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Abstract—The effects of both system additive and multiplica-
tive noise on X-, C-, and L-band Synthetic Aperture Radar
(SAR) data covering oil slicks are examined. Prior studies have
attempted to characterize such oil slicks, primarily through
analysis of polarimetric SAR data. Here we factor in system noise
that is added to the backscattered signal, introducing artifacts
that can easily be confused with random and volume scattering.
This confusion occurs when additive and/or multiplicative system
noise dominates the measured backscattered signal. Polarimetric
features used in this study are shown to be affected by both
additive and multiplicative system noise, some more than others.
This study highlights the importance of considering specifically
multiplicative noise in the estimation of the signal-to-noise ratio
(SNR). The SNR based on additive noise should at least be above
10dB. The SNR involving both additive and multiplicative noise
should at least be above 0dB. The SNR from TerraSAR-X and
Radarsat-2 is below 0dB for the majority of the oil slick pixels
when considering both the additive and multiplicative noise,
rendering these data unsuitable for any analysis of the scattering
properties and characterization. These results are in contrast to
the reduced impact of noise on oil slicks detected by the L-
band UAVSAR system. In particular, we find there is no need
to invoke exotic scattering mechanisms to explain characteristics
of the data. We also recommend a noise subtraction for any
polarimetric scattering analysis.

Index Terms—Synthetic Aperture Radar, UAVSAR, Radarsat-
2, TerraSAR-X, SNR, additive noise, multiplicative noise, oil spill

I. INTRODUCTION

Polarimetric Synthetic Aperture Radar (SAR) data has been
utilized in multiple remote sensing investigations of marine oil
spills (see, e.g., [1]–[3]). Most studies have focused on oil slick
detection, in an effort to identify polarimetric features that
demonstrate high detection capabilities for different kinds of
oil under various wind and ocean conditions (see, e.g., [1], [4]–
[6]). After a slick has been detected, investigators then seek to
extract more information about the oil slick. Such characteri-
zation of oil slicks includes extraction of physical properties
such as the dielectric constant, the volumetric fraction of
the oil in an oil-water mixture, and distinguishing between
various types of oil. Studies by [2], [3], [7] have addressed
the potential of polarization diversity in a SAR system to
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yield this kind of information about the characteristics of the
oil, which could be very important in a potential oil spill
recovery, as knowledge about, e.g., the oil type, or the internal
variations within the oil slick might facilitate more efficient
clean-up operations. Oil slick characterization is only possible
if signal backscattered from the oil slick is separable within the
measured signal. Unfortunately, oil slicks seen in polarimetric
SAR data are particularly susceptible to misinterpretation due
to noise contamination of their low backscatter values, and the
importance of properly evaluating the noise is emphasized.

The measured signal in all SAR systems contains noise
in addition to the signal of interest, which is the normalized
radar-cross-section (RCS), (σ0), of the target. In general, there
are three imaging effects to consider when attempting to
recover the RCS. These are listed in [8] and are as follows;
(i) scaling of the RCS due to propagation, antenna pattern,
and processing effects; (ii) spatial correlation induced by the
processing; and (iii) bias in the estimated RCS due to system
noise. Examples of potential noise sources that can contribute
to the additive noise power (the bias in the estimated RCS)
are the thermal noise and quantization noise from the analog-
to-digital conversion (ADC) [9].

Freeman [9] demonstrated the effect of additive noise on
polarization signatures for a typical Bragg scatterer, and dis-
cussed the effect of this type of noise on the radar mea-
surements. Several studies have conducted a ”noise analysis”,
containing information about the signal-to-noise ratio (SNR)
of the various polarization channels of different investigated
mediums like an oil slick, clean sea, biogenic slick, etc. (see,
e.g., [2], [10], [11]). In these studies, the authors usually verify
whether the measured signal is above the noise floor, and
further evaluate the need to discard some of the polarization
channels (often the cross-polarization channel is discarded for
oil slick analysis). The noise floor is often set to the noise-
equivalent-sigma-zero (NESZ) that is given in the product file
of the data. However, even though the signal is above the noise
floor, the measured signal still contains noise. Minchew et al.
[10] identified that the measured signal should be 6dB above
the noise floor, while [12] identified this limit to be between
7-8dB. Both studies concluded this level above the noise floor
based on the measured intensity values as a function of the
incidence angle. For oil slick characterization and extraction of
physical properties using polarimetric SAR data, these results
imply that the backscattered signal needs to be well above the
noise power, i.e., noise floor.

It is possible to detect oil slicks so long as the oil/sea
backscatter contrast is high, which means the backscatter from
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the oil slick can be close to the noise floor of the radar,
provided the ocean surface return is well above the noise
floor. Unfortunately, instrumental noise might still influence
the detection capability using SAR, which was demonstrated
by Angelliaume et al. [13] using an oil slick detection al-
gorithm. In the same study, the authors added noise to a
scattering vector from a high SNR airborne instrument with
full-polarimetric capability and calculated the probability of
detection using a set of polarimetric features. They discovered
that the performance of the oil slick detection for some polari-
metric features was severely deteriorated by the instrumental
additive noise.

When studying oil slicks with SAR, multiplicative noise has
traditionally not been considered (see, e.g., [5], [10], [13]–
[16]). The multiplicative noise raises the noise floor, hence
reducing the overall SNR in the data. The main objective
of this study is to understand the sensitivity to both additive
and multiplicative noise power for a set of well known and
commonly used polarimetric features for observing marine
oil slicks. More specifically, the analysis covers (1) how the
feature values behave as a function of both the simulated
noise and true noise (additive and multiplicative) within the
radar measurements; (2) identifying the minimum SNR below
which the data are too contaminated by the noise to provide
reliable information about the surface properties from oil-
covered surfaces; and (3) exploring the feature behavior when
the additive noise power is subtracted from the second order
sample covariance and coherency matrix. The analysis is based
on quad-polarimetric data from the L-band sensor Uninhab-
ited Aerial Vehicle Synthetic Aperture Radar (UAVSAR),
the C-band sensor Radarsat-2 (RS-2), and dual-polarimetric
(two copolarization channels) data from the X-band sensor
TerraSAR-X (TS-X) obtained off Norway during a series of
oil-on-water field campaigns.

II. NOISE ARTIFACTS IN SAR

As highlighted in Section I, various imaging effects have
to be taken into consideration when recovering the RCS. The
upcoming discussion includes the various artifacts and noise
introduced in SAR, with a special focus on marine oil spills.
This section also discusses the measures that are applied in this
study for considering some of the noise/artifacts impacting the
measured backscattered signal.

A. Aliasing

Well-known artifacts that can cause confusion in interpret-
ing a SAR image are ambiguities due to aliasing in both the
azimuth and range direction [9]. Aliasing in the range direction
is caused by simultaneously receiving different pulses [9].
Azimuth ambiguities are caused by discrete (pulsed) sampling
of the along-track or azimuth Doppler variations in the radar
data and result from sidelobes that extend beyond the width
of the main lobe of the SAR antenna in that direction, and
are therefore at higher Doppler values [17]. The degree of
aliasing and the separation distance at which they occur is
controlled by the pulse repetition frequency (PRF) [17]. As
a result of azimuth aliasing the signal from any target is

repeated (maybe several times) with a fraction of the main
signal equal to the azimuth ambiguity ratio. For bright targets
such as ships these ambiguities are sometimes observed as
ghosts in the SAR image. In this study we have selected oil
spill areas that are not contaminated by azimuth ambiguities
from ships. Nevertheless, these darker areas may be corrupted
by ambiguous signals from nearby clean sea areas, that are
brighter than the oil spill. The contrast between oil and sea
can be high, and therefore a fraction of the SAR signal from
the surrounding clean sea will be present in oil-covered pixels.

Table I shows the ambiguity levels for the three sensors
investigated. The total ambiguity ratio in TS-X is <-16dB [18]
for the stripmap dual-polarimetric mode (used in this study).
This ratio was in [18] calculated based on the average ratio
between the signal power and the aliased power that is caused
by azimuth and range ambiguities for one pixel. For RS-
2 the azimuth and range ambiguities are usually both -35
dB [19], except for the higher incidence angles, for which
the range ambiguity drops to -25 dB. Range ambiguities are
usually not significant noise sources for airborne systems
such as UAVSAR, and typical azimuth ambiguity levels are
estimated at -24 dB [Scott Hensley, personal communication,
May 2019]. In this study the ambiguity levels are factored into
the multiplicative noise ratio when estimating the SNR.

B. Cross-talk

For polarization diverse data, cross-talk and channel imbal-
ance between the various polarization channels are unavoid-
able because of leakage between the polarization channels. An
extra processing step (see, e.g., [20], [21]) involving for ex-
ample assumptions about the scattering medium, is sometimes
performed to reduce cross-talk by balancing the amplitude and
the phase between channels. The most significant, and most
readily observed, effect of unbalanced polarization channels,
due to cross-talk, will be higher apparent levels of HV
backscatter. In cases of severe cross-talk the target signal for
each polarization channel may be contaminated and alter the
interpretation and estimation of physical parameters using a
given model (e.g., tilted Bragg model [22]).

In Table I, the estimated cross-talk value for RS-2 is -
32dB ([23], [24]), but various values between -30dB and -
40dB have been reported (see, e.g., [23], [25]). The estimated
cross-talk prior to any cross-talk calibration of the UAVSAR
is generally on the order of -30dB [26]. The antenna cross-talk
can only be corrected if the quad-polarimetric scattering matrix
is available (see, e.g., [27], [28]). Cross-talk removal has
been performed on the quad-polarimetric Radarsat-2 products
prior to receiving the data [23]. The HH-VV dual-polarimetric
mode of TerraSAR-X is used for this study, where the two
cross-polarization channels are not acquired. Hence, cross-talk
between the two copolarization channels are insignificant. No
cross-talk removal is performed on the UAVSAR data.

C. Effects from sidelobes

While measuring the response from the surface, sidelobes
might spatially smear the signal around a target. The peak-
to-sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR)
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TABLE I
AMBIGUITY LEVELS, CROSS-TALK, PSLR, ISLR, AND NESZ (ADDITIVE NOISE) OF THE UAVSAR, RS-2, AND TS-X. THE VALUES OF THE TS-X ARE

FROM DUAL-POLARIZATION STRIPMAP.

UAVSAR RS-2 TS-X
Ambiguity level [dB] ≈-24 (az.)a -35/-35 (az./rg.) (FQ1-26) [19] <-16 [18]

-35/-25 (az./rg.) (FQ28-31)

Cross-talk [dB] -30 [26] <-32 [23], [24] NA
PSLR [dB] -21b [26] <-18 [29] -25 [18]
ISLR [dB] -17.67c [26], [30] <-14.9 [29] -18 [18]
NESZ [dB] -30 to -50 [26] -31 to -39 [31] -19 [18]
aAmbiguity level (azimuth (az.)) of UAVSAR was provided by Scott Hensley (JPL), personal communication 2019.
bThe UAVSAR PSLR value was provided by Brian Hawkins (JPL) (personal communication 2019) using a weighting factor η = 0.5 [26]
cThe UAVSAR ISLR was calculated using equation (22) in [30] with a weighting factor η = 0.5 [26].

measure the SAR performance in resolving a weak target (for
example oil) in the presence of a strong target (for example
ships/rigs). The PSLR is defined as the ratio between the
height of the largest sidelobe and the height of the main
lobe (expressed in dB) [17]. The ISLR is the ratio of the
integrated energy in the sidelobes to the amount of energy
in the main lobe (also expressed in dB) [17]. A high value
(i.e., low ratio) in both the PSLR and ISLR indicate that
the signal is smeared out along and across track, and could
potentially generate a bright cross at a given point target (for
example ships). Hence, low values (i.e., high ratio) of PSLR
and ISLR are desirable, and the PSLR level is recommended to
be approximately -20dB [17]. In Table I, TS-X and UAVSAR
have acceptable values of the PSLR, namely -25dB and -
21dB, respectively. The PSLR for RS-2 is <-18dB [29], which
satisfies the tolerance level (<-17dB) for oil spill detection
identified in [32], but not the criteria set by [17]. There are
some ships surrounding the oil slicks in some of the SAR
scenes used in this study. Hence, the measured signal within
the oil slick might be impacted by the sidelobes due to the
response from the neighboring ships. In this study, this is
mitigated by masking out the ships and its corresponding
bright cross along several pixels in the range and azimuth
direction prior to selecting the regions of interest (ROIs).
Therefore, the oil slick regions studied here will not be located
near the ships nor the bright cross. But the clean sea pixels
surrounding the oil slick will still have a significant effect on
the measured signal from the oil slick if the ISLR is high.
This is because signals from nearby clean sea pixels could
spillover (due to the sidelobes) into darker, oil-covered areas
by a factor that adds up to be equivalent to the ISLR. The SNR
for oil-covered pixels will then be reduced due to contributions
from neighboring clean sea signals, which are not oil. The
ISLR is therefore factored into the multiplicative noise ratio
in estimation of the SNR for this study.

D. Block adaptive quantization

Another noise source is introduced by block adaptive quan-
tization (BAQ) compression. The BAQ compression is per-
formed on all three sensors evaluated in this study (UAVSAR
[33], RS-2 [31], TS-X [18], [34]). The SAR signals are digi-
tized using an ADC followed by the BAQ to reduce on-board
data storage requirements and downlink rate [31]. The BAQ

is a lossy data compression technique that introduces additive
quantization noise in the data and depends on the backscattered
signals in the scene. The key term here is ”block”: BAQ
algorithms take a block of raw data and normalize to the
average value of the quantized radar signals. The data are
then re-quantized around that mean signal value. Thus an 8:3
BAQ algorithm behaves like a perfect 3-bit ADC, optimized
so that ”local” mean signal level for that block of samples
falls right in the ”sweet spot” of the ADC performance curve.
The quad-polarization mode of RS-2 uses a 3-bit BAQ, which
introduces a BAQ noise degradation that is -14dB lower than
the mean signal level [31]. The quad-polarization modes of
UAVSAR use an 8-bit BAQ [35]. BAQ quantization noise
will reduce the SNR (see, e.g., [34], [36]), as a result of the
adaptive scaling and re-quantization of the SAR signal [34].
The quantization noise contribution is relative to the mean
signal level for the block of signals used [32]; for signal blocks
where clean sea dominates the calculation of mean signal, the
BAQ noise should be calculated relative to that level. The BAQ
noise is already included in the additive noise power provided
in TS-X [18]. The quantization noise is therefore considered
for the UAVSAR and RS-2 when estimating the SNR.

E. Thermal system noise

The signal measured at the antenna must be larger than the
thermal noise radiated in the radar system to enable an evalua-
tion of the backscattering properties of the targets. The thermal
noise is additive, and is usually considered the dominating
factor in the NESZ and when calculating the overall scene
SNR, where higher thermal noise results in reduced SNR. The
thermal noise is assumed Gaussian white noise and is added
to the observed signal. NESZ is defined in terms of the radar
backscatter coefficient of an area that will appear at the same
strength in the image as the thermal noise. For this study, the
additive noise using the NESZ is considered for all sensors
investigated when estimating the SNR, when simulating noise
to the UAVSAR, and when subtracting the noise from the
data with the objective of reducing the impact of the additive
noise present in the polarimetric measurements. Typical NESZ
(thermal noise) values for each sensor investigated in this study
are shown in Table I.
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III. ADDITIVE AND MULTIPLICATIVE NOISE IN
POLARIMETRIC SAR

For nominally calibrated polarimetric SAR data, the mea-
sured scattering matrix, M , is related to the target scattering
matrix, S, via [37]:

M = S + N (1)

where S = [SHH , SV H , SHV , SV V ]T are the target scat-
tering coefficients without noise (presumably), and N =
[nHH , nV H , nHV , nV V ]T represents the complex additive
noise. The H represents horizontal and V is vertical polar-
ization on either transmit or receive. The N is assumed to be
complex Gaussian white noise with zero mean. The noise in
the HH, VH, HV, and VV polarization channel measurements
are uncorrelated with each other and to the target scattering
coefficients [9].

Equation (1) excludes the multiplicative noise factors, and
to account for this, we suggest the following model for the
measured RCS for clean sea and oil slicks;

σ0,m
pq = σ0

pq + σnpq + σAVGpq MNR (2)

where σ0
pq is the RCS of the target, p is the polarization

on transmit, q is the polarization on receive, and σnpq is
the NESZ (additive noise power), i.e., |npq|2. The σAVGpq is
the average signal for each polarization channel that impacts
the measured signal σ0,m

pq . For ocean applications with small
coverage and no land, the σAVGpq can be approximated to the
mean signal level of homogeneous clean sea scatterers. The
MNR is the multiplicative-noise-ratio (MNR) that factors in
the ISLR, BAQ, and ambiguity-to-signal ratio (AMB). The
σ0,m
pq = 〈|Mpq|2〉, where 〈〉 denotes spatial averaging, and in

this study a sliding 9× 9 averaging window is used to reduce
speckle, but it will not eliminate it. To be able to perform
any useful characterization the σ0

pq from the oil slick must be
larger than both the additive and multiplicative noise factors.
This is determined using the SNR, and the upcoming section
shows how the SNR is estimated using both the additive and
the multiplicative noise components.

A. Estimation of the SNR

The SNR is an integral function of several sensor properties,
including the gain on transmit and receive, carrier frequency,
temperature, bandwidth, altitude and so forth. The SNRA

(signal-to-additive noise ratio) is estimated from the data and
sensor properties and is based on the ratio between the RCS
and the relative amount of the additive noise (NESZ), i.e.:

SNRApq =
σ0
pq

σnpq
=
σ0,m
pq − σnpq
σnpq

. (3)

The SNR is equal to 1 (or SNR = 0dB) when the additive noise
and the backscattered power are equal. The NESZ varies as a
function of slant range (due to the antenna elevation pattern)
and is the noise added to the observed signal. The NESZ is
often given in the product file (nominal values) of the various
sensors and the NESZ is normally at its lowest near mid-swath,
resulting in a convex curve along the range profile.

The SNR in (3) excludes the multiplicative noise component
(see (2)). Using the suggested model in (2), the SNR with both
the additive and multiplicative noise, here named SNRA,M ,
can be expressed as

SNRA,Mpq =
σ0,m
pq − (σnpq + σAVGpq MNR)

σnpq + σAVGpq MNR
. (4)

Here, σAVGpq is the average intensity in the scene, and MNR
is defined as (in linear unit) [30];

MNR = ISLR+ 1/QNR+AMBt (5)

where AMBt is the total ambiguity-to-signal ratio (range and
azimuth). Since oil slicks are surrounded by clean sea, the
signals from clean sea areas are repeated (due to aliasing) in
the oil-covered areas by a factor equal to AMBtσAVGpq (aliased
power). We assume here that azimuth ambiguities dominate
the aliased signals. QNR is the quantization noise given as

QNR = 10 log10(22Nb) (6)

where Nb is the number of bits. The QNR for RS-2 using the
3-bit BAQ is given as -14dB [31], whereas the QNR for the
UAVSAR is estimated from the above equation. As mentioned
in Section II, the QNR is already integrated in NESZ for TS-
X, and is therefore not factored into the MNR. The nominal
ISLR values of each sensor are shown in Table I, and these
are the ones used. Note that the ISLR values for RS-2 are also
given in the product file. Due to lack of information about how
the ISLR is calculated, there are some uncertainties associated
with these values. For example, whether the ratio given is for
both range and azimuth or only one dimension. We treat the
ISLR as the two-dimensional case (range and azimuth).

IV. SCATTERING PROPERTIES AND POLARIMETRIC SAR
FEATURES

This section discusses the relationship between the polari-
metric SAR features and their interpretation with respect to
the scattering properties.

Bragg scattering theory is often used to explain scattering
from the ocean, where a relationship is established between the
ocean surface roughness and its properties and the incoming
electromagnetic wave [22], [38]. Various two-scale Bragg
models have been explored that include both the small- and
large-scale ocean surface roughness ([22], [39], [40]). The
tilted Bragg model has been frequently used for modelling the
backscatter from clean sea and oil (see, e.g., [3], [10]), and the
X-Bragg model has also been used for oil spill and sea surface
studies (see, e.g., [1], [41]–[44]). The scattering process from a
slick that dampens the capillary and small gravity ocean waves
has often been called non-Bragg. The authors in [45] listed
some possible scattering types that the literature considers
non-Bragg. These are volumetric scattering, multiple scatter-
ing, double-bounce scattering, and a non-polarized component
caused by the breaking waves and the surface film. The non-
polarized component was acknowledged as the most realistic
explanation of the non-Bragg scattering [45]. Studies have
demonstrated, using high SNR SAR data, that Bragg scattering
also occurs within oil slicks (see, e.g., [10], [14]).
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Many different polarimetric features can be derived from
polarimetric SAR data. In this study, we limit the choice of
polarimetric features to those most frequently found in the
literature, see Table II. The expected value of pure additive
system noise, i.e., Gaussian white noise, is derived for each
feature and is presented in Appendix A Table IV.

TABLE II
OVERVIEW OF POLARIMETRIC FEATURES INVESTIGATED. SEE E.G., [46]

FOR THE CALCULATIONS OF THE PSEUDO PROBABILITIES (pi) AND
EIGENVECTORS (ei) FROM THE COHERENCY MATRIX. SEE APPENDIX B
FOR THE STOKES VECTOR (S0 , S1 , S2 , AND S3). φHH AND φV V ARE

THE PHASES OF THE COMPLEX SCATTERING VECTORS MHH AND MV V .

PD = σ0,m
V V − σ

0,m
HH H = −

∑3
i=1 pilog3pi

rCO = <(〈MHHM
?
V V 〉) HCO = −

∑2
i=1 pilog2pi

γHH/V V = σ0,m
HH/σ

0,m
V V α =

∑3
i=1 pi cos

−1 (|ei(1)|)

ρCO =
|〈MHHM

?
V V 〉|√

〈|MHH |2〉〈|MV V |2〉
DoP =

√
S2
1+S

2
2+S

2
3

S0

σφCO
= std(φHH − φV V ) χ = 1

2
sin−1

(
− S3
DoPS0

)

The polarization difference (PD) has a low sensitivity to
the incidence angle and look direction when observing an oil
slick, as well as having a high oil-sea contrast [12]. Previous
studies have observed low PD values for low SNR areas like
oil slick surfaces (see, e.g., [47]), and higher PD for clean
sea surfaces. According to [48], the backscattered intensities
over the ocean are divided into two components; one polarized
component associated with the two-scale Bragg model, and
one non-polarized component. The non-polarized component
is caused by wave breaking from steep and rough patches on
the surface. The non-polarized component is removed in PD,
and we are left with a difference between the Bragg scattering
components of HH and VV [48].

The copolarization ratio (γHH/V V ) has been investigated in
multiple studies (see, e.g., [2], [10], [47]), and according to the
tilted Bragg scattering model, this feature is independent of the
damping of small capillary waves by the oil. γHH/V V is, in
the tilted Bragg model, a function of the dielectric properties,
the incidence angle, and the tilt angles [22]. The γHH/V V is
often used as input when estimating the dielectric constant to
extract the volumetric fraction of oil in the oil-sea mixture. In
order to extract the volumetric oil fraction, the system noise
needs to be low in the two copolarization channels. The studies
in [3], [49], [50] used low noise floor radars on airplanes
to extract the oil fraction. Using spaceborne satellites with
higher noise floor will present a challenge. For a high oil-sea
contrast in this feature, the oil slick must be thick enough
relative to the wavelength within the medium or have a high
oil content in the oil-sea mixture. According to theoretical
models, γHH/V V is close to 1 at lower incidence angles, and
decreases with increasing incidence angles [51]. Data-based
estimates of γHH/V V yield lower values for clean sea areas
compared to an oil-covered surface [10]. Unfortunately, the
presence of additive noise might result in higher γHH/V V
values for oil-covered areas due to low SNR. As the noise
power increases and becomes much larger than the HH and
VV intensities, γHH/V V will tend towards 1 (assuming the
noise in each polarization is at a similar level).

The real part of the copolarization cross product (rCO),
the magnitude of the copolarization correlation coefficient
(ρCO), and the copolarized phase difference (φCO) are features
that depend on 〈MHHM

?
V V 〉. The 〈MHHM

?
V V 〉 term is only

independent of the noise if the noise power is decorrelated with
the target scattering coefficients and the noise power from the
other polarization channels (see, e.g., [9]), i.e.;

〈MHHM
?
V V 〉 = 〈(SHH +NHH)(S?V V +N?

V V )〉
= 〈SHHS?V V 〉+ 〈SHHN?

V V 〉
+ 〈NHHS?V V 〉+ 〈NHHN?

V V 〉
= 〈SHHS?V V 〉.

(7)

Lower values of rCO and ρCO have been observed for oil
slicks compared to clean sea surfaces [2], consistent with what
one would expect to see for pure random noise (see Table IV
in Appendix A). Kasilingam et al. [52] reported that ρCO is
insensitive to changes in the short-scale roughness, and could
therefore be sensitive to variation in the dielectric properties
between clean sea and oil slicks. Low ρCO values may imply
depolarization effects. The expected value of ρCO for pure
noise is 0. Depolarization in the backscattered signal may be
due to the presence of complex surfaces, multiple-scattering
surface layers, but may also be attributed to the presence of
system noise [53]. The latter explanation is the one explored
in this study.

The HH-VV phase difference (φCO) is not frequently used
to examine oil spills with SAR, but its standard deviation
is, i.e., σφCO

. The σφCO
feature is another measure of the

degree of correlation between SHH and SV V . The expected
value of φCO should be independent of the additive noise
factor because the complex noise components measured in
the various polarization channels decorrelate with each other
and with the scattering coefficients (see (7)). However, σφCO

will depend on the noise power. This is significant because
the expected value of a given feature may be independent
of the noise, but its variance might strongly depend on it.
σφCO

has been found to increase with the presence of oil (see,
e.g., [54]–[57]), and this behavior was according to [54], [55]
explained by the different scattering process (Bragg vs. non-
Bragg) between clean sea and oil. Some studies have showed
that the broadening of φCO could be due to system noise
(see, e.g., [10], [16], [43]). Minchew et al. [10] discovered no
difference between the σφCO

for oil and clean sea except in the
presence of instrument noise for one UAVSAR scene. Alpers
et al. [45] presented different theories on the broadening of
the copolarization phase difference due to the presence of oil,
for example; (1) the broadening might occur due to the fact
that the Bragg waves are tilted by long waves; (2) instrument
noise; (3) the inhomogeneity of the scattering medium due to
irregular oil slick patches of various thickness. In [43], [58], it
was suggested that the broadening of σφCO

was influenced by
the system noise at high incidence angles (θ ≈ 34) using TS-X
images. In this study, we investigate whether this explanation
is, in fact, the one most consistent with the observations.

Two types of entropy measures are evaluated, including
a dual-polarized one that can be estimated from the TS-
X scenes. The first is the copolarization entropy (HCO)
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calculated from the sample 2 × 2 coherency matrix based on
the HH and VV channels, and the second is the entropy (H)
calculated from the sample 3× 3 coherency matrix (including
the HV channel). The entropy, H ∈ {0, 1}, describes the
randomness of the scattering, where H = 1 indicates a random
mixture of scattering mechanisms and H = 0 represents a
single scattering response [46]. Gaussian white noise gives
an entropy close to 1, and could therefore be confused with
multiple and random scattering. Whether dominating or not,
information about the scattering type is provided by the mean
alpha angle (α) ∈ {0, 90◦}: low α values represent surface
scattering, intermediate α volume scattering, and high values
double-bounce scattering [46], [59]. For pure random noise, α
is 60◦ [59], so if the additive noise term dominates, the mean
α angle will be located in the intermediate α value range.
Several oil spill studies have used the H/α method on SAR
data from spaceborne satellites and found high H and α values
for oil-covered surfaces compared to clean sea surfaces (see,
e.g., [6], [56], [60]–[62]). Explanations of this phenomena
are often ”multiple scattering mechanisms” or departure from
the ”Bragg scattering” within the oil slicks. In this work, we
challenge these explanations by showing that instrument noise
can easily account for observed signatures from SNR oil slick
surfaces in the H/α space.

Two features that are frequently used in the compact-
polarimetric studies (see, e.g., [5], [63]–[67]), namely the
degree of polarization (DoP ) and the ellipticity angle (χ)
are investigated. Both are calculated from the Stokes vector
from a hybrid-polarity SAR system. Reciprocity (SHV =
SV H ) is often assumed when calculating the Stokes vector.
The influence of system noise might be different in the
Stokes vector with and without the reciprocity assumption.
To investigate this, we generate two sets of Stokes vectors
(reciprocity and non-reciprocity) resulting in two sets of DoP
and χ features. A DoP = 1 corresponds to fully polarized
(fully deterministic) scattered wave, which is equivalent to
H = 0 [68]. Low DoP values has been reported in oil-covered
areas [5], [65], [66]. This has been explained by the presence
of non-Bragg scattering characterized by ”high depolarization”
of the backscattered signal from the oil slick surface. The
DoP also exhibits poor detection performance using high SNR
airborne data [13]. Here we investigate whether system noise
is the more likely explanation of these effects, as indicated
in [13].

Studies have observed a sign-reversal of the χ (see,
e.g., [66]) for mineral oil slicks. The sign-reversal of the min-
eral oil slicks was explained in [69] to be caused by different
scattering mechanisms between the oil-covered and clean sea
surfaces. However, this sign-reversal was only observed in the
spaceborne satellite, RS-2, and not in the UAVSAR data. This
study investigates whether the system noise is the cause of this
”sign-reversal”, and not differences in the scattering process
between oil and clean sea surfaces. This was also suspected,
but not verified in [45].

V. DATA

Polarimetric information was acquired from a set of eight
RS-2, three TS-X, and three UAVSAR scenes with various

types of oil, metocean conditions, range of incidence angles,
NESZ values, and signal return from oil slicks and clean sea.
The data are radiometrically calibrated and a 9×9 filter mask
is applied to all the scenes when calculating the polarimetric
features. When radiometrically calibrating the TS-X data we
do not subtract the estimated noise powers in the HH and
VV channels as described in the calibration stage in the TS-
X product description [18]. This is because we want to be
consistent in comparing the measured scattering vector from
all sensors. Table III lists sensor properties, time of acquisition,
wind information, incident angle, NESZ, and the estimated
MNR used in this study.

All these scenes were acquired during a series of oil-on-
water exercises in the North Sea from the years 2011, 2012,
2013, 2015, and 2016, respectively. The wind speeds range
from 1.3 to 8 m/s (see Table III). The reader is referred to [2],
[14], [47] for additional information about these exercises.
The data from the UAVSAR and RS-2 used in this study
were acquired in the quad-polarimetric (QP) SAR mode, i.e.,
transmitting and receiving on both the horizontal and vertical
polarization channels. The TS-X scenes were acquired with
the HH-VV dual-polarimetric SAR mode. The first three TS-X
scenes overlap with three of the RS-2 scenes with less than one
hour time difference (see [47]). All the scenes capture different
concentrations of mineral oil in the oil-water mixtures. The
scenes (TS-X and RS-2) from 2011 also contain crude oil.

TABLE III
SENSORS USED, TIME OF ACQUISITION, WIND INFORMATION AROUND
ACQUISITION TIME, MEAN INCIDENCE (INC.) ANGLE, NOMINAL MEAN
NESZ, AND ESTIMATED MNR. THE QUAD-POLARIMETRIC MODE WAS

USED WHEN THE UAVSAR (L-BAND) AND THE RS-2 (C-BAND) SCENES
WERE ACQUIRED. ALL THE TS-X (X-BAND) SCENES WERE ACQUIRED IN

THE SSC (SINGLE-LOOK COMPLEX) DUAL-POLARIMETRIC (DP)
(HH-VV) STRIPMAP MODE. THE WIND INFORMATION IS FROM [47], [70].
TWO MNR VALUES ARE GIVEN FOR RS-2 SINCE THE RANGE AMBIGUITY

LEVEL CHANGES DEPENDING ON THE BEAM USED.

Sensor Date Wind Inc. NESZ MNR
(Time UTC) m/s angle (dB) (dB)

(◦)

UAVSAR 09-06-2015 (09:56) 5 55-66 -44
UAVSAR 11-06-2015 (08:46) 8 41-44 -51 -16.76
UAVSAR 11-06-2015 (09:18) 8 54-57 -45.5

RS-2 08-06-2011 (06:00) 1.6-3.3 47 -33 -11.21
RS-2 08-06-2011 (17:28) 1.6-3.3 36 -34 -11.38
RS-2 15-06-2012 (06:20) 4 31 -35 -11.38
RS-2 15-06-2012 (17:49) 3 49 -31 -11.21
RS-2 11-06-2013 (17:20) 5 29 -36 -11.38
RS-2 11-06-2015 (17:27) 6 36 -34 -11.38
RS-2 15-06-2016 (06:07) 7 42 -32 -11.38
RS-2 15-06-2016 (17:36) 8 41 -33 -11.38

TS-X 08-06-2011 (06:23) 1.6-3.3 28 -23a

TS-X 08-06-2011 (17:12) 1.6-3.3 21 -23a -13.88
TS-X 15-06-2012 (17:29) 3.5 41 -23a

aTwo NESZ in VV and HH channels and the mean of the two are taken.

ROIs are extracted from each SAR scene. For each oil slick
ROI, there is a corresponding clean sea ROI at approximately
the same incidence angle. This is done to avoid any incidence
angle effects when comparing the oil and clean sea ROIs.
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Fig. 1. VV-intensity (in dB) images of UAVSAR, Radarsat-2 (RS-2), and TerraSAR-X (TS-X) covering oil slicks from one of the oil-on-water exercises in
the North Sea. The blue ROIs represent clean sea, while the yellow ROIs represents oil-contaminated areas. The scenes are cropped and scaled for display
purposes.

There are between 4-10 non-overlapping ROIs within each
UAVSAR, RS-2, and TS-X scene. The number of ROIs per
scene is constrained by the slick size and our 9 × 9 pixel
averaging window. Further, the surrounding ships are masked
out along with a large portion of the pixels spanning the
range and azimuth direction from these ships. This is done to
eliminate undesirable sidelobe effects from these bright targets
in the scene (see Section II). Second, the same number of
pixels (728 corresponding to the size of the smallest ROI)
are selected at random within the various sized ROIs. A
representative scene and the corresponding ROIs from each
of the three sensors is shown in Fig. 1.

The mean measured RCS of a set of pixels randomly
selected within these ROIs are displayed in Fig. 2 as a function
of SNRA (signal-to-additive noise ratio) (left panels) and mean
incidence angle (right panels). The right panels of Fig. 2
shows lines spanning the 5th and 95th percentiles, the mean
intensity (marker), and the nominal NESZ. From the top-left
panel in Fig. 2, the separation of the VV backscatter values
by frequency (X-, C-, and L-band) is readily seen. For a
given surface roughness, X-Band (TS-X) tends to give brighter
returns than C-Band (RS-2), which is in turn brighter than the
longer wavelength L-Band (UAVSAR). Some VV backscatter
data points from both RS-2 and TS-X have mean intensity
values close to the noise floor. Whereas some HH backscatter
data points from RS-2 have mean intensity values below the
noise floor. All the UAVSAR data points from both the HH-
and VV-intensity measurements are well above the noise floor.
Most of the HV-intensity values from RS-2 have SNRA values
below 3dB and most of the signals from oil and clean sea are
below the noise floor (see bottom panels of Fig. 2).

The range of the incidence angles for RS-2 and TS-X spans
20◦ − 40◦. For UAVSAR, the range of incidence angles is
slightly higher at 40◦ − 65◦. There is a trend of decreasing
intensity values as the incidence angle increases in each of
the media (oil and clean sea), for RS-2 and TS-X (see the
right-most panels of Fig. 2).

The impact of wind is challenging to observe for this study,
since the incident angle is not constant across the scenes. In
theory, the backscatter increases with wind speed due to the
increase in small-scale ocean surface roughness, and the ocean

backscatter decreases with increasing incidence angle. For
example, more contributions from system noise are expected
at low wind speeds measured at high incidence angles. For
this study the objective is to observe trends between polari-
metric feature values and any contributions from various noise
sources in the Bragg scattering region (wind speed in 3-12 m/s
and incidence angles in 20◦ − 60◦ [71]).

Cross-talk between co- and cross-polarization measurements
might be significant for some of the UAVSAR measurements.
This is because the additive noise floor (NESZ) in UAVSAR
data is low (< -40dB), and mean VV backscatter values range
from -17dB to -32dB, whereas the mean HV backscatter values
range from -35dB to -42dB, approximately (see Fig. 2). This
yields a difference of >10dB, and the cross-polarization chan-
nel could have contributions from the copolarization channels.
For this study, the features based on the cross-polarization are
H , α, DoP , and χ, which might be particularly exposed to
the cross-talk contamination.

VI. IMPACTS OF MULTIPLICATIVE NOISE IN SNR

In this study, both the additive and multiplicative noise is
used in estimation of the SNR. Common practice is to only
calculate the SNR based on the additive noise power, i.e.,
NESZ. A reason for this is that the NESZ often is available in
the product file of various sensors, whereas the multiplicative
factors are often left out. Unfortunately, the SNR will be
overestimated because of this, and taking proper account of
the multiplicative noise components will reduce the SNR
values (see, e.g., [34]). Therefore, this section demonstrates
the effects of including the multiplicative noise components,
namely the ISLR (for all sensors), quantization noise (for RS-2
and UAVSAR), and the ambiguity ratio (for all sensors). The
SNRA (signal-to-additive noise ratio) is estimated using (3).
The SNRA,M (signal-to-additive and multiplicative noise ratio)
is estimated using (4), where the ISLR values (linear units) of
each sensor (see Table I) is used and the mean of clean sea
pixels within all ROIs in each scene is set to σAVG. Fig. 3
shows the relationship between SNRA and SNRA,M using the
VV and HH channels, where SNRA,M is lower than SNRA.
With the SNRAV V , all the data points are located above 0dB,
which is no longer the case with the SNRA,MV V , where most of
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Fig. 2. Left panels; mean intensity values versus the signal-to-noise (SNR) ratio in dB based on the additive noise power (labeled SNRA) for the three
polarization channels (VV, HH, and HV, respectively). Right panels; The 5th, mean intensity, and 95th percentiles for each slick and clean sea region versus
the mean incidence angle for each scene. The gray lines are slightly shifted to the left in order to improve the discrimination in the plot. The bottom panels
show the HV channel, where there are no ROIs from the TS-X scenes since these were acquired in the HH-VV dual-polarization SAR mode.

the oil data points from RS-2 now have SNRA,M below 0dB,
indicating little signal from the oil slick itself. The oil and
clean sea markers for TS-X are located close to the red line
indicating that SNRA and SNRA,M are very similar. All the
markers from the UAVSAR have SNRA,M values above 10dB,
except for one oil marker that has SNRA,M around 7dB.

The multiplicative noise contribution tends to dominate for
high SNRA values. For example, the SNRA,MV V and SNRA,MHH is
on average 11.2dB and 5.3dB lower than SNRAV V and SNRAHH
for the oil slick areas in the UAVSAR. For the oil slicks areas

in RS-2, the SNRA,MV V and SNRA,MHH is on average 8.7dB and
6.7dB lower than SNRAV V and SNRAHH . Finally, for the oil
slicks areas in TS-X, the SNRA,MV V and SNRA,MHH is on average
2.8dB and 2.5dB lower than SNRAV V and SNRAHH .

VII. RESULTS AND DISCUSSION

This section is divided into three subsections reflecting the
objectives presented in Section I. Subsection (1) presents and
discusses the feature sensitivity to the additive and multiplica-
tive noise power. Subsection (2) demonstrates how the noise
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Fig. 3. Relationship between the mean SNRA (signal-to-additive noise ratio) versus the mean SNRA,M (signal-to-additive and multiplicative noise ratio) for
the UAVSAR, RS-2, and TS-X ROIs. The red line is where SNRA and SNRA,M are equal.

affects the H/α decomposition, and how the SNR threshold
is identified. Finally, subsection (3) illustrates how each of the
different features behaves when the additive noise power is
subtracted.

(1) Feature sensitivity to additive and multiplicative noise

We aim to provide an understanding of the sensitivity
to both the additive and multiplicative noise for the set of
features investigated, and to further highlight which features
are strongly affected by the noise for the two investigated
media (oil and clean sea). Figs. 4-7 show the mean of a given
feature for a set of ROIs plotted against the SNRAHH (left
panels) and SNRA,MHH (right panels) in dB. The continuous
lines show the results of our simulations of adding noise to
the high-SNR UAVSAR data (see Appendix C). The simulated
noise power plots are not shown for PD and rCO, which is
due to the fact that the simulated noise powers cancels in
the calculation of PD and decorrelates in rCO. For RS-2
and TS-X the SNRAHH is calculated from the RCS and the
NESZ given in the product file, and for the UAVSAR the 5th
order polynomial with updated coefficients are used (similar
to [26]). The SNRA,MHH is calculated from (4) with MNR given
in Table III. Because both SNRAHH and SNRA,MHH are functions
of σ0,m

HH , the values plotted are the mean for the same set of
pixels randomly selected within each ROI.

Polarization difference (PD)

In the left panels of Fig. 4, lower PD values of the oil-
covered areas compared to the clean sea regions can be
seen. This observation corroborates previous findings [47]. The
reduction in PD due to the presence of oil is most likely
caused by the dampening of the ocean surface roughness [48].
The PD is expected to be close to zero for pure random
noise, assuming the noise in the HH and VV channels are
similar. A slight trend of increasing PD values with SNRAHH
and SNRA,MHH for all the three sensors is observed, especially
for the oil markers. However, there is a wide spread in the

PD values across the SNRAHH which might be interpreted
as sensitivity to the oil properties and metocean conditions,
that vary across the scenes used in this analysis. However,
less spreading is observed for the SNRA,MHH , which are more
consistent with a simple, downward linear trend of decreasing
PD with decreasing SNR.

In conclusion, the downward trend in PD due to the
presence of oil is entirely consistent with a Bragg scatter model
for which the VV backscatter is greater than the HH (the high
SNR case), with increasing levels of noise added for which
the HH and VV expected values are the same, and therefore
PD → 0 (the low SNR case).

Real part of the copolarization cross product (rCO)
The oil has lower rCO (real part of the copolarization cross

product) values than the clean sea (right panels of Fig. 4).
Again, this matches previous findings [2], [47], [72]. The
authors of [72] explained this observation as the presence of
a non-Bragg scattering process within the oil slick. However,
our SNRA,MHH results show a simple downward linear trend
in rCO as SNR decreases. The reduction of the rCO values
in the presence of oil is therefore most likely related to the
low backscattering return from the oil slick, resulting in high
influence of the decorrelation effects from system noise. The
expected value of rCO for pure random noise is 0. rCO values
are high at lower incidence angle, where less noise is expected,
for all three sensors. At high incidence angle (large markers
in the right panels of Fig. 4) the rCO is low.

For rCO, the results for different radar frequencies are
differentiated at higher SNR; these results indicate that for
this particular parameter, X-band is more sensitive to oil
characteristics than C-band, which is more sensitive than L-
band. No other parameter shows this clear separation between
all three bands.

Copolarization ratio (γHH/V V )
Applying a tilted Bragg model, the γHH/V V values from

the oil slick areas are expected to be slightly larger than for
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Fig. 4. Top: mean of PD and rCO versus SNRAHH (dB). Bottom: mean of PD and rCO versus SNRA,MHH (dB). A log-scale is applied on all y-axis to better
illustrate the trend. The expected PD and rCO of pure noise is 0 in linear units.

the clean sea areas, depending on the concentration of oil
on the surface [10]. This fits our high SNR observations in
the left panels of Fig. 5. For pure random noise, γHH/V V is
close to 1 (see Table IV), as illustrated with the ”N” symbol
in Fig. 5. For the clean sea results, larger sized markers,
indicating a higher incidence angle, are located below the
smaller markers for each sensor, confirming that γHH/V V
decreases as a function of increasing incidence angle (see, e.g.,
[10], [12]). Similar to the PD results, we again see a wide
spread in the oil slick γHH/V V values across the SNRAHH
which can be interpreted as sensitivity to the oil properties
and metocean conditions. Again the large spread in values
for clean ocean even at high SNR, a strong dependence on
metocean conditions is likely consistent with [12]. But less
spreading is observed for the SNRA,MHH results and, in general,
γHH/V V increases with decreasing SNRAHH and SNRA,MHH .
This trend matches well with our simulations of adding
increasing levels of noise to the UAVSAR (continuous lines),
and corroborates the observations of Minchew et al. [10] at
high incidence angles. Here the increasing dominance of noise
over backscatter explains the γHH/V V observations, with this
feature eventually approaching the value 1 with increasing
noise power.

Magnitude of the copolarization correlation coefficient (ρCO)

According to the literature, the ρCO feature tends to gen-
erate higher values for clean sea compared to oil-covered
surfaces (see Section IV). The center panels of Fig. 5 supports

this, as most of the clean sea markers are above the oil
markers. If the measured signal is heavily contaminated by
noise, the expected ρCO value is 0, as indicated by the ”N”
symbol in Fig. 5. Adding noise to the UAVSAR data results
in decreasing ρCO values as both the SNRAHH and SNRA,MHH

decreases. The spaceborne markers (squares and triangles)
align well with the UAVSAR simulations, once all the noise
sources are properly accounted for (right-hand panel). This
was also pointed out in [13], where the instrumental noise
induced a decorrelation effect between the HH and VV. Note
that ρCO is not exactly 1 for the high-SNR clean sea UAVSAR
data; for which SNRAHH = 30dB and SNRA,MHH = 18dB,
which can be explained by the presence of multiplicative
noise (which lowers the effective SNR) once that is taken into
account (right-hand panel). The reduction in ρCO for the oil in
all cases is most likely due to system noise and not to exotic
scattering properties within the oil.

Standard deviation of the copolarization phase difference
(σφCO

)

As shown in right panels of Fig. 5, σφCO
has lower values

for clean sea than for oil slicks. This observation has also
been reported in previous studies (see, e.g., [54]–[57]). The
σφCO

is uniformly distributed, and the expected value of σφCO

for pure Gaussian noise is 1.81 (see Table IV Appendix A).
The σφCO

values tend to increase with decreasing SNRAHH
and SNRA,MHH values (see center panels of Fig. 5), consistent
with our simulations adding noise to the UAVSAR results.
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Fig. 5. Top: mean of γHH/V V , mean of ρCO , and standard deviation of φCO versus SNRAHH (dB). Bottom: mean of γHH/V V , mean of ρCO , and standard
deviation of φCO versus SNRA,MHH (dB). The circular markers are the mean values of the ROIs from the UAVSAR data, while grey and blue continuous
lines represent the degree of simulated noise power added to the UAVSAR. The legend of incidence angle ranges is on the bottom. The box with ”N” is the
expected feature value of Gaussian white noise (see Table IV in Appendix A).

As pointed out in [45] and confirmed by Fig. 5, this extreme
broadening of the HH-VV phase difference distribution is most
likely due to instrumental noise rather than a different type of
scattering within the oil slicks.

Entropy (HCO and H)

Higher entropy values (both H and HCO) are observed for
the oil than the clean sea, which matches previous findings
(see, e.g., [6], [56], [60]–[62]). However, this difference is
mainly due to higher noise contribution in the measured oil
slick signal compared to the signal from the clean sea. The
left and center panels of Fig. 6 support this, where both H
and HCO increase with decreasing SNRAHH and SNRA,MHH ,
following the trend lines for the simulated noise added to
UAVSAR data. The correspondence is more marked in the
SNRA,MHH results. The high entropy is clearly related to the
high noise power in the data, and not differences in scattering
processes between oil and clean sea.

Mean alpha angle (α)

Higher α values are observed for the oil than for the clean
sea. This aligns with previous findings, but the more likely
explanation for higher α values is higher noise power, rather
than different scattering properties between the clean sea and
the oil. Complex Gaussian white noise will have a mean α

value of 60◦. The observations of α shown in the right panels
of Fig. 6 increase towards 60◦ as the SNRAHH and SNRA,MHH

decreases. Again, the SNRA,MHH results fit better with the
simulated noise at lower SNR values, compared to SNRAHH .
The discussion on the H and α continues in subsection (2),
where the noise effects on the H/α space are investigated.

Degree of polarization (DoP )

In the left panels of Fig. 7, the color-filled squares and
circles for each class (oil and clean sea) represent the non-
reciprocity case, and the DoP values for which reciprocity
is assumed are indicated by non-filled boxes and circles. The
continuous lines represent the noise added to the UAVSAR
data when reciprocity is not assumed, while the dashed lines
are for the scenario in which reciprocity is assumed. There is
a clear difference between the clean sea and the oil markers,
where lower DoP values of the oil are observed for both the
reciprocity and the non-reciprocity case. The expected value of
DoP for Gaussian white noise is 0 for non-reciprocity and 0.5
with the reciprocity assumption. In general, the DoP increases
with increasing SNRAHH and SNRA,MHH (see left panels of
Fig. 7). As pointed out in [68], the DoP feature is similar
to 1−H , where low DoP indicates high depolarization. The
DoP has been used to measure the departure from Bragg, and
as shown here, the observed departure from Bragg (DoP ≈ 1)
occurs at low SNR. At low SNRAHH and SNRA,MHH the DoP
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Fig. 6. Top: mean of HCO , H , and α versus SNRAHH (dB). Bottom: mean of HCO , H , and α versus SNRA,MHH (dB). The circular markers are the mean
values of the ROIs from the UAVSAR data, while grey and blue continuous lines represent the degree of simulated noise power added to the UAVSAR data.
The legend of incidence angle ranges is given on the bottom. The box with ”N” is the expected feature value of Gaussian white noise (see Table IV in
Appendix A).

Fig. 7. Top: mean of DoP and χ versus SNRAHH (dB). Bottom: mean of DoP and χ versus SNRA,MHH (dB). The circular markers are the mean values of the
ROIs from the UAVSAR data, while grey and blue continuous (dashed) lines represent the degree of simulated noise power added to the UAVSAR data for
the non-reciprocity (reciprocity) case. The boxes with ”Nr” and ”N” are the expected feature value of Gaussian white noise for reciprocity and non-reciprocity
cases (see Table IV in Appendix A).
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starts to increase for the reciprocity-assumed case, which is
a result of the extra noise component in S3 of the DoP
expression (see Appendix B). Again, the SNRA,MHH fits better
with the simulated noise compared to SNRAHH . The strong
correlation of the DoP values with the SNRAHH in Fig. 7
matches the observation in [13].

Ellipticity angle (χ)

Like the DoP , the χ is calculated from two Stokes vectors
(reciprocity and non-reciprocity assumed case). Few differ-
ences between the oil and the clean sea markers can be seen
for the non-reciprocity case in the right panels of Fig. 7. As
the noise increases the mean of the χ approaches the value 0.
In general, χ is always positive for the non-reciprocity case,
but a decreasing trend of the χ as the SNRAHH and SNRA,MHH

increases is identified. However, for the reciprocity case, the χ
of both the real and simulated noise have a more rapid decrease
with increasing SNRAHH and SNRA,MHH . Again, the SNRA,MHH

fits the simulated noise better. This is easily explained by the
extra noise component in S3, for which a clear sign-reversal
is identified when the noise power increases. The only factor
contributing to the sign-reversal is the S3 parameter since this
is the only component in χ that can either be negative or
positive (see Appendix B). χ is also affected by the reciprocity
assumption, especially at low SNR. Therefore, the presence of
a sign-reversal in χ for oil spill data in polarimetric SAR is
accounted for by noise.

(2) Noise in the H/α decomposition

The motivation behind this section is to investigate the
behavior of the H/α space as a function of both the SNRA and
SNRA,M using only real data from RS-2 and UAVSAR. The
H and α are both calculated from the 3×3 sample coherency
matrix using a 9× 9 averaging filter mask.

The ocean backscatter is dominated by resonance scattering
also known as Bragg scattering, within the SAR incidence
angles 20◦ − 60◦ (see, e.g., [71]), and for low to moderate
wind 3− 12 m/s. The H/α space has been used frequently to
interpret the scattering properties (see, e.g., [6], [10], [56],
[60]–[62]). Minchew et al. [10] observed Bragg scattering
within the oil slick region using UAVSAR data. The authors
concluded that the departure from the Bragg region within
the oil slick was mainly due to the instrumental noise, which
is verified here based on Fig. 8. The Bragg scattering region
(see [59]) is defined within the black boxes in Fig. 8 and the
markers are colored based on their SNRAHH (top panels) in
dB. Similar results applies for SNRAHH , which is not shown,
but the SNR values are higher with VV compared with HH.
Each marker represents one pixel from the set of 728 pixels
that are randomly selected within each ROI.

The majority of the oil markers fall outside the Bragg region
due to the high level of noise. This confirms the observations
in [10] and the discussion in [45]. There is a remarkable
correlation between increasing α and H values as the SNRA

decreases, and a decrease in SNRA results in a clear departure
from the Bragg region. The clean sea markers are, as expected,
mostly located within the Bragg region. But even here, when

the additive noise power increases some markers fall outside
this region.

The center and bottom panels in Fig. 8 show blue and red
histograms, that are calculated based on SNRAHH and SNRA,MHH

values originated from the Bragg scattering region (blue) and
outside this region (red). These panels contain information
about the SNR threshold that is recommended before the data
is too contaminated by the additive and multiplicative noise
for any meaningful polarimetric scattering analysis.

The peak overlap within the blue and red histograms is
around SNRAHH =10dB. Considering the bottom panels of
Fig. 8, this peak overlap within the red and blue histograms
varies between 0-8dB for the SNRA,MHH , where no clear thresh-
old is observed. The oil markers inside the Bragg region in the
top panel of Fig. 8 indicate a higher signal return compared to
the oil indicated by markers outside this region. Unfortunately,
the contribution from the multiplicative noise sources is high
inside the Bragg region despite the high SNRAHH for the oil
(larger than 10dB). In the bottom-left panel of Fig. 8, the mean
and standard deviation of the SNRA,MHH inside the box (Bragg
region) are 3.2± 1.8dB. Since the H/α is extremely sensitive
to the presence of noise, we conclude that the H/α is not
recommended for extracting information about the scattering
properties within oil slicks, at least with existing sensors that
do not have much higher SNR for oil returns.

(3) The impact of subtracting the additive noise

This section shows the effect of subtracting the additive
noise from the covariance/coherency matrix prior to calcu-
lating the features, and whether this procedure can produce
reliable feature value of low-backscattered targets like the oil
slick as studied here. Only scenes from RS-2 are used. In
this part of the study, we only consider the additive noise
component (not the multiplicative noise factor) since it is
unclear how the multiplicative noise impacts the off-diagonal
elements in the coherency matrix, and subtracting the additive
noise is a common procedure in the literature [10], [73]–
[76]. The noise cannot be removed from the complex target
scattering matrix, but previous studies have subtracted the
noise power from the diagonal elements in the second order
sample covariance matrix (see, e.g., [73]–[76]). The features
investigated in this work can all be estimated from either
the sample covariance or the coherency matrix, allowing us
to evaluate the effect of the noise subtraction. The nominal
NESZ provided in the RS-2 product file of each scene is
used when subtracting the noise power from the sample
covariance/coherency matrix. This is because the estimated
NESZ values using the method suggested in [75] and [76]
shows close to the same values as the nominal NESZ (see
Appendix D).

Fig. 9 shows the feature sensitivity to the noise subtraction
using only the RS-2 ROIs from both the oil-covered (squares)
and the clean sea (diamonds) surfaces. Noise subtraction can
only be performed for the set of features that are a function
of one or more intensity components. The rCO and PD are
left out in Fig. 9, since noise subtraction will not have any
effect in these two features. Recall, rCO is the real part of the
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correlation between the complex HH and VV measurements.
The complex noise components decorrelate with each other
and to the signal (see (7)), and rCO is therefore not a function
of the noise power (σn). The PD is the difference between
the VV and HH intensities, and only one noise power in HH
and VV channels are provided and assumed equal. Hence, the
two noise components in PD cancel.

All the features shown in Fig. 9 are affected by the noise
subtraction. In general, the difference between the mean fea-
ture value between the original and the noise subtracted feature
increases with the noise, i.e., SNRHH decreases.

Recall from the previous section, that the γHH/V V tends
towards the value 1 as the noise power increases. Having
a decrease in γHH/V V after noise subtraction indicates that
noise power contributed significantly to a higher γHH/V V
value, especially for the oil markers. The noise subtraction
for the oil markers has a larger effect than for the clean sea
markers, which is due to higher SNR for the clean sea than
for the oil slick. Hence, the γHH/V V values are more similar
between the oil and clean sea after the noise subtraction.

For Gaussian white noise, the ρCO is 0. Hence, subtracting
the noise should increase the ρCO values, which is clearly
demonstrated in the top-center panel of Fig. 9. As pointed out
in Section IV, previous studies found low ρCO for oil-covered

areas, and this was explained by the different scattering
properties between clean sea and oil-covered surfaces. Here,
subtracting the noise resulted in similar ρCO values between
the two classes, indicating that the variation in ρCO between
the oil and the clean sea is most likely due to the additive
noise.

Further, a decrease in both HCO and H as a result of
the noise subtraction is also demonstrated in the top-right
and center-left panels of Fig. 9. This is expected as random
noise contributes to high entropy values. However, there is
still a trend with increasing entropy (both HCO and H) as the
SNRHH decreases after noise subtraction. Since intermediate
entropy values are expected also for oil-covered regions,
subtracting the noise results in a more reasonable entropy value
for the oil markers.

The α increases with the noise power for both the original
and the noise subtracted markers. For Gaussian white noise,
the α is expected to be in the area around 60◦ (see Table IV
Appendix A). Based on the differences between the dashed
and continuous lines, the α values after noise subtraction
have decreased, especially for low SNR. The majority of the
markers seems to be below α = 42.5◦, which is the upper
threshold of the Bragg scattering region. We conclude that the
noise subtraction has an effect on the α.

Fig. 8. H/α plots of RS-2 and the UAVSAR data containing clean sea and oil slicks. The difference in, e.g., incidence angle and metocean conditions might
cause the difference between the colored markers within each panel. Top: the markers are colored based on the SNRAHH level. Center: histograms of the
SNRAHH values inside and outside the Bragg scattering region. Bottom: histograms of the SNRA,MHH values inside and outside the Bragg scattering region.
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Fig. 9. The effect of noise subtraction on the mean feature value (of both clean sea (diamond) and oil (square) ROIs) versus the SNRHH (dB) using RS-2
data. The box with the ”N” symbol is the expected feature value of pure random noise. The DoP and χ are from the reciprocity-assumed Stokes vector, but
both ”Nr” and ”N” is shown.

Subtracting the noise resulted in similar DoP values be-
tween clean sea and oil, and higher values after the noise
subtraction are identified (center-right panel of Fig. 9). This is
expected as the noise will generate lower DoP values. In this
panel, only the reciprocity-assumed DoP is used. The DoP
is a child parameter from the Stokes vector, where the Stokes
vector is calculated using the method presented in [63], which
is based on the elements from the 3×3 covariance matrix, from
which the noise is subtracted. After the noise subtraction the
oil markers are almost aligned with the clean sea markers.
Hence, the DoP shows a poorer contrast between the oil
and the clean sea after the noise subtraction, and any oil/sea
contrast seen in this feature can be explained by noise. As
demonstrated in the previous section, the χ changed sign when
the noise increased. A sign reversal is no longer visible after
the noise subtraction, and most of the χ values are negative
after this procedure. Thus, this feature becomes useless for oil
spill detection due to similar values between the clean sea and
oil markers.

VIII. CONCLUSIONS

The system noise in SAR data will have an influence on
the interpretation of the scattering properties, particularly for
low backscatter targets like oil slicks. Mischaracterizations can
arise if all of the various noise sources (see Sections II and III)
are not considered. Oil spill detection is still possible for noisy
data, simply due to the marked contrast in the backscatter
levels. This study explored the limitation of satellite SARs
to perform reliable oil spill characterization using scattering
properties from polarimetric features. Additionally, it may also
be possible to identify regions of thicker oil within a slick,
since thicker oil may have lower backscatter returns. This
is due to higher damping of the small capillary and gravity
waves, and noise thus contributes a larger fraction of the
measured signal than for thinner oil films.

This study shows the impact of including both additive and
multiplicative noise factors in the estimation of the SNR. From
spaceborne sensors such as RS-2 and TS-X, the majority of
the measured signal is comprised of noise originating from
various sources, dominating the backscattered signal from the
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oil itself. This is demonstrated by SNRA,M having values close
to or even less than 0dB. However, this is not the case for the
UAVSAR, which has much higher SNR.

All the features investigated are influenced by both additive
and multiplicative noise, some more than others. However,
the PD, γHH/V V and rCO had highest spread in their
feature values as a function of the SNRA, which was reduced
significantly for SNRA,M . The remaining features (ρCO, H ,
HCO, α, DoP , χ) simulated by adding noise to UAVSAR data
show a similar trend with the corresponding feature extracted
from TS-X and RS-2 data. This trend is observed at different
incidence angles and at low to moderate wind speed range (3-8
m/s). Additive noise has often been misinterpreted as random
scattering within the oil layer that results in high H , HCO, α,
and low ρCO and DoP . This type of scattering has been given
the name ”non-Bragg”. In this study, we find that there is no
need to invoke such exotic scattering mechanisms – properly
accounting for noise in the data means that Bragg scatter plus
noise can adequately explain the observed results for both oil
slicks and clean sea.

In the literature, high H and α values have been hy-
pothesized and reported for mineral oil slicks. However, as
demonstrated in this study, the high H and α values are
most likely related to the high levels of system noise. With
high SNR SAR data, e.g., from UAVSAR, the H/α values
representing oil slick fall within the Bragg scattering region.
We recommend that the SNRA should be ≥10dB prior to
any scattering theory analysis using polarimetry. No clear
threshold was identified for SNRA,M , and future analysis
should therefore be performed to study this effect. Obviously,
the majority of the measured signal from an oil slick should be
from the oil slick itself and not other noise sources, indicating
that the SNRA,M should at least be above 0dB.

After noise subtraction, the features representing the oil
slick had values similar to the ones from the clean sea areas,
indicating that the performance of the oil slick detection might
be compromised after noise subtraction. We conclude that
subtracting the noise power should be performed prior to any
polarimetric analysis for characterization purposes, and such
measures should be used with a great deal of caution in oil
slick detection.

Future studies could include a sensitivity analysis of noise
contamination in various scattering models (e.g., tilted Bragg
model [22]), and characterization of multiplicative noise ef-
fects on polarization features. Here we have treated MNR
as another additive noise contribution, but there may still be
subtle, residual correlations between MNR terms that we have
not accounted for. Additionally, investigating how the noise
influences the characterization of various oil types might also
be valuable. Finally, we note that higher SNR instruments are
needed to study oil characterizations with SAR.
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APPENDIX A
THE EXPECTED FEATURE VALUE OF NOISE

Table IV contains the theoretical expected feature value of
pure Gaussian random noise. These expected feature values
could be a result of random/volume scattering from an ideal
target (not the case for oil slicks), or specular reflection that
has close to zero return towards the sensor and the measured
signal is then dominated by system noise.

A. Noise - ellipticity feature

The ellipticity is defined as;

χ =
1

2
sin−1

(
−S3

DoPS0

)
=

1

2
sin−1

(
−S3√

S2
1 + S2

2 + S2
3

)
.

(8)
For non-reciprocity Stokes vector, where S1 = 1

2 (σnHH −
σnHV + σnV H − σnV V ), S2 = 0, and S3 = 0 the χn is:
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(9)
For reciprocity Stokes vector, where S1 = 1

2 (σnHH −σnV V ),
S2 = 0, and S3 = −σnHV the χn is:
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1
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sin−1
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2
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1

1
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1

2
(90◦) = 45◦.

(10)

In the last part of (10), we assume equal noise power in the
two copolarization channels σnHH ≈ σnV V (often assumed, see
e.g., [74]).

APPENDIX B
NOISE IN THE STOKES VECTOR

The Stokes vector from a hybrid-polarity (HP) SAR system
when transmitting on right-hand (R) circular and receiving on
the linear horizontal (H) and vertical (V) polarization channels
is given as [63]

S0 = 〈|MRH |2 + |MRV |2〉
S1 = 〈|MRH |2 − |MRV |2〉
S2 = 2<〈MRHM

?
RV 〉

S3 = −2=〈MRHM
?
RV 〉

(11)
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TABLE IV
EXPECTED POLARIMETRIC FEATURE VALUE OF ADDITIVE COMPLEX GAUSSIAN WHITE NOISE. COMPLETE EXPRESSION OF THE STOKES VECTOR, BOTH

FOR THE RECIPROCITY AND NON-RECIPROCITY CASES CAN BE FOUND IN APPENDIX B.

Feature expression Assumption(s)
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where the MRH and MRV are the measured HP complex
scattering coefficients and can be expressed as [77]

MRH =
1√
2

(MHH − jMV H)

MRV =
1√
2

(MHV − jMV V )
(12)

using the linear complex scattering coefficients. The Stokes
vector can be expressed using the linear complex scattering co-
efficients in the following way (without assuming reciprocity);

S0 =
1

2
〈(|MHH |2 + |MV V |2 + |MHV |2 + |MV H |2)

− 2=(MHHS
?
V H)− 2=(MHVM

?
V V )〉

S1 =
1

2
〈(|MHH |2 − |MV V |2 − |MHV |2 + |MV H |2)

− 2=(MHHM
?
V H) + 2=(MHVM

?
V V )〉

S2 = 〈<(MHHM
?
HV ) + <(MV HM

?
V V )−=(MHHM

?
V V )

+ =(MV HM
?
HV )〉

S3 = 〈=(MHHM
?
HV ) + =(MV HM

?
V V ) + <(MHHM

?
V V )

−<(MV HM
?
HV )〉.

(13)

The Stokes vector with the noise power, i.e., writing out the
Mpq = Spq + σnpq , where p and q is polarization on transmits
and receive is

S0 =
1

2
〈(|SHH |2 + |SV V |2 + |SHV |2 + |SV H |2 + σnHH

+ σnHV + σnV H + σnV V )− 2=(SHHS
?
V H)− 2=(SHV S

?
V V )〉

S1 =
1

2
〈(|SHH |2 − |SV V |2 − |SHV |2 + |SV H |2 + σnHH

− σnHV + σnV H − σnV V )− 2=(SHHS
?
V H) + 2=(SHV S

?
V V )〉

S2 = 〈<(SHHS
?
HV ) + <(SV HS

?
V V )−=(SHHS

?
V V )

+ =(SV HS
?
HV )〉

S3 = 〈=(SHHS
?
HV ) + =(SV HS

?
V V ) + <(SHHS

?
V V )

−<(SV HS
?
HV )〉.

(14)
In [63], the author expressed the Stokes vector using ele-
ments from the 3× 3 covariance matrix assuming reciprocity
(SHV = SV H ). The Stokes vector with the noise elements
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and assuming reciprocity becomes

S0 =
1

2
〈(|SHH |2 + |SV V |2 + 2|SHV |2 + σnHH + 2σnHV

+ σnV V )− 2=(SHHS
?
HV )− 2=(SHV S

?
V V )〉

S1 =
1

2
〈(|SHH |2 − |SV V |2)− 2=(SHHS

?
HV ) + σnHH

− σnHV + σnHV − σnV V + 2=(SHV S
?
V V )〉

S2 = 〈<(SHHS
?
HV ) + <(SHV S

?
V V )−=(SHHS

?
V V )〉

S3 = 〈=(SHHS
?
HV ) + =(SHV S

?
V V ) + <(SHHS

?
V V )

− |SHV |2 − σnHV 〉.
(15)

As seen in the equation above, an extra noise component in
S3 is present, which was not present when reciprocity was not
assumed.

APPENDIX C
ADDING NOISE TO THE UAVSAR

We want to compare measured additive noise with sim-
ulated noise in the SAR measurements. This is performed
by generating independently, for each polarization channel,
complex random Gaussian white noise (N term in equation
(3)) with zero mean and variance equal to the noise power
added. Addition of simulated noise to the measured signal is
performed on the complex scattering coefficient prior to any
filtering and feature calculation, i.e.,

Ŝpq = Mpq +
1√
2

(X + jY ), X ∼ N(0, σn), Y ∼ N(0, σn)

(16)
where σn is equal to the NESZ + ∆n. The 1√

2
accounts for

the two components in the complex signal. ∆n increases with
+1dB for every iteration until the SNR is equal to -10dB.
For example, if NESZ is -45dB, the first iteration has a noise
variance (in dB) equal to -44dB. Note that this procedure is
only applied to the UAVSAR, due to its high initial SNR for
both the oil slick and the clean sea regions.

APPENDIX D
THE VALIDITY OF THE NOMINAL NOISE FLOOR

To verify the NESZ provided in the product files, we
estimate the NESZ from both RS-2 and UAVSAR data using
two methods [75], [76], based on the theory in [73], [74]. Once
the estimates of the NESZ are obtained, a comparison with the
nominal NESZ values from the product file is carried out. The
reason for estimating the NESZ is to verify the accuracy of
the nominal NESZ, since the NESZ is used to estimate the
SNR.

The authors of [75] suggested an approach to estimate the
NESZ using a method based on the minimum eigenvalue of
the 4 × 4 sample coherency matrix, named the eigenvalue-
based (EB) estimator of NESZ, i.e., NESZEB . The fourth
(minimum) eigenvalue represents the noise power, i.e., the
NESZ. The second method tested was suggested in [76], and
uses the maximum likelihood (ML) to estimate the NESZ, i.e.,
NESZML. To estimate the NESZ based on the ML estimator,
a given number of samples are needed (see [76] for more
details). The number of samples is given within a window

that steps across the two cross-polarization coefficients (HV
and VH). The same is the case for the EB estimator, since
the sample coherency matrix is calculated using a smoothing
filter with a given window size, i.e., number of samples. To
evaluate the robustness in terms of the window size, the EM
and the ML estimator of the NESZ is carried out with several
window sizes using an averaging filter mask.

The estimation of the NESZ is performed over a clean sea
area across the full range within each RS-2 and UAVSAR
scene. Figs. 10 and 11 show the two estimators using only
one RS-2 scene acquired 8 June 2011 and one UAVSAR scene
acquired 11 June 2015. The estimated NESZ based on the
EB-estimator (the left panel of Fig. 10) seems to converge
towards a given value as the window size increases. The EB
estimator is very sensitive to the window size, as expected
based on the study in [76], where the authors show that the
EB estimator is biased. Therefore, [76] suggested an unbiased
and more efficient estimator of the noise power, namely the
ML estimator. The estimator’s sample size independence is
observed in the right panel of Figs. 10 and 11.

The estimated NESZ of both the EB (with large window
size) and the ML estimator is about ±1dB from the nominal
NESZ values for all the RS-2 scenes used in this study.
Therefore, we consider the nominal NESZ values from RS-
2 trustworthy to use in the analysis. Unfortunately, since no
quad-polarimetric data are available in the TS-X products, the
ML and EB methods cannot be applied. The estimated NESZ
of the UAVSAR is higher than the nominal values by more
than 10dB for some incidence angles. This is consistent with
the influence of ISLR as a multiplicative noise term (see Table
I), reducing the effective SNR for UAVSAR data by up to
15dB as seen in Fig. 3. The cross-talk contamination/leakage
from the copolarization into the cross-polarization channels
may also contribute to this high deviation between the nominal
and the estimated NESZ. The influence of the multiplicative
noise terms is not observed in the estimated NESZ for RS-2,
as the estimated NESZ values are similar to the nominal ones.
Further investigation of the absence of the multiplicative noise
terms is therefore encouraged.

Fig. 10. Estimation of the noise powers NESZEB and NESZML of one
RS-2 scene (8 June 2011 at 05:59 UTC) using various window sizes when
smoothing with an averaging filter mask. The black continuous line shows
the nominal NESZ values for the given RS-2 product.
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