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a b s t r a c t 

Noisy labeled data represent a rich source of information that often are easily accessible and cheap to 

obtain, but label noise might also have many negative consequences if not accounted for. How to fully 

utilize noisy labels has been studied extensively within the framework of standard supervised machine 

learning over a period of several decades. However, very little research has been conducted on solving the 

challenge posed by noisy labels in non-standard settings. This includes situations where only a fraction 

of the samples are labeled (semi-supervised) and each high-dimensional sample is associated with mul- 

tiple labels. In this work, we present a novel semi-supervised and multi-label dimensionality reduction 

method that effectively utilizes information from both noisy multi-labels and unlabeled data. With the 

proposed Noisy multi-label semi-supervised dimensionality reduction (NMLSDR) method, the noisy multi- 

labels are denoised and unlabeled data are labeled simultaneously via a specially designed label propa- 

gation algorithm. NMLSDR then learns a projection matrix for reducing the dimensionality by maximizing 

the dependence between the enlarged and denoised multi-label space and the features in the projected 

space. Extensive experiments on synthetic data, benchmark datasets, as well as a real-world case study, 

demonstrate the effectiveness of the proposed algorithm and show that it outperforms state-of-the-art 

multi-label feature extraction algorithms. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Supervised machine learning crucially relies on the accuracy of

he observed labels associated with the training samples [1–10] . Ob-

erved labels may be corrupted and, therefore, they do not neces-

arily coincide with the true class of the samples. Such inaccurate

abels are also referred to as noisy [2,4,11] . Label noise can occur

or various reasons in real-world data, e.g. because of imperfect

vidence, insufficient information, label-subjectivity or fatigue on

he part of the labeler. In other cases, noisy labels may result from

he use of frameworks such as anchor learning [12,13] or silver

tandard learning [14] , which have received interest for instance

n healthcare analytics [15,16] . A review of various sources of label

oise can be found in [2] . 

In standard supervised machine learning settings, the challenge

osed by noisy labels has been studied extensively. For exam-
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le, many noise-tolerant versions of well-known classifiers have

een proposed, including discriminant analysis [8,17] , logistic re-

ression [18] , the k-nearest neighbor classifier [19] , boosting algo-

ithms [20,21] , perceptrons [22,23] , support vector machines [24] ,

eep neural networks [7,25,26] . Others have proposed more gen-

ral classification frameworks that are not restricted to particular

lassifiers [4,11] . 

However, very little research has been conducted on solving the

hallenge posed by noisy labels in non-standard settings, where

he magnitude of the noisy label problem is increased consider-

bly. Some examples of such a non-standard setting occur for in-

tance within image analysis [27] , document analysis [28] , named

ntity recognition [29] , crowdsourcing [30] , or in the healthcare

omain, used here as an illustrative case-study. Non-standard set-

ings include (i) Semi-supervised learning [31,32] , referring to a sit-

ation where only a few (noisy) labeled data points are avail-

ble, making the impact of noise in those few labels more preva-

ent, and where information must also jointly be inferred from

nlabeled data points. In healthcare, it may be realistic to ob-

ain some labels through a (imperfect) manual labeling process,

ut the vast amount of data remains unlabeled; (ii) Multi-label

https://doi.org/10.1016/j.patcog.2019.01.033
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1 DR may be obtained both by feature extraction, i.e. by a data transformation, 

and by feature selection [61] . Here, we refer to DR in the sense of feature extraction. 
learning [33–41] , wherein objects may not belong exclusively to

one category. This situation occurs frequently in a number of do-

mains, including healthcare, where for instance a patient could

suffer from multiple chronic diseases; (iii) High-dimensional data,

where the abundance of features and the limited (noisy) labeled

data, lead to a curse of dimensionality problem. In such situa-

tions, dimensionality reduction (DR) [42] is useful, either as a pre-

processing step, or as an integral part of the learning procedure.

This is a well-known challenge in health, where the number of

patients in the populations under study frequently is small, but

heterogeneous potential sources of data features from electronic

health records for each patient may be enormous [43–46] . 

In this paper, and to the best of our knowledge, we pro-

pose the first noisy label, semi-supervised and multi-label DR ma-

chine learning method, which we call the Noisy multi-label semi-

supervised dimensionality reduction (NMLSDR) method. Towards that

end, we propose a label propagation method that can deal with

noisy multi-label data. Label propagation [47–54] , wherein one

propagates the labels to the unlabeled data in order to obtain a

fully labeled dataset, is one of the most successful and fundamen-

tal frameworks within semi-supervised learning. However, in con-

trast to many of these methods that clamp the labeled data, in

our multi-label propagation method we allow the labeled part of

the data to change labels during the propagation to account for

noisy labels. In the second part of our algorithm we aim at learn-

ing a lower dimensional representation of the data by maximizing

the feature-label dependence. Towards that end, similarly to other

DR methods [55,56] , we employ the Hilbert-Schmidt independence

criterion (HSIC) [57] , which is a non-parametric measure of depen-

dence. 

The NMLSDR method is a DR method, which is general and can

be used in many different settings, e.g. for visualization or as a pre-

processing step before doing classification. However, in order to

test the quality of the NMLSDR embeddings, we (preferably) have

to use some quantitative measures. For this purpose, a common

baseline classifier such as the multi-label k-nearest neighbor (ML-

kNN) classifier [58] has been applied to the low-dimensional rep-

resentations of the data [59,60] . Even though this is a valid way to

measure the quality of the embeddings, to apply a supervised clas-

sifier in a semi-supervised learning setting is not a realistic setup

since one suddenly assumes that all labels are known (and cor-

rect). Therefore, as an additional contribution, we introduce a novel

framework for semi-supervised classification of noisy multi-label

data. 

In our experiments, we compare NMLSDR to baseline methods

on synthetic data, benchmark datasets, as well as a real-world case

study, where we use it to identify the health status of patients suf-

fering from potentially multiple chronic diseases. The experiments

demonstrate that for partially and noisy labeled multi-label data,

NMLSDR is superior to existing DR methods according to seven dif-

ferent multi-label evaluation metrics and the Wilcoxon statistical

test. 

In summary, the contributions of the paper are as follows. 

• A new label noise-tolerant semi-supervised multi-label dimen-

sionality reduction method based on dependence maximiza-

tion. 
• A novel framework for semi-supervised classification of noisy

multi-label data. 
• A comprehensive experimental section that illustrate the effec-

tiveness of the NMLSDR on synthetic data, benchmark datasets

and on a real-world case study. 

The remainder of the paper is organized as follows. Re-

lated work is reviewed in Section 2 . In Section 3 , we describe

our proposed NMLSDR method and the novel framework for

semi-supervised classification of noisy multi-label data. Section 4
escribes experiments on synthetic and benchmark datasets,

hereas Section 5 is devoted to the case study where we study

hronically ill patients. We conclude the paper in Section 6 . 

. Related work 

In this section we review related unsupervised, semi-supervised

nd supervised DR methods. 1 

Unsupervised DR methods do not exploit label information and

an therefore straightforwardly be applied to multi-label data by

imply ignoring the labels. For example, principal component anal-

sis (PCA) aims to find the projection such that the variance of

he input space is maximally preserved [62] . Other methods aim

o find a lower dimensional embedding that preserves the mani-

old structure of the data, and examples of these include Locally

inear embedding [63] , Laplacian eigenmaps [64] and ISOMAP [65] .

One of the most well-known supervised DR methods is lin-

ar discriminative analysis (LDA) [66] , which aims at finding the

inear projection that maximizes the within-class similarity and

t the same time minimizes the between-class similarity. LDA

as been extended to multi-label LDA (MLDA) in several differ-

nt ways [67–71] . The difference between these methods basically

onsists in the way the labels are weighted in the algorithm. Fol-

owing the notation in [71] , wMLDAb [67] uses binary weights,

MLDAe [68] uses entropy-based weights, wMLDAc [69] uses

orrelation-based weights, wMLDAf [70] uses fuzzy-based weights,

hereas wMLDAd [71] uses dependence-based weights. 

Canonical correlation analysis (CCA) [72] is a method that max-

mizes the linear correlation between two sets of variables, which

n the case of DR are the set of labels and the set of features de-

ived from the projected space. CCA can be directly applied also

or multi-labels without any modifications. Multi-label informed

atent semantic indexing (MLSI) [73] is a DR method that aims at

oth preserving the information of inputs and capturing the corre-

ations between the labels. In the Multi-label least square (ML-LS)

ethod one extracts a common subspace that is assumed to be

hared among multiple labels by solving a generalized eigenvalue

ecomposition problem [74] . 

In [55] , a supervised method for doing DR based on de-

endence maximization [57] called Multi-label dimensionality re-

uction via dependence maximization (MDDM) was introduced.

DDM attempts to maximize the feature-label dependence us-

ng the Hilbert–Schmidt independence criterion and was originally

ormulated in two different ways. MDDMp is based on orthonor-

al projection directions, whereas MDDMf makes the projected

eatures orthonormal. Yu et al. showed that MDDMp can be for-

ulated using least squares and added a PCA term to the cost

unction in a new method called Multi-label feature extraction via

aximizing feature variance and feature-label dependence simul-

aneously (MVMD) [56] . 

The most closely related existing DR methods to NMLSDR are

he semi-supervised multi-label methods. The Semi-supervised di-

ension reduction for multi-label classification method (SSDR-

C) [75] , Coupled dimensionality reduction and classification

or supervised and semi-supervised multilabel learning [76] , and

emisupervised multilabel learning with joint dimensionality re-

uction [77] are semi-supervised multi-label methods that simul-

aneously learn a classifier and a low dimensional embedding. 

Other semi-supervised multi-label DR methods are semi-

upervised formulations of the corresponding supervised multi-

abel DR method. Blascho et al. introduced semi-supervised

CA based on Laplacian regularization [78] . Several differ-

nt semi-supervised formulations of MLDA have also been
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roposed. Multi-label dimensionality reduction based on

emi-supervised discriminant analysis (MSDA) adds two reg-

larization terms computed from an adjacency matrix and a

imilarity correlation matrix, respectively, to the MLDA objective

unction [79] . In the Semi-supervised multi-label dimensionality

eduction (SSMLDR) [59] method one does label propagation to

btain soft labels for the unlabeled data. Thereafter the soft labels

f all data are used to compute the MLDA scatter matrices. An

ther extension of MLDA is Semi-supervised multi-label linear

iscriminant analysis (SMLDA) [80] , which later was modified and

enamed Semi-supervised multi-label dimensionality reduction 

ased on dependence maximization (SMDRdm) [60] . In SMDRdm

he scatter matrices are computed based on only labeled data.

owever, a HSIC term is also added to the familiar Rayleigh

uotient containing the two scatter matrices, which is computed

ased on soft labels for both labeled and unlabeled data obtained

n a similar way as in SSMLDR. 

Common to all these methods is that none of them explictly

ssume that the labels can be noisy. In SSMLDR and SMDRdm, the

abeled data are clamped during the label propagation and hence

annot change. Moreover, these two methods are both based on

DA, which is known heavily affected by outliers, and consequently

lso wrongly labeled data [81–83] . 

. The NMLSDR method 

We start this section by introducing notation and the setting

or noisy multi-label semi-supervised linear feature extraction, and

hereafter elaborate on our proposed NMLSDR method. 

.1. Problem statement 

Let { x i } n i =1 
be a set of n D -dimensional data points, x i ∈ R 

D . As-

ume that the data are ordered such that the l first of the data

oints are labeled and u are unlabeled, l + u = n . Let X be a n × D

atrix with the data points as row vectors. 

Assume that the number of classes is C and let Y L 
i 

∈ { 0 , 1 } C be

he label-vector of data point x i , i = 1 , . . . , l. The elements are given

y Y L 
ic 

= 1 , c = 1 , . . . , C if data point x i belongs to the c th class and

 

L 
ic 

= 0 otherwise. Define the label matrix Y L ∈ {0, 1} l × C as the ma-

rix with the known label-vectors Y L 
i 
, i = 1 , . . . , l as row vectors

nd let Y U ∈ {0, 1} u × C be the corresponding label matrix of the un-

nown labels. 

The objective of linear feature extraction is to learn a projec-

ion matrix P ∈ R 

D ×d that maps a data point in the original feature

pace x ∈ R 

D to a lower dimensional representation z ∈ R 

d , 

 = P T x, (1) 

here d < D and P T denotes the transpose of the matrix P . 

In our setting, we assume that the label matrix Y L is poten-

ially noisy and that Y U is unknown. The first part of our proposed

MLSDR method consists of doing label propagation in order to

earn the labels Y U and update the estimate of Y L . We do this by in-

roducing soft labels F ∈ R 

n ×C for the label matrix Y = ( 
Y L 

Y U 
) , where

 ic represents the probability that data point x i belong to the c th

lass. We obtain F with label propagation and thereafter use F to

earn the projection matrix P . However, we start by explaining our

abel propagation method. 

.2. Label propagation using a neighborhood graph 

The underlying idea of label propagation is that similar data

oints should have similar labels. Typically, the labels are propa-

ated using a neighborhood graph [47] . Here, inspired by [84] , we
ormulate a label propagation method for multi-labels that is ro-

ust to noise. The method is as follows. 

Step 1. First, a neighbourhood graph is constructed. The graph

s described by its adjacency matrix W , which can be designed e.g.

y setting the entries to 

 i j = exp (−σ−2 ‖ x i − x j ‖ 

2 ) , (2)

here ‖ x i − x j ‖ is the Euclidean distance between the datapoints

 i and x j , and σ is a hyperparameter. Alternatively, one can use the

uclidian distance to compute a k-nearest neighbors (kNN) graph

here the entries of W are given by 

 i j = 

{
1 , if x i among x j ’s k NN or x j among x i ’s k NN 

0 , otherwise . 
(3) 

Step 2. Symmetrically normalize the adjacency matrix W by let-

ing 

˜ 
 = D 

−1 / 2 W D 

−1 / 2 , (4) 

here D is a diagonal matrix with entries given by d ii = 

∑ n 
k =1 W ik . 

Step 3. Calculate the stochastic matrix 

 = 

˜ D 

−1 ˜ W , (5) 

here ˜ d ii = 

∑ n 
k =1 

˜ W ik . The entry T ij can now be considered as the

robability of a transition from node i to node j along the edge

etween them. 

Step 4. Compute soft labels F ∈ R 

n ×C by iteratively using the fol-

owing update rule 

 (t + 1) = I αT F (t) + (I − I α) Y, (6)

here I α is a n × n diagonal matrix with the hyperparameters αi ,

 ≤αi < 1, on the diagonal. To initialize F , we let F (0) = Y, where

he unlabeled data are set to Y U 
ic 

= 0 , c = 1 , . . . , C. 

.2.1. Discussion 

Setting αi = 0 for the labeled part of the data corresponds to

lamping of the labels. However, this is not what we aim for in

he presence of noisy labels. Therefore, a crucial property of the

roposed framework is to set αi > 0 such that the labeled data can

hange labels during the propagation. 

Moreover, we note that our extension of label propagation to

ulti-labels is very similar to the single-label variant introduced

n [84] , with the exception that we do not add the outlier class,

hich is not needed in our case. In other extensions to multi-

abel propagation [59,60] , the label matrix Y is normalized such

hat the rows sum to 1, which ensures that the output of the al-

orithm F also has rows that sum to 1. In the single-label case this

akes sense in order to maintain the interpretability of probabili-

ies. However, in the multi-label case the data points do not neces-

arily exclusively belong to a single class. Hence, the requirement
 

c F ic = 1 does not make sense since then x i can maximally be-

ong to one class if one think of F as a probability and require the

robability to be 0.5 or higher in order to belong to a class. 

On the other hand, in our case, a simple calculation shows that

 ≤ F ic (t + 1) ≤ 1 : 

 ic (t + 1) = αi 

n ∑ 

m =1 

T im 

F mc (t) + (1 − αi ) Y ic 

≤ αi 

n ∑ 

m =1 

T im 

+ (1 − αi ) = αi + (1 − αi ) = 1 , (7) 

ince F ic ( t ) ≤ 1 and Y ic ≤ 1. However, we do not necessarily have

hat 
∑ 

c F ic = 1 . 

From matrix theory it is known that, given that I − I αT is non-

ingular, the solution of the linear iterative process (6) converges

o the solution of 

(I − I αT ) F = (I − I α) Y, (8)
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for any initialization F (0) if and only if I αT is a convergent ma-

trix [85] (spectral radius ρ( I αT ) < 1). I αT is obviously convergent if

0 ≤αi < 1 ∀ i . Hence, we can find the soft labels F by solving the

linear system given by Eq. (8) . 

Moreover, F ic can be interpreted as the probability that data-

point x i belongs to class c , and therefore, if one is interested in

hard label assignments, ˜ Y , these can be found by letting ˜ Y ic = 1 if

F ic > 0.5 and 

˜ Y ic = 0 otherwise. 

3.3. Dimensionality reduction via dependence maximization 

In this section we explain how we use the labels obtained using

label propagation to learn the projection matrix P . 

The motivation behind dependence maximization is that there

should be a relation between the features and the label of an ob-

ject. This should be the case also in the projected space. Hence,

one should try to maximize the dependence between the feature

similarity in the projected space and the label similarity. A com-

mon measure of such dependence is the Hilbert–Schmidt indepen-

dence criterion (HSIC) [57] , defined by 

HSIC(X, Y ) = 

1 

(n − 1) 2 
tr( KHLH) , (9)

where tr denotes the trace of a matrix. H ∈ R 

n ×n is given by H i j =
δi j − n −1 , where δi j = 1 if i = j, and δi j = 0 otherwise. K is a kernel

matrix over the feature space, whereas L is a kernel computed over

the label space. 

Let the projection of x be given by the projection matrix P ∈
R 

D ×d and function � : R 

D → R 

d , �(x ) = P T x . We select a linear

kernel over the feature space, and therefore the kernel function is

given by 

K(x i , x j ) = 〈 �(x i ) , �(x j ) 〉 = 〈 P T x i , P T x j 〉 = P T x i x 
T 
j P (10)

Hence, given data { x i } n i =1 
, the kernel matrix can be approximated

by K = X P T P X T . 

The kernel over the label space, L , is given via the labels y i ∈ {0,

1} C . One possible such kernel is the linear kernel 

L (y i , y j ) = 〈 y i , y j 〉 . (11)

However, in our semi-supervised setting, some of the labels are

unknown and some are noisy. Hence, the kernel L cannot be com-

puted. In order to enable DR in our non-standard problem, we pro-

pose to estimate the kernel using the labels obtained via our label

propagation method. For the part of the data that was labeled from

the beginning we use the hard labels, ˜ Y L , obtained from the label

propagation, whereas for the unlabeled part we use the soft labels,

F U . Hence, the kernel is approximated via L = 

˜ F ˜ F T , where ˜ F = ( 
˜ Y L 

F U 
) .

The reason for using the hard labels obtained from label propaga-

tion for the labeled part is that we want some degree of certainty

for those labels that change during the propagation (if the soft la-

bel F L 
ic 

changes with less than 0.5 from its initial value 0 or 1 dur-

ing the propagation, the hard label Y L 
ic 

does not change). 

The constant term, (n − 1) −2 , in Eq. (9) is irrelevant in an op-

timization setting. Hence, by inserting the estimates of the kernels

into Eq. (9) , the following objective function is obtained, 

�(P ) = tr(HX P T P X 

T H ̃

 F ˜ F T ) = tr(P T X 

T H ̃

 F ˜ F T HX P ) . (12)

Note that the matrix X T H ̃

 F ˜ F T HX is symmetric. Hence, by requiring

that the projection directions are orthogonal and that the new di-

mensionality is d , the following optimization problem is obtained 

arg max 
P 

�(P ) = arg max 
P 

tr(P T (X 

T H ̃

 F ˜ F T HX ) P ) , (13)

s.t. P ∈ R 

D ×d , P P T = I. 
t
s a consequence of the Courant-Fisher characterization [86] , it

ollows that the maximum is achieved when P is an orthonormal

asis corresponding to the d largest eigenvalues. Hence, P can be

ound by solving the eigenvalue problem 

 

T H ̃

 F ˜ F T HX P = �P. (14)

The dimensionality of the projected space, d , is upper bounded

y the rank of ˜ F ˜ F T , which in turn is upper bounded by the number

f classes C . Hence, d cannot be set larger than C . The pseudo-code

f the NMLSDR method is shown in Algorithm 1 . 

lgorithm 1 Pseudo-code for NMLSDR. 

equire: X : n × D feature matrix, Y : n × C label matrix, hyper-

parameters k , I α and d. 

1: Initialize F by letting F (0) = Y , where the unlabeled data are

set to Y U 
ic 

= 0 , c = 1 , . . . , C. 

2: Construct a neighbourhood graph by calculating the adjacency

matrix W using Eqs. (2) or (3). 

3: Symmetrically normalize the adjacency matrix W by letting
˜ W = D 

−1 / 2 W D 

−1 / 2 , 

4: Calculate the stochastic matrix T = 

˜ D 

−1 ˜ W , where ˜ d ii =∑ n 
k =1 

˜ W ik . 

5: Solve the linear system (I − I αT ) F = (I − I α) Y . 

6: Compute ˜ F . 

7: Construct the matrix X T H ̃

 F ˜ F T HX . 

8: Eigendecompose X T H ̃

 F ˜ F T HX and construct projection matrix

P ∈ R 

D ×d . 

nsure: Projection P : R 

D → R 

d 

.4. Semi-supervised classification for noisy multi-label data 

The multi-label k-nearest neighbor (ML-kNN) classifier [58] is

 widely adopted classifier for multi-label classification. However,

imilarly to many other classifiers, its performance can be ham-

ered if the dimensionality of the data is too high. Moreover, the

L-kNN classifier only works in a completely supervised setting.

o resolve these problems, as an additional contribution of this

ork, we introduce a novel framework for semi-supervised classifi-

ation of noisy multi-label data, consisting of two steps. In the first

tep, we compute a low dimensional embedding using NMLSDR.

he second step consists of applying a semi-supervised ML-kNN

lassifier. For this classifier we use our label propagation method

n the learned embedding to obtain a fully labeled dataset, and

hereafter apply the ML-kNN classifier. 

. Experiments 

In this paper, we have proposed a method for computing a low-

imensional embedding of noisy, partially labeled multi-label data.

owever, it is not a straightforward task to measure how well the

ethod works. Even though the method is definitely relevant to

eal-world problems (illustrated in the case study in Section 5 ), the

ramework cannot be directly applied to most multi-label bench-

ark datasets since most of them are completely labeled, and the

abels are assumed to be clean. Moreover, the NMLSDR provides

 low dimensional embedding of the data, and we need a way to

easure how good the embedding is. If the dimensionality is 2 or

, this can to some degree be done visually by plotting the embed-

ing. However, in order to quantitatively measure the quality and

imultaneously maintain a realistic setup, we will apply our pro-

osed end-to-end framework for semi-supervised classification and

imensionality reduction. In our experiments, this realistic semi-

upervised setup will be applied in an illustrative example on syn-

hetic data and in the case study. 
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A potential disadvantage of using a semi-supervised classifier,

s that it does not necessarily isolate effect of the DR method

hat is used to compute the embedding. For this reason, we will

lso test our method on some benchmark datasets, but in order

o keep everything coherent, except for the method used to com-

ute the embedding, we compute the embedding using NMLSDR

nd baseline DR methods based on only the noisy and partially la-

eled multi-label training data. Thereafter, we assume that the true

ulti-labels are available when we train the ML-kNN classifier on

he embeddings. 

The remainder of this section is organized as follows. First

e describe the performance measures we employed, baseline DR

ethods, and how we select hyper-parameters. Thereafter we pro-

ide an illustrative example on synthetic data, and secondly exper-

ments on the benchmark data. The case study is described in the

ext section. 

.1. Evaluation metrics 

Evaluation of performance is more complicated in a multi-label

etting than for traditional single-labels. In this work, we decide

se the seven different evaluation criteria that were employed

n [55] , namely Hamming loss (HL), Macro F1-score (MaF1), Mi-

ro F1 (MiF1), Ranking loss (RL), Average precision (AP), One-error

OE) and Coverage (Cov). 

HL simply evaluates the number of times there is a mismatch

etween the predicted label and the true label, i.e. 

L = 

n ∑ 

i =1 

‖ ̂

 y i � y i ‖ 1 

nC 
, (15) 

here ˆ y i denotes the predicted label vector of data point x i and �

s the XOR-operator. MaF1 is obtained by first computing the F1-

core for each label, and then averaging over all labels. 

aF 1 = 

1 

C 

C ∑ 

c=1 

2 

∑ n 
i =1 ˆ y ic y ic ∑ n 

i =1 ˆ y ic + 

∑ n 
i =1 y ic 

, (16) 

iF1 calculates the F1 score on the predictions of different labels

s a whole, 

iF 1 = 

2 

∑ n 
i =1 

∑ C 
c=1 ˆ y ic y ic ∑ n 

i =1 

∑ C 
c=1 ˆ y ic + 

∑ n 
i =1 

∑ C 
c=1 y ic 

, (17) 

e note that HL, MiF1 and MaF1 are computed based on hard la-

els assignments, whereas the four other measures are computed

ased on soft labels. In all of our experiments, we obtain the hard

abels by putting a threshold at 0.5. 

RL computes the average ratio of reversely ordered label pairs

f each data point. AP evaluates the average fraction of relevant

abels ranked higher than a particular relevant label. OE gives the

atio of data points where the most confident predicted label is

rong. Cov gives an average of how far one needs to go down on

he list of ranked labels to cover all the relevant labels of the data

oint. For a more detailed description of these measures, we point

he interested reader to [87] . 

In this work, we modify four of the evaluation metrics such that

ll of them take values in the interval [0, 1] and “higher always is

etter”. Hence, we define 

L ′ = 1 − HL, (18) 

L ′ = 1 − RL, (19) 

E ′ = 1 − OE, (20) 

nd normalized coverage (Cov’) by 

′ 
ov = 1 − Cov / (C − 1) . (21) c  
.2. Baseline dimensionality reduction methods 

In this work, we consider the following other DR methods:

CA, MVMD, MDDMp, MDDMf and four variants of MLDA, namely

MLDAb, wMLDAe, wMLDAc and wMLDAd. These methods are su-

ervised and require labeled data, and are therefore trained only

n the labeled part of the training data. In addition, we compare

o a semi-supervised method, SSMLDR, which we adapt to noisy

ulti-labels by using the label propagation algorithm we propose

n this paper instead of the label propagation method that was

riginally proposed in SSMLDR. We note that the computational

omplexity of NMLSDR and the all the baselines is of the same

rder as all of them require a step involving eigendecomposition. 

.3. Hyper-parameter selection and implementation settings 

For the ML-kNN classifier we set k = 10 . The effect of varying

he number of neighbors will be left for further work. In order to

earn the NMLSDR embedding we use a kNN-graph with k = 10

nd binary weights. Moreover, we set αi = 0 . 6 for labeled data and

i = 0 . 999 for unlabeled data. By doing so, one ensures that an un-

abeled datapoint is not affected by its initial value, but gets all

ontribution from the neighbors during the propagation. All ex-

eriments are run in Matlab using an Ubuntu 16.04 64-bit system

ith 16 GB RAM and an Intel Core i7-7500U processor. 

.4. Illustrative example on synthetic toy data 

ataset description. To test the framework in a controlled experi-

ent, a synthetic dataset is created as follows. 

A dataset of size 80 0 0 samples is created, where each of the

ata points has dimensionality 320. The number of classes is set to

, and we generate 20 0 0 samples from each class. 30% from class 1

lso belong to class 2, and vice versa. 20% from class 2 also belong

o class 3 and vice versa, whereas 25% from class 3 also belong to

lass 4 and vice versa. 

A sample from class i is generated by randomly letting 10%

f the features in the interval { 20(i − 1) + 1 , . . . , 20 i } take a ran-

om integer value between 1 and 10. Since there are 4 classes,

his means that the first 80 features are directly dependent on the

lass-membership. 

For the remaining 240 features we consider 20 of them at the

ime. We randomly select 50% of the 80 0 0 samples and randomly

et 20% of the 20 features take a random integer value between 1

nd 10. We repeat this procedure for the 12 different sets of 20

eatures { 20(i − 1) + 1 , . . . , 20 i } , i = 5 , 6 , . . . , 16 . 

All features that are not given a value using the procedure de-

cribed above are set to 0. Noise is injected into the labels by ran-

omly flipping a fraction p = 0 . 1 of the labels and we make the

ata partially labeled by removing 50% of the labels. 20 0 0 of the

amples are kept aside as an independent test set. We note that

oisy labels are often easier and cheaper to obtain than true labels

nd it is therefore not unreasonable that the fraction of labeled

xamples is larger than what it commonly is in traditional semi-

upervised learning settings. 

esults. We apply the NMLSDR method in combination with the

emi-supervised ML-kNN classifier as explained above and com-

are to SSMLDR. We create two baselines by, for both of these

ethods, using a different value for the hyperparameter αi for the

abeled part of the data, namely 0, which corresponds to clamping.

e denote these two baselines by SSMLDR 

∗ and NMLSDR 

∗. In ad-

ition, we compare to baselines that only utilize the labeled part

f the data, namely the supervised DR methods explained above in

ombination with a ML-kNN classifier. The data is standardized to
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Fig. 1. 3 dimensional embedding of the synthetic dataset obtained using (a) SSMLDR; (b) NMLSDR; (c) NMLSDR with multi-classes included; and (d) PCA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Results in terms of 7 metrics for the synthetic dataset. 

Method HL ′ RL ′ AP OE ′ Cov ′ MaF1 MiF1 

CCA 0.863 0.884 0.898 0.852 0.816 0.787 0.785 

MVMD 0.906 0.912 0.924 0.897 0.836 0.850 0.849 

MDDMp 0.906 0.911 0.924 0.897 0.836 0.851 0.850 

MDDMf 0.859 0.888 0.900 0.855 0.819 0.785 0.783 

wMLDAb 0.844 0.871 0.885 0.831 0.807 0.754 0.750 

wMLDAe 0.864 0.885 0.899 0.855 0.818 0.790 0.788 

wMLDAc 0.865 0.887 0.900 0.857 0.818 0.787 0.785 

wMLDAd 0.869 0.891 0.907 0.869 0.822 0.788 0.786 

SSMLDR ∗ 0.863 0.883 0.899 0.859 0.814 0.796 0.793 

SSMLDR 0.879 0.898 0.910 0.871 0.827 0.817 0.814 

NMLSDR ∗ 0.907 0.919 0.929 0.903 0.842 0.861 0.859 

NMLSDR 0.913 0.925 0.935 0.912 0.846 0.868 0.866 

c  

b  

n  

p  

p  

N

0 mean and 1 in standard deviation and we let the dimensionality

of the embedding be 3. 

Fig. 1 a and b show the embeddings obtained obtained using

SSMLDR and NMLSDR, respectively. For ivisualization purposes, we

have only plotted those datapoints that exclusively belong to one

class. In Fig. 1 c, we have added two of the multi-classes for the

NMLSDR embedding. For comparison, we also added the embed-

ding obtained using PCA in Fig. 1 d. As we can see, in the PCA em-

bedding the classes are not separated from each other, whereas

in the NMLSDR and SSMLDR embeddings the classes are aligned

along different axes. It can be seen that the classes are better sep-

arated and more compact in the NMLSDR embedding than the

SSMLDR embedding. Fig. 1 c shows that the data points that be-

long to multiple classes are placed where they naturally belong,

namely between the axes corresponding to both of the classes they

are member of. 

Table 1 shows the results obtained using the different meth-

ods on the synthetic dataset. As we can see, our proposed method

gives the best performance for all metrics. Moreover, NMLSDR

with αL 
i 

= 0 , which corresponds to clamping of the labeled

data during label propagation gives the second best results but
annot compete with our proposed method, in which the la-

els are allowed to change during the propagation to account for

oisy labels. We also note that, even though the SSMLDR im-

roves the MLDA approaches that are based on only the labeled

art of the data, it gives results that are considerably worse than

MLSDR. 
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Table 2 

Description of benchmark datasets considered in our experiments. 

Dataset Domain Train instances Test instances Attributes Labels Cardinality 

Birds audio 322 323 260 19 1.06 

Corel scene 5188 1744 500 153 2.87 

Emotions music 391 202 72 6 1.81 

Enron text 1123 579 1001 52 3.38 

Genbase biology 463 199 99 25 1.26 

Medical text 645 333 1161 39 1.24 

Scene scene 1211 1196 294 6 1.06 

Tmc2007 text 30 0 0 7077 493 22 2.25 

Toy synthetic 60 0 0 20 0 0 320 4 1.38 

Yeast biology 1500 917 103 14 4.23 

Table 3 

Performance in terms of 1 - Hamming loss (HL ′ ) across 10 different benchmark datasets. 

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR 

Birds 0.947 0.950 0.950 0.947 0.948 0.949 0.949 0.949 0.949 0.951 

Corel 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 

Emotions 0.715 0.771 0.778 0.711 0.696 0.714 0.709 0.717 0.786 0.787 

Enron 0.941 0.950 0.950 0.942 0.941 0.941 0.941 0.940 0.938 0.950 

Genbase 0.989 0.996 0.996 0.988 0.990 0.991 0.988 0.989 0.994 0.997 

Medical 0.976 0.974 0.974 0.976 0.974 0.975 0.975 0.976 0.966 0.975 

Scene 0.810 0.899 0.900 0.809 0.810 0.814 0.817 0.810 0.873 0.897 

Tmc2007 0.914 0.928 0.928 0.912 0.911 0.911 0.911 0.916 0.922 0.929 

Toy 0.836 0.894 0.894 0.839 0.821 0.831 0.831 0.854 0.861 0.903 

Yeast 0.780 0.791 0.790 0.782 0.785 0.783 0.781 0.781 0.793 0.793 

#Best values 2 2 3 2 1 1 1 2 2 8 

Wilcoxon 2.0 7.0 7.5 2.5 2.0 3.0 2.5 3.5 6.0 9.0 
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.5. Benchmark datasets 

xperimental setup. We consider the following benchmark

atasets 2 : Birds, Corel, Emotions, Enron, Genbase, Medical, Scene,

mc2007 and Yeast. We also add our synthetic toy dataset as a

ne of our benchmark datasets (described in Section 4.4 ). These

atasets are shown in Table 2 , along with some useful characteris-

ics. In order to be able to apply our framework to the benchmark

atasets, we randomly flip 10% of the labels to generate noisy

abels and let 30% of the data points training sets be labeled. All

atasets are standardized to zero mean and standard deviation

ne. 

We apply the DR methods to the partially and noisy labeled

ulti-label training sets in order to learn the projection matrix

 , which in turn is used to map the D-dimensional training and

est sets to a d−dimensional representation. d is set as large as

ossible, i.e. to C − 1 for the MLDA-based methods and C for the

ther methods. Then we train a ML-kNN classifier using the low-

imensional training sets, assuming that the true multi-labels are

nown and validate the performance on the low-dimensional test

ets. 

In total we are evaluating the performance over 10 different

atasets and across 7 different performance measures for all the

eature extraction methods we use. Hence, to investigate which

ethod performs better according to the different metrics, we also

eport the number of times each method gets the highest value of

ach metric. In addition, we compare all pairs of methods by using

 Wilcoxon signed rank test with 5% significance level [88] . Simi-

arly to [71] , if method A performs better than B according to the

est, A is assigned the score 1 and B the score 0. If the null hy-

othesis (method A and B perform equally) is not rejected, both A

nd B are assigned an equal score of 0.5. 

esults. Table 3 shows results in terms of HL’. NMLSDR gets

est HL’-score for eight of the datasets and achieves a maximal
2 Downloaded from mulan.sourceforge.net/datasets-mlc.html . 

b  

w  

t  
ilcoxon score, i.e performs statistically better than all nine other

ethods according to the test at a 5% significance level. The second

est method MDDMp gets the highest HL’ score for three datasets

nd Wilcoxon score of 7.5. From Table 4 we see that NMLSDR

chieves the highest RL’-score seven times and a Wilcoxon score

f 8.5. The second best method is MVMD, which obtains three of

he highest RL’ values and a Wilcoxon score of 8.0. 

Table 5 shows performance in terms of AP. The highest AP score

s achieved for NMLSDR for eight datasets and it gets a maximal

ilcoxon score of 9.0. According to the Wilcoxon score second

lace is tied between MVMD and MDDMp. However, MVMD gets

he highest AP score for two datasets, whereas MDDMp does not

et the highest score for any of them. OE’ is presented in Table 6 .

e can see that NMLSDR gets a maximal Wilcoxon score and the

ighest OE’ score for seven datasets. MVMD is number two with a

ilcoxon score of 8.0 and two best values. 

Table 7 shows Cov’. NMLSDR gets a maximal Wilcoxon score

nd the highest Cov’ value for seven datasets. Despite that MVMD

ets the highest Cov’ for three datasets and MDDMp for none of

he datasets, the second best Wilcoxon score is 7.5 and tied be-

ween MVMD and MDDMp. MaF1 is shown in Table 8 . The best

ethod, which is our proposed method gets a maximal Wilcoxon

core and the highest MaF1 value for six datasets. Table 9 shows

iF1. NMLSDR achieves 8.5 in Wilcoxon score and has the highest

iF1 score for seven datasets. 

In total, NMLSDR consistently gives the best performance for

ll seven evaluation metrics. Moreover, in order to summarize our

ndings, we compute the mean Wilcoxon score across all seven

erformance metrics and plot the result in Fig. 2 . If we sort

hese results, we get NMLSDR (8.86), MVMD (7.64), MDDMp (7.43),

MLDAd (4.43), MDDMf (4.21), SSMLDR (3.79), CCA (2.79), wML-

Ae (2.71) and wMLDAb/wMLDAc (1.57). The best method, which

s our proposed method, gets a mean value that is 1.22 higher

han number two. The second best method is MVMD, slightly

etter than MDDMp. The best MLDA-based method is wMLDAd,

hich is ranked 4th, however, with a much lower mean value than

he three best methods. The semi-supervised extension of MLDA

http://mulan.sourceforge.net/datasets-mlc.html
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Table 4 

Performance in terms of 1 - Ranking loss (RL ′ ) across 10 different benchmark datasets. 

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR 

Birds 0.715 0.766 0.767 0.734 0.709 0.718 0.719 0.725 0.681 0.771 

Corel 0.800 0.808 0.808 0.800 0.799 0.799 0.800 0.800 0.801 0.814 

Emotions 0.695 0.824 0.824 0.709 0.693 0.700 0.676 0.714 0.829 0.845 

Enron 0.894 0.911 0.911 0.893 0.893 0.892 0.891 0.893 0.883 0.914 

Genbase 0.993 0.995 0.995 0.993 0.994 0.992 0.992 0.991 0.995 1.0 0 0 

Medical 0.925 0.952 0.949 0.925 0.916 0.921 0.919 0.945 0.856 0.946 

Scene 0.585 0.900 0.898 0.629 0.574 0.583 0.572 0.616 0.853 0.898 

Tmc2007 0.831 0.906 0.906 0.830 0.830 0.830 0.831 0.847 0.872 0.910 

Toy 0.871 0.909 0.909 0.870 0.849 0.865 0.861 0.888 0.887 0.926 

Yeast 0.806 0.820 0.819 0.811 0.810 0.809 0.806 0.803 0.818 0.816 

#Best values 0 3 0 0 0 0 0 0 0 7 

Wilcoxon 3.0 8.0 7.5 4.5 1.5 2.0 2.0 5.0 3.0 8.5 

Table 5 

Performance in terms of Average precision (AP) across 10 different benchmark datasets. 

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR 

Birds 0.389 0.499 0.500 0.426 0.374 0.392 0.379 0.424 0.357 0.502 

Corel 0.260 0.277 0.277 0.261 0.265 0.263 0.263 0.268 0.266 0.288 

Emotions 0.669 0.781 0.773 0.686 0.672 0.687 0.666 0.704 0.799 0.808 

Enron 0.592 0.669 0.670 0.583 0.584 0.582 0.580 0.578 0.526 0.675 

Genbase 0.963 0.990 0.993 0.964 0.960 0.968 0.963 0.969 0.984 0.997 

Medical 0.673 0.722 0.716 0.666 0.644 0.674 0.669 0.723 0.446 0.725 

Scene 0.491 0.836 0.835 0.534 0.481 0.488 0.475 0.521 0.781 0.834 

Tmc2007 0.584 0.714 0.713 0.587 0.579 0.576 0.577 0.623 0.662 0.721 

Toy 0.882 0.921 0.921 0.880 0.862 0.880 0.875 0.900 0.897 0.933 

Yeast 0.732 0.748 0.747 0.731 0.733 0.733 0.729 0.725 0.745 0.741 

#Best values 0 2 0 0 0 0 0 0 0 8 

Wilcoxon 3.5 7.5 7.5 4.0 1.0 3.5 1.0 5.0 3.0 9.0 

Table 6 

Performance in terms of 1 - One error (OE’) across 10 different benchmark datasets. 

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR 

Birds 0.273 0.419 0.407 0.314 0.250 0.273 0.250 0.297 0.203 0.419 

Corel 0.250 0.261 0.262 0.252 0.255 0.254 0.253 0.267 0.260 0.283 

Emotions 0.535 0.673 0.644 0.564 0.535 0.589 0.550 0.589 0.718 0.728 

Enron 0.620 0.762 0.762 0.610 0.587 0.604 0.606 0.579 0.544 0.765 

Genbase 0.950 0.990 0.995 0.955 0.935 0.960 0.950 0.965 0.980 0.995 

Medical 0.583 0.607 0.592 0.589 0.538 0.583 0.577 0.628 0.323 0.619 

Scene 0.265 0.732 0.729 0.319 0.258 0.264 0.247 0.303 0.656 0.727 

Tmc2007 0.527 0.650 0.648 0.531 0.523 0.519 0.516 0.578 0.604 0.656 

Toy 0.821 0.888 0.887 0.819 0.785 0.821 0.811 0.850 0.849 0.903 

Yeast 0.760 0.755 0.749 0.740 0.747 0.751 0.748 0.744 0.751 0.739 

#Best values 1 2 1 0 0 0 0 1 0 7 

Wilcoxon 3.5 8.0 7.0 4.0 1.0 3.5 1.0 5.0 3.0 9.0 

Table 7 

Performance in terms of 1 - Normalized coverage (Cov ′ ) across 10 different benchmark datasets. 

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR 

Birds 0.821 0.851 0.852 0.830 0.818 0.824 0.824 0.831 0.808 0.860 

Corel 0.601 0.617 0.617 0.603 0.600 0.599 0.601 0.603 0.603 0.628 

Emotions 0.563 0.684 0.679 0.579 0.567 0.565 0.554 0.587 0.679 0.696 

Enron 0.738 0.762 0.763 0.736 0.737 0.736 0.734 0.736 0.724 0.768 

Genbase 0.983 0.984 0.984 0.983 0.985 0.981 0.981 0.980 0.985 0.991 

Medical 0.918 0.941 0.939 0.917 0.909 0.913 0.911 0.936 0.859 0.939 

Scene 0.637 0.899 0.898 0.672 0.625 0.633 0.624 0.663 0.860 0.898 

Tmc2007 0.740 0.835 0.835 0.741 0.740 0.739 0.741 0.762 0.790 0.840 

Toy 0.809 0.837 0.837 0.807 0.794 0.805 0.802 0.822 0.820 0.849 

Yeast 0.513 0.533 0.532 0.526 0.526 0.523 0.519 0.518 0.530 0.528 

#Best values 0 3 0 0 0 0 0 0 0 7 

Wilcoxon 2.5 7.5 7.5 4.5 2.0 2.5 1.5 5.0 3.0 9.0 
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(SSMLDR) is ranked 6th and is actually performing worse that

wMLDAd, which is a bit surprising. However, SSMLDR also uses a

binary weighting scheme, and should therefore be considered as

a semi-supervised variant of wMLDAb, which it performs consid-

erably better than. wMLDAb and wMLDAc give the worst perfor-

mance of all the 10 methods. 
The main reason why the MLDA-based approaches in general

erform worse than the other DR methods is probably related

o what we discussed in Section 2 , namely that LDA-based ap-

roaches are heavily affected by outliers and wrongly labeled data.

ore concretely, the fact that the number of labeled data points

re relatively few and that the labels are noisy, leads to errors
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Table 8 

Performance in terms of Macro F1-score (MaF1) across 10 different benchmark datasets. 

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR 

Birds 0.011 0.079 0.076 0.027 0.002 0.0 0 0 0.0 0 0 0.039 0.006 0.104 

Corel 0.012 0.023 0.022 0.014 0.010 0.010 0.010 0.019 0.010 0.021 

Emotions 0.381 0.599 0.604 0.419 0.366 0.385 0.371 0.415 0.623 0.649 

Enron 0.044 0.102 0.105 0.048 0.043 0.049 0.044 0.065 0.063 0.101 

Genbase 0.520 0.561 0.603 0.514 0.497 0.515 0.497 0.442 0.558 0.630 

Medical 0.153 0.168 0.164 0.159 0.135 0.126 0.133 0.197 0.038 0.175 

Scene 0.059 0.705 0.707 0.132 0.084 0.055 0.041 0.098 0.569 0.700 

Tmc2007 0.183 0.419 0.418 0.189 0.171 0.177 0.175 0.212 0.349 0.434 

Toy 0.732 0.830 0.828 0.741 0.709 0.722 0.724 0.758 0.776 0.845 

Yeast 0.266 0.318 0.323 0.276 0.281 0.279 0.248 0.233 0.321 0.342 

#Best values 0 1 2 0 0 0 0 1 0 6 

Wilcoxon 2.5 7.5 7.5 5.0 2.0 2.0 1.0 3.5 5.0 9.0 

Table 9 

Performance in terms of Micro F1-score (MiF1) across 10 different benchmark datasets. 

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR 

Birds 0.036 0.178 0.172 0.063 0.006 0.0 0 0 0.0 0 0 0.065 0.019 0.197 

Corel 0.017 0.033 0.031 0.019 0.013 0.013 0.013 0.031 0.015 0.033 

Emotions 0.459 0.630 0.639 0.450 0.404 0.448 0.430 0.460 0.652 0.666 

Enron 0.351 0.523 0.530 0.413 0.340 0.378 0.369 0.310 0.346 0.518 

Genbase 0.882 0.953 0.959 0.872 0.885 0.902 0.873 0.881 0.932 0.968 

Medical 0.459 0.501 0.495 0.505 0.400 0.440 0.455 0.498 0.212 0.496 

Scene 0.066 0.700 0.702 0.142 0.086 0.058 0.041 0.102 0.584 0.698 

Tmc2007 0.421 0.589 0.586 0.443 0.440 0.438 0.438 0.485 0.540 0.590 

Toy 0.729 0.828 0.826 0.739 0.706 0.719 0.721 0.756 0.774 0.843 

Yeast 0.573 0.605 0.607 0.577 0.582 0.584 0.555 0.548 0.609 0.626 

#Best values 0 1 2 1 0 0 0 0 0 7 

Wilcoxon 2.5 8.0 7.5 5.0 1.5 2.5 2.0 4.0 3.5 8.5 

Fig. 2. Mean of the Wilcoxon score obtained over the 7 different metrics. 
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n the scatter matrices that even might amplify since one has to

nvert a matrix to solve the generalized eigenvalue problem. The

emi-supervised extension of MLDA, SSMLDR, improves quite much

ompared to wMLDAb, but the starting point is so bad that even

hough it improves, it cannot compete with the best methods. On

he other hand, the MDDM-based methods (MVMD and MDDMp)

re not so sensitive to label noise and the fact that there are few

abels, and therefore these methods can perform quite well even

hough they are trained only on the labeled subset. Hence, the rea-

ons to the good performance of NMLSDR are probably that MD-

Mp is the basis of NMLSDR, and that NMLSDR in addition uses

ur label propagation method to improve. 
. Case study 

In this section, we describe a case study where we study pa-

ients potentially suffering from multiple chronic diseases. This

ealthcare case study reflects the need for label noise-tolerant

ethods in a non-standard situation (semi-supervised learning,

ultiple labels, high dimensionality). The objective is to identify

atients with certain chronic diseases, more specifically hyperten-

ion and/or diabetes mellitus. In order to do so, we take an ap-

roach where we use clinical expertise to create a partially and

oisy labeled dataset, and thereafter apply our proposed end-to-

nd framework, namely NMLSDR for dimensionality reduction in

ombination with semi-supervised ML-kNN to classify these pa-

ients. An overview of the framework employed in the case study

s shown in Fig. 3 . 

hronic diseases. According to The World Health Organisation, a

isease is defined as chronic if one or several of the following cri-

eria are satisfied: the disease is permanent, requires special train-

ng of the patient for rehabilitation, is caused by non-reversible

athological alterations, or requires a long period of supervision,

bservation, or care. The two most prevalent chronic diseases for

eople over 64 years are those that we study in this paper, namely

ypertension and diabetes mellitus [89] . These types of diseases

epresent an increasing problem in modern societies all over the

orld, which to a large degree is due to a general increase in

ife expectancy, along with an increased prevalence of chronic dis-

ases in an aging population [90] . Moreover, the economical bur-

en associated with these chronic conditions is high. For example,

n 2017, treatment of diabetic patients accounted for 1 out of 4

ealthcare dollars in the United States [91] . Hence, in the future,

 significant amount of resources must be devoted to the care of

hronic patients and it will be important not only to improve the

atient care, but also more efficiently allocate the resources spent

n treatment of these diseases. 
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Fig. 3. Illustration of proposed framework applied to identify patients with chronic diseases. 

Table 10 

ICD9-CM codes and ATC codes associated with hypertension and diabetes. 

Chronicity ATC codes ICD9-CM codes 

Hypertension C01AA, C01BA, C01BA, C01BC, C01BD, C01CA, C01CB, C01CX, 362, 401, 402, 403, 404, 405, 760 

C01DA, C01DX, C01EB, C02AB, C02AC, C02CA, C02DB, C02DC, 

C02DD, C02K, C02LC, C03AA, C03AX, C03BA, C03CA, C03DA 

C03EA, C03EB, C04AD, C04AE, C04AX, C05AA, C05AD, C05AE, 

C05AX, C05BA, C05BB, C05BX, C05CA, C05CX, C07AA, C07AB, 

C07AG, C07B, C07G, C07D, C07E, C07X, C08CA , C08DA , C08DB, 

C08GA , C09AA , C09BA , C09BB, C09CA , C09DA , C09DB, C09XA , 

C10AA, C10AB, C10AC, C10AD, C10AX, C10BA, C10BX 

Diabetes A10AB, A10AC, A10AD, A10AE, A10AF, A10BA, A10BB, 250, 588, 648, 775 

A10BD, A10BFM, A10BGM, A10BH, A10BX, 
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5.1. Data 

In this case study, we study a dataset consisting of patients that

potentially have one or more chronic diseases. All of these patients

got some type of treatment at University Hospital of Fuenlabrada,

Madrid (Spain) in the year 2012. The patients are described by

diagnosis codes following the International Classification of Dis-

eases 9th revision, Clinical Modification (ICD9-CM) [92] , and phar-

macological dispensing codes according to Anatomical Therapeu-

tic Chemical (ATC) classification systems [93] . Some preprocessing

steps are considered. Similarly to [94,95] , the ICD9-CM and ATC

codes are represented using frequencies, i.e, for each patient, we

consider all encounters with the health system in 2012 and we

count how many times each ICD9-CM and ATC code appear in the

electronic health record. In total there are 1517 ICD9-CM codes and

746 ATC codes. However, all codes that appear for less than 10 pa-

tients across the training set are removed. After this feature selec-

tion, the dimensionality of the data is 455, of which 267 represent

ICD9-CM codes and 188 represent ATC codes. 

We do have access to ground truth labels that indicate what

type of chronic disease(s) the patients have. These are provided by

a patient classification system developed by the company 3M [96] .

This classification system stratify patients into so-called Clinical

Risk Groups (CRG) that indicate what type(s) of chronic disease

the patient has and the severity based on the patient encounters

with the health system during a period of time, typically one year.

A five-digit classification code is used to assign each patient to a

severity risk group. The first digit of the CRG is the core health

status group, ranging from healthy (1) to catastrophic (9); the sec-

ond to fourth digits represents the base 3M CRG; and the fifth digit

is used for characterizing the severity-of-illness levels. 

For the purpose of this work, the ground truth labels are only

used for cohort selection and final evaluation of our models. For

the remaining parts they are considered unknown. To select a co-

hort, we consider the first four digits of the CRGs to analyze the

following chronic conditions: CRG-10 0 0 (healthy), which contains

46,835 individuals; CRG-5192 (hypertension) with 12,447 patients;

CRG-5424 (diabetes), which has 2166 patients; and CRG-6144 (hy-

pertension and diabetes), with a total of 3179 patients. We employ

an undersampling strategy and randomly select 2166 patients from

each of the four categories, and thereby obtain balanced classes.

An independent test set is created by randomly selecting 20% of
hese patients. Hence, the training set contains 6932 patients and

he test set 1732 patients. 

.2. Rule-based creation of noisy labeled training data using clinical 

nowledge 

There are some important ICD9-CM codes and ATC-drugs that

re strongly correlated with hypertension and diabetes, respec-

ively. These are verified by our clinical experts and described in

able 10 . In particular, the ICD9-CM code 250 is important for di-

betes because it is the code for diabetes mellitus . Similarly, the

CD9-CM codes 401–405 are important for hypertension because

hey describe different types of hypertension. 

In this case study we are interested in four groups, namely

hose that have hypertension, those that have diabetes, those that

ave both, and those that do not have any these two chronic dis-

ases. Thanks to the clinical expertise and the information that

hey provided us with, which is summarized in Table 10 , we can

reate a partially and noisy labeled dataset using the following set

f rules. 

1. Those that have the ICD codes 250 and any of the codes

401–405 are assigned to both the hypertension and diabetes

class. 

2. Those that have the ICD code 250, but none of the 7 ICD9-

CM codes and 64 ATC drugs listed by the clinicians as indi-

cators for hypertension, are labeled with diabetes. 

3. Those that have any of the ICD9-CM codes 401–405, but

none of the 4 ICD9-CM codes for diabetes or 12 ATC drugs

for diabetes, are labeled with hypertension. 

4. Those that do not have any of the ICD9-CM codes or ATC

drugs listed up in Table 10 are labeled as healthy. 

5. The remaining patients do not get a label. 

In total, this leads to 1734 in the healthy class, 2547 in the hy-

ertension class, 1971 in the diabetes class. 1302 of the patients in

he hypertension class also belongs to the diabetes class. 1982 of

he patients do not get a label using the routine described above.

o be able to examine for statistical significance, we randomly se-

ect 10 0 0 of the noisy labeled patients and 10 0 0 of the unlabeled

atients. By doing so, we can repeat the experiments several times

nd test for significance using a pairwise t -test. We do the repeti-

ion 10 times and let the significance level be 95%. 
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Table 11 

Results in terms of 7 evaluation measures (average ± std) obtained by doing feature extraction using different methods, followed by semi- 

supervised ML-kNN classification, on partially and noisy labeled chronicity data. The best performing methods according to each of the 7 metrics 

are marked in bold, where the statistical significance is examined using a pairwise t -test at 95% significance level. 

Method HL ′ RL ′ AP OE ′ Cov ′ MaF1 MiF1 

CCA 0.782 ± 0.009 0.823 ± 0.008 0.866 ± 0.006 0.755 ± 0.011 0.798 ± 0.004 0.712 ± 0.012 0.741 ± 0.011 

MVMD 0.875 ± 0.006 0.930 ± 0.006 0.942 ± 0.004 0.894 ± 0.006 0.861 ± 0.005 0.853 ± 0.008 0.858 ± 0.006 

MDDMp 0.875 ± 0.006 0.930 ± 0.005 0.942 ± 0.003 0.895 ± 0.006 0.861 ± 0.005 0.853 ± 0.008 0.858 ± 0.006 

MDDMf 0.811 ± 0.010 0.853 ± 0.012 0.888 ± 0.009 0.798 ± 0.017 0.815 ± 0.006 0.750 ± 0.015 0.774 ± 0.013 

wMLDAb 0.794 ± 0.007 0.844 ± 0.012 0.883 ± 0.008 0.788 ± 0.017 0.810 ± 0.008 0.731 ± 0.012 0.744 ± 0.011 

wMLDAe 0.805 ± 0.008 0.856 ± 0.009 0.891 ± 0.006 0.801 ± 0.014 0.818 ± 0.005 0.749 ± 0.013 0.763 ± 0.012 

wMLDAc 0.790 ± 0.007 0.842 ± 0.008 0.882 ± 0.004 0.783 ± 0.009 0.810 ± 0.005 0.729 ± 0.012 0.745 ± 0.011 

wMLDAd 0.779 ± 0.013 0.838 ± 0.012 0.874 ± 0.008 0.770 ± 0.016 0.805 ± 0.008 0.720 ± 0.017 0.729 ± 0.018 

SSMLDR 0.839 ± 0.005 0.889 ± 0.009 0.911 ± 0.006 0.839 ± 0.012 0.835 ± 0.008 0.799 ± 0.007 0.811 ± 0.005 

NMLSDR 0.882 ± 0.005 0.939 ± 0.004 0.950 ± 0.003 0.909 ± 0.006 0.867 ± 0.005 0.864 ± 0.007 0.865 ± 0.005 

Fig. 4. Plot two-dimensional embeddings of the chronic patients obtained using four different DR methods: (a) MDDMp. (b) wMLDAb (c) NMLSDR (d) SSMLDR. The different 

colors and markers represent the true CRG-labels of the patients. 
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methods. 
.2.1. Performing feature extraction and classification 

After having obtained the partially and noisy labeled multi-

abel dataset, we do feature extraction using NMLSDR, fol-

owed by semi-supervised multi-label classification, exactly 

n the same manner as we did it for the synthetic toy data
n Section 4.4 . In this case study, we use the same eval-

ation metrics, hyper-parameters and baseline feature ex-

raction methods as explained in Section 4.1 . The dimen-

ionality of the embedding is set to 2 for all embedding
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5.3. Results 

Table 11 shows the performance of the different DR methods

on the task of classifying patients with chronic diseases in terms of

seven different evaluation metrics. According to the pairwise t -test,

our method achieves the best performance for all metrics. Second

place is tied between MDDMp and MVMD. The semi-supervised

variant of MLDA, namely SSMLDR, performs better than the super-

vised counterparts (wMLDAb, wMLDAc, wMLDAd, wMLDAe) and

is consistently ranked 4th according to all metrics. Interestingly,

the more advanced weighting schemes in wMLDAc and wMLDAd

actually lead to worse results than what the simple weights in

wMLDAb and wMLdAe give. CCA gives the worst performance ac-

cording to 4 of the evaluation measures, for the 3 other measures

the difference between CCA and wMLDAd is not significant. 

Fig. 4 shows plots of the two-dimensional embeddings of the

chronic patients obtained using four different DR methods, namely

MDDMp, wMLDAb, NMLSDR and SSMLDR. The different colors and

markers represent the true CRG-labels of the patients. As we can

see, visually the MDDMp and NMLSDR embeddings look quite sim-

ilar. The healthy patients are squeezed together in a small area

(purple dots), and the yellow dots that represent patients that have

both diabetes and hypertension are placed between the blue dots,

which are those that have only hypertension, and the red dots,

which represent the patient that only have diabetes. Intuitively,

this placement makes sense. On the other hand, the embedding

obtained using SSMLDR does not look similar to its counterpart ob-

tained using wMLDAb, and it is easy to see why the performance

of wMLDAb is worse. 

6. Conclusions and future work 

In this paper we have introduced the NMLSDR method, a di-

mensionality reduction method for partially and noisy labeled

multi-label data. To our knowledge, NMLSDR is the only method

the can explicitly deal with this type of data. Key components in

the method are a label propagation algorithm that can deal with

noisy data and maximization of feature-label dependence using the

Hilbert–Schmidt independence criterion. Our extensive experimen-

tal sections show that NMLSDR is a good dimensionality reduction

method in settings where one has access to partially and noisy la-

beled multi-label data. 

A potential limitation of NMLSDR is that it is a linear dimen-

sionality reduction method. The method can, however, be extended

within the framework of kernel methods [97–99] to deal with non-

linear data. In fact, NMLSDR is already a kernel method in the cur-

rent formulation, in which we put a linear kernel over the fea-

ture space. The linear kernel can, however, straightforwardly be re-

placed with a non-linear kernel. The effect of doing this will be

investigated in future work. In the future, we will also investigate

more thoroughly the effect of using different weighting schemes

in NMLSDR, similarly to how it is done in MLDA with wMLDAb,

wMLDAc, wMLDAd and wMDLAd. 

It should be noticed that in our experiments, in addition to

evaluating the proposed method visually for a couple of the

datasets, we combined the NMLSDR with a popular multi-label

classifier, namely the multi-label k-nearest neighbor classifier. By

doing so, we could quantitatively evaluate the quality of the em-

beddings learned by the NMLSDR and compare to alternative di-

mensionality reduction methods. However, many other multi-label

classifiers exist [33–41] . As future work, it would be interesting to

investigate if the proposed method outperforms alternative dimen-

sionality reduction methods in conjunction with other classifiers as

well. 

Further, we recognize that the outcome of label propagation us-

ing a graph is influenced by several factors. More precisely, there
re two main components that affect how the labels propagate,

amely the particular method chosen and how the graph is con-

tructed. Both of these two components are important, as dis-

ussed in [100,101] . In our experiments, we chose a neighborhood

raph with binary weights. However, in future work it would be in-

eresting to more thoroughly investigate the sensitivity of NMLSDR

ith respect to the particular choices made for constructing the

raph. 
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