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ABSTRACT	

Objective	methods	 for	distinguishing	conscious	 from	unconscious	 states	 in	humans	are	of	key	 importance	
for	 clinical	 evaluation	 of	 general	 anesthesia	 and	 patients	 with	 disorders	 or	 consciousness,	 as	 well	 as	 for	
consciousness	 research.	 The	Directed	 Transfer	 Function	 (DTF)	 –	 a	measure	 of	 effective	 connectivity	 -	was	
recently	shown	to	accurately	classify	patients	undergoing	anesthesia	as	conscious	or	unconscious	based	on	
1-second	segments	of	raw	EEG.	Here,	we	test	the	generalizability	of	the	DTF-based	classification	algorithm	
as	an	objective	measure	of	conscious	experience	during	anesthesia	and	correlate	it	with	a	well-tested	index	
of	consciousness:	the	Perturbational	Complexity	Index	(PCI).	We	reanalyzed	EEG	data	from	an	experimental	
study	in	which	18	healthy	volunteers	were	randomly	assigned	to	one	of	three	types	of	general	anesthesia:	
propofol,	 xenon,	 and	 ketamine.	 EEG	was	 recorded	before	 and	during	 anesthesia,	 and	DTF	was	 calculated	
from	every	1-second	segment	of	the	EEG	data	to	quantify	the	effective	connectivity	between	channel	pairs.	
This	 was	 used	 to	 classify	 the	 state	 of	 each	 participant	 as	 either	 conscious	 or	 unconscious,	 and	 the	
classifications	 were	 compared	 with	 the	 participant’s	 delayed	 report	 of	 experience.	 Finally,	 classifications	
were	 correlated	with	 the	 PCI	 values	 obtained	 in	 the	 original	 study.	 The	DTF	 analysis	 yielded	 two	distinct	
patterns	 of	 DTF-based	 connectivity	 that	 corresponded	 well	 to	 the	 participants’	 reports	 about	 subjective	
experience,	and	was	sufficient	to	accurately	classify	the	state	of	the	participants	as	conscious	or	unconscious.	
The	algorithm	was	more	likely	to	classify	participants	as	conscious	in	the	awake	state	than	during	propofol	
and	xenon	anesthesia	 (p<0.05),	but	not	during	ketamine	anesthesia	 (p>0.05).	Furthermore,	 the	DTF-based	
confidence	of	being	classified	as	conscious	was	highly	correlated	with	PCI	(r2=0.48,	p<0.05).	The	DTF-based	
measure	 distinguished	 between	 conscious	 and	 unconscious	 states	 during	 different	 forms	 of	 general	
anesthesia	and	wakefulness,	and	 it	 correlates	 strongly	with	PCI.	 These	 results	provide	 further	 support	 for	
the	notion	that	effective	connectivity	measured	between	EEG	electrodes	can	be	used	to	distinguish	between	
conscious	and	unconscious	states	in	humans.		
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INTRODUCTION	
Objective	methods	for	distinguishing	conscious	from	unconscious	states	in	humans	are	of	key	importance	for	
consciousness	research	as	well	as	for	clinical	evaluation	of	general	anesthesia	and	patients	with	disorders	or	
consciousness	 (1–4).	 For	 example,	 estimates	 indicate	 that	 26,000	 patients	 undergoing	 general	 anesthesia	
experience	unintended	and	undetected	awakenings	during	surgery,	per	year,	in	the	US	alone	(5).	To	avoid	this,	
measures	 that	 can	 aid	 clinicians	 in	 determining	 the	 state	 and	 level	 of	 consciousness	 in	 the	 most	 difficult	
situations	are	needed.	 In	the	last	few	decades,	the	search	for	such	measures	has	 intensified	and	researchers	
have	 uncovered	 a	 variety	 of	 candidate	 measures	 that	 are,	 to	 various	 degrees,	 capable	 of	 objectively	
distinguishing	between	reportedly	conscious	and	unconscious	states	(3,6–13).	

In	 particular,	 the	 Perturbational	 Complexity	 Index	 (PCI),	 a	 measure	 inspired	 by	 the	 Integrated	 information	
theory	 (IIT)	 of	 consciousness	 (14,15),	 has	 shown	 highly	 promising	 performance	 (3).	 The	 PCI	 has	 repeatedly	
been	 shown	 to	 accurately	 distinguish	 conscious	 from	 unconscious	 states	 in	 healthy	 volunteers	 under	
controlled	 conditions	 such	 as	 sleep	 and	 anesthesia,	 and	 was	 recently	 shown	 to	 be	 remarkably	 sensitive	 in	
classification	when	applied	to	patients	with	disorders	of	consciousness	(16).	In	addition	to	the	PCI’s	strengths	
in	classification,	 the	method	 is	particularly	 interesting	because	 it	probes	 the	brain’s	causal	dynamics	directly	
without	relying	on	the	integrity	of	sensory	or	motor	pathways,	subjective	reports,	or	participation	of	the	test	
subject	 (17).	 Even	 though	 the	 PCI	 seems	 very	 reliable	 as	 an	 index	 of	 conscious	 state	 in	 humans,	 it	 is	
unfortunately	 suboptimal	as	a	 tool	 in	 certain	 clinical	 situations	as	 it	 requires	 considerable	expertise,	 trained	
personnel,	 and	 expensive	 equipment.	 Furthermore,	 the	 data	 acquisition	 and	 analysis	 are	 relatively	 time	
consuming,	 requiring	 several	 minutes	 of	 recording	 and	 hours	 of	 analysis	 for	 a	 single	 data	 point,	 thus	
preventing	real-time	monitoring	with	high	time	resolution.	

Recently,	 we	 proposed	 a	 different	 objective	 measure	 that	 can	 be	 calculated	 automatically	 from	 1-second	
segments	of	raw,	spontaneous	EEG	data,	which	may	overcome	some	of	these	limitations	(8).	Our	measure	is	
based	 on	 the	 Directed	 Transfer	 Function	 (DTF;	 (18)),	 a	 measure	 of	 effective	 connectivity	 in	 the	 Granger	
causality	family,	which	can	be	applied	to	EEG	data	and	is	robust	to	noise	and	artefacts	(19–21).	Therefore,	it	is	
potentially	 well	 suited	 to	 form	 a	 basis	 for	 an	 automatic	 algorithm	 for	 classifying	 the	 conscious	 state	 of	
individuals	in	near	real	time	directly	from	raw	clinical	EEG	data.	However,	the	DTF	has	only	been	tested	in	this	
context	 for	 a	dataset	 comprising	8	patients	undergoing	anesthesia	 so	 far	 (8).	 Previously,	 other	 studies	have	
shown	 that	 EEG-based	 effective	 connectivity,	 as	 quantified	 by	 the	 DTF,	 is	 different	 between	 sleep	 and	
wakefulness	(22–24),	and	between	healthy	individuals	and	patients	suffering	from	disorders	of	consciousness	
(25).	 Together,	 these	 findings	 indicate	 that	 a	 DTF-based	 measure	 might	 be	 useful	 as	 a	 general	 marker	 of	
consciousness.	

In	 a	 recent	 study,	 Sarasso	et	 al.	 (26)	 compared	PCI	 in	 three	different	 types	of	 general	 anesthesia,	 propofol,	
xenon,	and	ketamine,	at	doses	that	rendered	the	participants	behaviorally	unresponsive.	They	found	high	PCI	
values	 for	 participants	 undergoing	 ketamine	 anesthesia	 (indicating	 consciousness),	 whereas	 the	 PCI	 values	
during	xenon	and	propofol	anesthesia	were	 low	(indicating	unconsciousness).	 Importantly,	 this	 reflected	the	
reports	of	the	participants	in	the	study;	all	participants	undergoing	ketamine	anesthesia	reported	vivid	dreams	
during	the	anesthesia,	while	the	participants	undergoing	xenon	and	propofol	anesthesia	did	not.	These	results	
provide	 evidence	 for	 PCI	 being	 able	 to	 detect	 conscious	 states,	 even	 in	 behaviorally	 unresponsive	 subjects.	
Also	 in	this	study	we	define	consciousness	as	having	any	subjective	experience.	Thus,	 if	an	individual	reports	
having	some	subjective	experience,	including	dreaming,	she/he	is	considered	conscious.		

In	 this	 study,	we	reanalyzed	data	 reported	on	 in	Sarasso	et	al.	 (26),	by	applying	 the	DTF-based	classification	
algorithm	to	the	spontaneous	EEG	data.	This	was	done	in	order	to	test	the	DTF-based	algorithm	as	an	objective	
measure	for	separating	states	of	consciousness	during	anesthesia,	and	to	correlate	it	with	a	well-tested	index	
of	 consciousness:	 the	 PCI.	 We	 hypothesized	 that	 our	 DTF-based	 measure	 would	 separate	 conscious	 from	
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unconscious	 states	 in	 accordance	 with	 the	 participant´s	 own	 report	 of	 (un)conscious	 state,	 and	 the	 PCI	
measure.		

METHODS	

PARTICIPANTS	
The	data	analyzed	were	obtained	in	a	previous	study	conducted	at	the	Centre	Hospitalier	Universitaire	(CHU)	
in	Liege,	Belgium	(26).	Eighteen	healthy	volunteers	(10	females,	8	males,	age	18-28	years)	were	recruited	and	
participated	 in	 the	 study.	 Before	 the	 experiment,	 all	 volunteers	 gave	 their	 written	 informed	 consent	 for	
participation,	 and	 physical	 examinations	 were	 performed	 to	 exclude	 potential	 participants	 with	 medical	
conditions	that	were	incompatible	with	the	anesthesia	or	the	experimental	procedure.	If	no	exclusion	criteria	
were	met,	participants	were	randomly	assigned	to	one	of	the	three	experimental	protocols	(propofol,	xenon,	
or	ketamine	anesthesia;	n=6	for	each).	The	experimental	protocol	was	approved	by	the	local	ethical	committee	
of	the	University	of	Liège	(Liège,	Belgium).	

PROCEDURE	
As	described	in	the	original	publication	(26),	60	channel	EEG	was	recorded	from	all	participants	before,	during,	
and	after	the	administration	of	the	anesthetic,	using	a	TMS-compatible	60-channel	EEG	amplifier	(Nexstim	Plc.,	
Finland).	The	impedance	at	all	electrodes	was	kept	below	5	kΩ.	EEG	signals	were	referenced	to	an	additional	
electrode	 on	 the	 forehead,	 filtered	 upon	 acquisition	 (0.1-350	 Hz),	 and	 sampled	 at	 1450	 Hz.	 Two	 additional	
sensors	 were	 used	 to	 record	 the	 electrooculogram	 (EOG)	 activity.	 In	 both	 the	 awake	 and	 unresponsive	
conditions,	 EEG	 was	 recorded	 with	 and	 without	 concurrent	 single	 pulse	 transcranial	 magnetic	 stimulation	
(TMS).	During	the	responsive	wakefulness	condition,	a	10-minute	spontaneous	EEG	recording	was	performed	
before	TMS-EEG	was	 acquired,	while	during	 the	drug-induced	unresponsiveness	 condition	 spontaneous	EEG	
was	continuously	acquired	starting	~3	min	before	and	ending	~3	min	after	TMS-EEG	recordings.	

All	anesthesia	protocols	were	conducted	by	a	certified	senior	anesthesiologist.	Throughout	the	procedure,	the	
participant’s	 electrocardiogram	 (ECG),	 non-invasive	 blood	 pressure,	 SaO2,	 exhaled	 CO2,	 and	 axillary	 skin	
temperature	were	continuously	monitored,	and	did	not	show	significantly	abnormal	values	during	any	of	the	
experiments.	Only	one	type	of	anesthetic	was	administered	to	a	given	participant,	but	before	the	beginning	of	
all	 experimental	 procedures,	 participants	 were	 given	 metoclopramide	 (2	 mg)	 to	 minimize	 possible	
complications	caused	by	the	anesthetic	drug,	such	as	nausea	and	vomiting.	

The	procedures	for	the	three	anesthetics	aimed	at	reaching	a	common	behavioral	state,	i.e.	unresponsiveness,	
systematically	assessed	by	means	of	repeated	Ramsey	Scale	administrations	(27).	Thus,	a	Ramsay	Scale	score	
of	 6	 (deep	 unresponsiveness,	 corresponding	 to	 no	 response	 to	 external	 stimuli)	 was	 obtained	 for	 all	 the	
subjects	 in	 the	 three	protocols	 (26).	 Following	drug	administration,	 repeated	assessments	of	 responsiveness	
were	performed	at	30	second	intervals	until	three	consecutive	assessments	obtained	a	Ramsay	scale	score	of	6.	

To	 assess	 the	 presence/absence	 of	 conscious	 experience	 during	 anesthesia-induced	 behavioral	
unresponsiveness,	retrospective	reports	were	collected	for	all	participants	after	awakening.	For	this	purpose,	
after	participants	recovered	responsiveness	(three	consecutive	Ramsey	Scale	scores	of	2),	they	were	asked	to	
report	their	previous	conscious	experience	during	the	period	of	anesthesia	(“what	was	going	on	through	your	
mind	 before	 awakening?”).	 Participants	 were	 asked	 to	 confirm	 their	 retrospective	 reports	 one	 hour	 after	
recovering	responsiveness.	Experience	was	defined	as	“any	kind	of	mental	activity,”	which	included	thoughts,	
dreams,	 images,	 emotions,	 etc.	 Responses	were	 recorded	 and	 lumped	 into	 two	 categories:	 1)	 no	 conscious	
experience/no	 recall;	 2)	 conscious	 experiences,	 when	 the	 participant	 could	 describe	 the	 content	 of	 the	
experiences.		
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DATA	PROCESSING	AND	ANALYSIS	
Here,	 we	 focused	 our	 attention	 on	 the	 spontaneous	 EEG	 data	 recorded	 before	 and	 after	 the	 anesthetic	
administration.	 Each	 data-file	 was	 visually	 inspected	 using	 Besa	 Research	 software	 (BESA	 GmbH,	 82166	
Graefelfing,	Germany).	 Specifically,	 individual	 EEG-channels	with	activity	patterns	deviating	 from	 the	normal	
(high	amplitude	or	variance	noise	over	extended	periods,	or	flat	channels)	were	marked	for	removal.	

The	EEG	files	were	loaded	into	Matlab	R2015a	using	the	EEGlab	analysis	toolbox	(28).	They	were	downsampled	
to	 512	Hz,	 and	 recordings	 from	 bad	 channels	were	 removed	 and	 replaced	 by	 standardized	Gaussian	 noise.	
After	 this,	 the	EEG	file	was	divided	 into	1-second	epochs	 from	which	the	DTF	was	calculated	using	the	 ‘DTF’	
function	in	the	open	source	toolbox	eConnectome	(29).	Care	was	taken	to	stay	as	close	to	the	original	analysis	
pipeline	 as	 possible	 (8).	 The	 only	 deviations	 from	 the	 original,	 beyond	 hardware	 differences,	were	 that	 the	
current	data	used	a	slightly	different	set	of	25	EEG	channels	(Fp1,	F3,	F7,	F9,	T7,	T9,	Fp2,	F4,	F8,	F10,	T8,	T10,	Fz,	
C3,	Cz,	C4,	P3,	Pz,	P4,	P7,	P8,	P9,	P10,	O1,	O2;	down-sampled	from	the	60	channels	in	the	original	recordings),	
and	 that	 we	 now	 focused	 on	 the	 theta	 frequency	 range	 (3-7	 Hz)	 rather	 than	 the	 alpha	 range	 (8-12	 Hz)	 to	
reduce	confounds	caused	by	eyes	being	open/closed.		

The	DTF	was	calculated	for	all	channel	pairs	for	every	1-second	segment	of	EEG,	yielding	a	channel-by-channel-
by-frequency	 matrix	 of	 values	 quantifying	 the	 directed	 information	 flow	 between	 all	 channels	 for	 each	
frequency	of	interest.	By	taking	the	median	across	the	frequencies	we	obtained	a	25-by-25	matrix	of	the	DTF	
values,	quantifying	the	directed	 information	flow	for	all	channel	pairs	 in	the	theta	range.	Also,	since	the	DTF	
values	 are	 normalized	 to	 reflect	 the	 influence	 of	 one	 channel	 on	 another	 relative	 to	 the	 total	 influence	 all	
channels	have	on	that	channel,	it	makes	sense	to	consider	the	logarithm	of	the	DTF	(LDTF)	when	investigating	
the	relative	differences	in	strength	of	information	flow.	By	compressing	this	matrix	further,	taking	the	median	
across	 all	 influences	 from	 a	 given	 channel,	 we	 obtained	 a	 vector	 for	 each	 channel	 indicating	 the	 typical	
influence	of	that	channel	on	the	other	channels.	Later,	we	refer	to	the	results	of	this	operation	as	the	outgoing	
connection	strengths	from	the	channels,	or	the	source	LDTF	(sLDTF).		

To	quantify	the	overall	pattern	of	outgoing	connection	strengths	and	compare	differences	within	and	between	
groups,	we	 calculated	 the	 root	mean	 squared	difference	 (RMSD)	between	 channel	 sLDTF’s	 across	 the	 scalp.	
This	 results	 in	 a	 number	 indicating	 the	 degree	 of	 heterogeneity	 in	 outgoing	 connection	 strength	 across	 the	
scalp.	We	refer	to	this	measure	as	the	sLDTF	heterogeneity	(sLDTF-het).	The	RMSD	can	also	be	used	to	quantify	
the	degree	of	dissimilarity	in	the	outgoing	connection	strength	across	the	scalp	between	groups.	This	gives	a	
measure	(abbreviated	ΔsLDTF)	of	the	dissimilarity	between	sLDTF	topographies	in	the	different	groups.	

CLASSIFICATION	ALGORITHM	
In	 a	 previous	 study,	 we	 implemented	 a	 data-driven	 algorithm	 to	 classify	 the	 states	 of	 patients	 undergoing	
anesthesia	as	awake	or	anesthetized	based	on	LDTF	computed	from	25	channel	clinical	EEG	(8).	This	resulted	in	
a	database	of	LDTF	values	labeled	as	awake	or	anesthetized	by	a	trained	clinical	anesthesiologist.	The	database	
was	 used	 to	 generate	 descriptive	 statistics	 of	 the	 distributions	 of	 LDTF	 values	 in	 both	 the	 awake	 and	
anesthetized	condition.	Here,	we	used	the	database	from	that	study	as	the	basis	 for	classifying	the	states	of	
the	subjects	 in	the	present	study	under	the	different	protocols	tested,	as	conscious	or	unconscious.	 In	other	
words,	 we	 used	 the	 distributions	 of	 LDTF	 values	 from	 a	 different	 set	 of	 subjects,	 undergoing	 a	 different	
experimental	protocol,	as	the	basis	for	classifying	the	current	participants	as	conscious	or	unconscious.	

For	each	25x25	matrix	of	LDTF-values	computed	from	a	1-second	segment	of	EEG	in	the	current	data	set,	the	
likelihood	 of	 it	 being	 drawn	 from	 either	 the	 conscious,	 LC,	 or	 unconscious,	 LUC,	 distribution	was	 calculated.	
From	 this,	 a	 rating	 indicating	 the	 confidence	 of	 being	 classified	 as	 conscious,	 C(t),	 was	 calculated	 for	 the	
current	time	point,	t:	
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𝐶(𝑡) =
𝐿'(𝑡)

𝐿'(𝑡) + 𝐿)'(𝑡)
	

For	each	participant	in	a	given	state,	the	algorithm’s	average	confidence	in	classification	was	calculated	to	give	
an	indication	of	the	overall	confidence	for	classifying	the	participant	as	conscious:	

𝐶 =
1
𝑛

𝐶(𝑡)
,

	

This	measure	of	average	confidence	in	classifying	the	participant	as	conscious	was	used	as	our	final	metric	for	
this	 study.	A	𝐶	close	 to	1	 indicates	 that	 the	algorithm	had	a	high	confidence	 in	 classifying	 the	participant	as	
conscious	for	all	 time	points.	While	a	 low	𝐶	(close	to	0)	 indicates	that	the	algorithm	had	a	 low	confidence	 in	
classifying	 the	 participant	 as	 conscious	 for	 all	 time	 points,	 or	 similarly	 that	 it	 had	 a	 high	 confidence	 in	
classifying	the	participant	as	unconscious.		

To	 investigate	whether	the	algorithm	was	more	 likely	to	classify	participants	as	conscious	 in	the	awake	than	
the	 unresponsive	 state,	 we	 ran	 a	 paired	 t-tests	 comparing	𝐶 	between	 states.	 Next,	 we	 compared	 the	
algorithm’s	 classification	 with	 the	 participant’s	 own	 report	 of	 subjective	 experience,	 and	 performed	 a	 ROC	
analysis	 to	 find	 the	optimal	 threshold	 confidence	 for	 classification	as	 conscious	 for	 this	dataset.	 To	 find	 this	
optimum,	we	set	as	our	criteria	that	there	were	to	be	no	false	negatives	(participants	with	subjective	report	
classified	 as	 unconscious),	 while	 minimizing	 the	 false	 positive	 rate.	 Finally,	 we	 correlated	 the	 overall	
confidence,	𝐶,	with	the	PCI	value	computed	from	the	same	state	and	subject,	as	reported	by	Sarasso	et	al.	(26).		

RESULTS	
The	data	from	one	participant	in	each	condition	had	to	be	excluded	due	to	missing	data,	leaving	us	with	n=5	
participants	 from	 each	 condition	 for	 the	 analysis	 (total:	 n=15).	 For	 each	 participant,	 an	 EEG	 segment	 was	
analyzed	 from	 the	 awake	 condition	 (median	 length	 [min:sec]:	5:07;	 range	[min:sec]:	 1:32-21:32),	 and	 the	
anesthetized	 condition	 (median	 length	 [min:sec]:	 5:24;	 range	[min:sec]:	 2:07-17:04).	 The	 processing	 steps	
outlined	above	yielded	a	mapping	of	the	outgoing	connection	strength	for	every	second	of	EEG.	Figure	1	shows	
the	median	outgoing	connectivity	strengths,	sLDTF,	across	subjects	for	all	four	conditions.		

	

Figure	 1:	 Patterns	 of	 outgoing	 connection	 strengths	 between	awake	 state	 and	 different	 forms	 of	 general	 anesthesia;	
ketamine,	 propofol,	 and	 xenon.	 For	 each	 state,	 a	 topographical	 visualization	 of	 the	 sLDTF-based	 median	 outgoing	
connection	strength,	across	all	subjects	within	the	given	state,	 is	shown.	Strength	of	outgoing	connectivity	 is	 indicated	by	
the	 color	 bar	 (from	weak	 (-6)	 to	 strong	 (-1)	 connection	 strength).	Head	direction	 is	 indicated	by	 the	 black	 overlay	 (nose	
pointing	up).		



	 6	

Qualitatively,	the	topographic	sLDTF	maps	for	the	wake	and	ketamine	groups	seemed	to	resemble	each	other.	
Both	 showed	 a	 heterogeneous	 pattern	 with	 regions	 of	 relatively	 stronger	 sources	 in	 the	 medial	 posterior	
(parietal	and	occipital)	areas	and	weaker	sources	in	the	front	and	in	the	periphery	(Figure	1,	left).	In	contrast,	
the	corresponding	maps	for	the	propofol	and	xenon	groups	both	showed	a	more	homogenous	pattern,	where	
most	 regions	 had	 similarly	 strong	 outgoing	 connection	 strengths	 (Figure	 1,	 right).	 The	 values	 of	 sLDTF	
appeared	 to	 be	 less	 variable	 across	 the	 scalp	 in	 propofol	 and	 xenon	 anesthesia,	 than	 in	 wakefulness	 and	
ketamine	 anesthesia.	 The	measure	 of	 heterogeneity	 (sLDTF-het)	 reflected	 this	 qualitative	 difference;	 wake:	
1.01,	ketamine:	1.26,	propofol:	0.63,	xenon:	0.49.		

The	dissimilarities	between	the	topographies,	as	assessed	by	ΔsLDTF,	were	lower	between	propofol	and	xenon	
anesthesia	(0.469)	and	between	wake	and	ketamine	(0.799),	than	they	were	between	any	other	combination	
of	conditions	 (1.038	 -	1.789)	 (Table	1).	 In	other	words,	 the	 topographical	maps	of	 sLDTF	 in	wakefulness	and	
ketamine	anesthesia	were	 relatively	 similar.	As	were	 the	outgoing	 connectivity	maps	 in	propofol	 and	xenon	
anesthesia.	 Taken	 together,	 the	 measures	 of	 heterogeneity	 indicate	 that	 the	 topographical	 maps	 of	 sLDTF	
values	could	be	used	to	distinguish	between	participants	with	and	without	reports	of	experience	(awake	and	
ketamine	anesthesia	vs.	propofol	and	xenon	anesthesia).		

ΔsLDTF	 Wake		 Ketamine	 Propofol	 Xenon	
Wake	 0	 	 	 	
Ketamine	 0.799	 0	 	 	
Propofol	 1.178	 1.789	 0	 	
Xenon	 1.038	 1.615	 0.469	 0	

Table	 1:	 Values	 indicating	 the	 root	 mean	 square	 difference	 of	 outgoing	 connectivity	 strength	 (ΔsLDTF)	 between	 DTF	
topography	maps	 in	different	 conditions.	Condition	pairs	with	 similar	DTF	 topography	maps	 (ΔsLDTF	<	1)	are	marked	by	
green	color,	while	condition	pairs	with	different	DTF	topography	maps	(ΔsLDTF	>	1)	are	marked	by	red	color.	

This	 grouping	of	 states	 –	with	wakefulness	 and	 ketamine	 anesthesia	 in	 one	 group,	 and	propofol	 and	 xenon	
anesthesia	 in	 another	 –	 seemed	 to	 still	 hold	 at	 the	 individual	 level.	 The	 pattern	 of	 weaker	 outgoing	
connectivity	 from	 frontal	 peripheral	 channels	 in	 wakefulness	 and	 ketamine	 anesthesia	 was	 clear	 in	 the	
topographical	visualizations	(Figure	2,	right).	Furthermore,	the	patterns	seemed	to	be	stable	over	time,	as	can	
be	seen	from	the	time	course	plots	(Figure	2,	left).		
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Figure	2:	Time-courses	for	example	data	from	one	individual	in	each	condition,	with	corresponding	topographies	of	their	
median	 outgoing	 connection	 strength.	 Left:	 timecourses	 of	 the	 outgoing	 connection	 strength	 of	 the	 channels	 for	 each	
individual	are	shown.	 In	 the	panels	on	 the	 left,	 timecourses	of	 the	outgoing	connection	strengths	are	shown,	based	on	4	
minutes	of	spontaneous	EEG	recordings.	Every	EEG	channel	has	a	corresponding	row	in	the	timecourse,	and	the	rows	are	
ordered	 based	 on	 the	 position	 of	 the	 channel	 on	 the	 scalp	 (front	 left	 (FL):	 Fp1,F3,F7,F9,T7,T9;	 front	 right	 (FR):	
Fp2,F4,F8,F10,T8,T10;	 central	 medial	 (CM):	 Fz,C3,Cz,C4,P3,Pz,P4;	 Occipital	 (O):	 P7,P8,P9,O1,O2,P10).	 Right:	 the	
corresponding	 topography	 of	 the	 median	 outgoing	 connection	 strength	 over	 the	 whole	 segment	 for	 each	 example	
participant	 is	 shown.	 Strength	 of	 outgoing	 connectivity	 is	 indicated	 by	 the	 color	 bar	 (from	 weak	 (-6)	 to	 strong	 (-1)	
connection	strength).	Head	direction	is	indicated	by	the	black	overlay	(nose	pointing	up).	

The	results	from	the	DTF-based	classification	based	on	the	LDTF	values	are	summarized	in	Figure	3.	Specifically,	
the	 average	 confidence	 of	 being	 classified	 as	 conscious	 was	 significantly	 smaller	 for	 subjects	 undergoing	
propofol	and	xenon	anesthesia	than	for	the	awake	state	(p<0.05	for	both).	In	addition,	there	was	no	significant	
difference	 in	 this	 classification	 confidence	 between	 awake	 subjects	 and	 subjects	 undergoing	 ketamine	
anesthesia.	These	trends	could	be	seen	both	when	considering	the	paired	data	from	all	participants	(Figure	3,	
left)	and	when	considering	the	pooled	data	for	each	condition	(Figure	3,	right).	Furthermore,	when	comparing	
the	 variation	 in	 the	 confidence	of	 being	 classified	 as	 conscious	with	 the	 variation	 in	 PCI	 values	 reported	by	
Sarasso	et	al.	(26),	we	found	a	strong	correlation	(r2	=	0.48;	p<0.05,	Figure	4).	
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Figure	3:	The	DTF-based	classification	confidence	for	individual	participants,	and	grouped.	The	variation	in	the	confidence	
of	being	classified	as	conscious	for	individual	participants	(left),	and	grouped	(right).		

Based	on	 a	 ROC-analysis,	we	 found	 a	 range	of	 cutoff	 values	 for	 classifying	 conscious	 states	 vs.	 unconscious	
states	with	90%	accuracy	or	higher.	There	was	a	wide	choice	of	intermediate	cutoff	values	(between	0.25	and	
0.70)	 yielding	 high	 accuracy,	 sensitivity	 and	 specificity.	 Specifically,	 cutoff	 values	 between	 0.25	 and	 0.45	
yielded	 the	 maximal	 accuracy	 obtained	 with	 this	 dataset	 (93%)	 while	 maintaining	 a	 perfect	 sensitivity	 (no	
conscious	 individuals	classified	as	unconscious).	Without	a	 larger	study	population	we	cannot	currently	draw	
any	stronger	conclusion	on	the	optimal	cutoff	value.	

	

Figure	 4:	 Comparison	 of	 the	 Perturbational	 Complexity	 Index	 values	 and	 the	 DTF-based	 classification	 confidence.	 A	
scatter	plot	shows	the	relationship	between	the	DTF-based	confidence	of	being	classified	as	conscious	and	the	PCI	values	
obtained	for	the	same	participants	in	Sarasso	et	al.	(26).	
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DISCUSSION	
Qualitatively,	 the	DTF	 topographies	of	 the	wake	and	ketamine	groups	 showed	 regions	of	 relatively	 stronger	
and	 weaker	 apparent	 sources	 of	 outgoing	 connections.	 In	 contrast,	 both	 the	 propofol	 and	 xenon	 groups	
showed	 a	 more	 heterogeneous	 pattern,	 with	 outgoing	 connections	 of	 similar	 strength	 from	 most	 regions	
(Figure	 1).	 Thus,	 the	 heterogeneity	 of	 these	 patterns	 was	 high	 for	 the	 two	 conditions	 characterized	 by	
conscious	experience	(wake	1.01,	ketamine	1.26),	and	low	in	the	two	unconscious	states	(propofol	0.63,	xenon	
0.49).	The	group	 level	patterns	of	connectivity	seemed	to	hold	on	the	 level	of	 individual	participants	as	well	
(Figure	 2).	 Based	 on	 these	 differences,	 the	 DTF-based	 confidence	 of	 being	 classified	 as	 conscious	 was	
significantly	 lower	 when	 subjects	 underwent	 propofol	 or	 xenon	 anesthesia	 than	 when	 they	 were	 awake	
(p<0.05).	 In	 contrast,	 there	 were	 no	 statistically	 significant	 differences	 when	 comparing	 the	 DTF-based	
confidence	of	being	classified	as	conscious	during	ketamine	anesthesia	to	the	awake	state	(p>0.05;	Figure	3).	In	
addition,	we	found	a	significant	correlation	between	the	DTF-based	confidence	of	being	classified	as	conscious	
and	the	PCI-values	computed	by	Sarasso	et	al.	 (26).	This	 indicates	that	states	yielding	high	values	of	PCI	also	
had	a	high	average	probability	of	being	classified	as	conscious	by	the	DTF-based	classification,	and	vice	versa.		

At	least	four	other	studies	have	reported	changes	in	EEG	connectivity	quantified	by	DTF	in	relation	to	changing	
states	of	consciousness	(17,19,20,22).	Höller	et	al.	found	that	the	DTF	was	among	the	strongest	measures	for	
the	 separating	 vegetative	 and	 minimally	 conscious	 patients	 (25).	 Earlier,	 Bertini	 et	 al.	 showed	 that	
interhemispheric	 EEG	 connectivity	 quantified	 by	 DTF	 changed	 between	 wakefulness	 and	 stage	 2	 sleep,	
particularly	in	posterior	regions	(22).	Similarly,	Gennaro	et	al.	showed	that	the	EEG	connectivity	from	posterior	
electrodes	 to	 frontal	 electrodes	was	 reduced	 just	 after	 sleep	 onset	 (23).	 Finally,	 Kaminski	 et	 al.	 reported	 a	
“diminishing	role	of	the	posterior	sources	and	an	increasing	effect	of	the	anterior	areas”	at	the	onset	of	sleep	
(17).	These	findings,	together	with	our	earlier	results	showing	abrupt	changes	when	patients	are	anesthetized,	
suggest	 that	 changes	 in	DTF	may	 reflect	properties	 related	 to	 (un)consciousness	 (8).	However,	whether	and	
how	 the	DTF-based	measure	may	 reflect	 or	 be	 related	 to	 neural	 correlates	 of	 consciousness	 remains	 to	 be	
determined.		

In	contrast	to	our	results,	Lee	et	al.	(26),	using	normalized	symbolic	transfer	entropy,	found	that	ketamine	had	
effects	 on	 connectivity	 that	 resembled	 those	 of	 propofol	 and	 sevoflurane.	 Thus,	 they	 found	 that	 all	 three	
anesthetics	 selectively	 inhibited	 frontal-parietal	 feedback	 connectivity,	 indicating	 that	 diverse	 anesthetics	
disrupt	frontal-parietal	communication,	despite	molecular	and	neurophysiologic	differences.	This	difference	in	
results	 may	 be	 related	 to	 different	 conditions	 (surgery	 vs.	 experimental	 setting),	 subtle	 differences	 in	
anesthetic	protocols,	or	just	an	artefact	of	the	different	measures	and	methods	used	for	analysis.	

The	aim	of	this	study	was	to	test	whether	the	DTF-based	measure,	applied	to	raw	EEG-signals,	could	be	used	
uses	to	objectively	distinguish	conscious	from	unconscious	states	in	humans.	Our	results	seem	to	indicate	that	
our	method	was	 successful	 in	 this	 respect.	 However,	 neither	 PCI	 nor	 the	 DTF-based	measure	 distinguishes	
between	connected	and	disconnected	forms	of	consciousness,	 i.e.	consciousness	without	externally	relevant	
content,	 such	 as	 vivid	 dreams	 during	 ketamine	 anesthesia	 (26,31).	 Thus,	 both	 measures	 show	 overlapping	
distributions	of	values	for	normal	wakefulness	and	ketamine	dreams.	For	practical	purposes,	such	as	assessing	
the	 level	 of	 consciousness	 in	 the	 clinic,	 it	 is	 clearly	 often	 important	 to	 be	 able	 to	 distinguish	 between	
connected	and	disconnected	consciousness,	since	only	the	latter	is	acceptable	for	general,	surgical	anesthesia.	
Although,	 connected	 consciousness	 can	 often	 be	 directly	 assessed	 clinically,	 this	 is	 not	 always	 the	 case		
(1,27,28).	Even	though	specially	designed	tests	based	on	communication	may	reveal	connected	consciousness	
in	some	nonresponsive	patients	(1,32),	such	tests	may	fail	because	of	sensory	deficits.	Thus,	further	research	is	
needed	 to	 devise	 objective	 methods	 for	 detecting	 connected	 and	 disconnected	 consciousness	 in	 non-	
communicating	patients.	

Even	 though	 the	 DTF-based	 measure	 seems	 fairly	 robust,	 three	 data	 points	 fell	 outside	 the	 main	 pattern	
intended	 to	 separate	 conscious	 from	 unconscious	 states.	 Two	 participants	 who	 did	 not	 report	 having	 an	
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experience,	and	who’s	PCI-value	indicated	unconsciousness,	were	classified	as	awake	more	often	than	not	by	
the	DTF-based	classification.	Also,	one	subject	 in	 the	wakeful	state,	who	reported	subjective	experience	and	
had	 a	 PCI-value	 indicating	 consciousness,	 was	 classified	 as	 awake	 less	 than	 half	 the	 time.	 These	
“misclassifications”	could	have	several	explanations.	Because	PCI	requires	>	5	minutes	with	TMS-EEG	data	to	
give	 an	 overall	 value	 for	 the	 whole	 segment	 recorded	 (3),	 measurements	 from	 brief	 periods	 of	 transient	
conscious	 states	 might	 not	 significantly	 influence	 the	 value	 obtained	 from	 TMS-EEG	 data,	 e.g.	 unintended	
awakenings	 during	 anesthesia	 and	 dreams.	 For	 example,	 due	 to	 the	 DTF-based	measure´s	 higher	 temporal	
resolution	compared	to	PCI,	it	might	conceivably	capture	brief	periods	that	deviate	from	the	clinically	observed	
conscious	state	of	 the	subject.	One	study	 found	that	up	to	60%	of	all	 subjects	undergoing	anesthesia	report	
some	subjective	experience	(33).	For	this	conceivable	problem,	the	DTF-based	method	may	be	an	 important	
tool	 for	detecting	shorter	segments	of	conscious	state	that	may	go	undetected	 in	clinical	evaluation	and	PCI	
calculation,	and	thus	be	(mis)classified	as	unconscious.	On	the	other	hand,	the	DTF-based	measure	could	also	
just	be	sensitive	to	irrelevant	properties	of	the	EEG-signal	leading	to	misclassification,	as	has	been	shown	to	be	
the	case	for	the	most	popular	clinical	monitor	of	anesthesia	(34).		

If	we	consider	the	subject’s	own	report	of	experience	as	the	ground	truth	about	the	subject’s	conscious	state,	
our	 results	 indicate	 that	 the	 DTF-based	 classification	 algorithm	 classifies	 participants	 correctly	 as	 conscious	
with	 100%	 sensitivity.	 The	 accuracy,	 however,	 peaks	 at	 93.3%,	 as	 two	 unconscious	 participants	 were	
mistakenly	classified	as	conscious.	The	lower	specificity	as	compared	to	the	PCI	values	may,	for	many	purposes,	
be	counterbalanced	by	the	fact	that	the	DTF-based	classification	is	based	on	automatic	processing	steps,	works	
directly	on	raw,	spontaneous	data,	and	can	update	its	classification	every	second	to	probe	the	dynamics	of	an	
individual’s	state.	A	high	DTF-based	confidence	of	being	classified	as	conscious	indicates	that	the	algorithm	had	
a	high	probability	of	classifying	the	subject	as	awake	throughout	the	time-course.	In	contrast,	a	low	DTF-based	
based	 confidence	 of	 being	 classified	 as	 conscious	 indicates	 that	 the	 algorithm	 was	 unlikely	 to	 classify	 the	
subject	as	awake	throughout	the	time-course.	Unfortunately,	an	intermediate	DTF-based	value	may	reflect	at	
least	 two	different	 causes:	 either	 the	 algorithm	was	not	 always	 reliable	 throughout	 the	 time-course,	 or	 the	
confidence	 of	 the	 algorithm	 fluctuated	 (either	 rapidly	 or	 between	 stable	 states	 of	 confidence),	 or	 a	
combination	of	these.		

The	 DTF-based	measure	 distinguishes	 between	 conscious	 and	 unconscious	 states	 during	 different	 forms	 of	
general	 anesthesia	 and	 wakefulness,	 and	 it	 correlates	 strongly	 with	 PCI.	 It	 may	 overcome	 some	 of	 the	
limitations	of	 the	PCI	method	 related	 to	 its	 relatively	 low	 temporal	 resolution.	 PCI	 requires	more	expensive	
equipment	 (navigated	TMS),	and	also	extensive	 training	of	personnel	 for	experimental	and	analysis	 tasks,	as	
well	as	significant	computational	effort	in	data	processing	and	analysis	(3,26).	Since	the	DTF-based	confidence	
of	being	classified	as	conscious	is	defined	for	all	1-second	segments	in	a	given	data	set,	the	temporal	resolution	
is	 relatively	 high.	 This	 can	 be	 important	 in	many	 clinical	 situations,	 such	 as	monitoring	 patients	 undergoing	
anesthesia	 during	 surgery,	 or	 bedside	 monitoring	 of	 patients	 suffering	 from	 disorders	 of	 consciousness.	
Furthermore,	the	DTF-based	measure	could	presumably	easily	be	made	automatic,	and	used	as	the	basis	for	
real-time,	low-cost	monitoring	of	the	state	of	consciousness.	

There	 are	 several	 remaining	 challenges	 which	 must	 be	 tackled	 before	 general	 claims	 about	 the	 relation	
between	the	DTF-based	measure	and	consciousness	can	be	made.	First	and	foremost,	more	studies	including	a	
variety	of	distinct	states	of	consciousness	need	to	be	completed,	and	the	number	of	participants	 included	in	
the	 studies	 should	 be	 increased.	 Furthermore,	 the	 choice	 parameters	 used	 for	 the	 DTF	 analysis	 should	 be	
investigated	in	depth	to	uncover	the	relationship	between	the	scalp-level	EEG	connectivity	and	the	underlying	
brain	connectivity.	Our	choices	of	parameters	(such	as	choice	of	channels,	model	order,	frequency	band	etc.),	
as	well	as	the	fact	that	pre-processing	steps	such	as	filtering	and	artefact	rejection	were	omitted	deliberately	
in	this	study,	may	have	had	an	impact	on	the	precision	of	inference	about	the	brain	connectivity	(35,36).	That	
said,	whether	the	scalp	level	connectivity	estimates	are	good	estimators	of	the	underlying,	neural	connectivity	
is	disputed	(37,38).	However,	as	previously	stated,	the	aims	here	were	to	test	the	DTF-based	algorithm	as	an	
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objective	measure	 for	 separating	 states	 of	 consciousness	 during	 anesthesia,	 not	 to	 investigate	whether	 the	
DTF	reflects	real	changes	in	brain	connectivity.	

To	 this	 end,	 the	 DTF-based	measure	 was	 able	 to	 distinguish	 between	 conscious	 and	 unconscious	 states	 in	
accordance	with	 the	 participant´s	 own	 report	 of	 (un)conscious	 state.	 This	was	 achieved	 using	 an	 automatic	
algorithm	to	 short	 segments	of	 spontaneous	EEG.	Furthermore,	 the	DTF-based	measure	correlated	with	 the	
PCI	measure	 as	 it	 classified	 participants	 experiencing	 dreams	 during	 ketamine	 anesthesia	 as	 conscious,	 but	
classified	participants	undergoing	xenon	and	propofol	anesthesia	as	unconscious.	
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