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Abstract  
 
Uric acid is a purine degradation product but also an important antioxidant and ROS 

scavenger. Experimental settings that mimic myocardial ischemia-reperfusion have not 

included uric acid despite that it is always present in human extracellular fluid and 

plasma. We hypothesized that uric acid has an important role in myocardial ROS 

scavenging. Here, we tested the cardiac response to uric acid on infarct size following 

ischemia-reperfusion with and without exacerbated oxidative stress due to acute pressure 

overload and during preconditioning.  We also examined mitochondrial respiration and 

ROS-induced mitochondrial permeability transition pore opening. Under exacerbated 

ROS stress induced by high pressure perfusion, uric acid lowered oxidative stress and 

reduced infarct size. In contrast, uric acid blocked cardioprotection induced by ischemic 

preconditioning. However, this effect was reversed by probenecid, an inhibitor of cellular 

uptake of uric acid.  In accordance, in intact cardiomyocytes, extracellular uric acid 

reduced the susceptibility of mitochondria towards opening of the permeability transition 

pore, suggesting that uric acid may prevent ischemia-reperfusion injury due to 

scavenging of maladaptive ROS. Moreover, as uric acid also scavenges also adaptive 

ROS, this may interfere with preconditioning. Altogether, uric acid might be a 

confounder when translating preclinical experimental results into clinical treatment. 
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Introduction  
 

In humans and other higher primates, uric acid (UA) is the end-product of purine 

metabolism whereas in other mammals the presence of uricase ensures its further 

degradation (Sautin and Johnson 2008). As such, UA is at markedly lower levels in 

rodent models of ischemic heart disease. UA is synthesized by xanthine oxidase (XO) 

that can in turn be induced by myocardial ischemia. In line with this, the extracellular 

release of purine metabolites characterizes oxygen shortage and ischemic cell damage 

(Farthing et al. 2015).  Chronically, elevated serum UA is associated with increased risk 

of heart failure, including heart failure with preserved ejection fraction (HFpEF) (Liese et 

al. 1999; Norvik et al. 2017; Norvik et al. 2016; Odden et al. 2014). In addition, elevated 

serum UA levels may predict the risk for myocardial infarction and underlie adverse 

outcomes in patients with myocardial infarction undergoing percutaneous coronary 

intervention (Mandurino-Mirizzi et al. 2018). Reactive oxygen species (ROS) are a 

byproduct when XO catalyzes the reactions of hypoxanthine to xanthine and xanthine to 

uric acid. A number of experimental studies have elucidated a detrimental role for XO-

derived ROS produced by XO in cardiac ischemia (Akizuki et al. 1985; Chambers et al. 

1985; Granger and Kvietys 2015; Mozaffari et al. 2011; Mozaffari et al. 2013) and in the 

pathology of heart failure (Jia et al. 2015; Norvik et al. 2016). In addition, previous 

studies have shown that high levels of UA also exacerbate oxidative stress and an 

inflammatory response (Gersch et al. 2009; Kanbay et al. 2013; Sautin et al. 2007).  

  UA functions as an antioxidant in human plasma, and is a potent scavenger of 

peroxynitrite in the extracellular compartment (Juhasz et al. 2011; Kuzkaya et al. 2005). 

Studies of UA as acute treatment have indicated this action may improve cardiac 

dysfunction following ischemia-reperfusion (Lee et al. 2003) however, exogenous 

administration of UA may also block cardioprotection induced by conditioning (Babiker 

et al. 2017). These differences may be dependent on intracellular uptake of UA. Despite 

the role for UA in scavenging ROS and although it is always present in human plasma, 

experimental settings to mimic myocardial ischemia-reperfusion (IR) have not, to our 

knowledge, included UA. This warranted further investigation of the actions of UA in IR. 

Thus, in the present study our aim was to investigate effects of the presence of UA, at a 
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concentration comparable to what is normally found in human plasma during 

cardiovascular ischemic stress, in an ex-vivo model of myocardial IR. We hypothesized 

that UA had an important role in myocardial ROS scavenging and may also alter ROS-

induced stress adaptation central to ischemic preconditioning (IPC). Thus, we tested the 

cardiac response to UA on infarct size following IR during exacerbated oxidative stress 

due to acute pressure overload, during preconditioning and in mitochondrial ROS stress. 

Under these conditions, we demonstrate that in the presence of UA, ischemia-reperfusion 

injury was reduced, as well as oxidative stress. However, cardioprotection induced by 

preconditioning was blocked in the presence of UA. 

 

Methods 

 

Animals 

Rats were treated in accordance with the Guide for the Care and Use of Laboratory 

Animals (8th edition, National Academies Press) and the guidelines on accommodation 

and care of animals formulated by the European Convention for the Protection of 

Vertebrate Animals for Experimental and Other Scientific purposes. All animal 

experiments in the present study were approved by the Norwegian National Animal 

Research Authority (FDU ID 2929), as well as the local authority (Department of 

Comparative Medicine, UiT-Arctic University of Norway) of the National Animal 

Research Authority in Norway .  

 

Male Wistar rats (Charles River, Germany) were given ad libitum access to standard 

chow and water and housed in a room with 12-h:12-h light-dark cycle at 21° C. On the 

day of experiments, they were heparinized (200 IU i.p) and anesthetized (pentobarbitone 

sodium 50 mg/kg i.p). The heart was excised and prepared for either perfusion, or cell or 

mitochondrial isolation.   

 

Isolated heart perfusions. All hearts were Langendorff-perfused using Krebs-Henseleit 

bicarbonate buffer (KHB) containing 2.1 mM Ca++ and 11 mM glucose, equilibrated with 

95% O2 - 5% CO2 at 37° C. Standard perfusion pressure was set to 100 cm H2O (73.6 mm 
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Hg). For experiments investigating low versus high perfusion pressure, perfusion 

pressure was set at 80 (LP) and 200 cm H2O (HP) (58.8 and 147 mm Hg), respectively. A 

water-filled latex balloon, connected to a pressure transducer, was inserted into the left 

ventricle via the left atrium, and inflated to set a left ventricular end-diastolic pressure 

(LVDevP) between 0-10 mmHg as baseline, which was thereafter left unchanged.  

 

Experimental protocols in isolated hearts. All hearts underwent 20 minutes stabilization 

followed by either 25 minutes regional ischemia (coronary artery ligation) or 30 minutes 

of global ischemia and 120 minutes of reperfusion (Figure 1). Ischemic preconditioning 

(IPC) was induced by one cycle of 5 minutes global ischemia followed by 5 minutes of 

reperfusion, prior to the ischemia and reperfusion protocol (I/R). In one set of 

experiments, uric acid (100 or 500 µM) was administered in the perfusion buffer for a 

total of 10 minutes prior to IPC and regional I/R. To test whether cellular uric acid uptake 

altered the infarct-sparing effect of IPC, we added probenecid (1 µM), an inhibitor of 

organic anion transporter and pannexin channel (Silverman et al. 2008), to the perfusion 

buffer. Probenecid was added to the buffer 5 minutes prior to the introduction of uric acid 

and followed by global I/R. In another set of experiments, isolated perfused hearts were 

subjected to regional ischemia and reperfusion during LP or HP-perfusion. Uric acid (500 

µM) or allopurinol (1 mM) was added to the perfusion buffer for assessment of infarct 

size and functional recovery under LP or HP-perfusion.  

 

Infarct size determination. For regional infarct studies, a silk suture was placed around 

the main branch of the left coronary artery and ischemia was induced by tightening the 

suture using a snare. Following reperfusion the coronary artery was again ligated and 

Evans Blue dye was infused via the aorta to demarcate the myocardial risk zone. For 

infarct size measurements, the hearts were weighed, frozen at -20°, and cut into 2 mm 

thick slices. The slices were incubated for 15 minutes in 1% triphenyl-tetrazolium 

chloride (TTC; Sigma-Aldrich) in phosphate buffer (pH 7.4, 37° C), immersed in 10% 

formaldehyde to enhance the contrast between viable and necrotic tissue, and thereafter 

the tissue slices were scanned to obtain a digital image. Infarct size was expressed as the 
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ratio of infarcted area (lacking staining with TTC) to risk zones or to the ventricle area 

when using global ischemia using ImageJ software (NIH). 

 

Western blot of heart tissue. To investigate whether perfusion pressure altered pre-

ischemic activation of kinase cascades related to cell survival, left ventricle tissue was 

rapidly frozen in liquid nitrogen and tested for phosphorylation of Akt, p44/42 MAPK, 

GSK3β.  Heart tissue was homogenized in 10 ml ice-cold PBS buffer containing 1% 

Igepal CA-630, 0.1 % SDS, 0.5% Sodium Deoxycholate, 5mM EDTA, 2mM EGTA, 100 

ul Phosphatase inhibitor 2, 100 ul Phosphatase inhibitor 3, 10 ul beta-Mercaptoethanol, 1 

tablet EDTA-free Complete Protease inhibitor cocktail (all supplied by Sigma). 

Thereafter the homogenate was centrifuged at 14000 g for 10 min at 4°C and protein 

content was measured (Bradford, BioRad protein assay). Supernatant samples (30 µg 

protein) underwent SDS-page electrophoresis using a standard Laemmli loading buffer 

(Criterion anyKD, Biora). The following antibodies from Cell Signaling Technology 

were used: phospho-GSK-3β (Ser9) #9336, GSK-3β (3D10) #9832, phospho-Akt 

(Ser473) #9271, Akt #9272, p44/42 MAPK (ERK1/2) #9102, phospho p44/42 MAPK 

(Thr202/Tyr204) #9101, and actin #A2066 (all polyclonal except the GSK-3β (3D10) 

antibody). 

 

 

Detection of intracellular ROS production in heart tissue by dihydroethidium (DHE) 

staining. DHE reacts with superoxide radicals to form ethidium bromide, which in turn 

intercalates with DNA to provide fluorescence as a marker of ROS, especially superoxide 

radical generation (Camara et al. 2004; Kevin et al. 2003). DHE was used to investigate if 

ROS production at reperfusion in HP-perfused hearts was influenced by allopurinol or 

uric acid treatment. DHE (10 mM) was added to the perfusion-buffer for 3 minutes prior 

to global ischemia and during the first 5 minutes of reperfusion such that the ROS 

indicator was present at the same time as allopurinol or uric acid. Following experiments, 

left ventricular tissue was embedded in O.C.T compound, frozen in cooled isopentane 

and stored at -70oC. The samples were cryo-sectioned and imaged under an 
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epifluorescence microscope. Between 18-20 images from each heart was obtained for 

quantification using Image J software. 

 

 

Mitochondrial permeability transition (mPTP) in cardiomyocytes. To examine if the 

extracellular concentration of uric acid affected the susceptibility of mitochondria in 

intact cardiomyocytes towards opening of the permeability transition pore when exposed 

to ROS, we incubated tetra methyl rhodamine methyl ester (TMRM) loaded 

cardiomyocytes with different concentrations of uric acid.  Hypoxanthine, the precursor 

of XO derived uric acid, was used as control. Cardiomyocytes were isolated using 

collagenase (Worthington type 2, Lakewood, NJ 08701, US) based on the method 

described by Myrmel et al. 1991 (Myrmel et al. 1991). Freshly isolated cells were 

resuspended in HEPES buffer containing TMRM (Molecular Probes) 125 nM for 60 min 

at room temperature. Isolated TMRM loaded cardiomyocytes were then placed in an 

open glass bottomed chamber, allowed time to settle and superfused with TMRM 

containing HEPES with and without the addition of uric acid (0, 10, 50, 100 500 µM) or 

hypoxanthine (0, 10, 50, 100, 500 µM). Laser confocal microscopy (Zeiss 510 LSM, 

excitation at 543 nm and emission above 560) was used in line scan mode, and focused 

on a row of mitochondria to obtain a timed series of loss of TMRM from selected 

mitochondrial compartments (Juhaszova et al. 2004). By this technique, the effect of uric 

acid on ROS dependent mPTP transition was quantified as time to mPTP transition.    

 

 

Mitochondrial respiration. To investigate if uric acid present in myocardial cells or taken 

up from the cell-surroundings influenced mitochondrial respiration, mitochondria were 

isolated from rat hearts and respiration examined in 6 paired experiments with and 

without uric acid (500 uM) present. Isolation of mitochondria was performed using the 

procedure described by Palmer et al. (Palmer et al. 1977) with slight modifications. 

Briefly, heart tissue was weighed and placed in a buffer containing (in mM): 100 KCl; 50 

MOPS; 1 EGTA; 5 MgSO4; 1 ATP and pH 7.4. The tissue was minced with scissors, and 

homogenized with a Polytron for 7 seconds followed by 10 min incubation with 5 mg/mL 
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trypsin at 4 ºC. Buffer with 2 mg/ml BSA was then added to the tissue supernatant and 

homogenized with two strokes of a Potter-Elvehjem homogenizer (Glas-Col, Terre 

Haute, IN, USA) and centrifuged at 590 g for 10 min at 4º C. The supernatant was 

filtered through a nylon net (NITEX 300 lm; Yulee, FL, USA) and centrifuged at 3000 g 

for 10 min at 4oC. The mitochondrial pellet was resuspended in buffer (4º C) and 

centrifuged again at 3000 g for 10 min. The new pellet was now resuspended in buffer 

containing (in mM):100 KCl, 0.5 EGTA, 50 MOPS, pH 7.4, and centrifuged at 3000 g 

for 10 min at 4oC. The final pellets were resuspended and left on ice for 30 min to 

stabilize the membranes. Measurement of mitochondrial oxygen consumption was 

performed in duplicate by Oxygraph-2k (Oroboros, Austria) using a respiration medium 

containing in mM:100 KCl; 50 MOPS; 1 EGTA; 5 KH2PO4 and BSA 1 mg/mL, pH = 7.4 

in a closed 2 mL chamber at 37ºC. Uric acid 500 µM was added to one of the two parallel 

chambers of the oxygraph at the start of each experiment. Glutamate (10 mM) and malate 

(1 mM) were used to assess complex I driven respiration. After obtaining a stable state 2 

respiration, ADP was added to a final concentration of 200µM (state 3). Thereafter 

oxygen consumption was recorded after the depletion of ADP (state 4) and ADP added to 

final concentration 2 mM to obtain maximal ADP-stimulated respiration. Finally, leak 

supported respiration was assessed by adding oligomycin (4 µg/mL) to inhibit the ATP-

synthase. All values were normalized to citrate synthase activity measured 

spectrophotometrically using the enzymatic conversion of 5,5′-dithiobis (2-nitrobenzoic 

acid) to thionitrobenzoic acid which has an intense absorption at 412 nM (Holloszy et al. 

1970; Kuznetsov et al. 2002). 

 

Statistics. All results are presented as mean ± SEM. Statistical comparisons were 

performed with SigmaPlot version 14.0 (Systat software) using one-way ANOVA with 

the Holm-Sidak post-hoc test or Student’s t-test where appropriate, where differences of 

p < 0.05 were considered significant. For the one-way ANOVA analysis, the F-value and 

p-value are also presented in the figure text.  
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Figure 1. Ischemia-reperfusion (IR) protocols in isolated rat hearts with exacerbated ROS stress 

or ischemic preconditioning (IPC). To induce oxidative stress, hearts were perfused with high 

pressure (HP) or low pressure (LP), and underwent regional ischemia (RI) followed by 

reperfusion and measurement of infarct size. IPC was induced by 1 cycle of 5 minutes global 

ischemia (GI) following by 5 minutes reperfusion prior to either GI or RI.  

 

 
Results 

 

Uric acid and allopurinol protected high-pressure perfused hearts against ischemia 

reperfusion injury.   

 

In agreement with other studies (Mozaffari et al. 2011; Mozaffari and Schaffer 2008), 

pressure overload resulted in significantly higher % infarct/risk zone (53.5±2.2 versus 

30.6±4.0% for HP vs. LP, respectively) (Fig.2A) and caused oxidative stress (Figure 5). 

To assess ROS-scavenging effects during HP-perfusion we used 500 µM concentration of 

UA, as 100 µM did not inhibit cardioprotection by IPC (Figure 3A). UA reduced infarct 

size in HP- perfused isolated hearts to 41.1±3.9 %. The presence of 1 mM allopurinol in 

the buffer also reduced infarct size in pressure-overloaded hearts to 37.0±4.7. None of the 

treatments reduced infarct size in LP-perfused hearts (data not shown).  

Pressure overload resulted in increased cardiac work as shown by increased LV 

developed pressure (LVDevP) and dp/dt max as compared to LP-perfused hearts (Figure 

2B). Neither uric acid nor allopurinol altered developed pressure. Perfusion with 

allopurinol in pressure overloaded hearts resulted in an increased dP/dt max both at 
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baseline and at the end of the ischemia-reperfusion protocol above HP alone (5397.7±333 

vs. 7180.2±768.7 and 2551.9±146.2 vs. 3541-7±488.0, for HP-perfused hearts with and 

without allopurinol, respectively), which was not observed with UA. 

Figure 2. A) Both uric acid (UA) and allopurinol prevented high-pressure perfusion induced 

increase in infarct size following regional ischemia reperfusion. Mean ± SEM, n=5-9 for all 

groups. (F=2.798, p<0.045) and p<0.05 vs. low pressure (LP) - perfusion. B) High-pressure (HP) 

perfusion increased baseline cardiac contractile function and coronary flow. Only allopurinol 

maintained increased coronary flow following ischemia-reperfusion. Left ventricle developed 

pressure (LVDevP) was lower during reperfusion in hearts treated with uric acid (UA) and 

remained similar within the other groups.  Mean ± SEM, n=5-10. Coronary flow: At baseline 

(F=37.103, p<0.001), *p<0.05 vs. low-pressure (LP), and #p<0.05 vs. HP; and at time 120 

minutes (F=6.77, p<0.002), *p<0.05 vs. LP and and #p<0.05 vs. HP.  LVDevP: At baseline 

(F=6.77, p< 0.002), *p<0.05 vs. LP; and at time 120 min (F=3.67, p<0.026), #p<0.05 vs. HP. 

Dp/dtmax: (F=11.04, p< 0.001),*p<0.05 vs. LP and (F=11.041, p < 0.001), #p<0.05 vs. HP.  No 

significant differences in dp/dtmin at baseline or during reperfusion.  

 

 

Uric acid blocked cardioprotection by ischemic preconditioning (IPC) 

 

The addition of either 100 or 1000 µM UA alone did not alter the % infarct/risk zone 

(data not shown).  However, UA inhibits ischemic preconditioning (IPC) -induced 

cardioprotection in isolated rat hearts subjected to IPC under standard perfusion pressure 

prior to ischemia reperfusion. At low concentrations (100 µM) UA did not prevent IPC-
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induced reduction in infarct size. At elevated levels (500 µM), there was no effect of IPC 

on infarct size (Figure 3A) suggesting that UA may scavenge ROS and prevent ROS 

signalling which is essential in IPC cardioprotection. The infarct lowering effect of IPC 

was observed in the presence of allopurinol, which is known to inhibit ROS production 

by xanthine oxidase. In another set of experiments, probenecid was added to the 

perfusion buffer to limit cellular uptake of UA (Figure 3B). Probenecid did not alter 

infarct size on its own; however, it did maintain the infarct sparing effects of IPC in the 

presence of UA. This suggests that probenecid diminished the intracellular scavenging 

ability of UA and did not disturb the ROS-related signalling central in IPC-induced 

protection.  

 
Figure 3. A) Uric acid (UA) but not allopurinol inhibits ischemic preconditioning (IPC) -induced 

cardioprotection in isolated rat hearts subjected to IPC prior to regional ischemia reperfusion. 

Mean ± SEM, n=5-8. (F=18.9, p< 0.001), *p<0.05 vs. control (without IPC). B) Blocking cellular 

uric acid (UA) uptake by probenecid maintains ischemic preconditioning (IPC) -induced 

cardioprotection in isolated rat hearts subjected to IPC prior to global ischemia reperfusion. Mean 

± SEM, n=5-8 for all groups. (F=8.36, p<0.001), *p<0.05 vs. control (no IPC). 

 

Uric acid and allopurinol reduced ROS content but did not alter survival protein 

kinases 

 

Under normoxic conditions, HP-perfusion elevated phosphorylation of protein kinases 

GSK-3β, ERK and AKT as compared to hearts that underwent LP perfusion (Figure 4). 

Neither UA nor allopurinol blocked this increase.  
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DHE-reactive ROS in tissue samples harvested at reperfusion following 25 min global 

ischemia was higher in HP-perfused hearts compared to LP. Both Allopurinol and UA 

blocked the HP-perfusion related ROS increase (Figure 5). 

 
 Figure 4. High pressure (HP) perfusion induced phosphorylation of cell survival kinases as 

compared to low pressure (LP) and was not altered by treatment with uric acid (UA) or 

allopurinol. The relative balance between phosphorylated and total GSK3β, PKB/AKT and ERK, 

and their representative western blots, in hearts harvested prior to ischemia in groups LP, HP, HP 

+ Allo, LP + UA. Mean ± SEM, n=5-6. GSK: (F=2.746, p=0.07), *p<0.05 vs. LP; ERK: 

(F=9.956, p<0.001), *p<0.05 vs LP; AKT: (F=2.73, p=0.08), *p<0.05 vs. LP. 

 
 

 
Figure 5. High pressure (HP) perfusion increased ROS content measured by dihydroethidium 

(DHE) fluorescence intensity but this was reduced in the presence of uric acid (UA) and 

allopurinol. Mean ± SEM, n=5 for all groups. (F=7.77, p<0.002), *p<0.05 vs low pressure (LP) 

and #p<0.05 vs. HP.  
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Uric acid protected mitochondria in isolated cardiomyocytes against permeability 

transition but reduced OXPHOS in isolated heart mitochondria 

 

Addition of UA (500 µM) to the superfusion chamber of isolated cardiomyocytes 

protected mitochondria as seen by the significantly increased time to mitochondrial 

permeability transition pore opening (mPTP) (Figure 6A). Increased time to pore opening 

was evident also at lower and higher concentrations of UA. However, comparable 

experiments with the UA precursor, purine hypoxanthine, did not reveal significant 

protection against pore opening.  

In isolated mitochondria, the addition of UA (500 µM) resulted in a slight reduction in 

respiratory control ratio (RCR; state 3/state 4) which may suggest reduced mitochondrial 

function (Figure 6B). Complex I driven respiration (state 3) at low and saturating levels 

of ADP was significantly reduced compared to that observed in controls (12.6% and 

15.2%, respectively). Oligomycin-induced leak respiration (State 4) was unchanged 

suggesting that UA did not increase mitochondrial uncoupling (Brand and Nicholls 

2011). 

 
Figure 6. A) Time to opening of the mitochondrial permeability transition pore (mPTP). This was 

examined in tetramethylrhodamin (TMRM)-loaded cardiomyocytes with either hypoxanthine 

(HX) or uric acid (UA) in indicated concentrations added to the buffer. Results are % of mean 

value in corresponding control groups (97.8±10.5 and 108.5±22.6 sec). Mean ± SEM, n=5-7. 

(F=4.24, p<0.008), *p<0.05 vs. control. B) Uric acid lowered mitochondrial oxidative 

phosphorylation at sub-maximal and maximal ADP concentrations (ADP and ADP max, 

respectively) and lowered the respiratory control ratio (RCR). Oxygen flux was normalized to 

citrate synthase levels. Mean ± SEM, n=5-7. *p<0.05 vs. control, using Student’s t-test. 
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Discussion  
 

 Although uric acid (UA) is associated with pathological detriment in heart 

disease, it also functions as an antioxidant in human plasma, and is a potent scavenger of 

peroxynitrite in the extracellular compartment (Juhasz et al. 2011; Kuzkaya et al. 2005). 

The present study confirms that presence of UA, at human concentrations, modulates the 

response to ischemia. UA 1) reduces ex-vivo ischemia-reperfusion injury when combined 

with increased perfusion pressure, 2) blocks cardioprotection by ischemic 

preconditioning (IPC), and 3) protects against mitochondrial pore opening in isolated 

myocardial cells. Thus, this study confirms that concentrations corresponding to those 

normally present in human blood could have an infarct-sparing effect. 

Cardioprotection by IPC is dependent on signaling ROS, where one cycle of five 

minutes of ischemia followed by five minutes of reperfusion triggers an adaptation 

(Sovershaev et al. 2006; Starkopf et al. 1998). Here, peroxynitrite is considered to play a 

central role (Laude et al. 2002). However, limitation of reperfusion injury by different 

cardio-protective treatments such as UA or XO inhibition, is also closely associated with 

reduction in ROS (George et al. 2006; Pagliaro and Penna 2015). Thus, our results are in 

agreement with the proposed scavenging effects of acute elevations of UA seen in 

previous studies (Babiker et al. 2017; Lee et al. 2003; Mozaffari et al. 2011).Pressure 

overload (increased perfusion pressure) at reperfusion after prolonged ischemia increases 

reperfusion injury in experimental studies (Gunnes et al. 1990; Mozaffari et al. 2011; 

Mozaffari and Schaffer 2008). The present findings partly confirms earlier studies 

demonstrating that abrupt restoration of perfusion pressure after global ischemia might 

add to injury if pressure is elevated, and supports the notion that blood pressure control is 

important during reperfusion therapy (Lindal et al. 1990; Pedrinelli et al. 2012; 

Reinstadler et al. 2016). Interestingly, we did not find UA or allopurinol to reduce the 

elevated developed pressure in HP-perfused hearts. In contrast, the present study 

demonstrates that perfusion with allopurinol in pressure overloaded hearts resulted in an 

increased dP/dt max both at baseline and at the end of the ischemia-reperfusion protocol, 

which was not observed with UA. The reason for this was not examined in detail, but 

could be related to differences in pressure overload induced-ROS levels between these 
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studies, and the dose dependency of contractile performance during ROS exposure of 

isolated rat hearts (Hegstad et al. 1997; Xie et al. 1998).   

Consistent with previous reports that the activity of XO and ROS are central 

mechanisms contributing to aggravated ischemia-reperfusion induced cell death due to 

elevated perfusion pressure (Mozaffari et al. 2011), both UA and allopurinol reduced 

infarct size in isolated rat hearts in the present study. There are several sources of ROS in 

the heart, most of them proposed to be active in relation to ischemia-reperfusion injury 

and vascular dysfunction (Granger and Kvietys 2015). The combination of high oxygen 

demand/oxidative stress, and NO stimulation in the vessels by pressure overload, can 

promote peroxynitrite formation, and trigger XO activity (Mozaffari et al. 2011). HP-

perfusion induced increase in oxygen demand may also contribute to a lower cardiac 

efficiency, which has previously been related to increased susceptibility to ischemia-

reperfusion injury (Lund et al. 2015). However, reduced cardiac efficiency is unlikely to 

be the primary cause of HP-induced increase in cell death as allopurinol treatment also 

reduced cell death following IR, despite increased contractile work. HP-perfusion itself 

also significantly affected the degree of phosphorylation of various cell survival related 

signaling kinases, Akt, ERK and GSK3β, which are linked to cardioprotection by 

preconditioning (Hausenloy et al. 2017; Johansen et al. 2011; Juhaszova et al. 2004). In 

contrast to these studies, increased phosphorylation of AKT, ERK and GSK3β was 

associated with markedly increased infarct size. Moreover, IPC-induced cardioprotection 

was observed in HP-perfused hearts. UA and allopurinol did not affect phosphorylation 

of these kinases prior to ischemia.  

 Under physiological conditions as well as in our perfusion solutions, UA exists as 

organic anion urate. Probenecid is a highly lipid soluble benzoic acid derivative used to 

inhibit urate reuptake in renal tubular cells. Interestingly, probenecid has been described 

as both a pannexin channel inhibitor as well as a urate re-uptake inhibitor (George et al. 

2006; Silverman et al. 2008). In the present study, probenecid prevented UA from 

blocking IPC-induced cardioprotection and supports that effective UA uptake does occur 

in the heart. Probenecid by itself did not modify infarct size or inhibit ischemic 

preconditioning. However, more studies are required to fully understand UA uptake 

mechanisms in cardiac cells.  
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The mitochondrial response to UA was also tested. UA delayed opening of the 

mPTP following acute exposure of isolated cardiomyocytes to intracellular ROS. This 

observation is most likely due to the ROS scavenger effect of UA and is in accordance 

with the ability of UA to reduce reperfusion injury and ischemic preconditioning under 

the conditions described in the present study. Few studies have looked at the direct 

effect of UA on mitochondrial function. There is a sustained interest in regulation of 

the mitochondrial membrane potential, which in turn, drives the F1F0-ATPase activity: 

However, how this is coupled to ATP degradation products like UA is not well 

clarified (Kristal et al. 1999). When cardiac mitochondria were incubated with UA, 

oxidative phosphorylation decreased slightly, but significantly. Purine metabolism 

differs between organs and cells and relates to ATP consumption, turnover of mtDNA 

and nuclear DNA as well as cellular enzymatic makeup, resulting in variable 

intracellular levels of UA. Differences in uptake from the extracellular space further 

adds to this complexity. Recently, Wang et al. proposed a strong coupling of ATP 

production and consumption via the mito-flash phenomenon and F1F0-ATPase (Gong 

et al. 2015; Wang et al. 2017).   

Limitations. Cells and tissue from rodents are not adapted to extracellular UA 

levels used in the present study, which are comparable to levels in human extracellular 

fluid. On one hand, the present study indicates that adding UA in amounts present in 

humans reveals an antioxidant effect of UA that is difficult to demonstrate in clinical 

studies. On the other hand, the study does not explain the significant association between 

plasma UA level and cardiovascular pathophysiology. The question of whether UA is a 

casual, compensatory, or coincidental factor in cardiovascular medicine remains 

unanswered, and needs to be solved on a human background (Carluccio et al. 2018; So 

and Thorens 2010) as well as in uricase-deficient experimental animals. So far, the 

number of studies with human derived cells and tissue comparing exposure to different 

UA concentrations are limited. Interestingly, a human study of individuals with loss of 

function mutations in UA transporter URAT1, which led to hypouricemia, described 

concomitant significant endothelial dysfunction (Sugihara et al. 2015).  

In conclusion, we have demonstrated that under experimental conditions in 

isolated perfused hearts, cardiomyocytes and mitochondria, the presence or absence of 
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UA in concentrations equivalent with human plasma concentrations, modulated the 

response to cardiac ischemia. UA behaved like a highly ambiguous agent, protecting 

against I/R injury under certain conditions and maintaining mitochondrial integrity, but 

also blocked protection by endogenous ischemic preconditioning of the heart and tended 

to reduce mitochondrial respiration. As UA is continuously present in human plasma, it 

may reduce the effect of conditioning treatments to enhance cardioprotection in human 

studies. Potential interference with UA should be tested when translating experimentally 

promising cardioprotective interventions towards clinical application, such as ischemic-

preconditioning.  
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