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Editor’s Summary 79 

The Arctic is rapidly warming and satellites are observing a greening of tundra ecosystems 80 

as plants respond to the warmer and longer growing seasons. This Perspective highlights 81 

the challenges of interpreting complex Arctic greening trends by combining ecological and 82 

remote sensing approaches. 83 

 84 

Abstract 85 

As the Arctic warms, vegetation is responding and satellite measures indicate widespread 86 

greening at high latitudes. This ‘greening of the Arctic’ is among the world’s most significant 87 

large-scale ecological responses to global climate change. However, a consensus is 88 

emerging that the underlying causes and future dynamics of so-called Arctic greening and 89 

browning trends are more complex, variable, and inherently scale dependent than previously 90 

thought. Here, we summarize the complexities of observing and interpreting high-latitude 91 

greening to identify key priorities for future research. Incorporating satellite and proximal 92 

remote sensing with in-situ data, while accounting for uncertainties and scale issues will 93 

advance the study of past, present, and future Arctic vegetation change. 94 

 95 

The Arctic has warmed at more than twice the rate of the rest of the planet in recent 96 

decades1,2. Over the past forty years, satellite-derived vegetation indices have indicated 97 

widespread change at high latitudes3–16. Satellite records allow for the quantification of 98 

change in places that are otherwise unevenly sampled by in-situ ecological observations17. 99 

Positive trends in satellite-derived vegetation indices (often termed Arctic greening)15 are 100 

generally interpreted as signs of in-situ increases in vegetation height, biomass, cover and 101 

abundance5,18,19 associated with warming5,14. In the most recent Intergovernmental Panel on 102 

Climate Change report, tundra vegetation change including greening trends derived from 103 

satellite records20 was identified as one of the clearest examples of the terrestrial impacts of 104 

climate change. Large-scale vegetation-climate feedbacks at high latitudes associated with 105 

greening could alter global soil carbon storage and the surface energy budget21,22. In recent 106 
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years, slowing or reversal of apparent greening from satellite studies have been reported in 107 

some regions (sometimes termed Arctic browning)3,4,12,13,15,23,24. This slowdown is seemingly 108 

at odds with earlier responses to long-term warming trends3,25. Research now indicates 109 

substantial heterogeneity in vegetation responses to climate change in the Arctic18,19,26,27. 110 

However, the mechanistic links between satellite records and in-situ observations3,6,24 remain 111 

unclear due to conceptual and technical barriers in their analysis and combined 112 

interpretation. 113 

 114 

A review of Arctic greening 115 

The terms Arctic ‘greening’ and ‘browning’ can have different meanings in the remote 116 

sensing and ecology literatures. From a remote sensing perspective, ‘greening’ (hereafter 117 

spectral greening) generally refers to a positive trend4,5,7,8,10,13–15, and ‘browning’ (hereafter 118 

spectral browning) generally refers to negative trend in satellite-derived vegetation 119 

indices3,4,12,13,15,23,24. Less frequently, greening is also used to describe advances in the 120 

seasonal timing of these vegetation proxies4,28. From a field-ecology perspective, greening 121 

(hereafter vegetation greening) and browning (hereafter vegetation browning) refer to field-122 

observed changes in vegetation4,12,13,24. Historically, the general terms greening and 123 

browning were thus used to describe both a proxy of vegetation change and/or vegetation 124 

change itself depending on context. This lack of precise usage causes conceptual 125 

misunderstandings about Arctic greening and attribution to the drivers of change. Here, we 126 

present the current understanding of Arctic spectral and vegetation greening and browning 127 

to lay the foundations for a consensus between the remote sensing and field ecology 128 

perspectives.     129 

 130 

Vegetation indices as proxies of vegetation productivity 131 

Long-term trends in global vegetation dynamics are most commonly quantified from time 132 

series of spectral vegetation indices derived from optical satellite imagery (Figure 1). These 133 

indices are designed to isolate signals of leaf area and green vegetation cover from 134 
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background variation by emphasizing reflectance signatures in discrete regions of the 135 

radiometric spectrum6,29–32. Common vegetation indices include the Normalized Difference 136 

Vegetation Index (NDVI, Figure 2), Enhanced Vegetation Index (EVI) and Soil Adjusted 137 

Vegetation Index (SAVI), among others33–35. NDVI correlates with biophysical vegetation 138 

properties like Leaf Area Index (LAI) and the fraction of Absorbed Photosynthetically Active 139 

Radiation (fAPAR)14,36–39. However, these vegetation indices were not developed in polar 140 

contexts40 and are only proxies of photosynthetic activity rather than direct measurements of 141 

biological productivity33,39,41. NDVI is the most commonly used vegetation index because it is 142 

simple to calculate with spectral bands monitored since the launch of early-generation Earth-143 

observing satellites in the 1970s (Figure 2) and is perhaps best defined as a measure of 144 

above-ground vegetation greenness.  145 

 146 

The longest-term openly-available NDVI datasets have been produced from satellite-based 147 

sensors with broad spatial coverages and different sampling frequencies. The most common 148 

datasets include: 1) the Advanced Very-High-Resolution Radiometer (AVHRR – 1982 to 149 

present) on board NOAA satellites, 2) the Moderate-resolution Imaging Spectroradiometer 150 

(MODIS – 2000 to present) on board NASA satellites, and 3) NASA-USGS Landsat sensors 151 

(1972 to present). Most studies of long-term trends calculate annual measures of maximum 152 

NDVI to derive change over space and time, though time-integrated approaches are also 153 

used30,42–44. However, trends in NDVI data produced from different satellite datasets or using 154 

different methods do not always correspond at a given location6,45,46 (Figure 1a,c). Thus, it 155 

can be challenging to distinguish ecological change from differences due to methods and 156 

sensor/platform-related issues when interpreting localised spectral greening or browning 157 

signals (Table 1, Figure 2).  158 

 159 

Ecological factors influencing greening and browning trends 160 

The ecological processes underlying spectral greening or browning measured by satellites 161 

are diverse and may unfold across overlapping scales, extents and timeframes. In tundra 162 
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ecosystems, vegetation changes linked to spectral greening could include: encroachment of 163 

vegetation on previously non-vegetated land surfaces18,47, changes in community 164 

composition – such as tundra shrub expansion5,19,27, and/or changes in plant traits such as 165 

height48,49, leaf area, or phenology50–52. Tall shrub tundra typically has a higher NDVI than 166 

other tundra plant types49,53,54, and bare ground29 has a much lower NDVI than vegetated 167 

tundra (Figure 2). Spectral browning could be related to a variety of factors including for 168 

example loss of photosynthetic foliage12 or increases in bare ground cover due to permafrost 169 

thaw55 (Figure 1). Thus, changes in the species composition, growth form and traits of plant 170 

communities can influence greening and browning trends. 171 

 172 

Physical factors influencing greening and browning trends 173 

Widespread non-biological changes in high-latitude ecosystems could confound and 174 

decouple spectral greening or browning trends from changes in plant productivity (Table 1). 175 

Land cover, topography, and associated soil moisture, surface water, land-surface 176 

disturbances and snow-melt dynamics can all influence the measured spectral greenness of 177 

landscapes56–63 and likely influence greening trends. For example, changes in the extent of 178 

summer snow patches63, surface water60 or surface soil moisture59 that are often associated 179 

with landscape-scale topographic variation could influence the measured NDVI of the land 180 

surface. At high latitudes, optical satellite sensors are only effective for a short annual 181 

window due to the prolonged polar night, while low sun angles and persistent cloud cover 182 

reduce data quality in the summer season (Table 1). The unique physical properties of high-183 

latitude ecosystems in addition to the constraints of polar remote sensing are often 184 

underemphasized in remote sensing studies of Arctic vegetation change. 185 

 186 

Arctic browning and heterogeneity of spectral greening trends 187 

Not all areas of the Arctic are spectrally greening (Figure 1), and in recent years spectral 188 

browning and heterogeneity of spectral greening trends have been highlighted3,4,12,13,23. 189 

Ecological explanations for vegetation browning include for example the sudden loss of 190 
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photosynthetically active foliage due to extreme climatic events64–67, biological interactions 191 

(e.g., disease or herbivore outbreaks)68–70, permafrost degradation23,55 (Figure 1), increases 192 

in standing dead biomass71, coastal erosion72, salt inundation73, altered surface water 193 

hydrology74,75 or fire9,76,77
. Spectral browning, however, could be attributed to reduced 194 

productivity caused by adverse changes in growing conditions such as lower water 195 

availability, shorter growing seasons3 or nutrient limitation27. Nonetheless, long-term spectral 196 

greening trends remain far more pervasive than spectral browning in tundra ecosystems. 197 

Figures vary from 42% greening and 2.5% browning from 1982 to 2014 in the GIMMS3g 198 

AVHRR dataset78, 20% greening and 4% browning from 2000 to 2016 in Landsat data15 and 199 

estimates of 13% greening and 1% browning for the MODIS trends calculated for 1000 200 

random points in the tundra polygon in Figure 1 from 2000 to 2018. At circumarctic scales, 201 

the magnitude, spatial variability, and proximal drivers of patterns and trends of spectral 202 

greening versus browning are not well understood. 203 

 204 

Correspondence between satellite and ground-based observations 205 

Evidence for correspondence among in-situ vegetation change and trends in satellite-206 

derived vegetation indices is mixed47,79–81. NDVI trends across satellite datasets do not 207 

necessarily directly correspond with one another6,9, nor does any one sensor or vegetation 208 

index combination correspond directly with in-situ vegetation change47  . For example, NDVI 209 

has been related to interannual variation in radial shrub growth5,10,82, yet how radial growth 210 

links to change in leaf area, aboveground biomass, or landscape measures of productivity is 211 

not always clear83–85 (Figure 3). AVHRR NDVI greening trends did not correspond with the 212 

lack of change observed with Landsat NDVI data and in-situ plant composition between 213 

1984 and 2009 in North Eastern Alaska47. Direct comparisons of productivity changes from 214 

vegetation cover estimates18,86, biomass harvests53 or shrub growth87 are complicated by the 215 

lack of annual-resolution in-situ data and low sampling replication across the landscape. We 216 

attribute the mixed evidence for correspondence between in-situ and satellite-derived 217 

measures of tundra vegetation change and greening to the complexities of existing 218 
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terminology, challenges of interpretation of spectral vegetation indices at high latitudes, and 219 

the scaling issues as outlined below.  220 

 221 

In addition to productivity analyses, changes in growing season length and advances in plant 222 

phenology have been documented using both satellite43,78,88–91 and ground-based datasets, 223 

and here also paired comparisons do not always correspond (Figure 4). Measures of longer 224 

growing seasons have been attributed to earlier snowmelt and/or earlier leaf emergence in 225 

spring92, and longer periods of photosynthetic activity or later snowfall in autumn93. However, 226 

few studies have monitored both leaf emergence and senescence of tundra plants in situ 227 

and so far provide no evidence for an increasing growing period at specific sites94,95. In 228 

addition, community-level analyses indicate shorter flowering season lengths around the 229 

tundra biome50. Shifts in plant phenology with warming50 could also be linked to changing 230 

species composition or diversity18,48,86, thus influencing the phenological diversity across the 231 

landscape96,97. Satellite records may not capture the ecological dynamics of vegetation 232 

phenology at high latitudes, as snow cover can obscure the plant seasonal signal and 233 

deciduous plants only make up a portion of the vegetated land cover. Thus, uncertainty 234 

remains whether satellite-derived changes in circumarctic phenology represent a longer 235 

snow-free period uncoupled from the vegetation response or an actual realized longer 236 

growing season of plants94,98–100.  237 

 238 

Clarifying the terminology 239 

To distinguish spectral greening and browning events from longer-term trends, we propose 240 

clarified definitions of events and trends. For an individual pixel, we define the spectral trend 241 

as an increase or decrease in NDVI (or other spectral vegetation index) over decadal time 242 

scales and a spectral event as a temporal outlier in the vegetation index relative to the long-243 

term trend. Trends should be determined using a Theil-Sen estimator or similar robust 244 

statistical test for analyses of satellite data30,101. We define a spectral greening trend as an 245 

increase of the vegetation index over decadal time scales. In situ, we interpret a vegetation 246 
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greening trend as improved conditions for photosynthesis, reduced resource limitation and/or 247 

positive responses to disturbance in plant communities, resulting in greater aboveground 248 

biomass, leaf area, productivity or changes in plant community composition. We define a 249 

spectral browning trend as a decrease in the vegetation index over decadal time scales. A 250 

vegetation browning trend may correspond with an in-situ change in vegetation productivity 251 

due to plant dieback or loss of vegetation cover through biotic or abiotic disturbances. We 252 

define spectral greening events as short-term increases in vegetation index greenness that 253 

can be attributed to an ecological process such as revegetation of ground cover after fire 254 

and spectral browning events as short-term decreases in the vegetation index that can be 255 

attributed to a disturbance such as permafrost thaw or plant dieback. The definitions we 256 

propose here distinguish between slower acting climatic or biotic drivers of greening or 257 

browning trends versus event-driven changes caused by weather, biotic pulses, or other 258 

regional events such as fire.  259 

 260 

Differentiating events and trends 261 

In any measure of remotely sensed or field-based greening separate consideration of trends 262 

and events will increase ecological interpretability (Figure 5). Spectral greening and 263 

browning trends operate at any spatial scale, from localised patches to landscapes or even 264 

biome extents over decades. In contrast, spectral greening and browning events, such as 265 

those caused by vegetation dieback or rapid vegetation increase after disturbance, are often 266 

restricted to patch and regional scales over shorter durations. Events often have more 267 

limited extents relative to trends due to their proximal causes, like changes in herbivory or 268 

precipitation. Broader scale events are also possible (e.g. globally synchronized reductions 269 

in vegetation productivity caused by changes in insolation related to an intense volcanic 270 

eruption102). Therefore, greening or browning events might be embedded within overall 271 

spectral greening or browning trends, both temporally and/or spatially, without necessarily 272 

driving them (Figure 5). Examining the trend direction, magnitude and variance around the fit 273 
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over time can shape more detailed investigations into the ecological interpretation of Arctic 274 

spectral greening trends.  275 

 276 

The influence of baselines and temporal sampling 277 

The baseline to which we compare productivity change will influence our interpretation of 278 

trends103. Spectral greening or browning trends and events may result in threshold changes 279 

where on-the-ground productivity does not return to the longer-term baseline (Figure 5; e.g., 280 

pulse in recruitment at treeline104 or shrubline105 or a large fire77). In both satellite datasets 281 

and field observations, the baseline conditions are often constrained by the limitations of 282 

data availability rather than any deliberately selected starting point6. The low temporal 283 

sampling frequency of a few days to a few weeks of many legacy remote-sensing datasets 284 

(e.g., AVHRR, MODIS, Landsat, etc.) also introduces temporal scale-dependent effects that 285 

may be magnified in Arctic systems (Table 1). For example, comparisons of phenology 286 

across latitudes can be less reliable at higher versus lower latitudes due to shorter growing 287 

seasons and therefore fewer satellite data collection points for use in change detection 288 

analyses42,88,89. Metrics based on the annual maximum NDVI of a given pixel are more likely 289 

to be influenced by temporal sampling artefacts at high latitudes than those that integrate 290 

productivity estimates through time, such as the growing season integrated NDVI 291 

(GSINDVI)42, time-integrated NDVI (TiNDVI)43 or early growing season integrated NDVI 292 

indices44. Trends in either instance could be observed or not observed due to statistical 293 

reasons related to sample size and/or the strength or linearity of the trend. Thus, simple 294 

linear analyses of annual greenness metrics derived from satellite data may not always 295 

capture real-world ecological change (Figure 5).  296 

 297 

Challenges in the interpretation of vegetation indices 298 

In addition to the need for more clearly defined terms, challenges remain in the ecologically 299 

meaningful interpretation of long-term trends in optical satellite data, especially at high 300 

latitudes. The statistical relationship between a vegetation index and biomass, leaf area, 301 

Myers-Smith, Isla H. et al 2020. Complexity revealed in the greening of the Arctic. 
Nature Climate Change 2020.Volum 10. s. 106-117. 

10.1038/s41558-019-0688-1



 12 

phenology, or any other measures of productivity can vary due to a suite of intrinsic (e.g., 302 

sensor design, quality flagging algorithms), extrinsic (e.g., atmospheric conditions, sun 303 

angle, snow cover)6,106 and biological factors107 (Table 1). For example, the centre 304 

wavelength and width of spectral bands (e.g., in the red or near-infrared) used to generate 305 

vegetation indices were designed for different purposes in different sensors (Figure 2). While 306 

the NDVI formula may be the same, the covered spectral wavelength ranges differ between 307 

different datasets108 (Figure 2b). Thus, the datasets may be more or less sensitive to specific 308 

non-vegetative influences, such as atmospheric scattering or the magnitude of spectral 309 

mixing associated with non-vegetated surfaces57. Spectral unmixing is the process of 310 

decomposing the spectral signature of a mixed pixel into the abundances of a set of 311 

endmember categories109. Longer-term vegetation change is difficult to resolve from cross-312 

sensor comparisons among different satellite datasets or even among intercalibrations of the 313 

same sensor type (Figure 1). For these reasons, caution is warranted when comparing 314 

vegetation indices derived from different satellite products or even versions of the same 315 

product with different atmospheric corrections, quality assessments, and spatial/temporal 316 

compositing approaches6,108. Differences in NDVI signal processing are actively studied by 317 

the remote-sensing community (Table 1), but could be better accounted for or quantified in 318 

Arctic greening studies.  319 

 320 

Nonlinearities in NDVI as a vegetation proxy 321 

Direct interpretations of vegetation changes from spectral data are contingent on the local 322 

relationship between NDVI and in-situ vegetation. The statistical relationships between 323 

vegetation indices and measures of Arctic vegetation biomass are nonlinear29,110 (Figure 2). 324 

This nonlinearity presents challenges for trend interpretation that are illustrated in Figure 2a. 325 

Here, an absolute increase in biomass for a ‘low biomass’ community towards a ‘moderate 326 

biomass’ community would result in a positive NDVI trend, but that same absolute biomass 327 

increase from moderate to high biomass would show virtually no trend in NDVI due to 328 

saturation (Figure 2). Thus, the relationship to common ecological variables like changes in 329 
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biomass or shrub ring widths (Figure 4) can be obscured by nonlinearities. Because the 330 

greening and browning terms are tied to changes in vegetation proxies, rather than direct 331 

biological measures, a lack of correspondence could occur between remotely-sensed 332 

vegetation proxies and in-situ vegetation change (Figure 2, 4 and 5). Such potential 333 

discrepancies exemplify why caution should be used when interpreting linear trends in 334 

proxies like NDVI (Figure 1) that are nonlinearly related to vegetation productivity without the 335 

use of in-situ data to corroborate conclusions.  336 

 337 

Scaling issues in Arctic greening analyses 338 

Scale and hierarchies present a longstanding challenge in the interpretation of remotely-339 

sensed vegetation proxies111–113 (Figure 5). All long-term vegetation proxy time series 340 

(Landsat, MODIS, AVHRR) spatially aggregate spectral data to pixels (i.e., grains) that span 341 

hundreds of square metres to tens of square kilometres. The spectral signatures of plants 342 

and non-vegetative features in a landscape are reduced to a single value. The loss of 343 

variability within pixels masks information useful for the attribution of greening signals to 344 

processes across ecological hierarchies from populations and communities to ecosystems 345 

(Table 1, Figure 3 and 5). For example, within a single AVHRR GIMMS3g pixel, a 346 

subselection of 1 x 1 km pixels are upscaled to 8 x 8 km32. Within this aggregated pixel, 347 

ecological contributions to spectral greening signals such as increased shrub cover on 348 

south-facing slopes or revegetation of drained lake beds may be mixed with browning 349 

signals from for example disturbances such as retrogressive thaw slumps or vegetation 350 

trampling by herbivores (Figure 1). High-latitude pixels may also contain shadows caused by 351 

low-sun angle, patchy snow- and/or cloud-cover (Table 1). Thus, the emergent time series 352 

from such a pixel describes no single vegetation dynamic or environmental factor, but rather 353 

their integrated spectral responses. Broad-scale patterns of spatial variability in greening and 354 

browning across pixels are also influenced by grain size113 (Figure 1, 2, 5). Higher resolution 355 

satellites such as Landsat can reduce, but not necessarily eliminate such spectral mixing15. 356 

However, the extent to which the sometimes-contradictory greening and browning signals 357 
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found across different spectral datasets can be attributed to the influence of the scale of 358 

measurement is poorly understood.  359 

 360 

Complexities of capturing phenology 361 

Measuring landscape phenology with satellite data presents additional challenges to 362 

ecological interpretation of Arctic greening (Table 1). The variability of timing of satellite 363 

imagery from year to year particularly at high latitudes91 can confound measures of 364 

phenology (known as phenometrics). Cloud or fog cover is highly variable and sensitive to 365 

changing sea ice conditions in coastal Arctic sites44. Seasonal variation in cloud and fog 366 

cover influences both data availability and image compositing approaches in many 367 

phenology products91. In addition, vegetation metrics from early spring are much more likely 368 

to be influenced by snow, standing water or low sun angle than those closer to peak 369 

biomass in mid- to late-summer8,54,59. However, early spring is a critical period for 370 

establishing a baseline for curve fitting or thresholding used to derive phenometrics. 371 

Ultimately no phenometric is best suited to all Arctic environments or time periods114. Snow 372 

regimes and land cover variability differ annually and regionally and thus phenometrics using 373 

coarse-grain imagery integrate different abiotic and biotic signals at different points in space 374 

and time114. Phenological differences of days to weeks or even months can result from 375 

analyses using different methods and metrics for the same datasets at the same location115. 376 

These relative differences are of substantial ecological importance given the short growing 377 

seasons of the Arctic78,114 (Figure 4). Circumarctic analyses of vegetation indices generally 378 

agree that phenological shifts in the spectral greenness of the land surface are 379 

widespread78,88–90. However, the magnitude and extent of spatial and temporal scaling issues 380 

in high-latitude remotely-sensed phenology trends warrant further consideration and 381 

research112.  382 

  383 
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Towards a consensus perspective on Arctic greening 384 

The fields of remote sensing and field-based ecology will benefit from jointly addressing the 385 

complexities of interpreting spectral and vegetation greening and browning trends. Analyses 386 

from one satellite platform or one specific ecological context is not sufficient to disentangle 387 

Arctic greening complexity. The required next steps will be an integration of perspectives 388 

and approaches through existing and new international research efforts to address the 389 

following critical research gaps: 390 

 391 

1. Addressing scale issues by integrating proximal remote sensing and in-situ 392 

observations into pan-Arctic greening analyses 393 

Analyses of observations across scales will allow us to bridge the gap and improve our 394 

mechanistic understanding of the links between in-situ vegetation dynamics and broader 395 

remotely-sensed patterns and trends. New instruments for carrying out in-situ and proximal 396 

remote-sensing observations for comparison with satellite data are developing rapidly. 397 

However, we must urgently develop standardized field data collection protocols. In order to 398 

facilitate future synthesis, we need to incorporate data from long-term ecological 399 

monitoring12,18,86,94, historical imagery116, phenocam networks117, flux towers118, high-400 

resolution imagery such as from aircraft, towers, and drones119 and satellites.  401 

 402 

2. Incorporation of heterogeneity and uncertainty into analyses to improve confidence in 403 

detection of Arctic greening trends 404 

New higher spatial or temporal resolution data will inform analyses of historic greening 405 

trends. Current panarctic Landsat analyses are shedding light on greening trends by 406 

exploiting higher spatial resolution data while accounting for the lower temporal resolution of 407 

observation records15. Recent and ongoing release of higher-resolution satellite datasets 408 

(e.g., EU-funded Sentinel missions, Digital Globe, Planet constellations) and data products 409 

(e.g., the Arctic Digital Elevation Model) will provide higher spatial (2-10 m) and/or temporal 410 

resolution (1-5 days) data across the Arctic120. We can gain a better understanding of past 411 
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spectral greening signals from legacy satellite datasets by conducting standardized 412 

reprocessing with for example statistical methods incorporating uncertainty in observations 413 

such as image quality information, improved atmospheric corrections and snow detection.  414 

 415 

3. Inclusion of new observational tools beyond optical vegetation indices to clarify the 416 

mechanistic links between spectral greening and vegetation change 417 

In addition to incorporating higher resolution datasets, new types of data collection can 418 

inform our understanding of what greening patterns and trends represent. New remote 419 

sensing campaigns using hyperspectral sensors or those that can measure Solar-Induced 420 

Fluorescence (SIF)121 will provide new insights into vegetation dynamics. However, future 421 

sensor development across satellite, aircraft and near-surface platforms should be designed 422 

to maximize comparability. In addition to new data collection, novel data integration 423 

approaches, for example those employing machine learning, will provide greater insights into 424 

biome-scale analyses linking remote sensing observations with ecological change in high-425 

latitude ecosystems21,122. 426 

 427 

Conclusions 428 

Recent research has highlighted the complexity in observed Arctic greening and browning 429 

trends. Although satellite data have been used to detect and attribute global change impacts 430 

and resulting climate feedbacks in Arctic ecosystems20,22, numerous questions and 431 

uncertainties remain. The three major challenges in resolving these uncertainties are: 1) 432 

improving the clarity of the definitions of widely used terminology associated with greening 433 

and browning phenomena, 2) promoting the understanding of the strengths and limitations of 434 

vegetation indices when making ecological interpretations and, 3) better incorporating and 435 

accounting for different scales of observation and uncertainty in analyses of changing tundra 436 

productivity and phenology. New sensors and better access to legacy data are improving our 437 

ability to remotely sense vegetation change. However, new data alone will not provide 438 

solutions to many of the longstanding conceptual and technical challenges. The complexity 439 

Myers-Smith, Isla H. et al 2020. Complexity revealed in the greening of the Arctic. 
Nature Climate Change 2020.Volum 10. s. 106-117. 

10.1038/s41558-019-0688-1



 17 

of Arctic greening will only be fully understood through multidisciplinary efforts spanning the 440 

fields of ecology, remote sensing, earth system science and computer science. As a field, 441 

we need to look forwards to quantify contemporary and future change, but also backwards 442 

by conducting reanalyses of historical data. Ultimately, we urgently need a deeper 443 

understanding of the relationships between patterns and processes in greening and 444 

browning dynamics to improve estimates of the globally-significant climate change 445 

feedbacks in high-latitude ecosystems20.  446 
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Table 1. A variety of geophysical13,106,123, environmental44,60,61 and ecological12,47,49,54,57,110 447 

factors can influence the magnitude and direction of change in vegetation indices and are 448 

particularly problematic at high latitudes6. The effects include: 1) Radiometric effects: 449 

differences among satellite datasets including band widths, atmospheric effects, cloud-450 

screening algorithms, sensor degradation, orbital shift and bidirectional reflectance 451 

distribution functions originating from differences in field of view and sun geometries. 2) 452 

Spectral mixing: the blending of sub-pixel spatial heterogeneity that can influence the overall 453 

pixel signal (Figure 2). 3) Adjacency effects: the reflectance of surrounding pixels that can 454 

influence the signal of a given pixel (Figure 2). And, 4) a variety of environmental and 455 

ecological factors from snow melt and soil moisture dynamics to composition of evergreen 456 

versus deciduous or vascular versus non-vascular plants. 457 

Factors 
influencing 
vegetation 
indices 

Specific effects Influence on apparent greening patterns and trends 

Low sun angle Radiometric effects At high latitudes, low sun angles and cloud shadows can have a 
greater influence on vegetation indices relative to lower latitudes62. 
NDVI varies with sun angle, an effect magnified in spring and 
autumn62. Shadows also reduce NDVI and may be difficult to detect in 
coarse grained imagery44. 

Cloud cover Radiometric effects, 
Spectral mixing, 
Adjacency effects 

Thin cloud, fog and smoke can influence imagery, reducing NDVI. 
Cloud and fog are particularly problematic in coastal regions and can 
vary greatly between image acquisitions44. Cloud-screening algorithms 
differ among satellite datasets (in part as a function of available 
spectral bands), and partly cloudy or hazy conditions are particularly 
difficult for screening algorithms to detect consistently. In addition, the 
fogginess of Arctic locations can vary over time due to changing 
temperatures44 and/or sea ice conditions124.  

Standing water Spectral mixing, 
Adjacency effects 

Standing water60 can influence comparisons of vegetation indices 
across space and may not be detectable in coarse-grained imagery, 
despite influencing spectral signatures. NDVI values of water are 
generally low, however shallow water or standing water intermixed 
with vegetation or algal growth may not be identified as water by 
quality filters and may have higher NDVI. Water within a pixel may 
lead to artificially low NDVI values and can influence estimates of 
NDVI change over time. This is especially relevant to the Arctic during 
the spring and summer as snow melts and turns into ephemeral ponds 
and lakes whose spectral signatures will be mixed with nearby 
vegetation125. NDVI signals could be driven by changes in standing 
water over time associated with changing precipitation, permafrost 
conditions, and/or warming rather than by changes in 
vegetation56,57,60,125,126.  

Snow patches Spectral mixing, 
adjacency effects 

Sub-pixel sized snow patches will decrease the NDVI for a given 
tundra area57. NDVI values of snow are strongly negative. Earlier snow 
loss or later snow return may drive a strong positive trend in NDVI. 
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Longer persistence of snow on the landscape in patches may not be 
filtered by quality algorithms, yet could still lead to lower NDVI values.  

 Snow versus 
phenology dynamics 

Surface reflectance just after snow off is commonly used as the 
baseline when fitting phenology models. This approach masks the 
effects of sub-nivean phenological progression and/or may 
overemphasise the role of snow-off or snow-on dates as a driver of 
plant phenology57,63.  

Soil moisture Spectral mixing Soil moisture can influence the reflectance of vegetated tundra 
surfaces58,59. NDVI values are sensitive to soil moisture, which may or 
may not covary with vegetation change125. Furthermore, NDVI is 
relatively insensitive to changes in very sparsely vegetated (e.g., the 
High Arctic127) and very densely vegetated (e.g., forest or 
shrubland128) environments.  

 Plant water content Mosses can absorb water and thus influence surface reflectance of 
landscapes independent of vascular plant phenology and 
productivity126. 

Short growing 
season 

Timing of image 
acquisition 

Trends in NDVI metrics and growing season length can be influenced 
by the timing of data acquisition. To compare spatial patterns in 
vegetation indices among sites, images are required from the same 
time within the growing season and the same time points within the 
day126. However, the short growing seasons at high latitudes make 
image acquisition particularly challenging. Satellites have different 
temporal frequencies for overpasses thus influencing comparisons. 
Growing season length decreases at higher latitudes, thus the impact 
of missing data is of a greater magnitude as latitude increases. 

Rapid plant 
phenology 

Chosen phenometric The specific metrics used to quantify phenology will influence the 
resulting patterns observed91. Combining datasets with different spatial 
and temporal resolutions can limit comparisons (Figure 2). Variation in 
phenology metrics due to curve-fitting methods can exceed variation in 
measured phenology signals. Thus, using the same phenological 
functions across large geographic and ecological gradients, such as 
across the high latitudes, may introduce biases and/or errors. 

Phenological 
diversity 

Changes in phenology of individual species or plants growing in 
particular microclimates can lead to shifts in landscape phenology50. 

Plant traits and 
functional 
groups or types 

Isolating changes in 
plant productivity and 
canopy structure 
versus composition 

Vegetation indices are related to radiation absorbed by green foliage 
(APAR), canopy structure, species composition, leaf-level traits and 
biomass37,39 (Figure 2). However, how vegetation indices and 
ecological properties covary across diverse Arctic ecosystems is not 
well established. Other factors including bare ground cover, canopy 
structure, etc. that influence vegetation indices must be accounted for 
to isolate productivity change from other land surface changes. 

Vascular and 
deciduous versus 
non-vascular and 
evergreen plants 

Non-vascular or evergreen plants can obscure the deciduous vascular 
plant seasonal signal49,81. Tundra without vascular plants can 
additionally have a substantial cover of biological soil crust 
communities consisting of lichens, cyanobacteria, mosses and green 
algae that may also influence NDVI107,126. 

  458 
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 459 

Figure 1. Arctic greening varies across space and time and among satellite datasets 460 

driven by both actual in-situ change and, in part, by the challenges of satellite data 461 

interpretation and integration. Trends in maximum NDVI vary spatiotemporally and the 462 

magnitude of changes is different depending on what satellite imagery is analysed (a and c, 463 

data subsetted to temporally overlapping years; b and d, GIMMS3gv1 1982 to 2015 and 464 

MODIS MOD13A1v6 2000 to 2018). Regional trends may summarise localised greening, for 465 

example shrub encroachment (e) and browning such as permafrost thaw (g) occurring at the 466 

pixel scale on Qikiqtaruk - Herschel Island in the Canadian Arctic (f). NDVI trends (a and c) 467 

were calculated using robust regression (Theil-Sen estimator) in the Google Earth Engine. 468 

Dashed line indicates the Arctic Circle and the black outlined polygon (a and c) and green 469 

‘Tundra’ line (b and d) indicates the Arctic tundra region from the Circum-Arctic Vegetation 470 

Map (www.geobotany.uaf.edu/cavm/). The inset map in d indicates the regions for the mean 471 

trends for yellow ‘Eurasia’ and blue ‘North America’ polygons.  472 
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 473 

Figure 2. Ecological interpretation of trends in the Normalized Difference Vegetation 474 

Index (NDVI) requires a consideration of non-ecological factors. NDVI, calculated as the 475 

difference between red and near infrared bands (NIR), has a non-linear relationship with 476 

several common metrics of plant productivity, like biomass and LAI (a). Satellite platforms 477 

have different spectral band widths which can influence calculations of NDVI despite shared 478 

centre wavelengths (b). NDVI values from commonly available satellite data products and 479 

drone datasets (c) differed substantially across products and across plots of three different 480 

vegetation types (e) during the period of peak biomass in 2017 on Qikiqtaruk – Herschel 481 

Island, Yukon. Here, factors such as a lack of atmospheric correction (f), cloud or fog 482 

contamination (g), sub-pixel mixing (h), different plot grain sizes of data in more or less 483 

heterogeneous vegetation cover and timing of data acquisition could have all influenced 484 

NDVI values. Data were analysed and extracted for 30 x 30 m plots from 13th July to 4th 485 

August in 2017 using the Google Earth Engine for the MODIS MYD13A1v6 (pixel size = 500 486 

m x 500 m) and Landsat 8 (pixel size = 30 m x 30 m) NDVI product, and the top-of-487 

atmosphere Sentinel-2 NDVI product without atmospheric corrections (pixel size = 10 m x 10 488 

m) NDVI, and Pix4D-processed drone data collected using a radiometrically calibrated four-489 

band multispectral sensor (Sequoia, pixel size = 12 cm x 12 cm) on an FX-61 fixed-wing 490 

platform with the High-latitude Drone Ecology Network protocols (https://arcticdrones.org/). 491 

We purposefully present data with quality and processing issues above to highlight the 492 
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challenges in quantifying NDVI in regional-to-global studies where data quality issues may 493 

be spatially or temporally variable among locations.   494 
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 495 

Figure 3. Sub-pixel spatial heterogeneity in vegetative greening and browning cannot 496 

be accurately captured at coarser grains. Landscape patterns (a, e), trends (b, f), and 497 

variability (d, h) in NDVI may not represent in-situ observations of vegetation change. NDVI 498 

trends and interannual variability had mixed correspondence with increases in shrub 499 

abundance (c, g) and interannual variability in shrub growth on Qikiqtaruk – Herschel Island, 500 

Yukon94 (c, point framing in twelve 1-m2 plots; d, Salix pulchra = 21, 501 

https://github.com/ShrubHub/QikiqtarukHub) and Kangerlussuaq, Greenland84,129 (g, 13 502 

0.25-m2 plots; H, Betula nana = 42, Salix glauca = 32, 503 

https://arcticdata.io/catalog/view/doi:10.18739/A24X0Q, 504 

https://arcticdata.io/catalog/view/doi:10.18739/A28Q18, 505 

https://arcticdata.io/catalog/view/doi:10.5065/D6542KRH). Errors are standard error bars 506 

around mean values (c, g) and 95% credible intervals for a Bayesian hierarchical model of 507 

the relationship between detrended annual growth rings and NDVI with shrub individual and 508 

year as random effects (d, h). Detrending was done using a spline fit from the dplR package 509 

in R. Credible intervals for model slopes overlapped with zero (d, h). Marginal R2 values 510 

indicate the variance in detrended ring widths explained by detrended NDVI (d, h). 511 

Landscape NDVI patterns (a and f) were measured using a Parrot Sequoia and FX-61 fixed 512 
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wing platform according to High-latitude Drone Ecology Network protocols in the summer of 513 

2017 (https://arcticdrones.org/) and analysed using the Pix4D software. Coarser-grain NDVI 514 

time series (MODIS MOD13A1v6, 500m pixels) were calculated using Google Earth Engine 515 

and the Phenex package in R.   516 
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 517 

Figure 4. Satellite-derived phenology estimates do not always match with in-situ plant 518 

phenology observations. Satellite-observed snow-free season length of the land surface 519 

(here defined as the period with NDVI greater than 50% of the max NDVI, b and c) might not 520 

directly correspond to the growing season of vascular plants in tundra ecosystems, 521 

particularly in autumn (a). Snow-melt dynamics can obscure the plant phenology signal and 522 

non-vascular or evergreen plants can obscure the deciduous vascular plant seasonal signal. 523 

Plant phenology data were collected at 20 monitoring plots on Qikiqtaruk-Herschel Island for 524 

the species Salix arctica, which makes up approximately 30% of the cover in the grass- and 525 

forb-dominated vegetation type. Analyses indicate that both leaf emergence and senescence 526 

have become earlier, resulting in no change in realized growing season length despite 527 

substantial increases in the snow-free period of the land surface94 (a – c, 528 

https://github.com/ShrubHub/QikiqtarukHub). Satellite data are MODIS MOD13A1v6 529 

extracted for the pixel containing the phenology transects using Google Earth Engine and 530 

the Phenex package in R (b and c).  531 
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 532 

Figure 5. Arctic greening is influenced by both issues of measurement scale and 533 

inference across ecological hierarchies. Spectral resolution (Figure 2), extent (Figure 1), 534 

spatial resolution (Figure 2), landscape-level heterogeneity (Figure 3), temporal resolution 535 

(Figure 4), and ecological factors all influence the interpretation of greening trends (a). 536 

Within-pixel changes in land surface greening and browning events and trends can translate 537 

into different greening and browning patterns as their effects are scaled up (b). Ecological 538 

processes that comprise greening and browning trends include a combination of events, 539 

such as a pulse of plant recruitment or growth, a dieback of plants due to an extreme winter 540 

Myers-Smith, Isla H. et al 2020. Complexity revealed in the greening of the Arctic. 
Nature Climate Change 2020.Volum 10. s. 106-117. 

10.1038/s41558-019-0688-1



 27 

climate event, herbivore or disease outbreak or other disturbance and subsequent recovery. 541 

Longer-term change such as increasing shrub cover or progression of permafrost 542 

disturbances can also influence real-world NDVI time series. These different factors add 543 

complexity to the interpretation of Arctic greening trends. The scale and hierarchy of 544 

observations need to be incorporated into and/or accounted for in future analyses of Arctic 545 

greening.   546 
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