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Abstract The ultrahigh-frequency observation during an ionospheric heating experiment on 11 March
2014 at the European Incoherent Scatter Scientific Association Tromsø site illustrated a remarkable
extension of observing altitudes of the enhanced plasma line and the ion line, implying that the enhanced
ion acoustic wave and Langmuir wave should satisfy the Bragg condition within the extending altitude range.
An analysis shows that the dependence of the wave number of the traveling ion acoustic wave on the profiles
of enhanced electron temperature and ion mass, as are expected from the dispersion relation of the ion
acoustic wave, leads to the extension of observing altitudes of the enhanced ion line. In addition, the altitude
extension of the enhanced plasma line is dependent mainly on the profile of the electron density, although it
is not independent of the profile of the electron temperature. Considering a small gradient profile of
electron density, however, the enhanced electron temperature, as well as the thermal conduction along
the magnetic field, may lead to the altitude extension of the enhanced plasma line.

1. Introduction

Only temperature and density modifications were originally intended in early ionospheric heating experi-
ments, but a much greater variety of physical phenomena have been observed. One of the most interesting
of these physical phenomena is the enhanced plasma line and the ion line observed by incoherent scatter
radar (ISR).

The pump-enhanced plasma line and ion line can be interpreted by parametric decay instability (PDI) and
oscillating two-stream instability (OTSI) (Stubbe et al., 1992), which has been studied extensively (Chen &
Fejer, 1975; DuBois & Goldman, 1965, 1967; Drake et al., 1974; Fejer, 1979; Kohl et al., 1993; Kuo & Cheo,
1978; Kuo & Fejer, 1972; Perkins & Flick, 1971; Perkins et al., 1974; Rosenbluth, 1972; Silin, 1965; Stubbe
et al., 1992; Wu et al., 2006, 2007). Based on some measurements obtained by ISR during ionospheric heating
experiments, the structure of the ISR spectrum (Carlson et al., 1972; Dubois et al., 1988; Gordon & Carlson,
1974; Hagfors et al., 1983; Kantor, 1974; Kohl et al., 1993; Kuo & Fejer, 1972; Nordling et al., 1988; Stubbe
et al., 1985, 1992), the threshold to excite PDI and OTSI (Bezzerides & Weinstock, 1972; Dubois & Goldman,
1972; Perkins et al., 1974; Weinstock & Bezzerides, 1972), and the characteristic time of PDI and OTSI
(Carlson et al., 1972; Gordon & Carlson, 1974; Jones et al., 1986; Kantor, 1974; Kohl et al., 1993; Stubbe et al.,
1985) have been investigated. Additionally, PDI and OTSI can be excited by the O-mode pump (Carlson
et al., 1972; Kantor, 1974) and by the X-mode pump (Blagoveshchenskaya et al., 2014).

Based on the Zakharov model, DuBois et al. (1988) developed a new theoretical approach called strong
Langmuir turbulence (SLT), which has led to new insights into the enhanced plasma line and ion line
induced by ionospheric heating. The ISR spectrum induced by SLT contains a caviton continuum plus a free
mode in the plasma line spectrum and a zero-frequency feature in the ion line spectrum (Cheung et al.,
1992, 2001; Dubois et al., 1988, 1990, 1993a, 1993b, 2001). SLT can be excited by the pump slightly above
the threshold for PDI in the region very close to the reflection altitude of the pump (Cheung et al., 2001;
Dubois et al., 1990, 1993a, 2001). For ionospheric parameters, PDI and SLT may coexist (Djuth & Dubois,
2015; Dubois et al., 1988, 1990, 1991). PDI may play a role in the first few milliseconds following the pump
onset, whereas the Langmuir turbulence is sustained by SLT after PDI (Djuth & Dubois, 2015; Dubois et al.,
1988, 1990, 1991).

However, no well-grounded theoretical model can comprehensively explain the enhanced plasma line and
ion line and be accepted universally. Stubbe et al. (1992) claim that the propagating Langmuir and ion
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acoustic waves represent the major features and parametric decay represents the major process within the
field of Langmuir turbulence, whereas Cheung et al. (1992, 2001), Dubois et al. (1990, 1993a, 1993b), and
Kohl et al. (1993) support the theory that SLT can interpret those observations obtained by ISR more reason-
ably, and PDI and SLT may coexist.

Usually, the pump-enhanced Langmuir wave and ion acoustic wave are induced by PDI and OTSI in the
altitude range extending from the reflection altitude of the pump downward to altitudes where resonant
Langmuir waves having large wave numbers are heavily Landau-damped (Stubbe et al., 1992). The width
of the excitation range is 0.1H, where H is the scale height of the ionosphere plasma (Stubbe et al., 1992).
The enhanced Langmuir wave and ion acoustic wave traveling downward can be observed by radar at
the altitude where the Bragg condition is satisfied (Kohl et al., 1987, 1993; Stubbe et al., 1992). Stubbe
et al. (1992) and Kohl et al. (1993) presented an altitude profile of the normalized ion line power, which
showed the extending altitude of ~3 km to 5 km. This profile is always valid at the European Incoherent
Scatter Scientific Association (EISCAT) UHF radar, but it is difficult to explain. Stubbe et al. (1992) and Kohl
et al. (1993) thought the profile was due to the virtual observation at a frequency of 933 MHz/2. Djuth
et al. (1994) also reported some observations obtained at EISCAT that the plasma turbulence plunged
downward and extended in altitude over timescales of tens of seconds after the pump went on and sug-
gested that this phenomenon was most likely caused by the change in the electron density profile
brought about by the heating of the ionospheric plasma. The EISCAT UHF radar observed a persistent
enhancement in ion line induced by an O-mode pump at a frequency of 5.423 MHz, which started at
~230 km and descended to ~220 km within ~60 s in the heating period (Ashrafi et al., 2006). Ashrafi et al.
(2006) suggested that the clear descent in the altitude of the enhanced ion line represented the change
in electron density during heating. The EISCAT very high frequency (VHF) data also showed the descent
in altitude of the enhanced ion line and plasma line during heating, which was also attributed to the
variety of profiles of electron density induced by heating in the vicinity of the reflection altitude
(Cheng et al., 2013). In addition, Wang et al. (2016) presented an experimental observation that showed
the extending altitude of the enhanced ion line, which was attributed to PDI excited by the pump in the
X mode.

In this paper, particular attention is not paid to the excitation of the enhanced plasma line and ion line but
rather to the altitude extension of the enhanced ion line and plasma line, and a new explanation responsible
for the phenomenon is given.

2. Experiment and Data

The ionospheric heating campaign reported here was carried out at 12:32:30 UT–14:30 UT (universal time)
on 11 March 2014 at the EISCAT site near Tromsø in northern Norway (69.58°N, 19.21°E, magnetic dip
angle I = 78°). The experiment involved the EISCAT heater (Rietveld et al., 1993, 2016) used to modify
the F region of the ionosphere and EISCAT UHF ISR (Rishbeth & Van Eyken, 1993) as the principal means
of diagnosis. A detailed description of the experimental arrangement has been given by Wu, Wu, and Xu
(2016) and Wu et al. (2017). In short, the O-mode pump frequency was operated from 6.7 MHz to 7 MHz
and changed in a step of 2.804 kHz with a period of 10 s, as shown in Figures 1 and 2 (seventh panels)
and 3 (bottom). The effective radiated power of the pump was calculated to be in the range of
56 MW–78 MW; that is, the electric field at an altitude ~200 km should be in the range of 0.3 V/
m–0.35 V/m (Rietveld et al., 1993), which can satisfy the threshold (~0.1 V/m) of PDI for the typical F region
ionosphere (Robinson, 1989). Moreover, the beam of the EISCAT heater and the UHF ISR were directed to
field alignment (actually 12° south of the zenith).

The ionospheric and geomagnetic conditions were relatively inactive during the experiment. The total
magnetic strength at altitude 200 km varied in the interval of [49,210 nT, 49,240 nT], which was obtained
by extrapolating the total magnetic data provided by Tromsø Geophysical Observatory, UiT, The Arctic
University of Norway, where “[ ]” is the closed interval. Correspondingly, the fifth electron gyroharmonic at
altitude 200 km is in the interval of [6.8922 MHz, 6.8964 MHz], which lies in the interval of pump frequency
fHF [6.7 MHz, 7 MHz] exactly. Moreover, the measurement of the Dynasonde at EISCAT showed that the mean
critical plasma frequency of the ionosphere was ~9 MHz at the F2 cutoff altitude of ~280 km from 12:30 UT to
14:00 UT and decreased to ~8.54 MHz from 14:00 UT to 14:30 UT.

Journal of Geophysical Research: Space Physics 10.1002/2017JA024809

WU ET AL. 919



In addition, to measure the effect induced by the pump for each step of frequency, the radar data were ana-
lyzed using an integration time of 10 s by version 8.7 of Grand Unified Incoherent Scatter Design and Analysis
Package (Lehtinen & Huuskonen, 1996) and version 2.67 of Real Time Graphic provided by EISCAT.

To facilitate the following description and discussion, it is necessary to give the convention of the division of
fHF: the pump frequency band of [6.7 MHz, 7 MHz] can be divided into three bands according to the depen-
dence of the ion line on fHF shown in Figure 1, namely, the higher band (HB, above 5fce, where fce is the local
electron gyrofrequency at altitude ~200 km with a value of ~1.366 MHz in Tromsø), the gyroharmonic band
(GB, close to 5fce), and the lower band (LB, below 5fce). For instance, we choose the HB to be (6.871028 MHz,
7 MHz], the GB to be [6.837383 MHz, 6.871028 MHz], and the LB to be [6.7 MHz, 6.837383 MHz) in the first
cycle, which are marked with [12:30:00 UT, t1), [t1, t2] and (t2, 12:48:00 UT], respectively, as indicated on the
abscissa in Figures 1, 2, and 3 where t1 denotes 12:37:40 UT, t2 12:39:40 UT, “( )” the open interval and “[ ]”
the closed interval. Here it should be stressed that due to the slight variation of the geomagnetic field, 5fce
was not a constant but varied slightly. Thus, the above division in each cycle should be slightly different.

In Figure 1 (first to sixth panels), the ion lines within the interval of [�20 kHz, 20 kHz] at altitudes of 215.43 km,
212.5 km, 209.57 km, 206.63 km, 203.7 km, and 200.77 km, respectively, are given. When fHF lies in the GB, the
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Figure 1. The ion lines at altitudes of (first panel) 215.43 km, (second panel) 212.5 km, (third panel) 209.57 km, (fourth panel) 206.63 km, (fifth panel) 203.7 km, and
(sixth panel) 200.77 km versus (seventh panel) heating cycles.
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Figure 2. The plasma line at altitudes of (first panel) 210.25 km, (second panel) 207.32 km, (third panel) 204.39 km, (fourth panel) 201.45 km, (fifth panel) 198.52 km,
and (sixth panel) 195.58 km versus (seventh panel) heating cycles.
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enhanced ion line reaches ~1 and occurs at altitudes of 206.63 km in the first heating cycle (12:30 UT–12:48
UT), 215.43 km in the second heating cycle (13:00 UT–13:18 UT), 209.57 km in the third heating cycle (13:30
UT–13:48 UT), and 212.5 km in the fourth heating cycle (14:00 UT–14:18 UT). At other altitudes, however, some
gaps or weak ion line spectra appear, which are caused by the normalization to the strongest value of the ion
line at any specific time and altitude and do not imply a real decrease in the ion line or any unusual response.

When fHF steps in the HB, the enhanced ion line of up to ~0.85 occurs at a lower altitude than in the GB and is
distributed within a remarkably wide altitude range, for instance, at altitudes of 209.57 km and 206.63 km in
the fourth heating cycle. Moreover, two prominent features shared in the HB and GB are the significant
“spikes” in the center of the ion line spectra, which are themanifestation of the oscillating two-stream instabil-
ity (OTSI) or the purely growing instability and the significant “shoulders” lying at a frequency of ~9.45 kHz,
which is the confirmation of the parametric decay instability (PDI) (Kohl et al., 1993; Stubbe et al., 1992).

When fHF is in the LB, the ion line shows a decrease in intensity instead of an enhancement. Namely, no
significant “spikes” and “shoulders” are found in those ion lines. The mechanism responsible for the decrease
in the ion line in the LB is beyond the scope of this paper.

Usually, the altitude of the plasma line is approximately 3 km–5 km lower than the altitude of the ion line at
EISCAT UHF (Kohl et al., 1993; Stubbe et al., 1992). Accordingly, the downshifted plasma lines within the
frequency range of [�6.7 MHz, �7.25 MHz] at altitudes of 210.25 km, 207.32 km, 204.39 km, 201.45 km,
198.52 km, and 195.58 km are illustrated successively from Figure 2 (first to sixth panels). One can find the
distribution of the altitude of the enhanced plasma line as analogous to the distribution of the altitude of
the enhanced ion line. In the GB, some strong enhanced plasma lines reach ~1 and are located at altitudes
of 204.39 km, 201.45 km, and 198.52 km in the first heating cycle; 210.25 km and 207.32 km in the second
heating cycle, and 207.32 km and 204.39 km in the third and fourth cycles. In the HB, however, those
enhanced plasma lines plunge downward in altitude and are located at altitudes of 201.45 km, 198.52 km,
and 195.58 km in the first heating cycle; 207.32 km and 204.39 km in the second heating cycle; and
207.32 km, 204.39 km, and 201.45 km in the third and fourth cycles. In the LB, the enhancement in the plasma
line has not been found at any of those altitudes. In a way similar to the ion line, these plasma lines show simi-
lar weakening intervals caused by the normalization, but they occur in the GB and HB.

At those altitudes, there are two “bands” of plasma lines in the HB and GB, the lower one of which lies at
frequency fHF � fia, as is expected for a “decay line” from PDI excited by the pump, where fia is the frequency
of ion acoustic wave and ~9.45 kHz here, and the upper one of which is the spread of the plasma lines and
occurs only at higher frequencies of (~6.93 MHz to ~7.15 MHz). Some possible explanations of the upper
“band” of plasma lines, such as the interaction of four plasma waves (Borisova et al., 2016), the inhomoge-
neous increase in electron density by irregularities induced by the pump (Wu et al., 2016), and the free
Langmuir wave excited by SLT (Dubois et al., 1988, 1990, 1991, 1993a, 1993b), were given (Wu et al., 2017),
but the nature of the upper “band” of plasma lines still remains open.
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Figure 3. The electron temperature Te versus heating cycles.
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Figure 3 gives the altitude profile of electron temperature Te with the height resolution of 13 km–19 km as a
function of the heating cycle. Near an altitude of ~200 km, the enhancement in Te is evidently a function of fHF,
that is, TeLB200> TeHB200> TeGB200, where TeLB200, TeHB200, and TeGB200 are the electron temperatures in the LB,
HB, and GB, respectively, near an altitude of ~200 km. The means of TeLB200, TeHB200, and TeGB200 are ~2,782 K,
~2,687 K, and ~2,268 K in the first heating cycle; ~2,882 K, ~2,505 K, and ~2,103 K in the second heating cycle;
~2,815 K, ~2,581 K, and ~2,348 K in the third heating cycle; and ~2,667 K, ~2,599 K, and ~2,186 K in the fourth
heating cycle. This change in Te with fHF is dependent on the dispersion behavior of the electrostatic upper
hybrid waves excited by an O-mode pump lying in the GB, HB, and LB (Borisova et al., 2014, 2016; Dysthe
et al., 1982; Gurevich et al., 1995; Mjølhus, 1993; Robinson et al., 1996; Wu et al., 2017). In general, the upper
hybrid resonance altitude of the pump is approximately 2 km–10 km lower than the reflection altitude of
the pump, which is dependent on the altitude profile of the ionospheric electron density (Gurevich, 2007).

Figure 4 illustrates the ratio of the oxygen ion densityNOþ to the electron density Ne and the ratio of the nitric
oxide ion plus molecular oxygen ion density N Oþ

2 þNOþð Þ to the electron density Ne as a function of altitude,

which is given by International Reference Ionosphere 2007 (IRI-2007) model (Bilitza & Reinisch, 2008) and is
invoked by the version 8.7 of Grand Unified Incoherent Scatter Design and Analysis Package (Lehtinen &
Huuskonen, 1996). Note that the mass of Oþ

2 is approximately equal to the mass of NO+; thus, Oþ
2 and NO+

are considered in the combining way. Moreover, for the sake of simplicity, only O+, Oþ
2 , and NO+ are consid-

ered, whereas hydrogen ion H+, atomic nitrogen ion N+, and helium ionHþ
e are ignored due to the small mass

or the small percentage. Indeed, the frequency of the ion acoustic wavemode corresponding to H+ f iaHþ ¼ 2kr
2πffiffiffiffiffiffiffiffiffiffi

γ KBTe
miHþ

q
≈ 46kHz, which is excluded in the ion line channel of [� 40 kHz, 40 kHz] of UHF radar, where kr is the

wave number of UHF radar, γ is the adiabatic index, KB is the Boltzmann constant,miHþ is the mass of H+, and
Te is set as the 2,186 K, namely, TeGB200 in the fourth heating cycle. In other words, the ion acoustic wavemode
corresponding to H+ cannot be observed by the UHF radar. Similarly, the frequencies of the ion acoustic wave
modes corresponding to N+ andHþ

e are ~12.2 kHz and ~22.8 kHz, respectively, which deviate greatly from the
examined frequency of the enhanced ion line ~9.45 kHz. Additionally, in the examined altitude range of
200.77 km to 215.43 km, the percentages of H+, N+, and Hþ

e are so small that they cannot be given by

IRI-2007. Figure 4 obviously shows that NOþ
Ne

descends monotonically with the descent in the altitude, and

the gradient of NOþ
Ne

becomes steeper in the altitude range of 170 km–260 km. In particular, NOþ
Ne

has a value

of 0.6 at altitude ~215 km, 0.5 at altitude ~208 km, and 0.4 at altitude ~200 km, implying that O+ dominates

above altitude ~208 km, whereas
N

Oþ
2
þNOþð Þ
Ne

behaves on the contrary andOþ
2 and NO+ dominate below altitude

~208 km.

Figure 4. The ratios of NOþ and N Oþ
2 þNOþð Þ to Ne, respectively, as an altitude function.
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In summary, the altitude characteristics of the enhanced plasma line and ion line induced by PDI and OTSI
show that (1) the altitude of the enhanced ion line and plasma line in the HB are lower than the altitude of
the enhanced ion line and plasma line in the GB, (2) the enhanced ion line and plasma line are distributed
within an extending altitude range, and (3) the altitude extension of the enhanced ion line occurs only in
the HB, whereas the altitude extension of the enhanced plasma line occurs in both HB and GB.

3. Discussion

The Langmuir wave and ion acoustic wave enhanced by PDI and OTSI are observed by a radar in monostatic
operation at the altitude where the Bragg condition is satisfied (Stubbe et al., 1992)

h ¼ h0 � Δh (1)

where h0 denotes the reflection altitude of the pump, Δh ¼ 12 KBf
2
r

mec2f
2
HF
TeH, fr is the radar frequency, me is the

electron mass, c is the velocity of light, and H is the scale height. Obviously, Δh is dependent on Te and H of
plasma on the traveling path. For the sake of simplicity, considering the scale height of ~30 km to ~40 km for
the typical ionosphere (Djuth et al., 1994), we can reasonably assume in this study that the reflection altitudes
of the pump in the GB are approximately identical to the reflection altitudes of the pump in the HB, namely,
h0HB ≈ h0GB.

Further, H can be defined as (Liu et al., 2007)

1
H
¼ � 1

Ne

dNe

dh
¼ mig

KBTp
þmiνinWD

KBTp
þ dTp=dh

Tp
(2)

where mi is the ion mass, g is the acceleration due to gravity, Tp ¼ T iþTe
2 is the plasma temperature, νin is the

collision frequency of ion with neutrals, and WD is the vertical diffusion velocity of the ions.

Considering atomic oxygen as themost common ion species at the F2 region and usingmiOþ≈2:657�10�26kg,
νin ≈ 4.1Hz for the typical ionosphere (Rishbeth & Owen, 1969) and WD ≈ 3.7m/s (Wu et al., 2017), H and Δh
can be obtained as shown in Table 1. Table 1 illustrates that the higher Te200 tends to increase H in the first,
second, and fourth cycles. In the third cycle, however, H in the GB is somewhat larger than in the HB due to
the enhanced temperature in the GB, showing that the higher electron temperature canmake electrons over-
come the gravity as well as the collisions more effectively and escape from the heated region, reshaping
slightly the local altitude profile of the ionosphere. In addition, the higher Te200 tends to increase Δh in all four
cycles. From the above discussions, the observing altitude should clearly be dependent essentially on the
electron temperature; that is, a higher Te200 leads to a lower h.

However, the variations in altitude in the GB and HB in Table 1 are no greater than 1 km, whereas the varia-
tions in altitude in the GB and HB in Figures 1 and 2 are ~3 km. This error should be most likely caused by the
model and the height resolution of the radar. Equation (1) was obtained by assuming the profile of the elec-

tron densityNe hð Þ ¼ Ne h0ð Þ 1þ h�h0
H

� �
rather than the real one (Stubbe et al., 1984, 1992). In addition, EISCAT

UHF radar can give only the ion line and plasma line with the height resolution of ~3 km, which certainly
results in the altitude ambiguity.

The most interesting aspect is that the enhanced ion line and plasma line are distributed within an extending
altitude range. Furthermore, the altitude extension of enhanced ion line occurs only in the HB, whereas the
altitude extension of enhanced plasma line occurs in the HB and GB. With regard to the field-aligned obser-
vation of the radar in monostatic operation, the enhanced Langmuir wave and ion acoustic wave traveling
down in a nonuniform but stationary ionosphere will follow the dispersion functions (Kohl et al., 1993;
Baumjohann and Treumann, 1997):

ω2
L ¼ ω2

pe þ γ
KBTe
me

k2L (3)

ω2
ia ¼ γ

KBTe
mi

k2ia (4)

where ωpe denotes the Langmuir frequency; kL and kia are the wave numbers of the Langmuir wave and ion
acoustic wave, respectively; mi is an effective ion mass, and me is the electron mass. Based on the following
approximations and assumptions, function (4) should be valid in the present study. (1) The ionospheric
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plasma behaves quasi-neutral in the stationary state. (2) Due to Ti < < Te in the F region, the contribution of
ion thermal pressure is neglected, where Ti and Te are the ion and electron temperature and have the means
of 1,172.9 K and 2,212.5 K at altitude 214.4 km, respectively. (3) The excited ion acoustic wave travels in long
wavelength or small wave number, namely, k2iaλ

2
D ≈ 0:0006 << 1, where kia ¼ 2kr

2π ≈ 6:207m�1 , the Debye
length λD ¼

ffiffiffiffiffiffiffiffiffiffi
ε0KBTe
Nee2

q
≈ 0:004m, and ε0 is the vacuum dielectric constant, KB is the Boltzmann constant, e is

the electron charge, and Ne is the average electron density at altitude 214.4 km.

The dispersion function describes the relation between the wave and the medium. When the enhanced
Langmuir wave and ion acoustic wave travel down in a nonuniform but stationary ionosphere,ωL andωiawill
not change, whereas kL and kiamay change. Furthermore, the change in kL should depend onωpe and Te, and
the change in kia on mi and Te. In other words, ωpe and Te may be compensated by each other to keep kL
unchanged. Similarly, to keep kia unchanged, mi and Te may compensate each other.

Figure 4 shows that O+ is dominant above altitude 208 km, whereas NO+ and Oþ
2 dominate over O+ below

altitude 208 km, implying that the term 1
mi
in equation ((4)) will decrease with the descent in altitude, namely,

with a positive gradient. However, Figure 3 shows that the strong enhancement in Te occurs at altitude
~200 km, where the upper hybrid resonance occurs (Dysthe et al., 1982; Gurevich et al., 1995; Mjølhus,
1993; Robinson et al., 1996; Wu et al., 2017). Unfortunately, however, one cannot see the morphology of Te
near altitude ~200 km due to the height resolution of ~15 km. Even so, surely, there should be a negative
gradient of Te above the upper hybrid resonance altitude; that is, Te should become larger from the near alti-
tude of 245.8 km to the upper hybrid resonance altitude. Thus, the gradient of Te is obviously opposite to the

gradient of 1
mi
above the upper hybrid resonance altitude. Similarly, the gradient ofωpe in function (3) is oppo-

site to that of Te above the upper hybrid resonance altitude.

Figure 1 shows that ion acoustic waves in the HB can approximately satisfy the Bragg condition within the
extending altitude range due to the competitive balance between the increasingmi and Te with the descent
in altitude within the extending altitude range; that is,mi and Temay be compensated by each other so thatmi

Te

and kia remain approximately unchanged within the extending altitude range. Thus, the altitude range exam-
ined may be covered by multiple range gates. In other words, the enhanced ion acoustic wave can be
observed by UHF radar within the extending altitude range. Note that kia should satisfy the Bragg condition
approximately rather than fully because the gradient of Te is approximately equal to the gradient ofmi, albeit
less fully. As an example, the enhanced ion line in the HB in the fourth cycle is examined. In Figure 5 (left),
both mi and TeHB become larger with the descent in altitude above altitude 199.6 km. Figure 5 (right) shows
that kiaHB has a value of ~37 m�1 above altitude 199.6 km and becomes larger with the descent in altitude

below altitude 199.6 km. Moreover, dkiaHBdh

��245:8 km

229:8 km ≈ 0:029m-1km-1, dkiaHBdh

��229:8 km

214:4 km≈0:008m
-1km-1, dkiaHBdh

��214:4 km

199:6 km≈

�0:028m-1km-1, and dkiaHB
dh

��199:6 km

186:2 km≈� 0:48m-1km-1. This implies that kiaHB remains unchanged approximately

and is very close to 2kr above altitude 199.6 km, satisfying the Bragg condition approximately above altitude
199.6 km. Thus, the enhanced ion acoustic wave can be observed in the altitude range of 199.6 km to
245.8 km.

Thus, a question arises. Why does the enhanced ion line in the GB not occur within an extending altitude
range but at a particular altitude, as illustrated in Figure 1? As shown in Figure 3, when fHF lies in the GB,
the enhancement in Te at altitude ~200 km is ~10% and far smaller than the enhancements in Te in the HB
and LB due to the absence of the trapping of the upper hybrid wave in the small-scale irregularities
(Borisova et al., 2014, 2016; Dysthe et al., 1982; Gurevich et al., 1995; Mjølhus, 1993; Robinson et al., 1996;
Wu et al., 2017). Thus, we can assume reasonably and approximately that Te has not been modified by the

Table 1
Te200, H, and Δh During the Experimenta

HB1 GB1 GB2 HB2 HB3 GB3 GB4 HB4

Te200(K) 2,687 2,268 2,103 2,505 2,581 2,348 2,186 2,599
H(km) 46.85 41.56 39.38 44.33 44.33 45 41.63 46.6
Δh(km) 4.49 3.564 3.13 3.962 4.145 3.823 3.44 4.32

aThe column headings denote the pump frequency bands and the heating cycles, e.g., HB1 for the HB in the first cycle.
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pump in the GB and can be considered a constant rather than a variable within the altitude range examined.
In this case, kia in dispersion functions (4) will be determined only by mi. In other words, kia will depend only
on the altitude profile ofmi. Due to the monotonicity of the altitude profile ofmi, kia should satisfy the Bragg
condition fully and inevitably at a specific altitude rather than within an extending altitude range. This
specific altitude can be covered by only one range gate of radar. Similarly, the enhanced ion line in the GB
in the fourth cycle is examined. Figure 5 (left) also illustrates that the average electron temperature in the
GB TeGB is enhanced slightly and is far smaller than the average electron temperature in the HB above

altitude 199.6 km. Moreover, TeGB
dh

��199:6km
186:2km ≈ 6:09Kkm-1 , TeGB

dh

��214:4km
199:2km≈� 2:36Kkm-1 , TeGB

dh

��245:8km
214:4km≈� 15:52Kkm-1 ,

TeHB
dh

��199:6km
186:2km ≈ 40:82km-1 , TeHB

dh

��214:4km
199:2km≈� 18:45Kkm-1 , and TeHB

dh

��245:8km
214:4km≈� 20:65Kkm-1 . Thus, TeGB can be

considered the constant approximately above an altitude 199.6 km, and kiaGB should be dominated by
the profile of mi, as expected from function (4). In Figure 5 (right), kiaGB has a value of ~39 m�1 and

remains unchanged approximately in the altitude range of 214.4 km to 245.8 km, namely, dkiaGB
dh

��245:8km
214:4 km≈

�0:018m-1km-1. Below altitude 214.4 km, however, kiaGB becomes larger with the descent in altitude, that

is, dkiaGBdh

��214:4 km

199:6 km≈� 0:159m-1km-1. Thus, kiaHB is approximately equal to 2kr and satisfies the Bragg condition

approximately in the wide altitude range near altitude 214.4 km. In particular, kiaGB = 39m�1 at altitude
214.4 km, where the enhanced ion acoustic wave will certainly be observed.

The profile of kiaHB is obviously dependent on the profiles of mi and TeHB above the altitude 199.6 km,
whereas it is mainly dependent on the profile of mi below the altitude 199.6 km, which is also true for
kiaGB. With the comparisons between Figure 5 (right) and Figure 1, however, some errors of the extending
altitude range are obvious. The extending altitude ranges in Figure 5 (right) reach ~45 km and ~31 km in
the HB and GB, respectively, whereas Figure 1 indicates that the extending altitude range is ~8.8 km in the
HB and ~3 km in the GB. Those errors may be in two aspects, namely, the uncertainty in the altitude profile

of the effective ion mass and the ambiguity in the altitude profile of electron temperature. In the GB, dTeGBdh is

small; thus, the larger dmi
dh is necessary for the larger dkiaGBdh . Considering a larger dmi

dh above 199.6 km, thus, kiaGB
above 212.5 km may become smaller and deviate greatly from 39 m�1, whereas kiaGB below 212.5 km will
become larger and also deviate greatly from 39 m�1. This implies that the extending altitude range in the
GB will be compressed greatly. In the HB, however, the ambiguity in the altitude profile of electron tempera-
ture may play an important role. Assuming a smooth altitude profile of the effective ion mass as presented in

Figure 1 (left) and considering a larger dTeHBdh above 199.6 km, thus, kiaHB may become larger and deviate greatly

from 39 m�1 above altitude 209.57 km. On the other hand, assuming a smooth altitude profile of electron

temperature as presented in Figure 1 (left) and considering a larger dmi
dh above 199.6 km, thus, kiaHB may

become smaller and deviate greatly from 39 m�1 above altitude 209.57 km. The above two considerations
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Figure 5. The profiles of (left)mi, TeGB, and TeHB and (right) kiaGB and kiaHB within the altitude range of 162.1 km–245.8 km in the fourth cycle, wheremi is the effec-
tive ion mass; TeGB and TeHB are the average electron temperature in the GB and HB, respectively; and kiaGB and kiaHB are the wave numbers of the ion acoustic
wave in the GB and HB.mi ¼ NOþ

Ne
miOþ þ 1� NOþ

Ne

� �
miOþ

2
,miOþ ¼ 2:657�10�26kg, andmiOþ

2
¼ 5:314�10�26kg. Due tomiOþ

2
≈miNOþ, onlymiOþ

2
is utilized here. TeGB is the

mean of the electron temperature within the internal of [14:07:20 UT, 14:09:10 UT] and TeHB within the internal of [14:11:20 UT, 14:18:00 UT]. The frequency of the ion
acoustic wave fia = 9.45 kHz.
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in the HB imply that the upper boundary of the extending altitude range will descend; that is, the extending
altitude range in the HB will be compressed greatly.

Thus, it may be seriously questioned whether the uncertainty in the altitude profile of the effective ion mass
or the ambiguity in the altitude profile of electron temperature dominates those errors in this study. As the

above discussions, if a smooth altitude profile of the effective ion mass is assumed, a larger dTeHB
dh above

199.6 kmwill lead to a larger kiaHB deviating greatly from 39m�1 above altitude 209.57 km. Then kiaHB should
be exactly equal to 39 m�1 at altitudes 209.57 km or 206.63 km, so that the intensity in ion line at altitudes
209.57 km or 206.63 km should be strong and up to ~1. However, Figure 1 shows that the intensity in the
enhanced ion line in the HB is up to ~0.85. Thus, it seems that those errors are dominated by the uncertainty

in the altitude profile of the effective ion mass. Indeed, dmi
dh is eventually dependent on the ion density

gradients in different species.

Moreover, the extending altitude of ~3 km to ~5 km of the normalized ion line power is contributed to the
virtual observation at a frequency of 933 MHz/2 (Kohl et al., 1993; Stubbe et al., 1992). Based on the above
discussions, however, an alternative explanation is that the altitude extension of ~3 km to ~5 km may be
due to the mutual compensation between Te and mi on the traveling path, although the altitude profiles
of Te andmi were not given by Stubbe et al. (1992) and Kohl et al. (1993). Additionally, there is also a stronger
ion line power higher up between the altitudes of the UHF and VHF plasma lines (Kohl et al., 1993; Stubbe
et al., 1992). Strictly, it is not necessary for the real ionosphere that the enhanced ion acoustic wave and
Langmuir wave are observed at the same altitude, because the dispersion relation of the Langmuir wave is
different from the dispersion relation of the ion acoustic wave; that is, the change in kL is dependent on
ωpe and Te on the traveling path, whereas the change in kia is on Te and mi. In other words, at a specific alti-
tude where the Langmuir wave satisfies the Bragg condition, the ion acoustic wave does not necessarily
satisfy the Bragg condition, and vice versa.

Figure 2 shows that the enhanced plasma line is also distributed within an extending altitude range. Unlike
the enhanced ion line, the altitude of the enhanced plasma line is extending not only in the HB but also in the
GB, implying that kL in the GB and HB can satisfy the radar Bragg condition within the extending altitude

range. Due to the competitive balance between the increasing ω2
L � ω2

pe and the increasing Te with the

descent in altitude, ω2
L � ω2

pe and Te may be compensated by each other so that kL satisfies the Bragg condi-

tion and remains unchanged within the extending altitude range, which may be covered by multiple range
gates. Thus, the enhanced Langmuir wave can be observed by UHF radar in the extending altitude range.
Figure 6 (left) illustrates the profiles of ω2

L � ω2
pe , TeGB, and TeHB. Similar to mi, ω2

L � ω2
pe trends up with the

descent in altitude, namely, with a negative gradient. Moreover, one can see thatω2
L � ω2

pe becomes negative

above altitude 208.5 km. This is dependent on the profile of Ne; that is, ωpe is larger than ωL above altitude
208.5 km, where the Langmuir wave should reflect. Correspondingly, in Figure 6 (right), the profiles of kLGB
and kLHB above altitude 208.8 km should be zero. In Figure 6 (right), kLGB and kLHB are equal to 39 m�1 at
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Figure 6. The same as Figure 5 but for the Langmuir wave, where ωL = 2π × 6.8MHz, ωpe ¼ 2π�8:9
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Ne

p
, Ne is the mean of electron density within the internal of

[14:07:20 UT, 14:09:10 UT], and kLGB and kLHB are the wave numbers of the Langmuir wave in the GB and HB, respectively.
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altitudes of ~207 km and ~206 km, respectively, and the profiles of kLGB and kLHB almost coincide within the

altitude range examined. Moreover, dkLGBdh

��214:4km
199:6km≈� 5:1m-1km-1, dkLGBdh

��199:6km
186:2:6km≈� 2:46m-1km-1,dkLHBdh

��214:4km
199:6km≈�

4:59m-1km-1 , and dkLHB
dh

��199:6km
186:2:6km≈� 3:03m-1km-1 ; that is, kLGB and kLHB should satisfy the Bragg condition

approximately within the narrow altitude range near the altitudes of ~207 km and ~206 km. Considering
the height resolution of ~3 km, the enhanced Langmuir wave should be observed in the altitude range of
~203 km to ~210 km. As an altitude function, however, the profiles of TeGB and TeHB do not vary monotonically

within the altitude range of 162.1 km to 245.8 km, whereasω2
L � ω2

pe trends upmonotonically with the descent

in altitude. This implies that in our case,ω2
L � ω2

pe should dominate kLGB and kLHB; that is, the altitude extension

of the enhanced plasma line in the GB and HB is dependent mainly on the profile of Ne, although the altitude
extension is not independent of the profile of Te as expected from function (3).

A typical experimental result is that a narrow altitude extension of the plasma line always accompanies a wide
altitude extension of the ion line (Kohl et al., 1993; Stubbe et al., 1992). Analogous to our result, although it is
not independent of the profile of the electron temperature, the altitude extension of the enhanced plasma
line is dependent mainly on the profile of the electron density, whereas the altitude extension of the
enhanced ion line is dominated by the profiles of ion mass and electron temperature, which may obviously
be compensated by each other.

Even so, this analysis will not contradict that the profile of the enhanced Temay lead to the altitude extension
of the enhanced plasma line. Considering a small gradient profile of Ne, the profile of Temay dominate kL; that
is, kL will be dependent on the profile of Te when Ne is a constant approximately within the altitude range
examined, as should be expected from equation (3). This may be supported by some other measurements.
The measurements acquired during an ionospheric heating campaign conducted in November 1990 show
that the enhanced plasma turbulence plunges downward in altitude over timescales of tens of seconds
following the HF beam turn on, exhibiting billowing, cloudlike structures, thereafter recovering slightly
toward greater altitudes (Djuth et al., 1994, see plate 1). At the initial stage of evolution of 0.5 ± 5 s, Te will
not be enhanced greatly at the upper hybrid resonance altitude due to the undeveloped small-scale irregu-
larity and less anomalous absorption (Gurevich, 2007). Then, kL will depend only on the altitude profile of the
electron density and satisfy the Bragg condition fully and inevitably at a particular altitude, where the narrow
power profile of the plasma line was observed as shown in the literature (Djuth et al., 1994, see plate 1).
Thereafter, the small-scale irregularities at the upper hybrid resonance altitude begin to govern anomalous
absorption of the pump gradually with increasing time, so Te at the upper hybrid resonance altitude will
be enhanced greatly. Further, the thermal energy should be conducted within an extending altitude range
near the upper hybrid resonance altitude. Then, kLwill depend not only on the altitude profile of the electron
density but also on the altitude profile of Te, satisfying the Bragg condition approximately within an extend-
ing altitude range. Moreover, the altitude interval becomes lower and lower due to the gradual enhancement
in Te, as expected from equation (1), and wider and wider due to the thermal conduction along the magnetic
field. After ~30 s of the pump onset, the diffusion of the plasma along the magnetic field may lead to the
decrease in the local electron density, which is equivalent to the decrease in H and Δh. Additionally, the diffu-
sion of plasma induced by a long pump pulse of ~30 s may slightly reshape the altitude profile of the electron
density (M. T. Rietveld, private communication). Then, the reflection altitude of the pump may move upward.
As a result, a new heating region should be obtained at a greater altitude.

It should be stressed that the profiles of ω2
L � ω2

pe, TeGB, and TeHB were taken from the measurement of UHF

radar. Comparing Figure 6 (right) with Figure 2, the profiles of kLGB and kLHB can match perfectly the obser-
ving altitudes of the plasma lines in the GB and HB in the fourth cycle, thus showing indirectly that the model

mi ¼ NOþ
Ne

miOþ þ 1� NOþ
Ne

� �
miOþ

2
may lead to the errors of the extending altitude range of the enhanced ion

line as shown in Figure 5 (right).

4. Conclusions

This paper focuses on the altitude characteristics of the enhanced ion line and the plasma line during an iono-
spheric heating campaign with a pump frequency near the fifth gyroharmonic on 11 March 2014 at the
EISCAT Tromsø site in northern Norway. Those UHF observations show that the observing altitude of the
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enhanced ion line and plasma line varies as a function of pump frequency. The observing altitude of the
enhanced ion line and plasma line in the HB is lower than the observing altitude of the enhanced ion line
and plasma line in the GB. The enhanced ion lines in the HB are distributed within an extending altitude
range, whereas the enhanced ion lines in the GB are observed at a specific altitude. Moreover, the enhanced
plasma lines in the HB and GB are distributed within an extending altitude range.

In conclusion, the altitude characteristic of the enhanced plasma line and ion line are brought about essen-
tially by the thermal effect induced by the heating. (1) The altitude of the enhanced ion line and plasma line is
determined by the electron temperature and the scale height. (2) In the HB, ion mass and electron tempera-
ture may be compensated by each other so that the wave number of ion acoustic wave remains unchanged
and satisfies the Bragg condition approximately within the extending altitude range. (3) Due to a slight
enhancement in the electron temperature in the GB, the wave number of the ion acoustic wave will depend
mainly on the profile of the ion mass and will satisfy the Bragg condition at a particular altitude. (4) The alti-
tude extension of the enhanced plasma line in the GB and HB is dependent mainly on the profile of the
electron density, although they are not independent of the profile of the electron temperature. Even so,
the enhanced electron temperature may lead to the altitude extension of the plasma line by considering a
small gradient profile of electron density.

This study may provide an alternative explanation for the altitude extension of the enhanced ion line and
plasma line during ionospheric heating. Furthermore, an alternative clue for the explanation of an
“overshoot” in the plasma line and ion line occurs when the heating switching is on initially (Djuth et al.,
1994; Kohl et al., 1993; Showen & Kim, 1978) may be expected.

References
Ashrafi, M., Kosch, M. J., & Honary, F. (2006). Heater-induced altitude descent of the EISCAT UHF ion line enhancements: Observations and

modeling. Advances in Space Research, 38(11), 2645–2652. https://doi.org/10.1016/j.asr.2005.06.079
Baumjohann, W., & Treumann, R. A. (1997). Basic space plasma physics. London: Imperial College Press.
Bezzerides, B., & Weinstock, J. (1972). Nonlinear saturation of parametric instabilities. Physical Review Letters, 28(8), 481–484. https://doi.org/

10.1103/PhysRevLett.28.481
Bilitza, D., & Reinisch, B. W. (2008). International Reference Ionosphere 2007: Improvements and new parameters. Advances in Space Research,

42(4), 599–609. https://doi.org/10.1016/j.asr.2007.07.048
Blagoveshchenskaya, N. F., Borisova, T. D., Kosch, M., Sergienko, T., Brändström, U., Yeoman, T. K., & Häggström, I. (2014). Optical and iono-

spheric phenomena at EISCAT under continuous X-mode HF pumping. Journal of Geophysical Research: Space Physics, 119, 10,483–10,498.
https://doi.org/10.1002/2014JA020658

Borisova, T. D., Blagoveshchenskaya, N. F., Kalishin, A. S., Kosch, M., Senior, A., Rietveld, M. T.,… Hagstrom, I. (2014). Phenomena in the high-
latitude ionospheric F region induced by a HF heater wave at frequencies near the fourth electron gyroharmonic. Radiophysics and
Quantum Electronics, 57(1), 1–19. https://doi.org/10.1007/s11141-014-9489-6

Borisova, T. D., Blagoveshchenskaya, N. F., Kalishin, A. S., Rietveld, M. T., Yeoman, T. K., & Hagstrom, I. (2016). Modification of the high-latitude
ionospheric F region by high-power HF radio waves at frequencies near the fifth and sixth electron gyroharmonics. Radiophysics and
Quantum Electronics, 58(8), 561–585. https://doi.org/10.1007/s11141-016-9629-2

Carlson, H. C., Gordon, W. E., & Showen, R. L. (1972). High frequency induced enhancements of the incoherent scatter spectrum at Arecibo.
Journal of Geophysical Research, 77, 1242–1250. https://doi.org/10.1029/JA077i007p01242

Chen, H. C., & Fejer, J. A. (1975). Saturation spectrum of the parametric decay instability in the presence of an external magnetic field. Physics
of Fluids, 18(12), 1809. https://doi.org/10.1063/1.861062

Cheng, M., Xu, B., Wu, Z., Li, H., Wang, Z., Xu, Z., … Wu, J. (2013). Observation of VHF incoherent scatter spectra disturbed by HF heating.
Journal of Atmospheric and Terrestrial Physics, 105-106, 245–252. https://doi.org/10.1016/j.jastp.2013.08.010

Cheung, P. Y., Dubois, D. F., Fukuchi, T., Kawan, K., Rose, H. A., Russell, D. F.,…Wong, A. Y. (1992). Investigation of strong Langmuir turbulence
in ionospheric modification. Journal of Geophysical Research, 97, 10,575–10,600. https://doi.org/10.1029/92JA00645

Cheung, P. Y., Sulzer, M. P., DuBois, D. F., & Russell, D. A. (2001). High-power high-frequency-induced Langmuir turbulence in the smooth
ionosphere at Arecibo. II. Low duty cycle, altitude-resolved, observations. Physics of Plasmas, 8(3), 802–812. https://doi.org/10.1063/
1.1345704

Djuth, F. T., & DuBois, D. F. (2015). Temporal development of HF-excited Langmuir and ion turbulence at Arecibo. Earth, Moon, and Planets,
116(1), 19–53. https://doi.org/10.1007/s11038-015-9458-x

Djuth, F. T., Stubbe, P., Kohl, H. W., Rietveld, M. T., & Elder, J. H. (1994). Altitude characteristics of plasma turbulence excited with the Tromsø
Superheater. Journal of Geophysical Research, 99, 333–339.

Drake, J. F., Lee, Y. C., Schmid, G., Liu, C. S., & Rosenbluth, M. N. (1974). Parametric instabilities of electromagnetic waves in plasmas. Physics of
Fluids, 17(4), 778. https://doi.org/10.1063/1.1694789

DuBois, D. F., & Goldman, M. V. (1965). Radiation induced in stability of electron plasma oscillations. Physical Review Letters, 14(14), 544–546.
https://doi.org/10.1103/PhysRevLett.14.544

DuBois, D. F., & Goldman, M. V. (1967). Parametrically excited plasma fluctuations. Physics Review, 164(1), 207–222. https://doi.org/10.1103/
PhysRev.164.207

Dubois, D. F., & Goldman, M. V. (1972). Nonlinear saturation of parametric instability: Basic theory and application to the ionosphere. Physics
of Fluids, 15(5), 919. https://doi.org/10.1063/1.1694000

Dubois, D. F., Rose, H., & Russell, D. (1988). Power spectra of fluctuations in strong Langmuir turbulence. Physical Review Letters, 61(19),
2209–2212. https://doi.org/10.1103/PhysRevLett.61.2209

Journal of Geophysical Research: Space Physics 10.1002/2017JA024809

WU ET AL. 928

Acknowledgments
We would like to thank the engineers of
EISCAT in Tromsø for keeping the facility
in excellent working condition and the
Tromsø Geophysical Observatory, UiT,
the Arctic University of Norway, for
providing the magnetic data of Tromsø
recorded on 11 March 2014. The data
from the UHF radar can be obtained
freely from EISCAT (http://www.eiscat.
se/schedule/schedule.cgi). The EISCAT
Scientific Association is supported by
China (China Research Institute of
Radiowave Propagation), Finland
(Suomen Akatemia of Finland), Japan
(the National Institute of Polar Research
of Japan and Institute for Space-Earth
Environmental Research at Nagoya
University), Norway (Norges
Forkningsrad of Norway), Sweden (the
Swedish Research Council), and the UK
(the Natural Environment Research
Council).

https://doi.org/10.1016/j.asr.2005.06.079
https://doi.org/10.1103/PhysRevLett.28.481
https://doi.org/10.1103/PhysRevLett.28.481
https://doi.org/10.1016/j.asr.2007.07.048
https://doi.org/10.1002/2014JA020658
https://doi.org/10.1007/s11141-014-9489-6
https://doi.org/10.1007/s11141-016-9629-2
https://doi.org/10.1029/JA077i007p01242
https://doi.org/10.1063/1.861062
https://doi.org/10.1016/j.jastp.2013.08.010
https://doi.org/10.1029/92JA00645
https://doi.org/10.1063/1.1345704
https://doi.org/10.1063/1.1345704
https://doi.org/10.1007/s11038-015-9458-x
https://doi.org/10.1063/1.1694789
https://doi.org/10.1103/PhysRevLett.14.544
https://doi.org/10.1103/PhysRev.164.207
https://doi.org/10.1103/PhysRev.164.207
https://doi.org/10.1063/1.1694000
https://doi.org/10.1103/PhysRevLett.61.2209
http://www.eiscat.se/schedule/schedule.cgi
http://www.eiscat.se/schedule/schedule.cgi


Dubois, D. F., Rose, H., & Russell, D. (1990). Excitation of strong Langmuir turbulence in plasmas near critical density: Application to HF
heating of the ionosphere. Journal of Geophysical Research, 95, 21,221–21,272. https://doi.org/10.1029/JA095iA12p21221

Dubois, D. F., Rose, H., & Russell, D. (1991). Coexistence of parametric decay cascades and caviton collapse at subcritical densities. Physical
Review Letters, 66(15), 1970–1973. https://doi.org/10.1103/PhysRevLett.66.1970

Dubois, D. F., Hanssen, A., Rose, H. A., & Russell, D. (1993a). Space and time distribution of HF excited Langmuir turbulence in the ionosphere:
Comparison of theory and experiment. Journal of Geophysical Research, 98, 17,543–17,567. https://doi.org/10.1029/93JA01469

DuBois, D. F., Hansen, A., Rose, H. A., & Russell, D. (1993b). Excitation of strong Langmuir turbulence in the ionosphere: Comparison of theory
and observations. Physics of Fluids B: Plasma Physics, 5(7), 2616–2622. https://doi.org/10.1063/1.860699

DuBois, D. F., Russell, D. A., Cheung, P. Y., & Sulzer, M. P. (2001). High-power high-frequency-induced Langmuir turbulence in the smooth
ionosphere at Arecibo. I. Theoretical predictions for altitude-resolved plasma line radar spectra. Physics of Plasmas, 8(3), 791–801. https://
doi.org/10.1063/1.1345703

Dysthe, K. B., Mjølhus, E., Pécseli, H., & Rypdal, K. (1982). Thermal cavitons. Physica Scripta, T2/2, 548.
Fejer, J. A. (1979). Ionospheric modification and parametric instabilities. Reviews of Geophysics, 17, 135–153. https://doi.org/10.1029/

RG017i001p00135
Gordon, W. E., & Carlson, H. C. (1974). Arecibo heating experiments. Radio Science, 9, 1041–1047. https://doi.org/10.1029/RS009i011p01041
Gurevich, A. V. (2007). Nonlinear effects in the ionosphere. Physics Uspekhi, 50(11), 1091–1121. https://doi.org/10.1070/PU2007v050n11

ABEH006212
Gurevich, A. V., Zybin, K. P., & Lukyanov, A. V. (1995). Stationary striations developed in the ionospheric modification. Physical Review Letters,

75(13), 2622–2625. https://doi.org/10.1103/PhysRevLett.75.2622
Hagfors, T., Kofman, W., Kopka, H., & Stubbe, P. (1983). Observations of enhanced plasma lines by EISCAT during heating experiments. Radio

Science, 18, 861–866. https://doi.org/10.1029/RS018i006p00861
Jones, T. B., Robinson, T. R., Stubbe, P., & Kopka, H. (1986). EISCAT observations of the heated ionosphere. Journal of Atmospheric and

Terrestrial Physics, 48(9-10), 1027–1035. https://doi.org/10.1016/0021-9169(86)90074-7
Kantor, I. J. (1974). High frequency induced enhancements of the incoherent scatter spectrum at Arecibo. II. Journal of Geophysical Research,

79, 199–208.
Kohl, H. W., Kopka, H., Lahoz, C., & Stubbe, P. (1987). Propagation of artificially excited Langmuir waves in the ionosphere. Radio Science, 22,

655–661. https://doi.org/10.1029/RS022i004p00655
Kohl, H., Kopka, H., Stubbe, P., & Rietveld, M. T. (1993). Introduction to ionospheric heating experiments at Tromso-II. Scientific problems.

Journal of Atmospheric and Terrestrial Physics, 55(4-5), 601–613. https://doi.org/10.1016/0021-9169(93)90008-M
Kuo, S. P., & Cheo, B. R. (1978). Parametric excitation of coupled plasma waves. Physics of Fluids, 21(10), 1753. https://doi.org/10.1063/

1.862091
Kuo, Y. Y., & Fejer, J. A. (1972). Spectral-line structures of saturated parametric instabilities. Physical Review Letters, 29(25), 1667–1670. https://

doi.org/10.1103/PhysRevLett.29.1667
Lehtinen, M., & Huuskonen, A. (1996). General incoherent scatter analysis and GUISDAP. Journal of Atmospheric and Terrestrial Physics, 58(1-4),

435–452. https://doi.org/10.1016/0021-9169(95)00047-X
Liu, L., Le, H., Wan, W., Sulzer, M. P., Lei, J., & Zhang, M. (2007). An analysis of the scale heights in the lower topside ionosphere based on

the Arecibo incoherent scatter radar measurements. Journal of Geophysical Research, 112, A06307. https://doi.org/10.1029/
2007JA012250

Mjølhus, E. (1993). On the small scale striation effect in ionospheric radio modification experiments near harmonics of the electron gyro
frequency. Journal of Atmospheric and Terrestrial Physics, 55(6), 907–918. https://doi.org/10.1016/0021-9169(93)90030-3

Nordling, J., Hedberg, A., Wannberg, G., Leyser, T. B., Derblom, H., Opgenoorth, H. J., & Lahoz, C. (1988). Simultaneous bistatic European
Incoherent Scatter UHF, 145–MHz radar and stimulated electromagnetic emission observations during HF ionospheric modification.
Radio Science, 23(5), 809–819. https://doi.org/10.1029/RS023i005p00809

Perkins, F. W., & Flick, J. (1971). Parametric instabilities in inhomogeneous plasmas. Physics of Fluids, 14(9), 2012. https://doi.org/10.1063/
1.1693711

Perkins, F. W., Oberman, C., & Valeo, E. J. (1974). Parametric instabilities and ionospheric modification. Journal of Geophysical Research, 79(10),
1478–1496. https://doi.org/10.1029/JA079i010p01478

Rietveld, M. T., Kohl, H., Kopka, H., & Stubbe, P. (1993). Introduction to ionospheric heating at Tromsø-I. Experimental overview. Journal of
Atmospheric and Terrestrial Physics, 55(4/5), 577.

Rietveld, M. T., Senior, A., Markkanen, J., & Westman, A. (2016). New capabilities of the upgraded EISCAT high-power HF facility. Radio Science,
51, 1533–1546. https://doi.org/10.1002/2016RS006093

Rishbeth, H., & Owen, K. (1969). Introduction to ionospheric physics. New York: Academic Press.
Rishbeth, H., & Van Eyken, A. (1993). EISCAT: Early history and the first ten years of operation. Journal of Atmospheric and Terrestrial Physics,

55(4-5), 525–542. https://doi.org/10.1016/0021-9169(93)90002-G
Robinson, T. R. (1989). The heating of the high latitude ionosphere by high power radio waves. Physics Reports, 179(2-3), 79–209. https://doi.

org/10.1016/0370-1573(89)90005-7
Robinson, T. R., Honary, F., Stocker, A. J., Jones, T. B., & Stubbe, P. (1996). First EISCAT observations of the modification of F-region electron

temperatures during RF heating at harmonics of the electron gyro frequency. Journal of Atmospheric and Terrestrial Physics, 58(1-4),
385–395. https://doi.org/10.1016/0021-9169(95)00043-7

Rosenbluth, M. N. (1972). Parametric instabilities in inhomogeneous media. Physical Review Letters, 29(9), 565–567. https://doi.org/10.1103/
PhysRevLett.29.565

Showen, R. L., & Kim, D. M. (1978). Time variations of HF–induced plasma waves. Journal of Geophysical Research, 83(A2), 623. https://doi.org/
10.1029/JA083iA02p00623

Silin, V. P. (1965). Parametric resonance in a plasma. Soviet Physics – JETP (English Translation), 21, 1127.
Stubbe, P., Kopka, H., Thide, B., & Derblom, H. (1984). Stimulated electromagnetic emission: A new technique to study the parametric decay

instability in the ionosphere. Journal of Geophysical Research, 89(A9), 7523–7536. https://doi.org/10.1029/JA089iA09p07523
Stubbe, P., Kopka, H., Rietveld, M. T., Frey, A. W., Hoeg, P., Kohl, H. W., & Holt, O. (1985). Ionospheric modification experiments with the Tromsø

heating facility. Journal of Atmospheric and Terrestrial Physics, 47(12), 1151–1163. https://doi.org/10.1016/0021-9169(85)90085-6
Stubbe, P., Kohl, H., & Rietveld, M. T. (1992). Langmuir turbulence and ionospheric modification. Journal of Geophysical Research, 97(A5), 6285.

https://doi.org/10.1029/91JA03047
Wang, X., Zhou, C., Liu, M., Honary, F., Ni, B., & Zhao, Z. (2016). Parametric instability induced by X–mode wave heating at EISCAT. Journal of

Geophysical Research: Space Physics, 121, 10,536–10,548. https://doi.org/10.1002/2016JA023070

Journal of Geophysical Research: Space Physics 10.1002/2017JA024809

WU ET AL. 929

https://doi.org/10.1029/JA095iA12p21221
https://doi.org/10.1103/PhysRevLett.66.1970
https://doi.org/10.1029/93JA01469
https://doi.org/10.1063/1.860699
https://doi.org/10.1063/1.1345703
https://doi.org/10.1063/1.1345703
https://doi.org/10.1029/RG017i001p00135
https://doi.org/10.1029/RG017i001p00135
https://doi.org/10.1029/RS009i011p01041
https://doi.org/10.1070/PU2007v050n11ABEH006212
https://doi.org/10.1070/PU2007v050n11ABEH006212
https://doi.org/10.1103/PhysRevLett.75.2622
https://doi.org/10.1029/RS018i006p00861
https://doi.org/10.1016/0021-9169(86)90074-7
https://doi.org/10.1029/RS022i004p00655
https://doi.org/10.1016/0021-9169(93)90008-M
https://doi.org/10.1063/1.862091
https://doi.org/10.1063/1.862091
https://doi.org/10.1103/PhysRevLett.29.1667
https://doi.org/10.1103/PhysRevLett.29.1667
https://doi.org/10.1016/0021-9169(95)00047-X
https://doi.org/10.1029/2007JA012250
https://doi.org/10.1029/2007JA012250
https://doi.org/10.1016/0021-9169(93)90030-3
https://doi.org/10.1029/RS023i005p00809
https://doi.org/10.1063/1.1693711
https://doi.org/10.1063/1.1693711
https://doi.org/10.1029/JA079i010p01478
https://doi.org/10.1002/2016RS006093
https://doi.org/10.1016/0021-9169(93)90002-G
https://doi.org/10.1016/0370-1573(89)90005-7
https://doi.org/10.1016/0370-1573(89)90005-7
https://doi.org/10.1016/0021-9169(95)00043-7
https://doi.org/10.1103/PhysRevLett.29.565
https://doi.org/10.1103/PhysRevLett.29.565
https://doi.org/10.1029/JA083iA02p00623
https://doi.org/10.1029/JA083iA02p00623
https://doi.org/10.1029/JA089iA09p07523
https://doi.org/10.1016/0021-9169(85)90085-6
https://doi.org/10.1029/91JA03047
https://doi.org/10.1002/2016JA023070


Weinstock, J., & Bezzerides, B. (1972). Threshold of ionospheric modifications by radio waves. Journal of Geophysical Research, 77(4), 761–764.
https://doi.org/10.1029/JA077i004p00761

Wu, J., Wu, J., & Xue, Y. (2006). The effect of the production and loss reactions on the parametric instability. International Journal of
Computational Fluid Dynamics, 20(7), 491–496. https://doi.org/10.1080/10618560600909986

Wu, J., Wu, J., & La Hoz, C. (2007). On the ponderomotive force and the effect of loss reaction on parametric instability. Chinese Physics,
16(2), 558.

Wu, J., Wu, J., & Xu, Z. (2016). Results of ionospheric heating experiments involving an enhancement in electron density in the high latitude
ionosphere. Plasma Science and Technology, 18(9), 890–896. https://doi.org/10.1088/1009-0630/18/9/03

Wu, J., Wu, J., Rietveld, M. T., Haggstrom, I., Zhao, H., & Xu, Z. (2017). The behavior of electron density and temperature during ionospheric
heating near the fifth electron gyrofrequency. Journal of Geophysical Research: Space Physics, 122(1), 1277–1295. https://doi.org/10.1002/
2016JA023121

Journal of Geophysical Research: Space Physics 10.1002/2017JA024809

WU ET AL. 930

https://doi.org/10.1029/JA077i004p00761
https://doi.org/10.1080/10618560600909986
https://doi.org/10.1088/1009-0630/18/9/03
https://doi.org/10.1002/2016JA023121
https://doi.org/10.1002/2016JA023121


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


