole transition moments 

depending on their structures and the level of computation, though in all cases suggesting an angle close 

to 90. The individual conformers exhibit a wide range for this angle, ranging from 11 to 170 (see Fig. 

15c) whereas the angles between the oscillator strengths range from 2 to 90 (Fig. 15d) along the MD 

trajectory. The average values for the relative orientation are 90 and 76, respectively, in good agreement 

with experiment. Since it is not possible to assign a unique wavelength for both states simultaneously for 

the different angles, the wavelength of the most intense fluorescent 1La state was used in the figures.  

We used the QOP-CIS results to overlap the tryptophan fluorescence spectrum with the Dmz 

absorption band as these are the most accurate for both states and they are needed to calculate the rates of 

deactivations in order to identify the excited-state energy degradation process. A single Trp214 residue in 

the original HSA backbone in the absence of a ligand exhibits a sharper fluorescence profile than that 

obtained for the excited states of the isolated skatole as extracted from the skatole-Dmz MD trajectory 

(Fig. 16a). The efficient CT from the donor to the acceptor is made possible by the overlap of the skatole 

fluorescence profile with the Dmz absorption band, in agreement with experimental data [19]. 

The theoretical spectra are narrower than the experimental spectra. There are several reasons for this, 

such as limitations in the MD simulation due to the approximate treatment the vibrational modes, the 

neglect of nonadiabatic transitions, and the approximate description of the charge distribution in the 

microenvironment in the QM calculation. The strong rate of internal conversion from the skatole 1La state 

to the closest lower-lying Dmz singlet state arises from the close contact between the donor and acceptor 

moieties, allowing for a high degree of mixing of the MOs localized on the two fragments (Fig. 16b).  

The probability of radiationless decay is several orders of magnitude higher than the emission from 

skatole, making the fluorescence quenching of Trp almost 100% in the presence of Dmz. 

5. Conclusion 

Different methods for calculating the lowest excited states of tryptophan and the corresponding 

electron density redistribution for the absorption and emission transitions to and from the 1La and 1Lb 

excited states have been presented. Three different kinds of intermolecular charge transfer processes from 

the tryptophan donor to the dimetrodiazole acceptor in the HSA cavity have been identified: 1) from the 

excited state of Trp to the lower excited singlet states formed from MOs fully localized on either of the 

two ligands, which we can denote as “interstate CT”, 2) through electron redistribution within the same 

state where one or more molecular configurations of the CIS wave function are formed, allowing electron 



transfer between the two molecules through an “intrastate intermolecular configuration CT”, and 3) using 

“intrastate interconfigurational CT” where the CIS wave function is a linear combination of molecular 

configurations of the two non-bonded fragments. 

The MD simulations showed that there could be strong MO interactions between the -electrons of 

the dimetrodiazole ligand and the Trp214 residue inside HSA at the subdomain IIA of the binding site I, 

and that the separation between the centers of mass of the units is on average about 5.4 Å, but never 

exceeds 6.9 Å, and that the separation of the closest-lying atoms of these non-bonded molecules is on 

average about 2.5 Å, but never exceeds 3.9 Å without applying an external force. This allows for strong 

MO interactions between the molecules which together with a complete overlap of the emission band of 

the donor and absorption band of the acceptor provide the dominant mechanism for intermolecular CT to 

the embedded ligand, explaining the observed spectral shift and fluorescence quenching of Trp in the 

presence of ligands. The probability of radiationless decay is several orders of magnitude larger than the 

emission from tryptophan, giving rise to an extremely efficient fluorescence quenching in the presence of 

dimetrodiazole. 
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Fig.1 tryptophan  

 

 

 

 

 

 

 

 

 

Fig.2 Ligand&Trp214@HSA  

 

 

 

 

 

 

 

 

Fig.3 Dmz&Trp@HSA and system of local coordinates for the complex 
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Fig.4 Trp with 2 Ala fragment of HSA 

Fig. 5.  The dark lilac space shows a positive EDD 

(increasing ED) between ground states and 1La or 1Lb 

of (a) skatole and (b) indole. The blue arrows denote 

dipole orientations. 

1La  1Lb  

a)  

b)  

Fig. 6. Lilac space denotes a positive EDD between 

indole, skatole portions of tryptophan in GS, 1La and 
1Lb states. 0.002 e/bohr3 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  The dark lilac space shows a positive EDD 

(increasing ED) between ground states and 1La or 1Lb of 

skatole and blue arrows denotes dipole orientations. 

1La  1Lb  

Fig. 8.  The dark lilac space is increasing ED represented by sqMOD 

for 1La or 1Lb states of skatole calculated with QOP-CIS.  

Fig. 9.  The dark lilac space is increasing ED represented by sqMOD 

for 1La or 1Lb states of skatole calculated with CMB/aug.  

Fig. 10.  EDD (S0 – S1) for 

emission of CMB/aug 

optimized skatole in 1La 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. (a) time evolution of separation between 

Trp214 and Dmz measured between their centers of 

mass (blue) and minimum H-bond to nitro group 

(green) and (b) a complex sketch with minimal spaces. 

b 

 

a 

 

Fig. 12.  EDD absorptions to the lowest excited states. 
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Fig.13. sqMOD plotting fluorescence quenching by means of CT from 1La to Dmz (isolines = 0.002 e/bohr3) for 3 

typical ways, (a) ordinary sample, (b) coinciding states, (c) strong - stacking (Table 4) 

 

(a)  

(b)  

1La  
S2  

kr  

kic  

Figure 14.  QOP calculated absorbance (violet) and 

fluorescence 1Lb (green lower) and 1La (red higher) bands 

with major polarization in molecular system of coordinates. 

Fig. 15. CMB/aug calculated and generated 1La and 1Lb fluorescence 

spectra of a) “time resolution” bands and b) overlapping “bandwidth 

resolution” profiles and their main polarizations (dashed) with Dmz 

absorption. Distribution angles between dipole moments (c) and 

oscillator strengths (d) of these states along the fluctuation of 1La 

wavelengths. 



 

 

 

 

 

 

 

 

 

 

Table 1. Low-lying excited states with wavelengths (,nm) and oscillator strengths (f) 

states Trp2Ala tryptophan 3-alanyl-indole skatole indole 

Lb 252(0.05) 251(0.05) 253(0.03) 249(0.04) 248(0.04) 

La 256(0.09) 256(0.08) 258(0.08) 257(0.08) 246(0.10) 

 

 

 

Table 2. Bonds optimized, taken from Ref [16,18,58,59], scaled for absorption structures of  skatole (skt) 

and indole (ind) together with partial atomic charges (in parenthesis) used for MD as well as 

corresponding the low-lying excited 1La and 1Lb states with oscillator strengths (in parenthesis) calculated 

in different approaches (see details in footnote).  

Bonds indole CMB/aug (e1) [58]skt [16]ind [18]skt [59]ind scaled 

N1-C2 1.382 (0.158) 1.379 1.379 1.38 1.380 1.400 

C2-C3 1.367 (+0.015) 1.364 1.369 1.34 1.376 1.296 

C3-C9 1.443 (+0.103) 1.450 1.445 1.45 1.430 1.450 

C9-C4 1.404 (+0.028) 1.408 1.410 1.41 1.423 1.410 

C4-C5 1.385 (+0.024) 1.386 1.388 1.40 1.408 1.410 

C5-C6 1.409 (0.155) 1.412 1.417 1.39 1.388 1.410 

C6-C7 1.385 (+0.090) 1.387 1.389 1.39 1.413 1.410 

C7-C8 1.398 (0.209) 1.402 1.405 1.40 1.389 1.410 

C8-C1 1.375 (+0.361) 1.371 1.374 1.39 1.401 1.360 

C8-C9      1.414  1.406 1.410 1.38 1.377 1.410 

Fig. 16.  (a) Overlapping skatole 1La fluorescence and Dmz 

absorption (red) vs the emission band (green) of single 

skatole of Trp214 at HSA. Dashed blue curves are measured 

skatole fluorescence and Dmz absorption [19]. 

 (b) CT from Trp214 and DMZ at HSA where the rates of 

internal conversion (red) from Trp to DMZ vs fluorescence 

are compared in “band” (top) and “temporal” (foot) 

representations.   

 

a)   b)   



states skatole indole skatole Indole skatole indole skatole indole skatole 
orgLb   277(0.02) 280(0.05) 290   224(0.21)  
orgLa   249(0.09) 260(0.08) 270   219(0.05)  
cbaLb 249(0.04) 248(0.04) 249(0.05) 249(0.04) 245(0.04) 250(0.06) 248(0.02) 246(0.03) 253(0.04) 
cbaLa 257(0.08) 246(0.10) 256(0.08) 247(0.10) 258(0.08) 242(0.06) 266(0.11) 259(0.12) 245(0.06) 
anoLb 250(0.04)  249(0.05)       
anoLa 257(0.08)  256(0.07)       
qopLb 291(0.02) 289(0.02) 290(0.02) 289(0.02) 287(0.02) 285(0.02) 289(0.02) 287(0.01) 292(0.02) 
qopLa 265(0.18) 263(0.17) 264(0.17) 257(0.17) 262(0.17) 260(0.16) 273(0.26) 271(0.26) 258(0.10) 
emcLb 258(0.03)         
emcLa 244(0.09)         

(org) labels the original data; (qop) means semiempirical QOP-CIS;  CAM-B3LYP applied with aug-cc-pVDZ (cba) and ANO-RCC  

(ano) basis sets; EOM-CCSD used with aug-cc-pVDZ (emc) . 

 

 

 

Table 3. Optimized bonds, taken from Ref [16,58], scaled for excited structures of  skatole (skt) and 

indole (ind) together with partial atomic charges (in parenthesis) used for the  MD simulations, as well as 

the corresponding the lowest fluorescence 1La or 1Lb bands with oscillator strengths (in parenthesis) 

calculated in different approaches (see details in footnote). 

 

(org) labels the original data; (qop) means semiempirical QOP-CIS;  CAM-B3LYP applied with aug-cc-pVDZ (cba) and ANO-RCC  

(ano) basis sets; EOM-CCSD used with aug-cc-pVDZ (emc) . 

Table 4. The typical schemes of CT for fluorescence quenching illustrated with three types of 

conformers (Fig. 13). Each two columns successively present wavelengths in nm, oscillator 

strengths in parenthesis, and the rates of radiation and internal conversion (s1) vs CIS expansion 

(local numbering of MOs). Three pairs of columns are the complex and separated fragments.  

Skt&DMZ CIS skatole CIS Dmz CIS 

a-conformer of ordinary sample  

349(0.06) 

 

0.22|H-2LUMO  

0.38|H-5LUMO  

0.19|H-5L+1 

  348(0.06) 

 

0.40|H-2LUMO  

0.20|HOMOLUMO  

0.19|H-2L+1 

332(0.19) 

 

0.58|H-2LUMO 

0.13|H-5LUMO 

0.05|HOMOLUMO  

  330(0.27) 

 

0.71|HOMOLUMO

0.11|H-2LUMO 

316(0.25)La 

kr =1.71008 

0.75|HOMOL+2*  320(0.27)La 

kr =1.91008 

0.84|HOMOLUMO*    

 optimized to  La  morphology optimized to  Lb  morphology 

bonds indole CMB/aug (e1) [58]skt [16]ind scaled indole CMB/aug [58]skt [16]ind 

N1-C2 1.343 (0.133) 1.323 1.376 1.343 1.394 1.391 1.393 

C2-C3 1.436 (+0.013) 1.446 1.472 1.437 1.388 1.381 1.384 

C3-C9 1.423 (+0.122) 1.445 1.411 1.423 1.419 1.43 1.427 

C9-C4 1.420 (0.049) 1.415 1.471 1.420 1.417 1.417 1.419 

C4-C5 1.420 (+0.024) 1.427 1.374 1.430 1.413 1.442 1.446 

C5-C6 1.377 (0.153) 1.376 1.430 1.380 1.428 1.439 1.441 

C6-C7 1.448 (+0.092) 1.446 1.465 1.450 1.411 1.432 1.434 

C7-C8 1.391 (0.219) 1.395 1.386 1.390 1.413 1.41 1.412 

C8-C1 1.401 (+0.335) 1.425 1.391 1.400 1.364 1.367 1.368 

C8-C9      1.406 1.401 1.432 1.434 1.460 1.459 1.463 

states skatole indole skatole indole skatole skatole indole skatole indole 
orgLa

   295(0.11) 291      
cbaLb 272(0.01) 253(0.01) 256(0.00)  260(0.01) 262(0.06) 259(0.05) 270(0.06) 266(0.03) 
cbaLa

 295(0.12) 278(0.14) 300(0.11) 284(0.22) 294(0.12) 266(0.09) 253(0.12) 264(0.07) 260(0.11) 
anoLb   257(0.00)  260(0.01)   270(0.06)  
anoLa

   300(0.11)  295(0.12)   264(0.07)  
qopLb

 301(0.00) 299(0.03) 300(0.12)  306(0.00) 305(0.02) 304(0.03) 308(0.02) 307(0.02) 
qopLa 299(0.30) 291(0.29) 303(0.18) 291(0.39) 299(0.31) 276(0.19) 274(0.17) 277(0.17) 269(0.16) 
emcLb

 267(0.01)    260(0.01)     
emcLa

 277(0.12)         



kic=8.01010  

b-conformer of coinciding states  

357(0.09) 0.39|H-2LUMO  

0.23|H-5LUMO  

0.18|H-5L+1 

  358(0.11) 0.40|HOMOLUMO  

0.23|H-2LUMO  

0.17|H-2L+1 

325(0.12) 0.49|H-2LUMO 

0.16|H-5LUMO 

0.07|HOMOL+2  

  325(0.21) 0.54|HOMOLUMO

0.17|H-2LUMO 

320(0.34)La 

kr =2.41008 

kic=2.51012 

0.79|HOMOL+2*  324(0.26)La 

kr =1.71008 
0.88|HOMOLUMO*    

c-conformer of strong - stacking 

363(0.13) S1 0.57|HOMOLUMO 

0.19|H-2LUMO 

    

359(0.01) S2 0.49|H-5LUMO  

0.17|HOMOLUMO  

0.14|H-5L+1 

  360(0.02) 0.56|H-2LUMO  

0.16|H-2L+2  

0.15|H-2L+1 

330(0.03) S3 0.46|H-2LUMO 

0.12|HOMOLUMO 

0.15|HOMOL+2 

  334(0.34) 0.85|HOMOLUMO 

323(0.34)La 

kr =2.31008 

kic=2.11012 

0.43|HOMOL+2* 

0.21|HOMOL+5*  

0.14|H-2LUMO 

326(0.23)La 

kr =1.41008 

0.66|HOMOLUMO* 

0.18|HOMOL+3* 
  

 

 


