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Model-based polarimetric decomposition with
higher-order statistics

Torbjørn Eltoft, Member, IEEE and Anthony P. Doulgeris, Senior Member, IEEE

Abstract—This paper presents a new general framework for
solving polarimetric target decompositions that extends them
to use more statistical information and include radar texture
models. Polarimetric target decomposition methods generally
have more physical parameters than equations, are thus under-
determined and have no unique solution. The common approach
to solve them is to make certain assumptions, thus fixing some
parameters, allowing the other parameters to be solved freely.
This paper explains how to obtain additional equations from
several statistical moments to find unique solutions and to address
the issue of textured product models. The current work extends
our previous conference works [1], [2], [3]. Preliminary results
are demonstrated for a well known real polarimetric SAR scene
for the 3-component Freeman-Durden decomposition.

I. INTRODUCTION

THE backscatter of synthetic aperture radar (SAR) signals
from many natural surfaces is often modelled as being

caused by a combination of several scattering mechanisms, in
general categorised as surface scattering, volume scattering,
and double bounce scattering. An important research topic in
SAR polarimetry focuses on the decomposition of the polari-
metric SAR (polSAR) signals into components representing
these mechanisms [4], [5]. The polarimetric decomposition
theorems are generally categorised into to main categories;
coherent methods, which devise strategies for decomposing
the Sinclair matrix, and incoherent methods, which decompose
the polarimetric covariance or coherence matrices. The former
strategy addresses very high-resolution systems for which the
scattering object is considered to be a pure target, whereas
the latter describes distributed targets. Within the incoherent
category, one approach is referred to as model-based decom-
positions, in which the measured covariance matrix is hypoth-
esised as a combination of a number of individual matrices
representing scattering as predicted by models. The Freeman-
Durden Three-Component Model [6], the Four-Component
Ymaguchi Model [7], and the Nonnegative Eigenvalue De-
compositon Model [8] are three well-known examples of
these types of decompositions. The parameters defining these
model matrices are determined by solving a set of equations
constructed by equating terms in the combination of model
matrices with corresponding terms in the measured coherence
(or covariance) matrix.
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There are several weaknesses associated with the model-
based decomposition models. One problem is that based on the
covariance matrix alone it is not possible to construct enough
equations to uniquely solve for the unknown parameters. The
set of equations is underdetermined. This is usually solved by
adding conditions which may or may not be valid, and imple-
menting a sequential procedure for solving the parameters in
which one scattering mechanism is extracted at a time. In ad-
dition, the first two of the above referred models may produce
unphysical scattering mechanisms because they did not ensure
that the resulting matrices in the decomposition individually
represent realisable matrices. Van Zyl et al. [8] pointed out
this problem, and proposed a simple check to ensure that
the eigenvalues of the matrices of the individual scattering
processes will be nonnegative. Lim et al. [9] explored further
constrained optimisations, but still only on the second-order
covariance matrices.

This paper addresses model-based decomposition in pol-
SAR data by integrating additional statistical information to
the parameter estimation problem. We show that going below
and beyond second order statistics, we can construct additional
equations, and hence ensure that the set of equations is
determined. In addition, our example’s empirical optimisation
approach partly accounts for speckle variation during a cost
function minimisation, and ensures physically valid solutions.

The paper is organised with Section II outlining the theo-
retical considerations for incoherent decomposition methods,
the Freeman-Durden 3-component decomposition, and the ex-
tension of the statistical modelling to different moment orders.
The example empirical optimisation approach is explained in
Section II-C and the main features are demonstrated in Section
III. Finally, we conclude in Section IV.

II. THEORETICAL CONSIDERATIONS

A. Incoherent decomposition

The basic representation of the polarimetric scattering signal
is by the so-called scattering feature vector. Under the reci-
procity assumption this is 3-dimensional, and the lexicographic
feature vector is defined as kL = [SHH ,

√
2SHV , SV V ].

The corresponding polarimetric covariance matrix is defined
as C = E{kLk

†
L}, where E{·} denotes statistical expectation.

C is a nonnegative definite, Hermitian symmetric, 3 × 3
complex-valued matrix, with real-valued diagonal terms. In the
remainder, we will use k (i.e. with subscript L suppressed) for
the scattering vector.
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The incoherent polarimetric decomposition strategy is to
write this matrix as a superposition of contributions form
several (Ns) scattering mechanisms, i.e.

C =

Ns∑
i=1

PiC̃i, (1)

where C̃i denotes the span-normalised covariance matrix of
component i, and Pi represents the corresponding component
power. Note that in [6], the authors normalise the V V -
component. It hence follows that the span of C, henceforth
denoted S{C}, becomes the sum of powers Pi.

We will here adopt the same scattering component models
as in the three-component Freeman-Durden (FD) decom-
position [6] model, i.e. single-bounce, double-bounce, and
volume scattering. As described in [6], the volume scattering
component assumes the scattering particles to be a set of
randomly oriented non-interacting thin dipoles, the single-
bounce surface model is derived from a first order Bragg
scattering, and the double-bounce model was derived from two
Fresnel surface reflections. The span normalised covariance
matrix formulation is given by

C̃s =
1

1 + β2

 β2 0 β
0 0 0
β 0 1

 , (2)

C̃d =
1

1 + |α|2

 |α|2 0 α
0 0 0
α∗ 0 1

 , (3)

C̃v =
3

8

 1 0 1/3
0 2/3 0

1/3 0 1

 , (4)

where α (complex) and β (real) are target specific parameters.
Although this model is reflection symmetric, our modelling
approach does not require this.

B. Statistical interpretation of the incoherent decompositions

Let us now consider a discrete statistical mixture model, i.e.
a model where the random vector k has a probability density
function (pdf) given as

pk(k) =

Ns∑
i=1

fipki
(k). (5)

Note that here the fi’s are generally interpreted as the a priori
probability of an observation being generated by scattering
mechanism i, and

∑Ns
i=1 fi = 1. Assuming independence, the

C-matrix associated with the pdf of Eq.(5) becomes

C =

∫
kk†pk(k)dk =

Ns∑
i=1

fiCi, (6)

where Ci is the covariance matrix of the individual mixture
component i, including the component’s power.

We note that the statistical mixture model leads to a similar
second order moment equation as the incoherent decomposi-
tions, but involving the non-normalised component matrices.

Hence, thinking about incoherent polarimetric decompositions
as statistical mixing models leads to a probabilistic interpreta-
tion of the scattering process that may be carried all the way
back to the scattering feature vector level k. As will be shown
in the next section, this interpretation opens the possibility
to increase the number of parameter equations, such that the
equation set becomes determined. It follows from (6) that the
total span of C is given as S{C} =

∑Ns
i=1 fiS{Ci}. Compar-

ing with the traditional Freeman-Durden, we can conclude that
the statistical mixture fraction is related to the power fraction
through the relation fi = Pi/S(Ci), that is, the fraction (ratio)
of the pure component power being mixed rather than the
fraction (amount) of VV power as in [6].

C. Statistcal modelling

In what follows, we will expand on the implications of inter-
preting incoherent polarimetric decompositions as a statistical
mixture model. It is commonly assumed that the scattering
vector is Gaussian distributed. A Gaussian scattering feature
vector is presumed to have a circular symmetric complex
Gaussian pdf, which is completely determined by its second-
order moment. The d-dimensional probability density function
of a complex circular symmetric Gaussian scattering feature
vector, k, is given as:

pk(k) =
1

πd|C|
exp(−k†C−1k), (7)

where, as before, C = E{kk†} is the covariance matrix of k.
However, many studies have shown that the Gaussian as-

sumption is not always true [10], [11], [12], especially when
the data is collected by high-resolution polSAR radar systems.
Non-Gaussianity may be caused by two few scatterers per
resolution cell causing non fully developed speckle interfer-
ence, or due to local variation of physical class properties.
In these cases, the statistics may deviate significantly from
the Gaussian model. The mixture model presented in (5)
is in general not a Gaussian model, even if the individual
components are Gaussian, meaning that also moments of the
total scattering feature vector below and beyond second order
may add information about the scattering process.

In recent years, it has been shown by several authors that
the so-called product model represents a simple and valid
statistical description for non-Gaussian polarimetric data [13],
[14], [15], [16]. In the following, we will also assume that the
individual components deviate from Gaussian statistics, and
that they can be modelled by the product model. The product
model presumes that the observed variation in SAR backscatter
is composed of two independent components, one describing
natural variation in the mean reflectivity, called texture, and
another for Gaussian speckle [13]. Using this formulation, we
can write the feature vector of a scattering mechanism, i, as

ki =
√
τiC

1
2
i n, (8)

where the scale parameter for texture τi is a strictly posi-
tive scalar random variable, normalised such that its mean
E{τi} = 1, and n is a standardised, complex multivariate
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Gaussian vector, independent of τi, with zero mean and iden-
tity covariance matrix, i.e. n ∼ N c(0, I). Each dimension of
n is a one-dimensional circular symmetric complex Gaussian
random variable.

We will now briefly examine the component-wise distribu-
tions for scattering feature vector ki, i = 1, 2, · · · , Ns, i.e.
the scattering vector associated with scattering mechanism i.
For dimension component j, we may write kj,i = R(kj,i) +
jI(kj,i), whereR(·) and I(·) refer to real and imaginary parts,
respectively. We note that, for a given τi, kj,i of (8) is a circular
symmetric complex Gaussian random variable, implying that
R(k) and I(k) are are statistically independent and identically
distributed (iid) with zero mean, and their joint pdf becomes

p(R(kj,i), I(kj,i)|τi)=
1

πτiCjj,i
exp

(
−R(kj,i)

2+ I(kj,i)
2

τiCjj,i

)
.

(9)
It is furthermore easy to validate that the amplitude |kj,i| =√
R(kj,i)2 + I(kj,i)2, conditioned on τi, follows a Rayleigh

distribution, given as

p(|(kj,i)| |τi) =
2|kj,i|
πτiCjj,i

exp

(
− |kj,i|

2

τiCjj,i

)
. (10)

The moment of order l of |kj,i| of can hence be expressed as

E{|kj,i|l} = E{τ
l
2
i }C

l
2
jj,i Γ(1 +

l

2
). (11)

Applying (11) to the mixture model in (6), we readily see that
we may write

E{|kj |l} =

Ns∑
i=1

fiE{τ
l
2
i }C

l
2
jj,i Γ(1 +

l

2
), (12)

where kj refers to the jth dimension of the measured k.
This theory may be used to formulate d marginal equations,

j = 1 . . . d, for each order l. These expressions are in terms of
the diagonal elements of Ci, but are unique and non-linear due
to the mixing fractions and the order. However, introducing
texture has also introduced an additional texture parameter (or
two) for each component, so, excepting for simplified cases,
several orders may need to be combined to obtain sufficient
equations for a unique solution. A texture distribution model
will be needed to link the different orders and avoid over-many
texture parameters.

sectionEmpirical Optimisation
In [1], [2], [3] we introduced the optimisation concept

for simplified models with only one higher order and either
no texture (Gaussian) or only one texture parameter for all
components. Here, we will continue and demonstrate that us-
ing multiple moments allows solving for different component
textures.

We take the case of the three component Freeman-Durden
decomposition detailed in Section II, for which the second
order covariance matrix gives five real valued equations (three
diagonals plus a real and imaginary off diagonal) for its six real
parameters f ′s, f

′
d, f
′
v, βreal, αreal, αimag}. We note that these are

power fractions in the original Freeman-Durden formulation,
and not the same as the mixing fractions that we need to
interpret, so we must introduce three new parameters for

mixing component powers (in terms of span {Ss, Sd, Sv}),
and we wish to account for three texture terms, one for each
component. The texture will be introduced as a parameter
to a model such as the K or G0 distributions such that we
can connect to different moment orders. This gives a total of
12 free parameters and hence we need to find at least seven
new equations over the 5 from the second order. We have
one equation from the constraint that the mixing fractions
sum to one and, following our previous works, we can obtain
an equation for each diagonal moment order and for each
polarimetric dimension. By combining moment orders 1, 3,
and 4 for each of HH, HV, and VV channels, we obtain 9
new equations, which is sufficient.

We suggest that this scenario should not only find a unique
solution, but the over determined system of equations and
minimising the error also allows for some degree of rem-
nant speckle variation in the multi-looked data values. Such
variation is not always accounted for in target decomposition
solutions. In addition, the forward modelling construction will
always guarantee physically valid, and non-negative eigen-
value, solutions, so long as we make sure to apply non-
negative limits on the mixing fractions and physically valid
ranges on other parameters.

As before, we construct a total error (sum of squared
errors) cost function from the difference between the observed
moment for each term (equation) and the model prediction
given the parameters, and then optimise this by searching over
the parameter space (forward modelling search). As before,
we discussed that the scale of each term could lead to a
dominance of the total error by the biggest terms, and hence
we have normalised each error term by its observed variance
in an attempt to balance the influence of each expression.
We measure the observed variance for each term in a pre-
processing scan with a 3× 3 window. In addition, we applied
some empirically determined transformations, to both the
observations and the model terms, to improve the distribution
symmetry towards the Gaussian to apply such a simple concept
of variance normalised errors. Each marginal moment uses the
nth root, including the second order from the covariance matrix
diagonals, and the off diagonal real and imaginary parts are
taken as they are.

The final cost function optimisation can be formulated as

arg min
Θ

=

3∑
p=1

4∑
m=1

(
m
√

E{|kp|m} −
m
√
〈|kp|m〉

)2

var{ m
√
〈|kp|m〉 }

+

(
E{R(C1,3)} − 〈R(C1,3)〉

)2
var{〈R(C1,3)〉}

+

(
E{I(C1,3)} − 〈I(C1,3)〉

)2
var{〈I(C1,3)〉}

(13)

where Θ = {f ′s, f ′d, f ′v, Ss, Sd, Sv, βreal, αreal, αimag, τs, τd, τv},
we have p polarimetric dimensions plus m moment orders
plus the real and imaginary off-diagonal terms, and E{·}
from (11) is expected from the parametric model and 〈·〉 is
from the transformed observation. We used an optimisation
toolbox function fmincon() in MatLab to solve this set
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of constrained equations, including the fractions summing to
one condition and limits on the parameters, and applied it
to each pixel individually. This approach is quite slow and
takes several hours to process this small scene, however, it
demonstrates that a solution is possible and should be easy to
apply it to parallel processing in the future.

III. RESULTS

Having chosen to demonstrate the well known Freeman-
Durden decomposition, we similarly chose the San Francisco
city scene because it is quite familiar to the polarimetric SAR
community and has been used in many papers and textbooks.
The result is using a sample RADARSAT-2 quad-pol scene
and has been processed to 10 × 5 looks. We shall compare
our method to the standard Freeman-Durden decomposition
solution, although non-negative eigenvalue solutions also exist.

We shall demonstrate that our solution produces visually
similar component powers via the RGB representation, we
produce complete parameter solutions (without needing to fix
any terms under certain conditions), and we produce additional
information such as the texture.

The Freeman-Durden powers can be plotted as Red: Pd =
SPAN × f ′d, Green: Pv = SPAN × f ′v , and Blue: Ps =
SPAN × f ′s. In our modelling, with the slightly different
interpretation of the fractions, we multiply by their individual
component spans. Figure 1 shows the traditional Freeman-
Durden RGB image and Figure 2 shows our optimisation
results. Note that our solution produces less green coloured
volume scattering in some areas, which was a known failing
of the original Freeman-Durden solution.

The real valued β parameter for the surface scattering
strength is displayed in Figure 3 and 4. To obtain a solution
from the under-determined set of equations, the traditional
approach had to fix the least important parameter to solve
for the remainder. This means that the surface β parameter is
set to +1 where double-bounce is dominant in the urban areas,
whereas our solution for this parameter is often quite different
from this assumed value and appears a lot more blue. There

Fig. 1. Traditional Freeman-Durden solution as power RGB image.

is a similar behaviour for the double-bounce alpha parameter
(not shown), although it is a lot noisier to interpret due to the
textural variation in the urban areas. A recent study in [17] has
demonstrated that this simple fixed constraint severely biases
the resulting solution.

The final demonstration is the extra information obtained
as the texture parameter. Figure 5 shows a representation of
the texture parameter for the surface component that clearly
indicates lower texture over the ocean and higher in the urban
areas as would be expected.

In all figures we see that there is significant noise, partic-
ularly over the ocean area, and this was not expected. We
had anticipated that some of the speckle variation would be
absorbed due to the minimisation approach rather than the
analytical solution from equations assuming no error. We
believe that this may be due to our equal weighting for
all equations and terms, even though the normalisation to
variance was intended to balance the equation set. We need
to explore this further and determine whether some terms
may have more combined variation than others and may need
uneven weighting, or alternatively find another balanced cost
mechanism.

IV. CONCLUSIONS

We conclude by claiming that we have demonstrated a novel
strategy to generically add extra equations to uniquely solve
traditionally under-determined target decomposition schemes.
We have demonstrated that the well known Freeman-Durden
three component model can be solved in this way and that
the power components look similar and realistic, that the
internal parameters are estimated everywhere without making
assumptions, and that we obtain extra parametric information
such as texture. The approach is currently slow and noisy,
but we have only attempted to demonstrate the feasibility of
obtaining extra equations for the solution.

The higher-order moment approach is generic for any
equation set, although it does add several additional free
parameters and required some empirical variance estimates

Fig. 2. Our numerically optimised solution as power RGB image.
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Fig. 3. Traditional Freeman-Durden surface β parameter image. Urban areas
were explicitly set to +1 to solve the otherwise under-determined system.

Fig. 4. Our numerically optimised solution for the surface β parameter is
complete over all pixels, although we note significant noise everywhere.

in its current form. It is hoped that further research may
determine theoretical variance expressions and find a better
weighted cost function for optimisation.
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