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Summary 
 

The current pace of environmental change associated to anthropogenic climate change 

demands that ecologists improve their understanding of climate impacts on natural systems to 

provide guidelines for mitigating such impacts. Long-term monitoring data are at the foundation 

of climate-ecological studies because they allow tracking both fast and slow ecosystem changes. 

They are also required information for generating forecasts of future ecosystem states, which are 

increasingly requested by managers and decision-makers. Among the regions of the Earth, the 

Arctic is one experiencing major environmental changes due to accelerated warming rate. Arctic 

tundra food webs exhibit complex dynamics in spite of their relatively simple structure, because of 

the prevalence of tight interactions between trophic levels. Climate change impacts can therefore 

propagate across food webs and result in non-trivial indirect effects on arctic species and 

populations. In this thesis, constituted by four papers, I address the general issue of how rapid 

climate change and other environmental stressors affect the population dynamics of arctic species 

of management concern. I used a combination of state-of-the-art approaches to test hypotheses 

on biotic and abiotic drivers of population dynamics of three target species: the Svalbard rock 

ptarmigan Lagopus muta hyperborea, the willow ptarmigan Lagopus lagopus, and the lesser white-fronted 

goose Anser erythropus. I based my investigation on long-term time series available for both the study 

populations and linked ecosystem components. I aimed to infer general ecological mechanisms 

driving population dynamics of arctic species facing climate change, but also provide 

recommendations for improved monitoring and management of the study populations. In paper I, 

I used state-space models to explain population dynamics of the Svalbard rock ptarmigan and 

generated iterative near-term forecasts of next-year population density. I found that major changes 

in winter climate in terms of mean temperature seem to have overruled the negative impact of 

other climate-change related stressors and driven the recent ptarmigan population increase. I also 

compared the ability of models of different complexity to predict next-year ptarmigan density and 

observed that more complex models seem to predict abrupt changes in density better than simpler 
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models. The fact that model predictions improved with more years of data supports the 

continuation of the ptarmigan monitoring and the forecast assessment in the coming years. I used 

the same approach in paper II, where I investigated population dynamics of willow ptarmigan in 

northern Norway. In this case, groups of different stakeholders were involved in a collaborative 

modelling process through a Strategic Foresight Protocol, and their views about drivers of 

ptarmigan dynamics were formally integrated in the statistical models. Stakeholders were also 

interested in having predictions of next-year ptarmigan density to adapt harvest strategies. I found 

evidence for stakeholders’ intuition that climate change affects willow ptarmigan through 

intensified outbreaks of insect pests, which defoliate birch forests and consequently affect the 

understory vegetation causing chances in preferred ptarmigan forage. I also found evidence for an 

effect of delayed onset of winter, which is a key manifestation of climate change and likely leads to 

enhance predation on ptarmigan due to camouflage mismatch. The results regarding the near-term 

prediction power of the models were similar to those observed for the Svalbard rock ptarmigan. 

In papers III and IV, I evaluated the contribution of predator control to the recent recovery of the 

Fennoscandian population of lesser white-fronted goose, a highly endangered arctic-breeding 

population that is monitored across its entire range and safeguarded at key staging sites to improve 

its conservation status. In paper III, I found no evidence that culling of red foxes at the goose 

breeding sites in northern Norway increased goose reproductive success. The dramatic fluctuations 

in goose breeding success mirrored the cycles of small rodent populations, which typically drive 

inter-annual variability in tundra biodiversity through predator functional and numerical response. 

Moreover, ungulate carrion abundance had a negative impact, likely through numerical response 

of mesopredators. Red fox culling, however, was expected to also influence the probability that 

early-failed breeders embark on a long, alternative migration through Western Asia, where hunting 

mortality is supposed to be higher compared with the regular migration route through Eastern 

Europe. In paper IV, I parameterized a state-space model describing the life cycle of the goose 

population and found no evidence that adult survival probabilities differ between the two migration 
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routes. The results suggest that the combination of other management interventions carried out at 

staging and wintering sites may have contributed to the recent population recovery more than the 

red fox culling program. Overall, my thesis constitutes a compelling example of how a holistic 

approach incorporating food web dynamics and relying on ecosystem-wide monitoring data can 

improve our understanding of the multifaceted impacts of environmental changes and aid the 

management of populations subjected to rapid climate changes.   
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1. Introduction 
 

A changing planet, a changing Arctic 
 

After the pre-industrial era, human activities have undoubtedly affected the trajectory of the 

Earth System, and there is enormous scientific consensus that they constitute the main cause of 

the environmental changes observed today (Steffen et al., 2018). Human impacts on planet Earth 

are so strong and pervasive that the geological epoch in which we live has been termed 

“Anthropocene” (Lewis & Maslin, 2015). Global warming and associated changes in climate 

patterns represent the unequivocal manifestation of human footprint on the planet. The global 

mean temperature has already increased by approximately 1°C compared to pre-industrial levels, 

and the increase will likely exceed 2°C by the end of the century if human greenhouse gas emissions 

are not dampened (IPCC, 2014).  

Anthropogenic climate change affects natural systems in multiple ways and at different levels 

of biological organization (Bellard, Bertelsmeier, Leadley, Thuiller, & Courchamp, 2012; Parmesan, 

2006; Walther et al., 2002). Climate change affects ecosystems not only through changes in average 

climate conditions, but also through enhanced climate variability, because frequency and intensity 

of extreme events is predicted to increase (Maxwell et al., 2018). Moreover, climate change interacts 

with other anthropogenic pressures on ecosystems, such as habitat loss, overharvesting, and 

introduction of exotic species (Malhi et al., 2020). Environmental changes and associated effects 

on biota are particularly pronounced in the polar regions (Post et al., 2009), where warming is 

happening faster than the rest of the world due to a phenomenon referred to as Arctic amplification 

(Serreze & Barry, 2011). Increasing trends in mean air temperature and precipitations, thawing 

permafrost, decreasing trends in sea ice extent and thickness as well as snow cover and duration, 

are indicators of major physical changes occurring in the Arctic (Box et al., 2019). The ecological 

consequences associated with arctic climate change are numerous. They involve alterations of 

carbon cycling, nutrient cycling, primary production (tundra greening), plant and animal phenology, 
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frequency/intensity of insect pest outbreaks, and species distribution and dynamics (Box et al., 

2019; Ims, Jepsen, Stien, & Yoccoz, 2013). Arctic ecosystems are rapidly moving into previously 

unseen states. Predicting these novel states requires scientists to abandon established empirical 

relationships between biotic and abiotic components, and instead look beyond the boundaries of 

historical variation of arctic ecosystems (Cook, Inayatullah, Burgman, Sutherland, & Wintle, 2014; 

Evans, 2012). 

 

Population dynamics in arctic tundra food webs 
 

Arctic tundra ecosystems host relatively simple terrestrial food webs compared to boreal and 

tropical ecosystems (Ims & Fuglei, 2005). Tundra ecosystems exhibit low primary productivity due 

to restricted plant growth and bacterial activity that ultimately leads to relatively low food web 

complexity (Callaghan et al., 2004; Oksanen, Fretwell, Arruda, & Niemela, 1981; Oksanen & 

Oksanen, 2000). Consequently, tundra food webs usually have three trophic levels – plants, 

herbivores, and predators (Krebs et al., 2003). In spite of this relatively low complexity, food web 

dynamics can be complex. Strong interspecific interactions between trophic levels dominate in 

tundra food webs (Ims & Fuglei, 2005). While low primary productivity imposes bottom-up 

limitations on higher trophic levels, both herbivores and predators can exert a certain degree of 

top-down control on lower trophic levels (Ims et al., 2019; Ravolainen et al., 2020). Moreover, 

population cycles are widespread in tundra food webs, causing high variation in species 

composition and abundance between years, and influencing the functioning of the whole 

ecosystem (Ims & Fuglei, 2005). The impressive population cycles of small rodents (lemmings and 

voles), usually constitute the main driving force of this inter-annual variability in tundra biodiversity. 

They determine dramatic changes in predation patterns by triggering functional and numerical 

responses in predator populations, causing reproductive success of alternative preys to fluctuate in 

synchrony with the rodent cycle – the so-called alternative-prey mechanism (Angerbjörn et al., 2013; 

Gauthier, Bêty, Giroux, & Rochefort, 2004; Ims & Fuglei, 2005; Ims, Jepsen, et al., 2013; 
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McKinnon, Berteaux, & Bêty, 2014; Summers & Underhill, 2009). Transient dynamics, however, 

are common even in cycling tundra populations (Henden, Ims, & Yoccoz, 2009). Transient 

dynamics are persistent dynamics regimes that can last for generations (Hastings et al., 2018) and, 

in tundra food webs, cause shifts in cycle occurrence, periodicity, amplitude, as well as changes in 

average population density (Moss & Watson, 2001). Therefore, accounting for biotic interactions 

and processes is important to understand population dynamics of tundra species and how they will 

be influenced by environmental changes.  

Because environmental impacts on a given species may spread throughout the food web, 

understanding drivers of population dynamics means considering both direct and indirect effects 

of environmental changes. While direct effects usually affect species by altering their physical 

environment, indirect effects modify interspecific interactions within the food web (Ives, 1995; 

Tylianakis, Didham, Bascompte, & Wardle, 2008). For instance, advanced spring snowmelt and 

delayed winter onset in the Arctic, on one hand, may be beneficial for herbivores by prolonging 

the season with high food accessibility (Albon et al., 2017; Tveraa, Stien, Bårdsen, & Fauchald, 

2013). On the other hand, it can also cause trophic mismatch with food resources (Post & 

Forchhammer, 2008) or enhance predation pressure on species that exhibit seasonal coat colour 

moult due to camouflage mismatch (Zimova et al., 2018). Similarly, extreme weather events such 

as heavy precipitations during winter causing formation of ground ice can negatively influence 

herbivores in a direct manner by impeding forage access (Hansen et al., 2014; Stien et al., 2012). 

However, they may also alter predation patterns by providing the predator/scavenger guild with 

abundant carrion resources (Eide, Stien, Prestrud, Yoccoz, & Fuglei, 2012), thereby promoting a 

numerical predator response and consequently higher predation on other prey species (Hansen et 

al., 2013; Henden et al., 2014). Climate change has also been proposed as the ultimate cause of 

faltering population cycles of keystone species such as lemmings and voles in some parts of the 

Arctic (Ims, Yoccoz, & Killengreen, 2011), which implies indirect consequences on several species.  

Different life stages or life-history parameters can be influenced by direct effects of climate 
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and environmental change, and then act as mediators of indirect effects on population dynamics. 

This often implies a time lag in the observed response in population dynamics. For instance, 

ungulate body mass is sensitive to the timing of spring onset (Tveraa et al., 2013) and affects 

survival and fecundity (Gaillard, Festa-Bianchet, Yoccoz, Loison, & Toigo, 2000). Therefore, 

changes in timing of spring onset may affect crucial vital rates at a later stage through direct effects 

on key life-history traits, such as body mass. Considering factors that may display delayed effects 

is thus fundamental when studying population dynamics.  

 

Iterative forecasting to aid wildlife management 
 

Under the current global environmental changes, sustainable management of wildlife 

populations increasingly demands ecologists to generate not only novel knowledge about target 

ecosystems and populations, but also predictions of future ecosystem and population states 

(Petchey et al., 2015). Predicting long-term effects of climate and environmental changes, however, 

is a challenging task (Beckage, Gross, & Kauffman, 2011; Planque, 2016). Long-term predictions 

are generally affected by large uncertainty (Petchey et al., 2015). The multidecadal time scale at 

which ecological forecasting is usually conducted does not allow assessing the accuracy of the 

predictions by comparison with new empirical observations (Dietze et al., 2018). In addition, long-

term predictions do not match the timescale required by environmental decision-making (Dietze 

et al., 2018).  

Generating testable predictions is not a well-established practice in ecology (Houlahan, 

McKinney, Anderson, & McGill, 2017). Most of the published papers in ecology are stand-alone 

studies grounding their conclusions on analyses that are never performed more than once (Nichols, 

Kendall, & Boomer, 2019). Because of the low reproducibility of results, the validity of scientific 

studies has already been questioned in medical sciences (Ioannidis, 2005) and psychology (Open 

Science Collaboration, 2015), and there is concern that the same issue may afflict ecology. For these 

reasons, several ecologists advocate a shift towards an iterative near-term forecasting approach (e.g. 
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Dietze, 2017; Dietze et al., 2018; Petchey et al., 2015; White et al., 2019). This approach implies 

routine generation of forecasts of an ecological target, and evaluation of the accuracy of the 

forecasts by comparing them with new observations as soon as new data is collected.  

Testing predictions in light of new data simply reflects the hypothetico-deductive reasoning 

of the scientific method. The iterative near-term forecasting framework offers multiple benefits: 1) 

near-term predictions are practical to validate, as opposed to projections far in the future; 2) 

validation occurs with new data (out-of-sample) rather than the data used to make predictions (in-

sample); 3) iterating the process allows more frequent hypothesis testing and thus the science to 

become more robust; 4) the short timescale is relevant to environmental decision-making and 

implementation of management policies; and 5) when management actions are involved, it allows 

iterative evaluation of their efficacy. Therefore, the iterative near-term forecasting framework 

represents a suitable platform to generate both explanatory predictions (to test theories) and 

anticipatory predictions (to describe future scenarios) (Maris et al., 2018). Other disciplines have 

already benefitted from adopting this approach. Meteorology, for instance, has remarkably 

improved its forecasting ability over the recent decades (Urban et al., 2016). In ecology, however, 

only few attempts have been made to establish automated near-term forecasting platforms. They 

include systems for predicting species richness (Harris, Taylor, & White, 2018), abundance (White 

et al., 2019), and phenology (Taylor & White, 2020).  

That iterative near-term forecasting is yet not common in the context of wildlife management 

is somewhat surprising, because it constitutes the foundation of the concept of adaptive 

management (Nichols, Johnson, Williams, Boomer, & Wilson, 2015). Adaptive management was 

developed to frame the process of decision-making while simultaneously coping with large 

uncertainties of the future. The concept is not new (Walters, 1986), but it has encountered 

difficulties to establish in wildlife management. The case of the adaptive waterfowl harvest 

management in North America is one exception, where comparing >20 years of model-based 

predictions with observed abundances led to a significant reduction in uncertainty about processes 
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driving mallard population dynamics. At the same time, harvesting strategies have been tuned 

annually based on weighted projections of population responses from competing models (see 

Nichols et al., 2019). The North America adaptive waterfowl management is often acknowledged 

as a successful story, where basic knowledge is generated while the system is actively managed.  

The current pace of global environmental changes urges management practices to shift 

towards approaches that cope with the uncertainty of systems that are moving away from the 

envelope of historical variation while improving the ability to forecast on a policy-relevant timescale 

(Dietze et al., 2018). In the Arctic, where food webs are relatively simple but environmental changes 

are rapid, the iterative near-term forecasting approach may be the way to track future changes and 

promptly develop adaptation strategies. Because several arctic populations are currently of 

management or conservation concern (Ims, Ehrich, et al., 2013), developing dynamic forecasting 

platforms could aid disentangling increasingly complex population dynamics while adjusting 

management policies.   
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2. Thesis objectives 
 

This thesis was carried out within the context of SUSTAIN, which was a large project funded 

by the Norwegian Research Council over the years 2016-2020 that involved several research 

institutes in Norway. Through a series of case studies across terrestrial, freshwater, and marine 

ecosystems, SUSTAIN aimed to address the general question of how combined anthropogenic and 

climatic changes affect different harvested ecosystems, and how management strategies can be 

improved to ensure sustainable exploitation. SUSTAIN was implemented within the framework of 

strategic foresight (Cook et al., 2014), a structured process where researchers work in close 

connection with a user panel of NGOs, decision-makers and stakeholders in the context of 

adaptive management.  

 

Research questions 
 

In this thesis, I aimed to address the general question of how rapid climate changes, in 

combination with other environmental drivers, affects dynamics of arctic populations of 

management and conservation concern. Specifically, I aimed to test hypotheses on potential biotic 

and abiotic drivers of population dynamics of three target species inhabiting two different 

ecosystems: the Svalbard rock ptarmigan Lagopus muta hyperborea, the willow ptarmigan Lagopus 

lagopus, and the Fennoscandian lesser white-fronted goose Anser erythropus. Through these case 

studies, presented in four papers, I intended to shed light on general ecological mechanisms that 

are likely to occur also in other regions of the Arctic, while providing specific recommendations 

for monitoring and management of the study populations. 

 Three overarching research questions summarize the goals of this thesis: 

 

1. How do biotic and abiotic factors influence dynamics of managed populations in 

rapidly changing arctic environments? 
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Biotic interactions and abiotic drivers influence fluctuations in population abundance. Such 

influences may affect directly the population growth rate, but the effects may also travel across 

trophic levels and reveal themselves after a certain time lag (Gellner, McCann, & Grayson-Gaito, 

2020). Therefore, disentangling drivers of population dynamics and quantifying their relative 

impact requires accounting for key food web interactions and their potential indirect effects 

(Barton & Ives, 2014; O'Connor, Emmerson, Crowe, & Donohue, 2013). This is especially 

important in ecosystems that are experiencing novel climates and thereby major alterations of food 

web interactions, such as Arctic ecosystems. I addressed this issue by investigating drivers of 

population dynamics of both Svalbard rock ptarmigan (paper I) and willow ptarmigan (paper II), 

and the determinants of reproductive success in the Fennoscandian lesser white-fronted goose 

(paper III). All these species/populations are subject to either harvest or management interventions.  

 

2. How reliably can we forecast population dynamics of harvested species on a near-term 

temporal scale? 

 

Generating forecasts from competing statistical models on a near-term time scale is today 

advocated to improve both understanding and management of natural systems (Dietze et al., 2018). 

The relationship between model complexity and prediction accuracy, however, is not obvious 

(Gerber & Kendall, 2018). Testing the accuracy of predictions on a regular basis is fundamental to 

improve models’ predictive ability. In papers I and II, I investigated how reliably models of 

increasing complexity predicted next-year ptarmigan population density. I expected that the 

inclusion of biotic and abiotic predictors would improve the accuracy of the predictions, and that 

the prediction error would decrease with the length of the time series.  

 

3. What are the impacts of management actions carried out for species of conservation 
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concern? 

 

Conservation and management programs are rarely evaluated with respect to their 

effectiveness (Sutherland, Pullin, Dolman, & Knight, 2004). This is a challenging task especially 

when the target of a given intervention is a small population, because implementing proper 

experimental designs to assess the efficacy of the intervention is often impossible (Taylor et al., 

2017). Moreover, dynamical ecosystem components may confound the effect of a management 

action (Angerbjörn et al., 2013). In systems dominated by strong fluctuations in weather patterns 

and food web interactions such as tundra ecosystems, a holistic approach is therefore required to 

assess the outcome of management interventions. This issue was mainly addressed in papers III 

and IV, where I evaluated the effectiveness of a prominent management action implemented to 

reverse the decline of the Fennoscandian lesser white-fronted goose population. Specifically, I 

quantified the contribution of 9 years of predator control – in the form of extensive red fox Vulpes 

vulpes culling – to variation in goose reproductive success, while accounting for food web 

interactions that were likely to constitute key drivers of reproductive success (paper III). Effective 

management strategies, however, should also rely on information regarding which demographic 

rates are more likely to be influential on population dynamics (Johnson, Mills, Stephenson, & 

Wehausen, 2010; Mills, 2007). I built upon the results of paper III to investigate whether the same 

management action affected the growth rate of the goose population through its influence on the 

choice of the autumn migration route, i.e. making geese avoid an alternative route where hunting 

mortality was expected to be high (paper IV).  
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3. Methods 
 

Study systems 
 

The study systems are located within the arctic tundra. The arctic tundra is the northernmost 

of earth’s biomes and forms a circumpolar belt above the 10-12°C July isotherms, which represent 

the temperature limit for the development of forest. It appears as a vast treeless landscape that 

extends northward, up to the edge of the arctic oceans. The transition from continuous forest, 

however, is gradual, and the southern boundary is not sharp. Owing to its large extent, the tundra 

biome encompasses a wide range of climatic conditions, with marked latitudinal and longitudinal 

temperature gradients. Consequently, the arctic tundra biome shows high spatial variation in terms 

of ecosystem structure, especially vegetation types (Ims, Ehrich, et al., 2013). The five bioclimatic 

zones identified by the Circumpolar Arctic Vegetation Map (CAVM Team, 2003) can be coarsely 

reduced to two regions, the low- and high-arctic tundra.  

The study system of paper I, the archipelago of Svalbard, belongs to the high-arctic tundra 

zone (Fig. 1a). The climate of Svalbard, strongly influenced by the warm North Atlantic current, is 

characterized by low precipitations and relatively mild winters, with average winter temperatures 

up to 20°C higher than elsewhere at the same latitudes (Ims, Jepsen, et al., 2013). Drier inner areas 

classified as polar desert give way to areas with relatively high primary production around the outer 

part of the western fjords, where steep altitudinal gradients are associated to steep gradients in 

vegetation structure. Dwarf shrubs, grasses, sedges, forbs, and mosses prevail in the deep, most 

productive valleys. The alpine mountains delimiting these valleys dominate the landscape and 

typically show sparse vegetation of the type observed in polar deserts (Ims, Jepsen, et al., 2013). 

The terrestrial food web of Svalbard is among the least complex arctic food webs because it lacks 

some typical keystone species such as small mammalian herbivores and specialist predators (Ims & 

Fuglei, 2005). The food web is plant-based with significant external inputs from limnic and marine 

ecosystems in terms of energy and nutrients (Ims, Jepsen, et al., 2013). Two herbivore species 
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inhabit the archipelago year-round, the Svalbard reindeer Rangifer tarandus platyrhynchus and the 

Svalbard rock ptarmigan, while two herbivore bird species, the barnacle goose Branta leucopsis and 

the pink-footed goose Anser brachyrhynchus, are migratory and present only in the summer. The 

predator/scavenger guild includes the arctic fox Vulpes lagopus and the glaucous gull Larus 

hyperboreus, both of which are also linked to marine resources. Migrating passerine and shore bird 

species contribute to increase species diversity in the summer.  

The study systems of papers II to IV corresponds to the northernmost part of Fennoscandia, 

around the lower boundary of the arctic region, and belongs to the sub- and low-arctic tundra 

zones (Fig. 1b). The Norwegian county of Finnmark, where the study areas lie, is a large region of 

approximately 45,000 km2, with a coast indented by wide fjords. It has marked west-east and coast-

inland climatic gradients, with the western and northern parts of the county being warmer and 

wetter due to the influence of the North Atlantic Current (Hanssen-Bauer, 1999). The steep 

mountain ranges and deep valleys of western Finnmark, with peaks around 800-1,200 m a.s.l., wane 

and become gentler towards the east, eventually plunging into the Barents Sea with sudden edges. 

Mild sloped hills and large plateaus typify the south-central inland part, where the landscape appears 

more homogenous. The sub-alpine boreal forest that constitutes the forest-tundra transition 

extends as narrow belts into the valleys of eastern Finnmark (Killengreen et al., 2007), while patches 

of mountain birch Betula pubescens are mostly present along a coastal belt (Bråthen et al., 2007). The 

low alpine zone is classified as low-shrub tundra (Walker et al., 2005) and is dominated by heath 

vegetation, such as Empetrum nigrum ssp. hermaphroditum, Betula nana and Vaccinium spp., interspersed 

by patches of mesic and wet vegetation (Bråthen et al., 2007). Grasslands typically dominate river 

plains (Petit Bon et al., 2020). During the long and dark winter, the tundra persists under a thick 

cover of ice and snow that melts between early and late June.  

The plant-based food web of the sub- and low-arctic tundra of northern Fennoscandia 

includes emblematic trophic interactions between keystone herbivore species and specialist 

predators. Several species of small rodents, such as the Norwegian lemming Lemmus lemmus, the 
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grey-sided vole Myodes rufocanus, and Microtus spp., inhabit the Fennoscandian tundra and influence 

trophic relationships across the whole food web through their population cycles. Rodent cycles in 

northern Fennoscandia exhibit a periodicity of 4-5 years (Ims & Fuglei, 2005), typically with a high 

degree of spatial and interspecific synchrony (Stenseth & Ims, 1993). Still, temporal and spatial 

variation in outbreak amplitude can be considerable (Kleiven, Henden, Ims, & Yoccoz, 2018). 

Large ungulates (semi-domesticated reindeer Rangifer tarandus, moose Alces alces) and medium-sized 

vertebrates (rock and willow ptarmigan, hare Lepus timidus) add to the herbivore guild of the 

Fennoscandia tundra. The semi-domesticated reindeer is the main large ungulate dwelling the 

region. The native Sámi people manages reindeer herds and maintain seasonal migration patterns, 

although with stringent spatial restrictions (Hausner, Engen, Brattland, Fauchald, & Root‐

Bernstein, 2020). Ptarmigan species exhibit population cycles that are linked to those of voles and 

lemmings (Henden, Ims, Fuglei, & Pedersen, 2017). Mammalian predators include the arctic fox 

Alopex lagopus, the ermine Mustela ermine, and the weasel Mustela nivalis, which are specialized on 

rodents and thus their population dynamics mirror those of rodent populations. The snowy owl 

Nyctea scandiaca, the short-eared owl Asio flammeus, and the rough-legged buzzard Buteo lagopus, also 

rely heavily on small rodents, while jaeger species (long-tailed jaeger Stercorarius longicaudus, parasitic 

jaeger Stercorarius parasiticus, pomarine jaeger Stercorarius pomarinus) have a more flexible diet. Several 

shorebird and goose species migrate up to these latitudes in the summer.  

Both study systems have been exhibiting symptoms of climate change impacts in the last 

decades. In Svalbard, the extent of change is tangible and concerns several aspects of the climate 

system, including increased annual mean temperature (Nordli, Przybylak, Ogilvie, & Isaksen, 2014) 

and winter rain (Peeters et al., 2019), decreased snow-cover duration and depth (Descamps et al., 

2017), and declined sea ice extent (Dahlke et al., 2020). This has severe effects on all trophic levels 

(e.g. Hansen et al., 2013; Hansen et al., 2019; Layton-Matthews, Hansen, Grotan, Fuglei, & Loonen, 

2019; Ravolainen et al., 2020; Stien et al., 2012; Tombre, Oudman, Shimmings, Griffin, & Prop, 

2019). In northern Fennoscandia, earlier onset of spring (Karlsen et al., 2009) and enhanced 
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duration of geometrid moth outbreaks (Jepsen et al., 2013) represent key manifestations of climate 

change effects. In addition, changes in winter climate have been proposed to cause faltering 

lemming cycles (Ims, Henden, & Killengreen, 2008; Kausrud et al., 2008). 

 

 

Fig. 1 – Study systems. a) Bjørndalen valley, Svalbard, June 2017 (©Filippo Marolla). b) Finnmark tundra (©Geir 

Vie). 

 

Target species 
 

Most of the work in this thesis is based on a food-web approach in the form of conceptual 

models that predict climate impacts targeted on a given species or population (Ims & Yoccoz, 

2017). The target species of paper I is the Svalbard rock ptarmigan (Fig. 2a), an endemic sub-species 

of the rock ptarmigan inhabiting the high-arctic archipelago of Svalbard year-round. This small 

herbivore is able to cope with the harsh winter conditions of the Arctic thanks to exceptional 

morphological, physiological, and behavioural adaptations (Nord & Folkow, 2018). Novel climatic 

conditions in Svalbard are expected to influence the Svalbard rock ptarmigan (Henden et al., 2017). 

Moreover, being the most common game species in Svalbard, it is of management concern, 

although this population appeared to have increased in recent years contrary to other circumpolar 

ptarmigan populations (Fuglei et al., 2019).  

The willow ptarmigan is the target species of paper II (Fig. 2b). Willow ptarmigan populations 

are renowned for their high-amplitude population cycles (Moss & Watson, 2001), although 
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transient dynamics  are common (Fuglei et al., 2019). The willow ptarmigan has a circumpolar 

distribution in the low- and sub-arctic tundra and is a popular game species across its entire range 

(Fuglei et al., 2019). Similar to several ptarmigan populations worldwide, willow ptarmigan 

populations in Norway have recently declined (Fuglei et al., 2019). Both abiotic and biotic 

mechanisms are thought to have caused the decline, most of which ultimately relate to climate and 

environmental changes (Henden et al., 2017). 

Papers III and IV target a highly endangered migratory bird population, the Fennoscandian 

population of lesser white-fronted goose (Fig. 2c and d). This goose species is a sub- and low-arctic 

breeder that overwinters in temperate Eurasia. The Fennoscandian population is the smallest 

among the lesser white-fronted goose populations and is considered a single management unit 

(Ruokonen et al., 2004). The dramatic decline experienced by this population during the 20th 

century dragged it to the brink of extinction, with fewer than 30 individuals estimated in 2008. This 

resulted in the establishment of a large conservation network involving several countries across the 

population’s range (Ekker & Bø, 2017). The extent of the international cooperation to halt the 

decline of the population has been remarkable so far (see Vougioukalou, Kazantzidis, & Aarvak, 

2017). This has likely contributed to the recent population increase in the last decade, but the 

specific contributions of the different management actions, implemented both at breeding and 

staging sites, remains unclear.   
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Fig. 2 – Study species. a) Male Svalbard rock ptarmigan (paper I. ©Guro Krempig). b) Female willow ptarmigan 

with a chick (paper II. ©Eivind Flittie Kleiven). c) Female lesser white-fronted goose on the nest in Finnmark 

(paper III. ©Tomas Aarvak). d) Flying flock of lesser white-fronted geese (paper IV. ©Tomas Aarvak).  

 

Conceptual models of climate and management impact 
 

In all papers, we embraced the food web approach developed by COAT – Climate-ecological 

Observatory for Arctic Tundra (Ims, Jepsen, et al., 2013). COAT is a long-term, ecosystem-wide 

monitoring system that targets food webs and their dynamics rather than single species or 

populations to ease the detection of climate and anthropogenic changes and improve the ability to 

predict future changes. Based on COAT’s experience, we developed case-specific conceptual 

models describing predicted direct and indirect pathways of climate and human impacts on the 

target species (Fig. 3). We did not consider food webs in their entirety, but rather targeted key state 

variables and interactions within food webs, those that were likely to be most affected by climate 

and/or management. The a-priori hypotheses depicted by the conceptual models were then tested 

with empirical data. Most of the predictors representing environmental state variables and included 
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in the models were indicators of significant climate and ecosystem changes.  

In the willow ptarmigan case study (paper II), a Strategic Foresight Protocol (Cook et al., 2014) 

was used to develop the conceptual food web model (Fig. 3b) while formally integrating the 

knowledge and needs of stakeholder groups as well as their expectations regarding potential future 

changes. Hunters association, governmental management authorities, and conservation groups, 

throughout a series of structured meetings, expressed their interest in developing a data-driven 

model that could both explain past dynamics of ptarmigan populations and provide near-term 

forecasts of ptarmigan density. Stakeholder’s knowledge about the study system was important to 

identify potential drivers of both short-term dynamics and long-term negative trends of ptarmigan 

populations to include in the conceptual model. The aim of the Strategic Foresight Protocol was 

not only to gain consensus on the impact pathways to include in the model, but also to establish a 

platform for participatory modelling that could increase the trust between stakeholders and 

scientists and lead to better management decisions. 

In paper III, we used mathematical modelling to derive predictions of indirect food web 

interactions included in the conceptual model (Fig. 3c). Mathematical modelling provides a 

framework to explore under which conditions the hypothesized mechanisms in the conceptual 

model can be observed, and thus provide refined theoretical predictions. We generated theoretical 

predictions regarding how two resource supplies, small rodents and reindeer carcasses, may affect 

predation exerted by one main predator, the red fox, on one prey item, the lesser white-fronted 

goose. Under a set of assumptions based on available knowledge about red fox food preferences 

and its functional and numerical responses to the resource supplies, we observed the expected 

patterns, i.e. apparent facilitation by small rodents and apparent competition with reindeer carrion, 

in agreement with previous predictions (Abrams & Matsuda, 1996; Holt & Bonsall, 2017). Hence, 

we used the model assumptions and output as support to the hypothesized interactions. 
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Fig. 3 – Examples of conceptual models depicting potential drivers of dynamics of the target populations; a) 

Svalbard rock ptarmigan, b) willow ptarmigan, c) lesser white-fronted goose. Solid arrows represent direct 

impacts while dashed arrows represent indirect effects or pathways. +/- denote the expected direction of the 

relationship. Each conceptual model was tailored on the specific study case; therefore, the interpretation of the 

arrows slightly differs among models. In a), expected directions of impacts are placed only on pathways that were 

parameterized. In b), both direct and indirect impacts were given an expected direction, even if not all the arrows 

were eventually parameterized. In c), indirect effects were parameterized and thus given an expected direction. 

The thicker arrow in c) means preference of the predator for that prey when it is abundant. The conceptual 

model in c) was also supported by mathematical predictions of how alternative resource supplies (rodents and 

ungulate carrion) influence predation on geese (graph to the right).  

 

Data collection 
 

The time-series data utilized in this thesis comes mostly from the COAT monitoring systems. 

In Svalbard, the local rock ptarmigan population is monitored by a point-transect distance-

sampling design on ptarmigan males displaying territorial behaviour. As of today, the time series 

spans twenty years. Similarly, the willow ptarmigan in Finnmark is monitored since 2000 by line-

transect distance-sampling surveys organized by one major landowner (The Finnmark Estate FeFo) 

and Hønsfuglportalen (http://honsefugl.nina.no/Innsyn/). State variables monitored under 

COAT and incorporated in the analyses of papers I and II included small-rodent abundance and 

http://honsefugl.nina.no/Innsyn/
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moth outbreak intensity (paper I), ungulate carrion abundance (papers I and II), and a set of 

weather variables measured at local weather stations or generated by interpolated gridded data by 

the Norwegian Meteorological Institute. 

For paper III, we benefitted from a long-term monitoring series on the Fennoscandian lesser 

white-fronted goose population, which is annually monitored by the Norwegian Ornithological 

Society (NOF). Individuals are counted and aged at their arrival in northern Norway in the spring. 

Counts are carried out before and after the breeding period, when the population gathers in a 

relatively small staging area. To unravel drivers of goose population dynamics, COAT data on small 

rodent abundance as well as ungulate carrion data were included in the analysis. The goose 

population is also monitored at several locations along its migration route. In paper IV, we added 

count data from two major stopovers in Hungary and Greece to the counts performed in northern 

Norway. This allowed us to describe the life cycle of the population and investigate its demographic 

structure and dynamics.  

 

Analytical methods 
 

Except for paper III, where we used standard generalized linear models to investigate drivers 

of breeding success in the Fennoscandian lesser white-fronted goose population, we conducted 

data analyses in a state-space modelling framework. Below, I briefly describe how this approach 

was tailored to each case study.   

A typical goal of a population dynamics analysis is to estimate population growth rate and 

identify the environmental drivers influencing it. Typically, however, the exact size of the target 

population is unknown and only counts associated to a certain, unknown observation error are 

available. Not accounting for this error in the detection process not only makes it difficult to 

statistically disentangle drivers of variation in growth rate (Freckleton, Watkinson, Green, & 

Sutherland, 2006), it can also lead to biased estimates of abundance and growth rate (Hostetler, 

Sillett, & Marra, 2015). State-space models come in handy because they link the detections resulting 
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from field surveys, i.e. the “observation process” affected by measurement error, to the latent and 

true state of the population, i.e. the “state process” that represents the population abundance free 

of observation error (Kéry & Schaub, 2011). A state-space model is a hierarchical model because 

the observation process is conditional to the state process and the detection error (Royle & Dorazio, 

2008). The state-space modelling framework has proved extremely flexible and has been applied 

to several types of data to address different needs, such as estimating survival (Gimenez et al., 2007; 

Royle, 2008), state-transition (Lebreton, Nichols, Barker, Pradel, & Spendelow, 2009), or species 

occurrence and site occupancy (Kéry & Andrew Royle, 2010).  

In papers I and II, we developed Hierarchical Distance Sampling models (HDS; Kéry & Royle, 

2016) fitted to distance-sampling count data of ptarmigan populations in Svalbard and Finnmark. 

An HDS model consists of a process model that describes spatiotemporal variation in ptarmigan 

population density – often but not necessarily as a function of environmental predictors – and a 

detection model that estimates an average detection probability across survey sites based on the 

observed distances from the line/point transect. The skeleton of the HDS models developed for 

the Svalbard rock ptarmigan and the willow ptarmigan in Finnmark was the same. In both cases, 

the process model consists of two sub-models, one for the first year describing initial density and 

one for the consecutive years. The latter takes the form of a classic Gompertz population dynamics 

model, which on the log scale becomes a first-order auto-regressive time-series model (Dennis, 

Ponciano, Lele, Taper, & Staples, 2006). Hence, environmental predictors must be interpreted as 

affecting growth rate. The main difference between the Svalbard rock ptarmigan and the willow 

ptarmigan case concerns the sampling protocol, i.e. line-transect vs point-transect distance 

sampling, but this does not influence the calculation of the distance-sampling likelihood.  

We used the state-space modelling framework also in paper IV, where we parameterized a 

model describing population dynamics of the Fennoscandian lesser white-fronted goose 

throughout its annual cycle to estimate age-specific transition probabilities and population growth 

rate. The modelling approach is part of a set of statistical methods developed to estimate vital rates 
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from counts of aggregated age classes and referred to as “inverse modelling” (González, Martorell, 

Bolker, & McMahon, 2016). This method allows estimating survival probabilities from unmarked 

animals, thereby overcoming the issue of handling individuals belonging to endangered populations, 

which is often not advisable or feasible (Wielgus, Gonzalez-Suarez, Aurioles-Gamboa, & Gerber, 

2008). We studied the life cycle of the goose population as it migrates between wintering (Greece), 

staging (Hungary), and breeding sites (Norway). In the state-space model, age-specific abundances 

at each stopover location are modelled as latent variables that generate the observed counts and 

that are described by stochastic processes to account for demographic stochasticity.  

All state-space models were analysed in a Bayesian framework. Hierarchical models developed 

under a Bayesian framework have become increasingly common in ecology (Tenan, O’Hara, 

Hendriks, & Tavecchia, 2014). The Bayesian framework, in fact, has proved particularly convenient 

when the goal is estimating parameters that lie at intermediate level in a hierarchical model, or latent 

variables (Dorazio, 2015). The degree of complexity of a model that can be achieved by Bayesian 

methods is rather high. They allow, for instance, the combination of information from different 

types of dataset in the so-called integrated population models to improve parameter estimates 

(Schaub & Abadi, 2010).  

A motivation behind the choice of the Bayesian framework was that it is suited for the 

implementation of the near-term forecasting approach. An important technical aspect of the 

approach is that novel knowledge about parameters should be included when analyses are iterated 

in light of new data. Because the Bayesian framework welcomes prior information about 

parameters in the form of prior distributions and starting values that initiate the MCMC chains, it 

constitutes an ideal environment to generate near-term anticipatory predictions that can be updated 

as new data are collected. We used this approach in papers I and II to test the accuracy of 

predictions of next-year ptarmigan population densities.  
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4. Results and discussion 
 

1. How do biotic and abiotic factors influence dynamics of managed populations in 

rapidly changing arctic environments? 

 

Through a series of study cases analyzed in papers I to III, we gathered evidence about effects 

of climate and environmental changes on three arctic populations subjected to management. In 

paper I, we related the recent increasing trend in the Svalbard rock ptarmigan population to major 

changes in winter climate, especially with respect to temperature. In the last 50 years, mean winter 

temperature has remarkably increased in Svalbard by 3-5°C (Hanssen-Bauer et al., 2019). To ensure 

thermal insulation and energy store during the inclement arctic winter, ptarmigan accumulate body 

fats that can exceed 30% of their body mass at the onset of winter (Grammeltvedt & Steen, 1978; 

Mortensen, Unander, Kolstad, & Blix, 1983). The strong positive effect of mean winter 

temperature on population growth rate supports the hypothesis that warmer winters reduce the 

energy consumption needed for thermoregulation, suggesting it improved body condition 

throughout winter and ultimately increased survival and recruitment. This result, however, must be 

interpreted with caution, owing to potential confounding between mean winter temperature and 

effects of harvest and density dependence. We also found support for a negative effect of rain-on-

snow (ROS) events, likely through formation of ground ice that hinders access to vegetation. 

Although this effect is consistent with several prior studies (e.g. Hansen et al., 2013; Hansen et al., 

2019; Stien et al., 2012), the most recent winters in Svalbard have been so warm that the positive 

temperature effect appears to have overruled the negative ROS effect. Overall, the results of paper 

I suggest that winter is the season when crucial changes influencing the Svalbard ptarmigan 

population dynamics occur.  

The target species of papers II and III, the willow ptarmigan and the lesser white-fronted 

goose, belong to the sub/low-arctic tundra and are therefore exposed to a different environment 
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with different food web interactions. As expected based on previous findings from several tundra 

ecosystems, we found that both willow ptarmigan dynamics and goose breeding success in northern 

Norway were positively influenced by the cyclic dynamics of sympatric rodent populations. The 

synchrony between rodent cycles and goose reproductive performance was exceptionally strong 

and temporally consistent, causing dramatic annual variation in the number of fledglings produced 

by each goose breeding pair. Because climate change appears to affect the temporal consistency of 

rodent cycles (Kausrud et al., 2008), this result suggests that the goose population may suffer from 

increasingly irregular cycles in the future (Nolet et al., 2013). With respect to the willow ptarmigan, 

we found support for previously documented effects, such as the negative impact of inclement 

weather conditions on early chick survival, as well as novel effects. Particularly interesting were the 

negative effects of insect pest outbreaks and winter onset. Outbreaks of insect pest such as 

geometrid moths defoliate birch forests and appear to cause shifts from shrub to grass in the 

understory vegetation (Jepsen et al., 2013), depriving ptarmigan of preferred forage. Moreover, 

increasingly late onset of snow cover in autumn appears to imply camouflage mismatch at the time 

of ptarmigan moulting, resulting in increased predation rates. This mechanism is supported by prior 

studies (Melin, Mehtatalo, Helle, Ikonen, & Packalen, 2020; Zimova, Mills, & Nowak, 2016), but 

there was no evidence supporting it in the case of the Svalbard rock ptarmigan (paper I). The lack 

of predators such as raptors that use vision to search for prey in Svalbard may explain this lack of 

evidence. 

Eventually, in all these three papers, we were interested in investigating the potential indirect 

effect of abundant ungulate carrion. In northern Fennoscandia, ungulate carrion, especially 

reindeer, subsidizes a guild of generalist predators (Henden et al., 2014). In Svalbard, reindeer 

constitute a significant part of the diet of the arctic fox (Eide et al., 2012). In both systems, reindeer 

populations have been increasing (Le Moullec, Pedersen, Stien, Rosvold, & Hansen, 2019; Tveraa, 

Stien, Broseth, & Yoccoz, 2014), resulting in high availability of carcasses in some years. The 

numerical response of predators to increased carrion availability is predicted to have a negative 
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effect on other prey species such as ground-breeding birds (Henden et al., 2014). We found support 

for this mechanism, as carrion negatively affected the reproductive success of the lesser white-

fronted goose (paper III). There was also a weak indication that it affects the growth rate of the 

Svalbard rock ptarmigan (paper I). Nevertheless, this relationship was reversed in the case of the 

willow ptarmigan, indicating that more research is needed to disentangle the influence of carrion 

abundance on ground-breeding birds.  

 

2. How reliably can we forecast population dynamics of harvested species on a near-term 

temporal scale? 

 

In papers I and II, we used the statistical models developed to describe ptarmigan population 

dynamics in an iterative near-term forecasting framework to assess the accuracy of model 

predictions of next-year ptarmigan population density. In both cases, prediction error tended to 

decrease with the length of the time series. Increasing model’s complexity, however, did not clearly 

improve predictive performances, despite the most complex models performing better in some 

years (paper II) or displaying greater ability to predict larger changes in next-year population density 

(paper I). This result was not unexpected given the relative short time series and the poor spatial 

resolution of some predictors, and the fact that predictions from simpler models can be as good as 

those from more complex models (Gerber & Kendall, 2018). We considered the models ‘good 

enough’ to perform iterative near-term forecasting on a yearly basis for the study populations, but 

there is certainly scope for improved predictions. With more years of data and better predictors, 

we could expect to be able to separate good from poor models. This will not only aid the 

identification of important drivers of ptarmigan dynamics, it may also constitute a tool to adapt 

harvesting strategies. Hunters and managers that were involved in the Strategic Foresight for the 

willow ptarmigan case explicitly requested to have near-term forecasts of ptarmigan dynamics to 

adapt their harvest strategies. The collaboration between researchers and stakeholders in this study 
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was particularly fruitful. It demonstrated that forecasting next-future states of wildlife populations 

is of interest to decision-makers, and this because the time-horizon is relevant for implementing 

and adapting management decisions in a time of rapid change (Nichols et al., 2015).  

 

3. What are the impacts of management actions carried out for species of conservation 

concern? 

 

Papers III and IV focused on the endangered Fennoscandian population of lesser white-

fronted goose. The ultimate goal of both studies was to assess the contribution of a predator 

control program to the recent recovery of the goose population. In paper III, we found no evidence 

that red fox culling improved goose breeding success. Rather, breeding success appeared to be 

primarily driven by indirect food web interactions in the form of apparent facilitation, through 

small rodent cycles, and competition, through reindeer carrion abundance. Red fox culling, 

however, was initiated not only to improve reproductive success, but also to minimize early 

breeding failure. Early failed breeders seem to leave the Norwegian breeding areas earlier in the 

season and embark on a long migratory journey through Western Asia, where they are supposedly 

exposed to higher hunting mortality than when they migrate through Eastern Europe (Jones, 

Whytock, & Bunnefeld, 2017; Øien, Aarvak, Ekker, & Tolvanen, 2009). In paper IV, we 

parameterized a population model including all migration stopovers and found no evidence that 

adult goose survival is lower on this allegedly riskier migration route. Therefore, we concluded that, 

at present, there is no evidence that predator control has influenced the goose population recovery. 

Still, we found indications that survival probabilities at staging and wintering sites in Hungary and 

Greece may have improved in the latest years. Although inconclusive due to large statistical 

uncertainty, this result may reflect the positive impact of a set of conservation interventions 

implemented in these countries approximately at the same time the red fox culling started.  

The case of the Fennoscandian lesser white-fronted goose has several general implications. 
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First, it highlights the challenge of assessing the efficacy of management/conservation actions 

when proper experimental management designs are unfeasible (Taylor et al., 2017). The goose 

population is so small and spatially restricted that it does not allow for management interventions 

in a rigorous treatment/control design. Hence, we could only perform a before/after-action 

comparison to evaluate the effect of the red fox culling program. Secondly, it emphasizes the 

importance of accounting for drivers in the food web that may confound the effect of the action, 

and that long-term data on both the conservation target and the food web drivers are needed for a 

thorough evaluation. Eventually, it suggests that a conservation approach that crosses national 

borders is likely to be beneficial for endangered migratory populations. While most studies have so 

far focused on the breeding season, conditions experienced at non-breeding sites are likely non-

trivial and can significantly affect population dynamics of migratory birds (Rushing et al., 2017; 

Wilson et al., 2018).   
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5. Conclusions and future perspectives 
 

Through the work presented in this thesis, I studied the dynamics of arctic populations of 

management and conservation concern by applying a combination of state-of-the-art paradigms 

that, today, are advocated to guide management of wildlife populations in rapidly changing 

environments. These included (Fig. 4): focusing on food web dynamics rather than single species 

(Ims, Jepsen, et al., 2013); developing hypothesis-driven conceptual models to target key 

interactions within food webs as well as exogenous climate and human impacts and guide the 

scientific investigation (Ims & Yoccoz, 2017); including stakeholders in the modelling process and 

integrating their views to generate more nuanced hypotheses on the functioning of the system 

(Nichols et al., 2015); supporting hypotheses with theoretical predictions from mathematical 

models (Caswell, 1988); using long-term monitoring data to test hypotheses (Hughes et al., 2017); 

generating iterative near-term forecasts and evaluate models’ predictive ability to discriminate 

between competing hypotheses and adapt monitoring and management (Dietze et al., 2018; 

Nichols et al., 2019). Although not all steps where performed in each case study, this thesis 

highlights that a combination of approaches is required to fully understand the impacts of current 

environmental changes on species and ecosystems (Turner et al., 2020). 

The results presented in this thesis document the impacts on arctic species of several drivers 

linked to climate change. Novel climate conditions in the high-arctic Svalbard archipelago, such as 

milder winters, seem to offset the negative impacts of key manifestations of climate change (e.g. 

ROS) on resident arctic species such as ptarmigan. While these results may be transferable to other 

increasing rock ptarmigan populations around the Arctic (e.g. Newfoundland) or other species 

whose populations are increasing (e.g. Svalbard reindeer; Le Moullec et al., 2019), they may be less 

relevant where rock ptarmigan are declining (e.g. Greenland and Iceland; Fuglei et al., 2019). The 

willow ptarmigan in Fennoscandia appears to be sensitive to more intense insect pest outbreaks 

and late onset of winter. Both are linked to climate warming and expected to intensify in the future 

(Derksen, Brown, Mudryk, Luojus, & Helfrich, 2017; Jepsen et al., 2013), thus they may constitute 
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key threats to ptarmigan populations. The general decline of ptarmigan populations goes in parallel 

with the decline of other alpine and arctic ground-nesting birds in Europe (Lehikoinen et al., 2019). 

These trends point towards common drivers of change that are related to global warming and 

operate at the community level, such as increased primary productivity and nest predation (Ims et 

al., 2019; Kubelka et al., 2018). 

 

Fig. 4 – The approach I used in this thesis to study the dynamics of arctic populations of management and 

conservation concern. Hypothesis-driven conceptual models were develop to target key food web interactions 

and exogenous climate and human impacts. These models drive the ecosystem monitoring. The logic in the 

conceptual models could be refined by generating predictions with mathematical models. The a-priori hypotheses 

described by the conceptual models were then tested with empirical data; the conceptual model was converted 

into competing statistical models to quantify the relationships and thus build explanatory models. The 

explanatory models were used to generate short-term forecasts, which were compared to each other to evaluate 

models’ predictive ability. The explanatory models were also used to assess the efficacy of management actions. 

Monitoring and management systems should be iteratively adapted according to new evidence. 

 

Some of the effects evaluated in this thesis were very uncertain or inconsistent across 

ecosystems or species. For instance, carrion abundance was negatively related to the lesser white-
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fronted goose but positively related to the willow ptarmigan, two ground-nesting bird species that 

share the same environment and likely the same predator guild. Ungulate carrion constitutes an 

important resource for arctic predators (Ehrich et al., 2017; Eide et al., 2012; Killengreen et al., 

2011). The ubiquitous occurrence of ungulate species in the Eurasian tundra and the range 

expansion of boreal mesocarnivores into the Arctic (Elmhagen et al., 2017) make the investigation 

of indirect carrion effects mediated by predators acting like facultative scavengers a crucial research 

topic. Eventually, other aspects of climate change that were not investigated in this thesis will 

deserve attention in the future. For instance, increased plant productivity (van der Wal & Stien, 

2014) and a prolonged grazing season due to longer and warmer summer may benefit herbivore 

species (Albon et al., 2017) and have likely contributed to their increasing trends in Svalbard. 

To resolve the contradictory evidence of some of the hypothesized effects, my work highlights 

the convenience of using a holistic approach that, through conceptual models depicting 

hypothesized impacts, targets key food web interactions and thus incorporate non-trivial indirect 

effects. This approach proved profitable also to evaluate the effect of management interventions. 

In the case of the lesser white-fronted goose, not accounting for food web interactions would have 

led to erroneous conclusions regarding the impact of predator control. This constitutes an 

important take-home message of my work, because conservation programs seldom include 

quantitative evaluations of actions (Sutherland et al., 2004). In this respect, it will be important to 

continue the monitoring of both the goose population and the food web drivers in the coming 

years. With more years of data and regular management assessment, we might be able to reduce 

uncertainty about the influence of the management action and identify more precisely critical stages 

of the goose life cycle. 

The target populations of this thesis are currently of management and/or conservation interest. 

Managers and conservationists were concerned about how these populations will react to the 

climate drivers that we identified. Moreover, they were interested in quantitative evaluations of the 

impacts of harvest strategies for both Svalbard rock ptarmigan and willow ptarmigan, and how to 
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adapt hunting regulations to ensure sustainable harvest. If ecology aims to have an impact on 

society, ecologists should commit to provide predictions of future ecosystem/population states on 

a management-relevant time scale and suggest mitigating actions that can be readily implemented. 

The collaborative platform established with the stakeholder groups to improve management of the 

willow ptarmigan in Finnmark represents a crucial step towards the creation of a coordinated 

adaptive management system. Continuing the long-term monitoring and the iterative predictions 

in the coming years will ease the detection of potential future climate and harvest impacts and will 

provide quantitative ground on which to base hunting regulations and potentially conservation 

actions. Within this century, in fact, it may be expected that most of Fennoscandia will be outside 

the climate envelope for alpine/arctic species like ptarmigan. Given the current decline of 

ptarmigan populations in Norway and elsewhere in alpine and arctic ecosystems, I hope that this 

experience will be of inspiration to establish similar collaborative monitoring systems.  
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Abstract 15 

To improve understanding and management of the consequences of current rapid climate 16 

change, ecologists advocate using long-term monitoring data series to generate iterative near-17 

term predictions of ecosystem responses. This approach allows scientific evidence to increase 18 

rapidly and management strategies to be tailored simultaneously, because the timescale of 19 

predictions is relevant to decision-making. Rapid environmental changes are currently 20 

occurring in the Arctic, which is warming twice as fast as the rest of the world. Here, we 21 

implemented the near-term forecasting approach on a population of Svalbard rock ptarmigan, 22 

an herbivore endemic to the high-Arctic archipelago of Svalbard and one of the most northerly 23 

year-round resident birds that is also subject to harvest. We aimed to 1) quantify the effect of 24 

potential drivers of ptarmigan population dynamics (explanatory predictions), and 2) assess the 25 

ability of different models of increasing complexity to forecast next-year population density 26 

(anticipatory predictions). We fitted state-space models to point-transect distance-sampling 27 

counts of ptarmigan for the period 2005-2019, when rapid climate warming occurred. Our 28 

results suggest that the recent increasing trend in the Svalbard rock ptarmigan population can 29 

be partly attributed to major changes in winter climate, especially with respect to temperature. 30 

Higher average winter temperature is likely to reduce the birds’ energy consumption needed for 31 

thermoregulation, thereby improving body condition and thus survival and recruitment. 32 

Moreover, the ptarmigan population seems to compensate for current harvest levels. The 33 

predictive ability of the models improved non-linearly with the length of the time series, and 34 

the inclusion of relevant ecological predictors improved forecasts of sharp changes in next-year 35 

population density. Our study is among the firsts to use the near-term forecasting framework to 36 

improve understanding and management of climate change impacts on population dynamics. 37 

We provide recommendations for improved explanatory and anticipatory predictions in a 38 

management perspective.   39 
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1. Introduction 40 

The climate is currently changing to the extent that ecological systems are moving away 41 

from the boundaries of historical variation and established empirical relations, experiencing 42 

previously unseen conditions (Malhi et al., 2020). Understanding how species and ecosystems 43 

will be impacted by climate change is challenging and requires a combination of different 44 

approaches (Turner et al., 2020). However, it is generally recognized that long-term monitoring 45 

represents a baseline approach for climate-ecological studies (Gauthier et al., 2013; Hughes et 46 

al., 2017; Ims & Yoccoz, 2017; Schmidt, Christensen, & Roslin, 2017). The time series data 47 

generated from appropriately designed monitoring systems serve several purposes (Likens & 48 

Lindenmayer, 2010). They allow the detection of both fast and slow changes (Hastings et al., 49 

2018). Analyses and modelling of such data provide opportunity to generate both explanatory 50 

predictions (i.e. those aimed to test theories) and anticipatory predictions (i.e. those aimed to 51 

describe future scenarios assuming certain hypotheses to be true) (Maris et al., 2018; Mouquet 52 

et al., 2015).  53 

Because predicting long-term effects of climate change is extremely challenging, and 54 

forecasts of future scenarios are affected by high uncertainty (Planque, 2016), ecologists 55 

advocate focusing on near-term predictions (Dietze, 2017; Dietze et al., 2018; Petchey et al., 56 

2015; White et al., 2019). This scheme implies routine generation of forecasts of an ecological 57 

target, and evaluation of the accuracy of the forecasts by comparing them with new observations 58 

as soon as they become available. The iterative nature of the near-term forecasting approach 59 

reflects the hypothetico-deductive reasoning of the scientific method (Dietze et al., 2018; 60 

Houlahan, McKinney, Anderson, & McGill, 2017). The short timescale used for predictions 61 

allows analyses to be repeated, models to be validated, and evidence to increase rapidly (Dietze 62 

et al., 2018). The near-term forecasting approach has proved especially profitable to deal with 63 

ecosystems, species, or populations subject to management (Henden et al., 2020; Nichols, 64 
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Johnson, Williams, Boomer, & Wilson, 2015), because forecasts are generated at a timescale 65 

that can be influenced by decision-making. Near-term forecasting, in fact, constitutes the 66 

foundation of adaptive management (Nichols et al., 2015). Examples of such endeavours, 67 

however, are still rare in ecology (Nichols, Kendall, & Boomer, 2019).  68 

The Arctic is one of the regions on the Earth experiencing major environmental changes, 69 

mostly due to global warming (Ims et al., 2013a). Polar regions warm faster than the rest of the 70 

world, a phenomenon known as Arctic amplification (Serreze & Barry, 2011), which is 71 

projected to continue in the twenty-first century (Koenigk, Key, & Vihma, 2020). In the high-72 

Arctic archipelago of Svalbard, Norway (74–81°N, 15–30°E), higher annual mean temperatures 73 

(Nordli, Przybylak, Ogilvie, & Isaksen, 2014), warmer and wetter winters (Hansen et al., 2014), 74 

decreased snow-cover duration and depth (Descamps et al., 2017), and declined sea ice extent 75 

(Dahlke et al., 2020) are indicators of ongoing changes in the climate system. Svalbard, in fact, 76 

is probably the sub-region of the Arctic that has experienced the most profound warming during 77 

the last decade (Isaksen et al., 2016; Nordli et al., 2014). Climate change impacts on the species 78 

belonging to the relatively simple terrestrial food web of Svalbard have already been detected 79 

(Descamps et al., 2017; Ims, Jepsen, Stien, & Yoccoz, 2013b). Most emphasis has been placed 80 

on the negative effect of formation of basal ice in winter following rain-on-snow (ROS) events 81 

(Rennert, Roe, Putkonen, & Bitz, 2009), which synchronizes population dynamics across 82 

mammal species (Hansen et al., 2013; Stien et al., 2012) and especially among reindeer 83 

populations (Hansen et al., 2019a) by hindering forage access. Recent studies have also dealt 84 

with climate change impacts on migratory geese in Svalbard (Layton-Matthews, Hansen, 85 

Grotan, Fuglei, & Loonen, 2019; Tombre, Oudman, Shimmings, Griffin, & Prop, 2019). Less 86 

is known about other phenomena associated with climate change and its impact on other taxa 87 

(but see Bjerke et al., 2017; Coulson, Leinaas, Ims, & Søvik, 2000) 88 

. 89 
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Our study focused on the Svalbard rock ptarmigan Lagopus muta hyperborea, a high-arctic 90 

sub-species of the rock ptarmigan and among the planet’s most northerly year-round resident 91 

birds. These small herbivores are able to cope with the climate extremities and the low primary 92 

productivity of polar deserts as far north as 81° N. Because the Svalbard rock ptarmigan is an 93 

endemic sub-species subjected to harvesting and is predicted to be sensitive to climate change 94 

in several ways (Henden, Ims, Fuglei, & Pedersen, 2017; Ims et al., 2013b), it is rigorously 95 

monitored to both assess its status and aid its management (Pedersen, Bårdsen, Yoccoz, 96 

Lecomte, & Fuglei, 2012). However, little is known about what drives its population dynamics 97 

and how it is impacted by climate change and harvest in Svalbard (but see Pedersen, Soininen, 98 

Unander, Willebrand, & Fuglei, 2014). The time series of the Svalbard rock ptarmigan 99 

population is part of an ecosystem-wide monitoring system that encompasses the period of the 100 

most rapid recent climate warming with associated changes in the abiotic and biotic domains 101 

of the Svalbard terrestrial ecosystem, offering us the opportunity to address these knowledge 102 

gaps. Based on this long-term monitoring series and appurtenant ecosystem data, we used 103 

dynamic state-space models with the following aims: 1) in an explanatory framework, to 104 

identify and quantify abiotic and biotic drivers of ptarmigan population dynamics, and 2) in an 105 

anticipatory framework, to assess the models’ ability to provide near-term (i.e. next-year) 106 

predictions of population density. 107 

 108 

2. Materials and methods 109 

2.1 Sampling design and ptarmigan monitoring protocol 110 

The study area is located in Spitsbergen, Nordenskiöld Land (78°15’ N, 17°20’ E), within 111 

the middle Arctic tundra zone and is centered on the large, glacial valleys of Adventdalen and 112 

Sassendalen. These valleys are characterized by wetland, ridge, and heath vegetation 113 

communities and surrounded by peaks reaching 1,200 m a.s.l. (Pedersen et al., 2012; Soininen, 114 
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Fuglei, & Pedersen, 2016). In April, ptarmigan males establish territories and display territorial 115 

behavior (Unander & Steen, 1985). To estimate the pre-breeding population density 116 

(males/km2), we used a long-term annual monitoring time series obtained from point-transect 117 

distance sampling conducted by the Norwegian Polar Institute on calling territorial males during 118 

four weeks in April (Pedersen et al., 2012). We used data from 2005-2019, when a sampling 119 

design based on 148 survey points in a study area of ca. 1,200 km2 was established and 120 

systematically perpetuated (Fig. S1). Of the 148 survey points, 101 were non-randomly selected 121 

based on altitude and terrain characteristics that are known to be preferred ptarmigan habitats 122 

(henceforth “non-random points”). The remaining 47 points were randomly assigned and 123 

included in the sampling design to sample also sub-optimal ptarmigan habitats (henceforth 124 

“random points”) (Pedersen et al., 2012). To reduce observer bias during the surveys, each 125 

survey point is visited two or three times per season, each time by a different trained observer. 126 

Each visit lasts 15 minutes and the radial distance to birds observed on ground is measured 127 

using a laser distance binocular. For details regarding the sampling protocol see Pedersen et al. 128 

(2012). 129 

 130 

2.2 Expectations and predictor variables   131 

Expectations regarding potential drivers of the dynamics of Svalbard rock ptarmigan 132 

populations were derived from Ims et al. (2013b) and Henden et al. (2017) and are summarized 133 

in Fig. 1. Because the knowledge about the response of Svalbard rock ptarmigan to 134 

environmental fluctuations is limited, expectations are partly based on current evidence from 135 

other arctic and alpine ptarmigan populations.  136 

 137 

Abiotic variables 138 

Inclement weather conditions are likely to affect early chick survival, which is regarded as 139 
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a critical demographic component of several grouse species (Hannon & Martin, 2006; Ludwig, 140 

Aebischer, Bubb, Roos, & Baines, 2018). A combination of low temperatures (Ludwig, Alatalo, 141 

Helle, & Siitari, 2010) and heavy rainfall (Kobayashi & Nakamura, 2013; Novoa, Astruc, 142 

Desmet, & Besnard, 2016) is expected to be particularly detrimental by preventing food intake 143 

and hindering thermoregulation (Erikstad & Andersen, 1983; Erikstad & Spidsø, 1982). We 144 

obtained local weather data from the Svalbard airport weather station in Longyearbyen 145 

(78°14′46’N, 015°27′56’E) collected by the Norwegian Meteorological Institute (available at 146 

http://seklima.met.no). We extracted data on daily mean temperature and daily maximum 147 

precipitation for the first week of July to cover the critical period for early ptarmigan chick 148 

survival, and calculated mean temperature (°C) and cumulative precipitation (mm).  149 

Based on the extreme physiological adaptation in terms of fat deposition of this subspecies 150 

(body fat normally exceeds 30% of the bird body mass at the onset of winter; Grammeltvedt & 151 

Steen, 1978; Mortensen, Unander, Kolstad, & Blix, 1983; Steen & Unander, 1985), it is evident 152 

that winter weather is critical in the life cycle of the Svalbard rock ptarmigan. Accordingly, we 153 

had strong expectations regarding the influence of changes in winter climate on ptarmigan 154 

survival. With increasingly warmer winters (Hanssen-Bauer et al., 2019), ptarmigan are 155 

expected to reduce their need for energy consumption, i.e. consume less body reserves, thereby 156 

improving their winter survival. Changes in winter climate concern also snow duration, which 157 

is now shorter than in the past, due to late snow arrival and early snowmelt (Descamps et al., 158 

2017; Liston & Hiemstra, 2011). Late onset of winter has been shown to hamper survival of 159 

colour moulting species including ptarmigan (Henden et al., 2020; Melin, Mehtatalo, Helle, 160 

Ikonen, & Packalen, 2020), likely due to camouflage mismatch resulting in elevated predation 161 

rates (Zimova, Mills, & Nowak, 2016). We used daily temperature data to calculate mean 162 

temperature (°C) in the core winter season (Decembert-1 –Marcht) and onset of winter (Julian 163 

day). The latter is defined as the day when the average of a 10-day forward-moving window 164 

http://seklima.met.no/
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was below 0°C for the first time in autumn and remained below 0°C for ≥10 days (Le Moullec 165 

et al., 2018). 166 

Rain-on-snow (ROS) events can cause basal ice formation, which encapsulates ground 167 

vegetation and affects ptarmigan by preventing forage access during winter (Hansen et al., 168 

2013; Hansen et al., 2014). Following Hansen et al. (2013), we used daily temperature and 169 

precipitation to calculate an index of ROS, i.e. the number of rainy days (with rain ≥ 1 mm and 170 

temperature ≥ 1 C°) in the core winter season (Decembert-1 – Marcht).  171 

In Svalbard, marine resources dominate the diet of the arctic fox Vulpes lagopus (Ehrich 172 

et al., 2015; Eide, Eid, Prestrud, & Swenson, 2005; Prestrud & Nilssen, 1992), the only year-173 

round predator of Svalbard rock ptarmigan. This indicates that sea ice is an important hunting 174 

platform for the arctic fox in winter. As sea ice cover in the fjords declines due to global 175 

warming (Dahlke et al., 2020), arctic foxes may be forced to rely more on terrestrial prey 176 

resources like ptarmigan. Time series of average sea ice extent in the fjords of Svalbard were 177 

calculated using ice charts issued by the Norwegian Ice Service (NIS) since 1969 (Dahlke et 178 

al., 2020) and used as a proxy for accessibility of marine resources to arctic fox during winter. 179 

We calculated the mean of the monthly average sea ice extent (km2) in the core winter season 180 

(Decembert-1 – Marcht) for the period 2005-2019 (see Appendix S1 for details).  181 

 182 

Biotic variables 183 

Reindeer carrion constitute an important winter food resource for the arctic fox (Eide et al., 184 

2005; Fuglei, Øritsland, & Prestrud, 2003). High reindeer mortality can occur following heavy 185 

ROS events (Hansen et al., 2013; Hansen et al., 2019a). Abundant reindeer carrion during 186 

winter may cause arctic foxes to respond numerically through increased survival and 187 

reproduction, eventually leading to higher predation pressure on ground-breeding birds like 188 

ptarmigan (Eide, Stien, Prestrud, Yoccoz, & Fuglei, 2012; Hansen et al., 2013; Marolla et al., 189 
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2019). Counts of reindeer carcasses are carried out every summer (June-July) in the valley of 190 

Adventdalen since 1979. Five to six observers walk pre-defined routes located less than 1 km 191 

apart to monitor the whole study area within a week. They scan the area with 10x42 mm 192 

binoculars and record the position of each spotted reindeer carcass on a map. Reindeer carcasses 193 

are easily detected as large, white spots on the treeless tundra. Given the low decomposition 194 

rate of organic matter in the Arctic, we assumed that the amount of carcasses found in the 195 

summer is representative of carrion abundance during winter. We also assumed that the 196 

temporal variation in the number of reindeer carcasses in Adventdalen is representative of the 197 

variation in the neighbouring valley of Sassendalen. This is supported by the high correlation 198 

between annual number of carcasses in two adjacent monitoring areas, Adventdalen and 199 

Reindalen (r [95% CI] = 0.93 [0.83; 0.97]). 200 

The population dynamics of Svalbard rock ptarmigan is also likely to be subject to density-201 

dependent processes (e.g. in the form of saturated breeding habitats, Pedersen et al., 2014), and 202 

negatively influenced by human harvesting that is regulated by the local government. 203 

Harvesting has been regulated since 1998 and today occurs between September 10th and 204 

December 23rd. While hunters must obtain a hunting license from the Governor of Svalbard, 205 

there is no limit to the number of issued licenses (Soininen et al., 2016). Hunters – mostly 206 

residents – report the number of birds harvested, while hunting effort is not systematically 207 

reported. Hence, bag limits are not based on an assessment of sustainable harvest. For our 208 

analysis, we used the number of birds harvested from 2005 to 2018 in the study area. We 209 

excluded birds harvested by trappers, who tend to live in remote places far from the study area. 210 

Hunting statistics are available at the website of MOSJ (Environmental Monitoring of Svalbard 211 

and Jan Mayen, http://www.mosj.npolar.no).  212 

Time series data for all the predictors are showed in Fig. S2. 213 

 214 

http://www.mosj.npolar.no/
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2.3 Data analysis  215 

Model structure 216 

We applied a modified version of the Hierarchical Distance Sampling model described by 217 

Kéry and Royle (2016) to model point-transect distance-sampling counts of ptarmigan 218 

performed in 2005-2019 over the 148 survey points. This state-space model allows explicit 219 

modelling of the spatiotemporal variation in ptarmigan abundance while accounting for 220 

detection errors. It consists of two parts, a detection model that estimates detection probability, 221 

and a dynamic process model that models spatiotemporal variation in population growth rate. 222 

The detection process is based on the distance-sampling likelihood for point transect data 223 

(Buckland, 2001). We used a half-normal detection function to describe the decline of detection 224 

probability 𝑝 of an observed bird with the radial distance 𝑑 from the observer,  225 

log(𝑝) =
𝑑2

2𝜎𝑠
2
 

 

(1) 

where 𝜎 is the half-normal scale parameter at point 𝑠. We modelled 𝜎 as a log link function 226 

of site-specific terrain covariates (terrain ruggedness, aspect, and slope; data obtained from a 227 

20 × 20 m digital elevation model of the study area) to account for their influence on detection 228 

probability. To reduce the effect of potential inaccurate distance estimations and movements of 229 

birds reacting to observer’s presence, we grouped data into eight 50-m distance classes, up to a 230 

maximum distance of 400 m from the centre of the survey point based on the frequency 231 

distribution of detection distances (Kéry & Royle, 2016). The site-specific detection probability 232 

𝑝𝑐𝑎𝑝𝑠 is then calculated as the integral of the distance function over the distance classes (Kéry 233 

& Royle, 2016). The process model consists of a sub-model for the first year (i.e. initial density) 234 

and a Gompertz population dynamics model for the consecutive years. In the dynamic part of 235 

the model, we used the average detection probability 𝑝𝑐𝑎𝑝𝑠 to link the sum of observed counts 236 

of ptarmigan males 𝑦 across repeated visits 𝑁𝑟𝑒𝑝 at each point 𝑠 in year 𝑡 to the average latent 237 
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abundance 𝑁𝑠,𝑡:  238 

𝑦𝑠,𝑡 ~ 𝑏𝑖𝑛𝑜𝑚(𝑁𝑠,𝑡 ∗ 𝑁𝑟𝑒𝑝𝑠,𝑡, 𝑝𝑐𝑎𝑝𝑠) 

 

(2) 

where 𝑁𝑠,𝑡 is assumed to be a Poisson random variable with 𝐸[𝑁𝑠,𝑡] = 𝜆𝑠,𝑡 and 𝜆𝑠,𝑡 is 239 

modelled as the product of ptarmigan density 𝐷𝑠,𝑡 and the observable size of the surveyed area. 240 

The latter was estimated specifically for each survey point by a viewshed analysis that 241 

accounted for different terrain morphology affecting the observer’s view (Appendix S2). 242 

Finally, we assumed log density to be a normal random variable with mean 𝜇𝑠,𝑡 and process 243 

error variance 𝜎𝑝𝑟𝑜𝑐
2  244 

 245 

log(𝐷𝑠,𝑡) ~ 𝑛𝑜𝑟𝑚(𝜇𝑠,𝑡, 𝜎𝑝𝑟𝑜𝑐
2 ) 

 

(3) 

and modelled  𝜇𝑠,𝑡 as function of a set of a priori-selected predictors  246 

𝜇𝑠,𝑡 = 𝛽0𝑎𝑟𝑒𝑎𝑠 + 𝑟𝐶𝑙 + 𝛽𝐷𝐷𝜇𝑠,𝑡−1 + 𝛽𝑥𝑋𝑡 

 

(4) 

where 𝛽0𝑎𝑟𝑒𝑎𝑠 is a fixed covariate with three levels (i.e. Adventdalen random, Adventdalen 247 

non-random, and Sassendalen) accounting for differences between macro-valleys and different 248 

survey point selection strategies, 𝑟𝐶𝑙 is a random cluster effect (i.e. 𝑟𝐶𝑙 ~ 𝑁𝑜𝑟𝑚(0, 𝜎𝐶𝑙
2 )) 249 

accounting for potential non-independence of observations at points located close to each other 250 

(with the number of cluster estimated by a hierarchical clustering algorithm), 𝛽𝐷𝐷𝜇𝑠,𝑡−1 is the 251 

density-dependence parameter based on the log density the year before, and 𝛽𝑥𝑋𝑡 is a set of a 252 

priori-selected predictors. The low annual number of random points surveyed in Sassendalen 253 

did not allow us to model random and non-random points in this valley separately. On the log 254 

scale, the classic Gompertz model, becomes a linear autoregressive time-series model of order 255 

1 (Dennis, Ponciano, Lele, Taper, & Staples, 2006), thus effects of predictors are modelled on 256 
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the growth rate. This model structure was applied to all years except the first (i.e. initial density, 257 

t=1), which had a similar but simpler structure, 258 

 259 

𝜇𝑠,1 = 𝛽1𝑎𝑟𝑒𝑎𝑠 + 𝑟𝐶𝑙1 (5) 

 260 

where 𝛽1𝑎𝑟𝑒𝑎𝑠 and 𝑟𝐶𝑙1 (𝑟𝐶𝑙1 ~ 𝑁𝑜𝑟𝑚(0, 𝜎𝐶𝑙1
2 )) have the same signification as in the 261 

dynamics model (i.e. t > 1).   262 

 263 

Explanatory predictions 264 

To evaluate the effect of the selected predictors on ptarmigan growth rate, we developed a 265 

suite of models including different combinations of predictors, and assessed the consistency of 266 

effect size estimates across models (Table 1). We considered the following predictors: mean 267 

temperature and maximum precipitation in the first week of July, mean winter temperature, day 268 

of winter onset, number of winter days with ROS, sea ice extent, number of reindeer carcasses, 269 

and number of ptarmigan harvested. We also included a trend parameter to account for any 270 

excess trend in the data that was not explained by the predictors. Except for ROS, winter 271 

temperature, and sea ice extent – predicted to influence winter survival and recruitment and 272 

thus modelled at time 𝑡 – all the other variables were modelled at time 𝑡 − 1, because they were 273 

expected to influence reproduction and survival during summer and autumn. We point out that, 274 

although ROS events can cause high mortality in reindeer, here there is no conflict between the 275 

variables accounting for ROS and reindeer carrion effects, because the former tests for a direct 276 

impact of ROS through inaccessible vegetation, while the latter tests for a delayed, indirect 277 

effect of carrion abundance that may be due to ROS events and/or other phenomena (e.g. 278 

density-dependent processes, Hansen et al., 2019b). 279 

Because winter temperature and sea ice extent were highly correlated (r [95% CI] = -0.74 280 
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[-0.91; -0.34]), we modelled their effect in two separate “climate-impact” models containing all 281 

the other climate variables (WT_Climate and SI_Climate models in Table 1). Moreover, we 282 

extended the two climate-impact models by the inclusion of the effect of reindeer carrion 283 

abundance (WT_Carrion and SI_Carrion models in Table 1). However, because the number of 284 

reindeer carcasses was somewhat correlated with winter temperature, sea ice extent, and ROS, 285 

we also run WT_Carrion and SI_Carrion without ROS (WT_Carrion2 and SI_Carrion2 models 286 

in Table 1) to evaluate the consistency of estimates. We scaled all variables to ease 287 

interpretation of coefficients and model convergence. We fitted the models using Markov Chain 288 

Monte Carlo methods implemented in JAGS (Plummer, 2003) through the R package jagsUI 289 

(Kellner, 2015), assigning vague priors to the parameters. We run 400,000 iterations on four 290 

chains at a thinning rate of 50, burn-in of 4,000, and adaptation phase of 80,000, yielding 31,680 291 

samples. Convergence of parameter estimates was evaluated by ensuring that the Gelman-292 

Rubin convergence statistics R-hat was below 1.1 (Brooks & Gelman, 1998). We provide the 293 

JAGS code in Appendix S3. 294 

 295 

Anticipatory predictions 296 

We implemented the near-term forecasting approach by using our model to predict next-297 

year ptarmigan density, following Henden et al. (2020). We sequentially fitted the models to 298 

the time series of ptarmigan counts spanning t = 10 to t = 14 years of prior data. For each time 299 

step, we predicted next-year point-specific density (t+1) using the estimated model parameters 300 

from previous years of data (Appendix S4). We assessed whether the addition of abiotic and 301 

biotic predictors improved model’s forecasting ability by comparing a climate-impact model 302 

(WT_Climate) and its extension including reindeer carrion abundance (WT_Carrion) to a 303 

simpler model containing only ptarmigan data (i.e. density-dependence and harvest; PT). We 304 

then compared predicted densities to observed densities for each survey-point by calculating 305 
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the symmetric mean absolute percentage error (sMAPE, Makridakis, Spiliotis, & 306 

Assimakopoulos, 2018; Appendix S4). A fundamental aspect of iterative near-term forecasting 307 

is the opportunity to update the models not only with new data, but also with incoming evidence 308 

about model parameters. At each model run, therefore, we used the parameter estimates 309 

generated from the previous model run to initiate the MCMC chains, thereby providing the 310 

model with an indication of plausible parameter values. To address the contribution of 311 

measurement error to the predictive performances of the models, we compared each sMAPE to 312 

a theoretical minimum prediction error expected from a “perfect” Poisson process model 313 

(Appendix S4). Finally, we assessed whether the WT_Climate and WT_Carrion models were 314 

better than the PT model at forecasting next-year mean density, which is a measure of practical 315 

management value. It was not possible to perform this whole analysis for the SI_Climate and 316 

SI_Carrion models because parameters of the latter failed to reach convergence when it was 317 

fitted to reduced time series.  318 

 319 

3. Results 320 

3.1 Density and detection probability 321 

Estimated average model-based densities of territorial ptarmigan males ranged between 0.4 322 

and 6.1 individuals/km2 (Fig. 2a). As could be expected, non-random points in Adventdalen 323 

exhibited the highest densities. However, both Adventdalen and Sassendalen showed an overall 324 

increasing trend in density from 2014, regardless of the point selection strategy, but with 325 

substantial between-year variation especially towards the end of the series. A small decrease in 326 

density from 2018 to 2019 estimated by the WT_ models (Fig. 2a, Fig. S3) contrasted with a 327 

small increase in observed density (Fig. 2b) and in density estimated by the SI_ models (Fig. 328 

S3). However, this decrease was consistent with the observed decrease in winter temperature 329 

from 2018 to 2019 (Fig. 2c).  330 
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Detection probability was generally low and did not vary substantially across survey points 331 

(mean = 0.34; SD = 0.02; range = [0.29 – 0.39]). There was no evidence of terrain covariates 332 

influencing detection probability, except for a small negative effect of terrain aspect (mean 333 

[95% CI] = -0.032 [-0.063; -0.002]). 334 

 335 

3.2 Explanatory predictions  336 

Most of the estimates of predictor effects on ptarmigan growth rate pointed in the expected 337 

directions. However, due to large uncertainty in effect sizes across models, the evidence was 338 

far from conclusive for most of them (Fig. 3, Table S1). Mean winter temperature consistently 339 

showed the strongest effect on ptarmigan growth rate, with highly coherent positive estimates 340 

across models. Sea ice extent, as could be expected from the high negative correlation with 341 

winter temperature, had a strong negative effect. Among the other predictors, the negative 342 

effects of ROS and reindeer carrion abundance were the most consistent, despite large 343 

uncertainty. The effect of mean temperature in the first week of July was always positive and 344 

the effect of cumulative precipitation in the same week mostly negative, but effect sizes varied 345 

across models and credible intervals tended to overlap zero. Similarly, the effect of winter onset 346 

was always negative but with low consistency of estimates. While there was no evidence for an 347 

influence of harvest on ptarmigan growth rate, there was evidence of negative density-348 

dependence, albeit large credible intervals limited the inference about the strength of the effect. 349 

Finally, a small excess temporal trend in the growth rate suggests that the predictors in the 350 

model and/or the model structure did not account for all the variation in population growth rate. 351 

 352 

3.3 Anticipatory predictions  353 

The near-term predictive performances of the three candidate models used for anticipatory 354 

predictions (i.e. PT, WT_Climate, and WT_Carrion; Table 1) tended to increase with more 355 
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years of data (i.e. the length of the time series, Fig. 4). On average, the sMAPE of our models 356 

was approximately 30% higher than that expected from a “perfect” Poisson process model (Fig. 357 

4). However, there was a small trend towards lower prediction error with more years of data. 358 

At the end of the time series, the discrepancy between models’ prediction error and minimum 359 

prediction error was approximately 20%. While, in the end, the PT model displayed the lowest 360 

sMAPE, the WT_Carrion model showed the largest improvement from 2015 to 2019 361 

(ΔsMAPEPT ≈ 12%; ΔsMAPEWT_Climate ≈ 12%; ΔsMAPEWT_Carrion ≈ 16%).  362 

In general, the models predicted next year’s density fairly well, at least in the sense of 363 

anticipating population increase and decrease (Fig. 5). Overall, the WT_Climate model 364 

performed slightly better compared to the PT and the WT_Carrion model. Although predictions 365 

from the PT model were closer to the observed density in some years (i.e. 2015 and 2019), the 366 

WT_Climate model displayed greater ability to predict larger changes in ptarmigan density in 367 

consecutive years (i.e. 2016 and 2017). 368 

 369 

4. Discussion 370 

In this study, we aimed to 1) identify drivers of population dynamics of the Svalbard rock 371 

ptarmigan and 2) develop a tool for iterative near-term forecasting of the population state of 372 

this high-arctic endemic species in an era of rapid climate warming. Benefitting from a spatially 373 

extensive and statistically rigorous monitoring design, we were able to parameterize state-space 374 

models to meet these purposes. While many ptarmigan populations in the circumpolar arctic 375 

have recently declined, the ptarmigan population in Svalbard shows an increasing trend in the 376 

latest years (Fuglei et al., 2019). Here we relate this increase to the rapidly changing winter 377 

climate in this part of the high Arctic.  378 

 379 

Explanatory predictions 380 
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Among the four seasons, winter temperature shows the largest increase in Svalbard, 381 

alongside spring temperature. In the period 1971-2017, the increase in winter temperature 382 

ranged between 3 and 5 °C (Hanssen-Bauer et al., 2019), with at least six of the ten warmest 383 

winters occurring after 2000 (Isaksen et al., 2016; Nordli et al., 2014). In the years following 384 

2012, ptarmigan density fluctuated in remarkable synchrony with winter temperature (Fig. 2). 385 

Svalbard rock ptarmigan’s adaptations to the harsh conditions of the arctic winter are 386 

exceptional, and involve behavioural, morphological, and physiological adjustments (Nord & 387 

Folkow, 2018), among which deposition of fat stores plays a fundamental role in terms of 388 

energy store and thermal insulation (Mortensen & Blix, 1986; Stokkan, Harvey, Klandorf, 389 

Unander, & Blix, 1985). Our results add support to the notion that warmer winters contribute 390 

to reduce the total energy consumption of ptarmigan, i.e. lower the need for thermoregulation, 391 

thereby sustaining their body conditions and improving survival throughout the winter. The 392 

body condition of hens is regarded as the most important factor for chick production in this 393 

species (Steen & Unander, 1985). Winter temperature in the Svalbard archipelago is also 394 

influenced by the sea ice-ocean atmosphere system (Benestad, 2002). Sea ice shrinkage (Dahlke 395 

et al., 2020) is a direct consequence of Arctic warming, and it likely promotes a positive 396 

feedback due to more open water that can cause temperatures on land to be even higher (Isaksen, 397 

Benestad, Harris, & Sollid, 2007). Our analysis suggests that increased winter temperature may 398 

constitute the aspect of changing arctic climate that contributed the most to the positive 399 

ptarmigan population trend, while hypothesized indirect effects of sea ice loss through 400 

modifications of predation patterns have likely no effect on ptarmigan. However, we caution 401 

against strong inference about these relationships. The relatively short time series and the high 402 

covariance between ptarmigan density and winter temperature in the last part of the time series 403 

may have confounded other effects, e.g. density-dependent processes and/or harvest effects. 404 

Therefore, more years of data are needed to confirm the observed patterns. 405 
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The drastic increase in winter temperature has resulted also in increased frequency of ROS 406 

events (Hansen et al., 2014; Peeters et al., 2019). Despite considerable uncertainty, the average 407 

negative effect of number of ROS days we found here is consistent with Hansen et al. (2013). 408 

They showed that, if ROS events are associated with ice-crust formation at the ground level 409 

that hinders access to vegetation, they might cause sudden population crashes in resident 410 

herbivore species. Our result is relevant because their analysis did not include data from the 411 

most recent warming period. The influence of ROS on ptarmigan population dynamics may be 412 

partly mediated by high reindeer mortality following heavy ROS events (Hansen et al., 2019a). 413 

Reindeer carrion constitutes an important resource for arctic foxes (Eide et al., 2012; Fuglei et 414 

al., 2003), which may respond numerically and thereby exert higher predation pressure on 415 

ground-breeding birds like ptarmigan (Eide et al., 2012; Henden et al., 2014; Killengreen et al., 416 

2011; Marolla et al., 2019). The average negative effect of carrion abundance suggests that this 417 

may affect the Svalbard rock ptarmigan (but see Henden et al., 2020 for a contrasting example). 418 

Importantly, because the negative effect of ROS is reliant on formation of basal ice, we 419 

acknowledge the possibility that increasingly frequent warm spells during winter may prevent 420 

basal ice formation in the future, leading to improved forage accessibility through rain opening 421 

up winter foraging grounds and thus a positive effect on ptarmigan growth (Tyler, 422 

Forchhammer, & Øritsland, 2008). 423 

Although the estimates tended to be in the expected directions, large uncertainty and poor 424 

consistency of estimates characterised most of the other predictors in our model. Making strong 425 

inference about their effects, therefore, is difficult. Given the relatively short time series 426 

available for the Svalbard rock ptarmigan, it is possible that the strong winter temperature effect 427 

overrode other effects. Notably, we could not detect any impact of harvest on the breeding 428 

component of the ptarmigan population. Combined with evidence of relatively strong density-429 

dependence, this result suggests that the population may be able to compensate for the harvest, 430 
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likely due to higher survival in recent years as compared to estimated survival from the 1980s 431 

(Unander et al., 2016) and the existence of a surplus of floater birds that occupy vacant breeding 432 

territories (Pedersen et al., 2014). 433 

It is also important to acknowledge other aspects of climate that have changed in the recent 434 

decades, but were not included in the analysis. For instance, not only winters, but also summers 435 

are becoming warmer, and longer. This may benefit ptarmigan through increased plant 436 

productivity (van der Wal & Stien, 2014) and a prolonged grazing season, as observed for the 437 

larger herbivore in Svalbard, the Svalbard reindeer (Albon et al., 2017; Le Moullec, Pedersen, 438 

Stien, Rosvold, & Hansen, 2019). A hint of this effect may be the small excess positive 439 

population trend that we detected in our study. Climate warming-induced changes that show 440 

trends but happen at a slow pace, like summer lengthening and prolonged grazing seasons, will 441 

deserve attention in the imminent future in terms of their potential effects on ptarmigan 442 

population dynamics.  443 

 444 

Anticipatory predictions 445 

Assessing the predictive ability of ecological models of different complexity is not only a 446 

strategy to validate models and gather evidence efficiently, but also to align management of 447 

populations, species, and communities to current environmental change (Nichols et al., 2019). 448 

The Svalbard rock ptarmigan is the most popular recreational game species in Svalbard 449 

(Soininen et al., 2016), and there is concern that harvest may affect the populations at least at 450 

the local level. The Svalbard Environmental Protection Act and harvesting regulations for Svalbard 451 

allow harvest on the condition that the total offtake does not have an appreciable impact on the 452 

population. Hence, tools capable of accurately forecasting next-year population density and 453 

providing insights on the effect of harvest would be useful to adapt harvesting strategies in the 454 

face of current and future climate change (Nichols et al., 2015).  455 
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The difference between the prediction error of our models and a theoretical minimum 456 

expected under a “perfect” Poisson process was similar to that found by Henden et al. (2020), 457 

who used the same metric for the same purpose. Although none of our models outperformed 458 

the others with respect to forecasting next-year mean population density, the inclusion of local 459 

climate and food web predictors was important for predicting large changes between years (e.g. 460 

2016 and 2017). A more complex model, therefore, may be better suited for the Svalbard rock 461 

ptarmigan population, although simpler models can perform as well in some cases (cf. Gerber 462 

& Kendall, 2018). A noticeable exception was 2019, when the more complex models (i.e. 463 

WT_Climate and WT_Carrion) underestimated densities, likely due to the strong influence of 464 

the winter temperature predictor that showed a low value in 2019 (i.e. average temperature from 465 

December 2018 to March 2019; Fig. 2c). Overall, we deem the predictive ability of our models 466 

sufficient for iterative forecasting on a yearly basis. There is, however, scope for improved 467 

predictions, which will be possible with better spatial matching of predictor variables and 468 

ptarmigan monitoring (i.e. accounting for spatial variation), and a longer time series. 469 

Although our study area in Svalbard is relative small compared to the size of the Svalbard 470 

archipelago, the geomorphology of the glacial valleys and the fact that some parts are 471 

considerably distant from the coast can cause substantial variation in local temperatures and 472 

precipitations (Isaksen et al., 2016). Because the sMAPE is the mean of the per-survey site 473 

prediction error, not accounting for spatial variation in weather covariates may have influenced 474 

the predictive performance of the models. The current installation of new weather stations 475 

throughout the study area, combined with the development of modelling systems that 476 

reconstruct spatial weather by interpolation techniques, provides scope for more accurate 477 

gridded data of local climate variables. With more data and better predictors, we expect 478 

confidence to rise in models that perform well and decrease in those that perform poorly. This 479 

will likely lead to more precise and useful predictions with respect to which drivers of 480 
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population dynamics are most important. Iterating the forecasting process in the next years will 481 

elucidate whether some of the strong effects we found are real or occurred by chance (e.g. the 482 

effect of winter temperature). Moreover, as our models do not account for potential interaction 483 

effects between some of the drivers (e.g. between population density and ROS as shown for 484 

Svalbard reindeer, Hansen et al., 2019a and b), more sophisticated, hypothesis-specific models 485 

could be developed. Generating predictions from several hypothesis-specific models to evaluate 486 

potential interactions could improve the understanding of the mechanisms governing the 487 

population dynamics of the Svalbard rock ptarmigan.  488 

 489 

Conclusions 490 

We provided a first assessment of the impacts of different manifestations of climate change 491 

on the Svalbard rock ptarmigan, a year-round resident, endemic species inhabiting an 492 

archipelago where the temperature increase is among the highest on Earth. Our study highlights 493 

the importance of winter conditions in determining the population state at the time of breeding, 494 

but also the challenge of disentangling the effect of drivers that are interlinked and can act both 495 

directly and indirectly on ptarmigan population dynamics. In a situation of limited knowledge, 496 

such as for the Svalbard rock ptarmigan population, committing to validate predictions from 497 

hypothesis-driven models against new data will allow more frequent hypothesis testing and thus 498 

more robust explanatory science about the impact of climate change. Prediction, in the end, is 499 

the ability to demonstrate understanding (Houlahan et al., 2017). With respect to the 500 

management of the Svalbard rock ptarmigan population, although no influence of current 501 

harvest levels was detected, continuing the ongoing long-term time series and the iterative 502 

predictions will likely increase the probability to detect potential future harvest effects. The 503 

ongoing, rapid climate change may have yet unknown effects on ptarmigan’s ability to tolerate 504 

harvesting. In addition, we suggest that the formal integration of stakeholders’ views (e.g. the 505 
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hunters and the Governor of Svalbard) in the modelling process through standardised protocols 506 

(cf. Henden et al., 2020) could help generating more nuanced hypotheses about drivers of 507 

change (e.g. how they affect demographic structure). The management may also benefit from 508 

the iterative-forecast framework we developed as a tool to evaluate and adjust hunting quotas 509 

based on model predictions. Because hunting takes place in the autumn, winter predictors will 510 

need to be assigned average values from the most recent warming period (e.g. average over the 511 

last 6-7 years) or evaluated under scenario assessment (e.g. high winter temperature versus low 512 

winter temperature).  513 
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6. Figures 532 

 533 

Fig. 1 – Conceptual model depicting potential drivers of Svalbard rock ptarmigan population 534 

dynamics. Solid arrows represent direct paths that were included in the models and 535 

parameterized, dashed arrows represent the hypothesized mechanisms behind indirect effects. 536 

+/- denote the expected direction of the relationship.  Predictors and units of measurement are 537 

described in section 2.2 in the main text.538 
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 539 

Fig. 2 – a) Average area-specific model-based estimates of Svalbard rock ptarmigan male 540 

population density (males/km2) for the period 2005-2019 from the WT_Climate model 541 

(“climate-impact” model including Winter Temperature). NR = Non-Random survey points; R 542 



 

26 
 

= Random survey points. Sassendalen includes random and non-random points together. b) 543 

Average area-specific observed density for the period 2005-2019. Legend abbreviations as in 544 

panel a. Note the scale on the y-axis differs between panel a and b. c) Time series of winter 545 

temperature and sea ice extent in the study area. Values are scaled to ease comparison.  546 
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 547 

Fig. 3 – Mean ± 95% Credible Intervals of estimated posterior distributions of scaled predictors. 548 

Abiotic and biotic effects and density dependence are reported separately for graphical 549 

purposes. Note the scale on the y-axis differs between a and b. Effects should be interpreted as 550 

change in ptarmigan population growth rate for an increase of 1 standard deviation in the 551 

predictor. The number of bars differs among predictors because not all predictors were included 552 

in each model. SI_Climate = “climate-impact” model including Sea Ice; SI_Carrion = 553 

SI_Climate with the addition of Reindeer Carrion; SI_Carrion2 = SI_Carrion without ROS 554 

days; WT_Climate = “climate-impact” model including Winter Temperature; WT_Carrion = 555 

WT_Climate with the addition of Reindeer Carrion; WT_Carrion2 = WT_Carrion without ROS 556 

days.   557 



 

28 
 

 558 

Fig. 4 – Prediction error (sMAPE) for the three candidate models used for anticipatory 559 

predictions. PT = Ptarmigan model; WT_Climate = “climate-impact” model including Winter 560 

Temperature; WT_Carrion = WT_Climate with the addition of Reindeer Carrion. Theoretical 561 

Minimum is the expected prediction error under a Poisson process model.   562 
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 563 

Fig. 5 – Ability of candidate models to predict next-year mean population density of the 564 

Svalbard rock ptarmigan in the study area. Predicted next-year mean densities are compared to 565 

actually observed densities. Arrows point at the model that provided the best prediction. PT = 566 

Ptarmigan model; WT_Climate = “climate-impact” model including Winter Temperature; 567 

WT_Carrion = WT_Climate with the addition of Reindeer Carrion.    568 
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7. Tables 569 

Table 1 – Combination of predictors in the candidate models. The table indicates also whether 570 

a given model was used for explanatory predictions or anticipatory predictions, or both. 571 

WT_Climate = “climate-impact” model including Winter Temperature; WT_Carrion = 572 

WT_Climate with the addition of Reindeer Carrion; WT_Carrion2 = WT_Carrion without ROS 573 

days; SI_Climate = “climate-impact” model including Sea Ice; SI_Carrion = SI_Climate with 574 

the addition of Reindeer Carrion; SI_Carrion2 = SI_Carrion without ROS days; PT = Ptarmigan 575 

model.  576 

  577 

Variable WT_Climate WT_Carrion WT_Carrion2 SI_Climate SI_Carrion SI_Carrion2 PT

Temperature July X X X X X X -

Precipitation   

July
X X X X X X -

Winter 

temperature
X X X - - - -

Winter onset X X X X X X -

ROS days X X - X X - -

Sea Ice - - - X X X
-

Reindeer carrion - X X - X X -

Harvest X X X X X X X

Density 

dependence
X X X X X X X

Trend X X X X X X -

Explanatory 

predictions
Yes Yes Yes Yes Yes Yes No

Anticipatory 

predictions
Yes Yes No No No No Yes
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Supplementary Material 1 

Appendix S1 2 

Time series of sea ice extent 3 

Data on sea ice extent in the fjords of Svalbard (km2) have been calculated using ice charts, 4 

which are based on satellite information issued by the Norwegian Ice Service (NIS) since 1969 5 

(Dahlke et al., 2020). Ice charts are produced manually based on the best available satellite 6 

information. After the observations are collected, they are classified into six classes based on 7 

sea ice concentration, ranging from open water (0 to 10 % ice concentration) to the very close 8 

drift ice (90 to 100 %) and fast ice (100%). Prior to 1997, ice charts have been produced on a 9 

weekly basis using cloud free measurements by optical and thermal infrared sensors like 10 

Television and Infrared Observation Satellite cameras and Advanced Very High Resolution 11 

Radiometer (AVHRR) on board meteorological satellites. Spatial resolution of the images was 12 

1 to 4 kilometers. From 1997, ice charts have been generated digitally on a daily basis. Passive 13 

microwave observations (PMW) have been added to the sources as well as the optical and 14 

thermal infrared sensors like Moderate Resolution Imaging Spectroradiometer (MODIS) and 15 

Visible Infrared Imaging Radiometer Suite (VIIRS) that obtain imagery at higher spatial 16 

resolution of 250 - 500 meters per pixel. From 2008, NIS has been using near daily 17 

RADARSAT-2 (Scheuchl, Flett, Caves, & Cumming, 2004) synthetic aperture radar (SAR) 18 

observations resampled to 100 meters per pixel. In 2014, the addition of daily Sentinel-1 19 

measurements (Torres et al., 2012) allowed near complete coverage of the Svalbard area with 20 

SAR observations. Passive microwave imaging and SAR technology allow observing sea ice 21 

year round independently from cloud and light conditions, improving the quality of sea ice 22 

mapping. Because various data sources have been used throughout the time series, it is likely 23 

that the quality of observations at the beginning of the time series is lower compared to the later 24 

periods when SAR, PMW and high resolution optical and thermal infrared measurements were 25 
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added.  26 

Our study area is limited to the Isfjorden system that consists of several fjord arms in central 27 

Spitsbergen. We used sea ice charts for the winter and spring period (December to June) from 28 

2005 to 2019. In this study, the extent statistics (km2) include only very close drift ice and fast 29 

ice classes. These ice features, filtered by time and area, have been aggregated to compute 30 

minimum, maximum and average values for each month using PostgreSQL/POSTGIS 31 

software.  32 
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Appendix S2 33 

Viewshed analysis 34 

The viewshed analysis was performed using the viewshed-analysis plugin in QGIS 35 

(QGIS_Development_Team, 2018). The viewshed analysis uses the elevation value of each cell 36 

of the digital elevation model (DEM) of Svalbard (Norwegian Polar Institute, 2014) to 37 

determine visibility from the centre of each ptarmigan survey point and compute the observable 38 

area (in km2). We estimated point-specific observable area within a buffer of 400 m in radius 39 

from the observer, based on the frequency distribution of detection distances. For the analyses, 40 

we assumed the average height of an observer equal to 1.6 m and the height of ptarmigan equal 41 

to 0 m (i.e. the entire ptarmigan would be seen). Moreover, we discarded areas within the 400 42 

m radius consisting of open water.   43 
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Appendix S3 44 

JAGS code for the state-space model 45 

#------------# 46 

# JAGS model # 47 

#------------# 48 

cat(" 49 

model{ 50 

  # Prior distributions 51 

  # potential Regression parameters 52 

  alpha0 ~ dunif(-10,10)  # intercept detection prob on sigma (shape parameter) 53 

  rugd ~ dunif(-10,10) 54 

  asp ~ dunif(-10,10) 55 

  slp ~ dunif(-10,10) 56 

   57 

  for(j in 1:Nlev){         #3 levels fixed effect! 58 

    beta0[j] ~ dunif(-10,10)  # intercept initial density/Abundance 59 

    betat0[j] ~ dunif(-10,10) # intercept density dynamic model 60 

  } 61 

   62 

  taubtDD <- pow(2,-2) 63 

  btDD ~ dnorm(0,taubtDD)I(-2,2) # DD parameter 64 

  btTREND  ~ dnorm(0,100)  # excess trend in growth 65 

  btPrect ~ dunif(-10,10)   # cumulative precipitation effect  66 

  btROSt ~ dunif(-10,10)    # ROS effect 67 

  btTempt ~ dunif(-10,10)   # temperature effect 68 
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  btWiOnt ~ dunif(-10,10)    # Winter Onset effect 69 

  btWiTemp ~ dunif(-10,10)    # Winter Temperature effect 70 

  #btCarct ~ dunif(-10,10)    # temporal carcass effect 71 

  btHarvt ~ dunif(-10,10)    # Harvest effect 72 

  #btSeaIcet ~ dunif(-10,10)    # Sea ice effect 73 

   74 

## Specification of precision via inverse gamma distribution 75 

  PrOc ~ dgamma(alphaProc, betaProc) # approximates inv.gamma with vague priors, alpha 76 

and beta = 0.01 77 

  PrEc ~ dgamma(alphaPrec, betaPrec)  78 

  sdproctau <- 1/sqrt(PrOc)  79 

  sdprectau <- 1/sqrt(PrEc) 80 

   81 

  ##Definition of random transect cluster effect  82 

  for (j in 1:NClust) # NClust = number of clusters (areas) 83 

  {rCl1[j]~ dnorm(0,rtau)  84 

    rCl[j]~ dnorm(0,rtau2)} 85 

  rtau ~ dgamma(alphaTau, betaTau) 86 

  rtau2 ~ dgamma(alphaTau2, betaTau2) 87 

  sdrtau <- 1/sqrt(rtau) 88 

  sdrtau2 <- 1/sqrt(rtau2) 89 

   90 

  # 'Likelihood' 91 

  for (s in 1:nsites){ 92 

    # Linear model for detection function scale 93 
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    log(sigma[s]) <- alpha0 + rugd*vrm_d[s] + asp*aspect_d[s] + slp*slope_d[s] 94 

    # Compute detection probability 95 

    for(k in 1:nD){ 96 

      log(p[s,k]) <- -midpt[k]*midpt[k]/(2*sigma[s]*sigma[s]) # Half-normal detection function 97 

      f[s,k] <- p[s,k]*pi[s,k] 98 

      fc[s,k] <- f[s,k]/pcap[s] 99 

      fct[s,k] <- fc[s,k]/sum(fc[s,1:nD]) 100 

      pi[s,k] <- (2*midpt[k]*delta )/(B*B) 101 

    } 102 

    pcap[s]<-sum(f[s,1:nD])  # Overall detection probability, i.e. sum over all bins! 103 

     104 

    # Process model 105 

    # Abundance/density model for Yr1 as in Sillett et al 2012 106 

    y[s,1] ~ dbin(pcap[s], (N[s,1]*Nrep[s,1]))  # measurement error 107 

    N[s,1] ~ dpois( lambda[s,1] )  # poisson variation     # N is poisson with expected value 108 

#lambda 109 

    lambda[s,1] <-  D[s,1] * areadet[s] 110 

    logD[s,1] ~ dnorm( mu[s,1], PrEc )   111 

    mu[s,1] <- beta0[ThreeLev[s]] + rCl1[Clust[s]]  112 

    # model on density  113 

    D[s,1] <- exp(logD[s,1]) 114 

     115 

    # Population dynamics model for subsequent years 116 

    for (t in 2:T){ 117 

      y[s,t] ~ dbin(pcap[s], (N[s,t]*Nrep[s,t])) 118 
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      N[s,t] ~ dpois(lambda[s,t])  ## poisson variation 119 

      lambda[s,t] <- D[s,t] * areadet[s] 120 

      logD[s,t] ~ dnorm( mu[s,t] , PrOc ) # precision Process  121 

      # Autoregressive model: mu is the latent state to be estimated!! 122 

      mu[s,t] <- betat0[ThreeLev[s]] + rCl[Clust[s]] + btDD * mu[s,t-1] + 123 

      btHarvt*Harvt[t-1] + 124 

      btTempt*Temp1Julyt[t-1] + 125 

      btPrect*Prec1Julyt[t-1] + 126 

      btWiOnt*WiOnt[t-1] + 127 

      btROSt*ROS_days[t] + 128 

      btWiTemp*WiTemp[t] + 129 

      btTREND * (t-1) 130 

      # model on growth rates because of delayed effect (btDD), i.e. effect estimates are on the 131 

growth rate 132 

      D[s,t] <- exp(logD[s,t]) 133 

    } 134 

  } 135 

   136 

  # Distance sampling observation model for observed (binned) distance data 137 

  for(i in 1:nobs){ 138 

    dclass[i] ~ dcat(fct[site[i],]+0.01)  # 1:nD, add a small (0.01) value to obtain pos descrete  139 

#values 140 

  } 141 

   142 

  for(s in 1:nsites){ 143 
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    for(t in 1:T){ 144 

      PredY[s,t] <- ((exp(mu[s,t]+ 0.5*(sdproctau*sdproctau))*areadet[s])*Nrep[s,t]) * pcap[s]     145 

# See Bled et al. PlosOne 2013 146 

    }    } # prediction 147 

   148 

  # Derived quantities: 149 

  for(t in 1:T){ 150 

    Ntot[t] <- sum(N[,t]) 151 

    Dest[t] <- Ntot[t] / sum(areadet) # 400m point = 0.5026548 km2 152 

  } 153 

} 154 

", file="DynDensSvalbardPt.txt")  155 
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Appendix S4 156 

Details on the method to generate anticipatory predictions 157 

Following Henden et al. 2020, we used the coefficients estimated by the model from year t and 158 

covariate (scaled) values for the next year (t+1) to predict next year's log density (predmu) for 159 

each surveyed point. Next year's counts were predicted as  160 

            𝑃𝑠,𝑡+1 = (exp(𝑝𝑟𝑒𝑑𝑚𝑢𝑠,𝑡+1 + 0.5 ∗  𝜎𝑝𝑟𝑜𝑐
2 ) ∗ 𝑎𝑟𝑒𝑎𝑠,𝑡+1)  ∗  𝑝𝑐𝑎𝑝𝑠   ,            (S1) 161 

where 𝜎𝑝𝑟𝑜𝑐
2  is the estimated sd of the process variance, area is the surveyed area (km2) around 162 

each point, and pcap is the estimated site-specific detection probability. This operation was 163 

applied iteratively to the ptarmigan count times series spanning t = 10 years to t = 14 years of 164 

prior data. 165 

To compare the predicted counts (Ps) to the observed counts (Os), we used the symmetric mean 166 

absolute percentage error (sMAPE), a commonly used measure to assess forecast accuracy 167 

                                                    𝑠𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝑃𝑠−𝑂𝑠|

(|𝑂𝑠|+|𝑃𝑠|)

𝑠𝑖𝑡𝑒𝑠
𝑆=1                                     .                 (S2) 168 

The potential theoretical minimum prediction error that we calculated for each year to assess 169 

the contribution of measurement error to the models’ predictive ability, was based on a model 170 

with no process error but only Poisson variability (so called «perfect model», see R-code 171 

below). We first generated a vector with length equal to the number of sites surveyed (N) and 172 

within the range of observed log counts for year t (yvec). We then performed 1000 simulation 173 

where we extracted the predicted values (ypredt) from a Poisson GLM of a random Poisson 174 

variable (yt), with size = N and expected values = yvec, regressed against yvec. We then calculated 175 

sMAPE values for each simulation, with Os = yt and Ps = ypredt. We finally calculated the mean 176 

and standard deviation over the 1000 simulations as a measure of theoretical minimum 177 

prediction error (see R-code below for more detail).   178 

 179 

############# Theoretical minimum prediction error (R-code): ################# 180 
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Nsites = SDp.err.P = VARp.err.P = MEANp.err.P = numeric(dim(YmaxNx_updt2005)[2]) 181 

Pred.errorP <- numeric(1000) 182 

for(j in 1:dim(YmaxN)[2]) { # years 183 

  minN = min(YmaxN[,j], na.rm=T) # minimum count 184 

  maxN = max(YmaxN[,j], na.rm=T) # maximum count 185 

  N = length(na.omit(YmaxN[,j]) ) # number of sites surveyed 186 

  l.max = log(maxN) # log of max count 187 

  l.min = log(minN+1) # log of min count 188 

  (Y.vec <- seq(l.min,l.max,length=N)) # predictor 189 

  for (i in 1:1000) { 190 

    Y = rpois(n=N,lambda=exp(Y.vec)) # response 191 

    Y.pred = predict(glm(Y~Y.vec,family=poisson),type="response") 192 

    Pred.errorP[i] = (1/N)*sum(abs(Y.pred - Y)/(abs(Y) + abs(Y.pred))) 193 

  } 194 

   195 

  MEANp.err.P[j] <- mean(Pred.errorP) 196 

  VARp.err.P[j] <- var(Pred.errorP) 197 

  SDp.err.P[j] <- sd(Pred.errorP) 198 

  Nsites[j] <- N 199 

} 200 

 201 

StdErrp.err.P = SDp.err.P/sqrt(Nsites)  202 
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Appendix S5 203 

Supporting figures and tables 204 

 205 

 206 

Fig. S1 – Map showing the study area for annual abundance surveys of territorial Svalbard rock 207 

ptarmigan males and its location in the Svalbard archipelago. Open circles represent non-208 

random survey points, solid circles represent random survey points. Borrowed from Pedersen 209 

et al. (2012).  210 
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 211 

Fig. S2 – Time series data for the different predictors in the models for both explanatory and 212 

anticipatory predictions. Data for predictors expected to influence winter survival and 213 

recruitment, and thus modelled at time t, are shown for the period 2005-2019. Data for 214 

predictors expected to influence reproduction and survival during summer and autumn, and thus 215 

modelled at time t-1, are shown for the period 2005-2018.  216 
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 217 

Fig. S3 - Average area-specific model-based estimates of Svalbard ptarmigan population 218 

density for the period 2005-2019 from all the models used to generate explanatory predictions. 219 

Blue line = Adventdalen non-random points; black line = Adventdalen random points; red line 220 

= Sassendalen (it includes random and non-random points pooled). WT_Climate = “climate-221 

impact” model including Winter Temperature; WT_Carrion = WT_Climate with the addition 222 

of Reindeer Carrion; WT_Carrion2 = WT_Carrion without ROS days; SI_Climate = “climate-223 

impact” model including Sea Ice; SI_Carrion = SI_Climate with the addition of Reindeer 224 

Carrion; SI_Carrion2 = SI_Carrion without ROS days.  225 
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Table S1 – Estimates of effects and 95% credible intervals for predictors from all the models 226 

used to generate explanatory predictions. Effects should be interpreted as change in ptarmigan 227 

population growth rate for an increase of 1 standard deviation in the predictor. Temperature 228 

July = average temperature in the first week of July (°C). Precipitation July = cumulative 229 

precipitation in the first week of July (mm). Winter temperature = average temperature in the 230 

core winter season (December-March). Winter onset = day of winter onset (Julian day) defined 231 

as the day when the average of a 10-day forward moving window was below 0°C for the first 232 

time in autumn and remained below 0°C for ≥10 days. ROS days = number of rainy days (with 233 

rain ≥ 1 mm and temperature ≥ 1 C°) in the core winter season (December – March). Sea ice = 234 

mean of the monthly average sea ice extent (km2) in the core winter season (December – 235 

March). Reindeer carrion = number of reindeer carcasses found in the Adventdalen during the 236 

annual census. Harvest = yearly number of ptarmigan harvested in the study area. 237 

  238 

Variable WT_Climate WT_Carrion WT_Carrion2 SI_Climate SI_Carrion SI_Carrion2

Temperature July
0.134 

(0.005; 0.258)

0.058 

(-0.122; 0.222)

0.010 

(-0.175; 0.190)

0.178 

(0.047; 0.291)

0.101 

(-0.083; 0.267)

0.048

(-0.111; 0.212)

Precipitation July
-0.123 

(-0.231; -0.012)

-0.035 

(-0.223; 0.160)

0.022 

(-0.178; 0.231)

-0.177

(-0.296; -0.060)

-0.081 

(-0.271; 0.137)

-0.028

(-0.219; 0.164) 

Winter temperature
0.199 

(0.090; 0.308)

0.185 

(0.066; 0.301)

0.171

(0.039; 0.308)
- - -

Winter onset
-0.039

(-0.165; 0.088)

-0.053

(-0.193; 0.087)

-0.114

(-0.241; 0.019)

-0.095

(-0.228; 0.037)

-0.107

(-0.240; 0.024)

-0.164

(-0.281; -0.044)

ROS days
-0.129

(-0.241; -0.004)

-0.121

(-0.237; 0.015)
-

-0.148

(-0.293; 0.030)

-0.140

(-0.280; 0.018)
-

Sea ice - - -
-0.228

(-0.379; -0.080)

-0.199

(-0.358; -0.029)

-0.163

(-0.315; -0.014)

Reindeer carrion -
-0.120

(-0.328; 0.091)

-0.150

(-0.380; 0.074)
-

-0.126

(-0.334; 0.064)

-0.152

(-0.365; 0.046)

Harvest
0.017

(-0.105; 0.130)

0.002

(-0.130; 0.109)

-0.054

(-0.152; 0.041)

0.040

(-0.141; 0.152)

0.030

(-0.123; 0.136)

-0.040

(-0.140; 0.058)

Density dep.
-0.642

(-0.981; -0.312)

-0.574

(-0.860; -0.194)

-0.394

(-0.625; -0.171)

-0.845 

(-1.403; -0.163)

-0.764

(-1.198; -0.140)

-0.483

(-0.736; -0.213)

Trend
0.055

(0.021; 0.091)

0.042

(0.004; 0.077)

0.033

(0.002; 0.069)

0.075

(0.026; 0.117)

0.061

(0.016; 0.101)

0.045 

(0.014; 0.079)
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Abstract. Sustainable management of wildlife populations can be aided by building mod-
els that both identify current drivers of natural dynamics and provide near-term predictions of
future states. We employed a Strategic Foresight Protocol (SFP) involving stakeholders to
decide the purpose and structure of a dynamic state-space model for the population dynamics
of the Willow Ptarmigan, a popular game species in Norway. Based on local knowledge of
stakeholders, it was decided that the model should include food web interactions and climatic
drivers to provide explanatory predictions. Modeling confirmed observations from stakehold-
ers that climate change impacts Ptarmigan populations negatively through intensified out-
breaks of insect defoliators and later onset of winter. Stakeholders also decided that the model
should provide anticipatory predictions. The ability to forecast population density ahead of
the harvest season was valued by the stakeholders as it provides the management extra time to
consider appropriate harvest regulations and communicate with hunters prior to the hunting
season. Overall, exploring potential drivers and predicting short-term future states, facilitate
collaborative learning and refined data collection, monitoring designs, and management priori-
ties. Our experience from adapting a SFP to a management target with inherently complex
dynamics and drivers of environmental change, is that an open, flexible, and iterative process,
rather than a rigid step-wise protocol, facilitates rapid learning, trust, and legitimacy.

Key words: climate change; decision-making; food web; harvesting; near-term forecasting; population
cycles; stakeholders; strategic foresight.

INTRODUCTION

Sustainable management of wildlife populations can
be facilitated by building models that both identify cur-
rent drivers of natural dynamics and anthropogenic-in-
duced change (Caughley 1994), and provide near-term
predictions of future states (Mouquet et al. 2015, Urban
et al. 2016, Bradford et al. 2018, Dietze et al. 2018). This
is especially relevant in light of the pace of current and
future climate change (Mouquet et al. 2015, Urban et al.
2016, Dietze et al. 2018). While ecologists often aim to
devise models that can aid environmental decision-mak-
ing and lead to changes in policy, they often fail to
achieve this goal (Dietze et al. 2018). If ecology aims to
contribute to policy and management, there is a need to
build models and make ecological predictions directly
relevant and at a time horizon corresponding to environ-
mental decision-making (Nichols et al. 2007, Pouyat

et al. 2010, Hobbs et al. 2015, Hobday et al. 2016, Dietze
et al. 2018). This can be achieved through an integrated
approach in which scientists and stakeholders collabo-
rate in the process of deciding on objectives, data, mod-
els, and analyses (Nichols et al. 2007, Cook et al. 2014a,
Parrott 2017) as well as identifying forthcoming prob-
lems, opportunities, and surprises (Sutherland et al.
2014). Such participatory or collaborative modeling
approaches that involve stakeholders have been for-
warded as a way of ensuring direct relevance and uptake
of modeling outcomes by end users (Parrott 2017, Reiter
et al. 2018, Reiter et al. 2019). This involves all aspects
of the research process from simple information and
data sharing to development of model structure or inter-
pretation of its output (Parrott 2017, Reiter et al. 2018,
Reiter et al. 2019).
A food web consists of directly and indirectly con-

nected species (Wootton 1994). Environmental impact
on one species has the potential to propagate through
the food web, affecting other species indirectly through
multiple pathways (Barton and Ives 2014). Hence,
understanding the consequences of environmental
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change and harvesting in complex, natural systems war-
rants the inclusion of biotic interactions and processes
across several trophic levels (O’Connor et al. 2013, Bar-
ton and Ives 2014, Urban et al. 2016, Kadin et al. 2019).
This is particularly important for harvested species,
which are often situated at intermediate trophic levels in
food webs, and therefore affected by both lower and
higher trophic levels. Harvested species are increasingly
recognized to exhibit complex population dynamics
(Krebs et al. 2001, Moss and Watson 2001, Glaser et al.
2014), including population cycles, synchrony/travelling
waves (Krebs et al. 2018), and transient dynamics (Hast-
ings et al. 2018), expressed as shifts between alternative
stable states. Such complex population dynamics may
result from high dimensionality in the underlying eco-
logical interactions in combination with strong exoge-
nous environmental drivers (Hastings et al. 2018).
Further complications are expected as ecosystems are
increasingly subjected to novel climates and food web
interactions (Ims et al. 2008). Many harvested popula-
tions have been declining in recent decades (Free et al.
2019, Fuglei et al. 2019) and developing predictive mod-
els is therefore a more challenging and pressing task
than ever.

Case study

The Willow Ptarmigan (Lagopus lagopus) is a spe-
cies known to have complex dynamics. The Willow
Ptarmigan has sparked fascination and debate among
hunters, managers, and scientists for more than a cen-
tury (Nansen 1915, Elton 1924, Elton and Nicholson
1942, Moss and Watson 2001), likely due in part to
their high-amplitude population cycles (Krebs et al.
2001, Moss and Watson 2001). However, transient
dynamics (Hastings et al. 2018), expressed as shifts in
cycle period and amplitude, alternation between cyclic
and non-cyclic dynamics, or changes in average popu-
lation density, is also pervasive in most Ptarmigan
populations (Moss and Watson 2001). With its cir-
cumpolar distribution in mainly sub-Arctic and low-
Arctic biomes, the Willow Ptarmigan is also one of
the world’s most abundant and popular small game
species (Potapov and Sale 2013).
Like many other Alpine and Arctic bird species in

Europe (Lehikoinen et al. 2014, Lehikoinen et al.
2019), Ptarmigan populations have recently been
declining (Fuglei et al. 2019). In Norway, both Rock
(Lagopus muta) and Willow Ptarmigan were placed
on the Norwegian Red List in 2015 as “near threat-
ened” (Henriksen and Hilmo 2015). While climate
change has been proposed as the ultimate cause of
this decline (Kausrud et al. 2008), the ecological
mechanisms involved and consequently how manage-
ment should respond, remain unresolved both for
Ptarmigan and most other Arctic-Alpine bird species
that currently are declining (Lehikoinen et al. 2019).
The Willow Ptarmigan is preyed upon by different

predator guilds and is affected by other herbivores in
the ecosystem, some that have recently experienced
changed dynamics (see Henden et al. 2017 for an
overview). Moreover, several Ptarmigan life cycle
stages are thought to be sensitive to climate (Erikstad
and Spidsø 1982, Erikstad and Andersen 1983, Wil-
son and Martin 2012, Henden et al. 2017). Because
of the potential multitude of climatic drivers and bio-
tic mechanisms that may be involved, an ecosystem-
based approach to data capture, modeling, and fore-
casting is warranted (Ims and Yoccoz 2017).
We develop a dynamic state-space model of Willow

Ptarmigan population dynamics tailored to a spatially
extensive population monitoring data set, spanning
17 yr and covering the largest management area for
Ptarmigan in Norway. Different tools and approaches
exist to facilitate model use by management (Gregory
et al. 2012, Scheele et al. 2018, Schwartz et al. 2018).
However, involvement of end users at the development
and research stage, as well as in ongoing engagement
and communication, are considered important (Reiter
et al. 2018, Reiter et al. 2019). We used a Strategic Fore-
sight Protocol (Cook et al. 2014a, Ims and Yoccoz 2017)
to incorporate the knowledge, views and needs of major
stakeholders in joint decisions on what should be the
structure and purpose of the model.

MATERIAL AND METHODS

Target system

The Finnmark Estate (~45,000 km2) is the largest
game management unit for Willow Ptarmigan in Nor-
way. The estate spans sub- and low-Arctic bioclimatic
zones (Walker et al. 2005), with steep gradients from the
western part, which is relatively mild and wet, to the
eastern costal and southern inland parts, which are rela-
tively colder and drier (Hanssen-Bauer 1999). Western
Finnmark is topographically most diverse with large
islands, steep mountain ranges, deep valleys and fjords
(Appendix S1: Fig. S2). The eastern part also contains
fjords and large peninsulas, but the relief is gentler. The
south-central inland part is topographically the most
homogenous with moderately sloped hills and plateaus.
Good Willow Ptarmigan habitats. i.e., open sub-alpine/
sub-Arctic birch forest and low sub-Arctic/low-Arctic
shrub tundra, are well represented across Finnmark
(Pedersen et al. 2012), although they are most frag-
mented in the western part and more continuous in the
south-central part.
One major landowner (The Finnmark Estate; FeFo) is

responsible for both the management (i.e., hunting regu-
lations) and monitoring (line-transect surveys) of the
Willow Ptarmigan in Finnmark. The most extensive
land-use in Finnmark is, however, reindeer husbandry,
which has profound effects on structure and dynamics of
the food web (Ims et al. 2007, Ims and Henden 2012,
Henden et al. 2014).
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Strategic foresight protocol (SFP)

Stakeholders included in the SFP were the major land-
owner (FeFo), representatives from the hunters associa-
tion, governmental management authorities, and
conservation bodies (Appendix S1: Section S1). A first
heuristic step in the process was to decide on the pur-
pose. The purpose was primarily to develop a data-dri-
ven model that could explain past dynamics (i.e.,
provide explanatory predictions). Later in the process,
the stakeholders also expressed a need for using the
model for providing near-term forecasts (anticipatory
predictions). The key data source stemmed from FeFo’s
spatially extensive line-transect survey of Willow Ptarmi-
gan across Finnmark.
The opinions of the stakeholder group constituted an

integral part of the iterative process of model develop-
ment (Appendix S1: Section S1: Fig. S1). In this process,
the model was updated with predictors to potentially
explain both short-term dynamics and more long-term
negative trends, as well as pose future threats to Ptarmi-
gan populations (Fig. 2a). Many stakeholders are well
acquainted with previous research on Willow Ptarmigan
from Scandinavia. Hence, several of the proposed pre-
dictors could also have been included on a purely scien-
tific basis. Stakeholders decided that the modeling
should be based on a food web approach because of the
complexity of the suggested impacts of different drivers
on Willow Ptarmigan (Henden et al. 2017, Ims and Yoc-
coz 2017). A conceptual food web model was built to
highlight biotic interactions suspected to affect both
short-term population dynamics and long-term trends.
Predation on Ptarmigan was considered potentially very
important and thought to be driven indirectly by two
links involving other herbivores in the food web. One
link is due to the cyclic population dynamics of small
rodents driving a synchronized alternative prey mecha-
nism (Steen et al. 1988, Ims et al. 2013b). The second
link is due to increasing amount of reindeer carcasses
subsidizing a guild of generalist predators (Henden et al.
2014). Impact of a recent large-scale geometrid moth
outbreak, thought to negatively affect all browsing her-
bivores (Vindstad et al. 2019) was also included among
the biotic predictors. Among abiotic factors, we included
the potential effect of severe weather conditions (temper-
ature and precipitation) around hatching, previously
shown to be important for Ptarmigan chick survival
(Erikstad and Spidsø 1982, Erikstad and Andersen
1983). Moreover, we included the potential negative
effect of late onset of winter, due to the camouflage-mis-
match effect found for other species that shift to a white
plumage in the autumn (Zimova et al. 2016). Finally, we
included terms for density dependence and effect of har-
vest on Ptarmigan population growth (Pedersen et al.
2004). Fig. 1 provides an overview of the annual life
cycle of Willow Ptarmigan together with information on
when the different drivers have been recorded. Because
of a lack of data on some intermediate components of

indirect links in the conceptual model (Fig. 2a, e.g., gen-
eralist predators in the reindeer carcass–predators–
Ptarmigan path), some of the indirect effects are mod-
eled as direct effects in the statistical model (Fig. 2b).
However, these effects (e.g., carcass abundance) are
interpreted and referred to according to the expectation
from the conceptual indirect effect in the conceptual
model (Fig. 2a).
The spatial scale of the model was also discussed in

the SFP process. FeFo operates with an eastern, western,
and interior Ptarmigan management area (Appendix S1:
Fig. S2) based on the contrasts in climate and topogra-
phy described above (Target system), and their knowl-
edge about gross spatial differences in Willow Ptarmigan
dynamics across Finnmark. Hence, it was decided to
derive model predictions at this scale, but also to con-
sider higher spatial resolution to the extent that data
sources, model specifications, and technical aspects of
analyses allowed.

Data sources and variables

Ptarmigan data for modeling population growth
rates (response variable) were obtained from transect
lines surveyed yearly between 5 and 20 August by
trained personnel with pointing dogs according to a
distance sampling protocol (Buckland et al. 2001).
From 2000 to 2016, a total of 315 lines were surveyed
(Appendix S1: Fig. S2). However, the number sur-
veyed ranged from 67 to 229 lines (122 � 54, mean
� SD) between years. A large part of this variation is
due to an intensive study on the effect of hunting
conducted in 2008–2010, when extra lines where
included in the interior and western part of Finnmark
(E. J. Asbjørnsen, personal communication). As vegeta-
tion structure is likely to influence detection probabil-
ity, we extracted vegetation data by using a vegetation
map for Norway based on Landsat TM/ETM + data
(Johansen 2009). From this digital map, we estimated
the proportion of vegetation classes reflecting forest
and erect woody vegetation within the sampled area
(sampled area [km2] = length [km] 9 2width [km]) of
each line transect. This proportion entered the model-
ing of the detection probability.
We now provide a brief overview of the different pre-

dictor variables. Detailed descriptions of the different
predictor variables can be found in the Appendix S1
(Section S2). Generally, we strove to obtain as high a
spatial resolution of the predictor variables as the under-
lying data allowed.
Harvest statistics for the entire period were available

for each municipality that contained transect lines. For
the harvest predictor we used the number of shot
Ptarmigan per municipality divided by the areas of the
municipality since the different municipalities vary
greatly in size. Hence, transect lines within the same
municipality were given the same value of the predictor.
Note that the scale of the harvest predictor (number of
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Ptarmigan harvested/km2) corresponds to the scale of
the response variable (change in the Ptarmigan density/
km2).
The two predictors linking Ptarmigans indirectly to

predators (Fig. 2a) have different spatial scales. The spa-
tial resolution of the rodent data is at the scale of the
three main regions of Finnmark (western, interior, and
eastern), while for reindeer carrion the scale is the entire
county of Finnmark. Annual rodent density indices from
each of the three regions were obtained from two ongo-
ing monitoring programs (Yoccoz and Ims 2004, Ims
et al. 2011), with constant effort across years and areas.

We used the number of small rodents trapped in stan-
dardized programs conducted in each of the three
regions as the predictor. Annual counts of reindeer car-
casses were retrieved from a national database at the
scale of Finnmark (database available online).5 We used
the sum of the number of reindeer found dead across
municipalities in Finnmark during winter (January–
June) every year as an index of the carcass abundance.
Moth outbreak intensity was estimated using a cumu-

lative defoliation score based on NDVI data from

FIG. 1. (a) Annual life cycle of Willow Ptarmigan in Finnmark, denoting the breeding/nesting, egg, chick, and fledgling and dis-
persal phases. (b) Annual life cycle of data collection for the different drivers included in the model. Note that, while hunting may
proceed well into late winter, the majority of hunting is performed in the autumn.

5www.rovbase.no

Article e02120; page 4 JOHN-ANDR�E HENDEN ETAL.
Ecological Applications

Vol. 0, No. 0

http://ecoforecast.org/


MODIS v6 (Jepsen et al. 2009). The cumulative defolia-
tion score estimates the degree to which the annual peak
plant productivity in an area is lower than the maximum
across the time period 2000–2017. We used the mean
cumulative defoliation score for each line-transect survey
area, including a 6-km buffer zone, as a measure of local
outbreak intensity. Larger negative values of the cumula-
tive defoliation score denote more intense moth out-
breaks and hence increased negative impacts on Willow
Ptarmigan habitats.
Climate-related predictors were all quantified as the

mean at the scale of the line-transect survey area using
interpolated gridded data (1-km2 pixel size) from the
Norwegian meteorological institute (MET Norway; see
Lussana et al. 2016). Mean temperature and max precip-
itation during the first week of July were used as predic-
tors for the conditions affecting chick survival. The

seasonality predictor (onset of winter), related to the
camouflage-mismatch hypothesis, was obtained from
remote sensing data (Appendix S1: Section S2.3).

Statistical model

To assess the effect of different predictors of Willow
Ptarmigan growth rate, we used a modified version of
the Hierarchical Distance Sampling (HDS) model from
K�ery and Royle (2016). This model consists of a detec-
tion model, which estimates an average detection proba-
bility based on the observed distances from each
transect line, and a process model, which models the
spatial-temporal variation in population density as a
function of a set of predictors. The process model con-
sists of a sub-model for the first year (i.e., initial density)
and a Gompertz population dynamics model for the

FIG. 2. (a) Conceptual model denoting the main mechanism and drivers of Willow Ptarmigan dynamics coming out from the
Foresight process. Solid lines denote direct effects, while stippled lines denote indirect effects of different drivers on Ptarmigan pop-
ulation growth and density. Boxes with gray perimeter lines denote predictor and response data included in the model. (b) Concep-
tual model denoting the main mechanism and drivers modeled in the state-space model. Values with red perimeter lines denote
estimated coefficients with 95% credible intervals of specific paths of the conceptual model. Note that as we used an inverse measure
of moth outbreak intensity, the model estimate represents a negative effect. Note also that the moth effect shown is the residual
effect, which mostly represents a temporal effect.
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consecutive years. All covariates (except year) were
scaled (over all locations and time points) to mean = 0
and SD = 1 to ease convergence and interpretation of
effect sizes. Note that since small rodent data where
acquired using different sampling methods, the data
from different regions were scaled separately. The tem-
perature, precipitation, start of winter, and moth out-
break intensity data were all split into three components
in the analyses: a temporal component that captured the
overall average between-year variation, a spatial compo-
nent that captured the overall average between-sites vari-
ation, and a residual component that represented the
interaction between the temporal and spatial compo-
nents (Oedekoven et al. 2017). Consequently, the three
management-area-specific intercepts denote the growth
rate at average values of the covariates. Our models were
fitted using Markov Chain Monte Carlo (MCMC)
methods as implemented in JAGS (Plummer 2003). A
detailed description of the state-space model as well as
the JAGS code is given in Appendix S1 (Section S2.5)
and Data S1.

Near-term forecasting

According to the stakeholders’ desire to obtain antici-
patory predictions (i.e., forecasts), we used the full food
web model to forecast a given year’s survey counts (Ps)
by using the estimated model coefficients based on data
sources from previous years and predictors available in
early summer the same year. In order to see to what
extent the forecasts improved with more years of data,
we ran the model with t = 10 to t = 16 yr of prior data.
We then compared the predicted (Ps) and observed (Os)
survey counts by calculating the symmetric mean abso-
lute percentage error (sMAPE; Makridakis 1993, Makri-
dakis et al. 2018).
In order to assess the contribution of measurement

error to our models’ predictive ability, we calculated the
potential “theoretical” minimum prediction error based
on a “perfect” Poisson process model (see Appendix S1:
Section S2.6, for details and Data S1 for the R code).
We assessed the contribution of a potential hunting ban
as a management action, by comparing predictions of
observed counts of the full model (hereafter FoodWeb
model) with and without harvest for 2016.
Finally, we assessed the importance of the food web

approach by comparing predictive ability of the Food-
Web model with a model containing only Ptarmigan
data (including direct density dependence [DD] and
harvest, hereafter called PtarmiganOnly) and a model
containing Ptarmigan and local climate data (DD,
harvest, temperature, precipitation and time of winter,
hereafter called PtarmiganClimate). We did this to
assess the value of collecting additional extensive and
potentially costly food web and local climate data for
the management of Ptarmigan. To assess whether pre-
dictive ability was different between management
regions, we also decomposed predictive ability of the

three alternative models into management-area-specific
predictive ability.

RESULTS

The SFP process produced two major purposes (i.e.,
deliveries) of the modeling: (1) explanatory predictions
to yield a more comprehensive (i.e., ecosystem-based)
understanding of the main mechanisms and drivers of
Willow Ptarmigan dynamics as a basis for devising effi-
cient monitoring and management strategies and (2)
anticipatory predictions to inform stakeholders about
the near future state of the population as a basis for
adaptive annual management decisions with respect to
the Ptarmigan hunt.

Explanatory predictions: Drivers of Ptarmigan population
dynamics

The coefficients of the temporal predictors of the full
FoodWeb model are given in Fig. 2b (see Appendix S1:
Section S3, for more details about less central covariates
and parameters).
Most of the temporal climatic predictors significantly

influenced Ptarmigan population growth. Increased pre-
cipitation around the time of hatching (i.e., first week of
July) had a negative effect, while the effect of tempera-
ture at the same time had a positive, but non-significant
effect. Consistent with the expectation from the camou-
flage-mismatch hypothesis, there was reduced popula-
tion growth associated with a later start of winter.
All the predictors reflecting food web interactions

were significant. Both a high reindeer carcass abundance
and a high rodent abundance the same year had a posi-
tive effect on Ptarmigan population growth, while high
rodent abundance the previous year had a negative
effect. Intensive moth outbreak had a strong negative
effect on Ptarmigan population growth.
As expected, harvest had a negative effect on popula-

tion growth, albeit with a small estimated coefficient rel-
ative to the coefficients of the food web predictors and
the negative density dependence in Ptarmigan popula-
tion growth. There was a small negative temporal trend
in population growth not accounted for by the covari-
ates in the model.
Annual density estimates were highest in the western

part of Finnmark (except for initial density), while the
density estimates for inner and eastern part were lower
(Fig. 3). There was large variation among transects
within each region (Appendix S1: Section S3), and sev-
eral of the spatial predictors contributed significantly to
this variation (see Appendix S1: Section S3, for estimates
of the spatial predictors). Despite the significant spatial
and residual effects (interaction between spatial and
temporal predictors), there was a high degree of syn-
chrony in Willow Ptarmigan population dynamics
between the three parts of Finnmark (Fig. 3). As indi-
cated by the coefficients of the direct and delayed rodent
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predictors (Fig. 2b), there was also some synchrony
between Ptarmigan and rodents (Appendix S1: Fig. S5),
in particular during the peaks and crashes in 2011–2012
and 2015–2016. The link between Ptarmigan and
rodents was not at all clear during 2002–2008, when
there was a strong and steady decline in the Ptarmigan
populations across Finnmark. This period coincided
with an extensive moth outbreak in Finnmark (Jepsen
et al. 2013).
Regarding the detection part of the state-space model,

average transect level detection probability varied little
between transect lines and was generally low
(mean = 0.171, SD = 0.019, range = [0.134, 0.195]). As
expected, there was a negative relationship between
detection probability and the proportion of erect woody
vegetation in the surveyed area of the transect lines.

Anticipatory predictions: Near-term forecasting

Short-term predictive performance of the FoodWeb
model generally increased (i.e., improved iterative short-
term predictive performance) with increasing length of
the time series used to parameterize the model (Fig. 4a).
This trend was also apparent for the two alternative
models. Moreover, predictive performance was on aver-
age higher (i.e., lower prediction error) for the FoodWeb
model compared to both the PtarmiganOnly and
PtarmiganClimate models, even though there were some
exceptions in single years (Fig. 4a). After 2014, the pre-
diction error of most candidate models was only 10–
25% greater than the theoretical minimum prediction
error. While all candidate models predicted next years
observed density fairly well (Fig. 4b), the predictions
from the FoodWeb model were on average as close or
closer to the observed (compared to the two other mod-
els). There was, however, one big exception (year 2014),
in which both the FoodWeb and PtarmiganClimate
models performed poorly. This poor performance is
most likely due to extreme values of three predictors

(Start of winter 2013, Carcass 2014, and Rodents 2013
and 2014) leading to greatly overestimated predicted
densities in 2014, compared to the observed data.
The contribution of harvest to predictive performance

of the FoodWeb model was marginal, accounting for
only a 5% (~1.2 individuals/km2) difference in observed
density in 2016 (with harvest 22.56, without harvest
23.77).

DISCUSSION

In an era of rapid and extensive changes in ecosystems
worldwide, ecology is increasingly challenged by policy-
makers, managers, and everyday citizens with questions
about the future state of species and ecosystems. We can-
not rely on our understanding of dynamics based on his-
toric variability alone for forecasting future ecosystem
change (Groffman et al. 2006, Jackson and Hobbs
2009), as the current pace of environmental change
results in increasing novelty of ecological drivers. Hence,
decision-makers will need data and predictions, at a time
horizon relevant for environmental decision-making, to
support and adapt effective mitigating management
decisions for the benefit of both wildlife and users. With-
out adequate models to foresee future impacts of envi-
ronmental change and guide decisions, we may risk that
changes accumulate without a proper understanding of
their effects (Halpern and Fujita 2013). Exploring poten-
tial impacts and predicting short-term future states, such
as in our case study of game populations in a rapidly
changing Arctic, provides the basis for collaborative
learning, refined data collection, monitoring designs,
and management priorities. Coupled with a quantitative
objective function, this approach is a required step for
building adaptive management programs in a time of
rapid and uncertain change (Nichols et al. 2011, Wil-
liams and Brown 2016).

Strategic foresight protocol (SFP)

Although it has for decades been advocated for the
great value of involving stakeholders in the ecological
research process has been advocated for decades, a core
ingredient in adaptive management (Walters and Holling
1990) and monitoring (Lindenmayer and Likens 2010),
there are not many examples of applying structured pro-
tocols for doing so. Here we adopted the Strategic Fore-
sight Protocol (SFP) that has been proposed for tackling
rapidly emerging problems in applied ecology (Cook
et al. 2014a). The SFP is very similar to other stake-
holder-oriented processes, such as group model building
(Otto and Struben 2004), collaborative modeling for
decision support (Langsdale et al. 2013), participatory
modeling (Beall and Zeoli 2008), and mediated modeling
(Van den Belt 2004), although they use slightly different
methods for structured involvement of stakeholders. In
the case of the recently red-listed, but still harvested,
population of Willow Ptarmigan in Northern Norway,

FIG. 3. Willow Ptarmigan population dynamics given as the
average model-based density estimates from the FoodWeb
model for each of the three parts of Finnmark (east, west, and
the interior part).
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FIG. 4. Prediction error and near-term prediction of line-transect survey counts at the scale of Finnmark. (a) Show iterative per-
cent (percent/100) prediction error (sMAPE) for the three candidate models. (b) Show the three candidate models’ ability to predict
next year’s mean observed density (counts/sampling area). Note (inset) the poor ability of the FoodWeb and the PtarmiganClimate
model to predict observed density in 2014. Arrows point to the model that each year predicts next years observed density best.
Equivalent graphs for each of the three parts of Finnmark separately (west, interior, and east) is provided in Appendix S1: Fig. S4.1
and S4.2.
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we experienced that the SFP constituted a highly func-
tioning framework for involving stakeholders in model-
ing efforts for the purpose of identifying drivers of past
and current dynamics as well as for deriving prediction
of the near future state of the population. Our positive
experience may have been aided by the traditionally high
interest in Ptarmigan as a game species in Norway and
the enhanced attention created by the recent red-listing.
The SFP also likely benefitted from stakeholders that
were well acquainted with previous research on Willow
Ptarmigan from Scandinavia.
Implementing the SFP was more time intensive

(>3.5 yr) than we expected, even for the first four of six
stages of the SFP (Appendix S1: Fig. S1), as they
required the commitment of much time from both man-
agers, stakeholders, and researchers. The SFP can
appear as a rigid linear stage-by-stage process (Cook
et al. 2014a), where each stage is completed before mov-
ing to the next. However, we decided to adopt a more
dynamic approach whereby new views and hypotheses
could be implemented in the modeling at every meeting
in the stakeholder group. While the process has not yet
reached the stage of decision-making on management
actions, consensus has been reached about what the
likely drivers of Ptarmigan dynamics are, which data sets
are to be used, and how models should be used to
explore the near future. Several positive and useful expe-
riences have come from the collaborative process. Early
involvement of all major stakeholders was decisive in
providing legitimacy and trust in the objectives of the
process and thereby for the focus and progress of the
work. An informal kick-off meeting, governed by an
external moderator, enabled stakeholders the opportu-
nity to voice their needs, views, and opinions, as well as
take active part in setting the scope of the work, dis-
cussing lack of data, data needs, and suitability of avail-
able data sources. This increased the understanding of
the basis for different stakeholders’ viewpoints and
counteracted potential conflicts (Redpath et al. 2015).
The adopted flexibility in the process, i.e., flexible in the
sense that we moved back and forth between stages 2, 3,
and 4 of the SFP (see Appendix S1: Section S1), reduced
the potential for missed opportunities, and increased the
likelihood that stakeholders’ views were incorporated as
collaborative learning evolved. In summary, the SFP has
increased the trust and understanding of different view-
points among stakeholders as well as between stakehold-
ers and scientists, and thereby increased the likelihood
for a positive future outcome with regard to manage-
ment decisions and actions.

Explanatory predictions: Drivers of Ptarmigan population
dynamics

Our model highlights several environmental drivers,
acting directly and indirectly, that are important in
explaining Ptarmigan population growth and thereby
the recent decline of Norwegian Ptarmigan populations

(i.e., later winter start, increased precipitation around
hatching, intensified moth outbreaks, and potentially a
weaker link to small rodent peak years). Some of the
effects have been documented in previous studies based
on other data sources and time periods. Those include
the classic link between Ptarmigan dynamics and the
population cycles of sympatric rodents (Myrberget 1984,
Steen et al. 1988), the negative impact of severe weather
conditions for early chick survival (Erikstad and Spidsø
1982, Erikstad and Andersen 1983) and the weak com-
pensation of harvest despite strong density-dependent
growth (Pedersen et al. 2004, Sandercock et al. 2011).
However, several of the food web effects documented
here have not been previously documented for Ptarmi-
gan, such as the indirect effects of carrion abundance,
moth outbreak intensity, and the potential effect of
increased camouflage-mismatch on Ptarmigan popula-
tion growth.
It has been argued that increased abundance of car-

rion could lead to a resource-driven mesopredator
release (Killengreen et al. 2011), negatively impacting
tundra-breeding birds (Henden et al. 2014, Henden et al.
2017). A recent study on Lesser White-fronted Goose in
Finnmark (Marolla et al. 2019) found a negative impact
of carrion abundance on Goose reproductive perfor-
mance. Hence, the positive effect of carrion abundance
on Willow Ptarmigan growth found in this study was
unexpected. Future studies should aim to uncover
whether and how an increase in carrion abundance may
affect Willow Ptarmigan growth rate positively. The tim-
ing of a resource pulse relative to the timing of preda-
tion-sensitive life-stages of alternative prey might tip
such relationships from apparent competition to appar-
ent mutualism (Abrams and Matsuda 1996, 2004).
The duration and severity of outbreaks by geometrid

moths in northern Fennoscandian mountain birch for-
ests have intensified due to climate warming (Jepsen
et al. 2013). The most recent moth outbreak in Finn-
mark (2002–2008) resulted in large-scale defoliation of
birch trees and shrubs as well as a region-wide state shift
of the understory vegetation from shrubs to grass (Jep-
sen et al. 2013). Interestingly, Jepsen et al. (2013) showed
that these effects cascaded to affect the abundance of
both rodents and ungulates. Since Willow Ptarmigan
diet consists mainly of shrubs (Salix and Vaccinium spp.)
(Weeden 1969, Williams et al. 1980), the large-scale defo-
liation of these preferred forage plants has likely resulted
in less forage for Ptarmigan in areas of intense out-
breaks. Insect outbreaks in northern-boreal forests are
expected to intensify due to climate warming (Jepsen
et al. 2013) and may even extend into the shrub tundra
(Karlsen et al. 2013). Therefore, this may constitute a
future threat to low- and sub-Arctic Ptarmigan popula-
tions.
One of the key manifestations of climate change in

Arctic and alpine regions is the increasingly later onset
of snow cover in autumn and an advanced spring with
earlier snowmelt (Ims et al. 2013a, Derksen et al. 2017).
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For Ptarmigan, this implies longer periods with white
plumage against dark bare ground, and thereby likely
increased predation risk as has been documented for
boreal hares (Zimova et al. 2016). Considering that pre-
dation constitutes the main form of juvenile and adult
mortality in most Ptarmigan populations (Smith and
Willebrand 1999, Martin 2001, Munkebye et al. 2003)
and the autumn season is when Ptarmigan mortality is
the highest (Smith and Willebrand 1999), the impact of
a mismatch between molt and onset of winter snow
cover can be high. The strong negative effect of late
onset of winter on population growth is in accordance
with the proposed mechanism of increased predation in
years of larger mismatch between plumage color and
snow cover in autumn (Henden et al. 2017). Hence, in
the absence of an adaptive response, such mortality costs
could result in strong population-level declines of
Ptarmigan populations as snow cover in autumn is pre-
dicted to be further delayed due to climate change
(Derksen et al. 2017).
Finally, it should be noted that Ptarmigan (both Rock

Ptarmigan and Willow Ptarmigan) are presently declin-
ing together with a host of other ground-nesting bird
species in alpine and Arctic ecosystems (Lehikoinen
et al. 2014, Lehikoinen et al. 2019). This trend points
toward drivers of change that are not exclusively linked
to species-specific traits or management, but rather to
general changes in the ecosystem such a climate-warm-
ing-induced increased primary productivity (greening)
and increased nest predation rates (Kubelka et al. 2018,
Ims et al. 2019). This may also explain the declining
trend in the Willow Ptarmigan population that was not
accounted for by any of the predictors included in our
model.

Anticipatory predictions: Near-term forecasting

One of the main needs arising from the foresight pro-
cess was to assess the performance of models in making
anticipatory predictions (Bradford et al. 2018, White
et al. 2019); i.e., based on the desire of managers and
hunters to have near-term forecast of Ptarmigan dynam-
ics prior to the line transect census in late summer. Pre-
dictive performance was fairly good compared to what
can be theoretically expected given a “perfect” Poisson
model, even though predictions in some years were not
as good as might be desired (cf. Nichols et al. 2015).
There was no clear difference among the different candi-
date models with regard to predicting next year’s survey
counts or improving iterative predictive performance,
although the FoodWeb model performed better in most
years. Hence, there is currently no strong support for
including biotic interactions and thereby embarking on
large-scale sampling of food web interactions to aid pre-
diction and management decisions. However, this is not
unexpected, given the relatively short time series and low
quality and/or resolution of those variables that repre-
sented some of the indirect food web interactions such

as carcass dynamics, moth outbreak intensity, and small
rodent dynamics. However, it may also reflect that sim-
pler models might be preferred to complex models for
making decisions (Gerber and Kendall 2018). With more
and better data from coming years, our expectation is
that confidence will rise in models that perform well and
decrease in those that perform poorly. This process will
allow us to attain more precise and useful predictions
with respect to which drivers of population dynamics are
most important (Nichols et al. 2015).
If ecology is to become more relevant for society, we

need to be willing to contribute to anticipating and miti-
gating expected environmental changes, i.e., ecology
needs to be more predictive (Evans et al. 2012, Mouquet
et al. 2015). Hence, there has recently been an increasing
focus on conducting near-term ecological forecasts that
operate on timescales relevant to decision-makers (cf.
Dietze et al. 2018; Ecological Forecasting Initiative
[EFI], available online).6 To our knowledge, we are
among the first (M€antyniemi et al. 2013) to adopt this
approach to harvested species while simultaneously
addressing the effect of alternative model complexity on
short-term forecast ability. In the long run, we think a
food web approach to modeling will be most suited for
species with complex population dynamics such as many
small game populations. This is because more mechanis-
tic models will better accommodate shifting dynamical
regimes due to ecological interactions that change over
time than simpler phenomenological models (Urban
et al. 2016).

Scopes for improved predictions

Although the overall outcome of the SFP has been
satisfactory with respect to its purpose, there remains
scope for improving on predictive ability. For example,
there are limitations regarding what time series of annual
population density estimates can explain in terms of
mechanisms affecting population growth rates. Demo-
graphic data can provide better insights about such
mechanisms.
While few studies on harvested species have been able

to assess the effect of environmental change by means of
demographic models, such approaches will likely provide
a richer understanding of the complex effects of climate
change (Jenouvrier 2013). Indeed, it has been argued
that such understanding is key for the development of
more mechanistic models to promote robust predictions
(Evans et al. 2012, Urban et al. 2016). However, acquir-
ing individual-based demographic data from Arctic-
alpine Ptarmigan populations are logistically and
methodologically challenging, and hardly achievable on
the temporal and spatial scales relevant for manage-
ment. However, there is scope for future studies that are
able to combine intensive demographic studies

6 http://ecoforecast.org/
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conducted on a relatively small scale with survey-type
population monitoring data acquired on a large scale.
Another scope for improving predictions is in data

quality. More transect lines and a spatially extended
effort to survey Ptarmigan populations could yield more
spatially resolved predictions, for instance, at the scale of
local municipalities in a management region. Also,
higher precision could be gained by better spatial match-
ing of response and predictor variables. In particular,
some of the predictor variables that entered our state-
space model were spatially interpolated proxies with
unknown measurement errors. Increasing sampling
efforts to reduce the extent of interpolation and conduct-
ing trials to assess measurement errors would likely con-
tribute improved predictive ability.

CONCLUSION

We used a Strategic Foresight Protocol (Cook et al.
2014a, Schwartz et al. 2018), that included several inter-
est groups, to integrate the views and needs of stakehold-
ers. Importantly, drivers that proved to be influential in
the modeling were taken into account because of stake-
holder involvement, drivers that would not have been
included in a purely researcher-driven process. Interest-
ingly, some of these drivers were related to outcomes of
recent climate change (e.g., novel pest insect outbreaks
and Ptarmigan plumage color mismatch) observed by
local stakeholders. Hence, the SFP facilitated the inclu-
sion of recently acquired local knowledge about rapid
environmental change. The incentive for conducting
near-term forecasting was due to the management’s need
to have time to prepare, organize, and inform about
upcoming harvest regulations. Thus, the ability of the
dynamical state-space model to predict population
increases and decreases will provide the landowner extra
time to consider appropriate harvest regulations as well
as early communication of hunting expectations for both
local and visiting hunters. The feedback from the land-
owner indicated that such predictions would be desired
and valuable. In general, the modeling approach and
access to extensive population and ecosystem data, offer
a suitable framework for implementing the views of
stakeholders as alternative hypotheses that can be con-
fronted with data. Moreover, the approach forms a
structured basis for making short-term predictions that
can be iteratively updated and improved as more and
new data become available.
Our collaborative modeling approach widens the

scope for potential mitigating actions, by highlighting
several novel and manageable drivers of Ptarmigan pop-
ulation dynamics and changes. While our results indicate
that protection against hunting or reduced hunting quo-
tas would have a positive effect, it appears that the cur-
rent harvest quotas are not among the key drivers of
Ptarmigan population dynamics in the management
region and time period considered in the present study.
One should be aware that the effect of harvest could to

some extent be confounded with the strong negative
effect of winter onset, as late snowfall may lead to a
longer hunting season compared with years of early
snowfall. However, our results suggest that other man-
agement actions could be more effective, such as forest
management after moth outbreaks. Given that multiple
drivers impact the population dynamics, potential man-
agement actions are diverse and complicated by the
uncertainty in how the drivers act in concert, especially
if acted upon by management. Considerations are fur-
ther complicated by uncertainty about whether the pop-
ulation is in a transient state or at its natural attractor
(Hastings et al. 2018), that itself may be moving due to
climate change. Furthermore, the community and conti-
nent-wide decline in ground-nesting birds (Lehikoinen
et al. 2014, Lehikoinen et al. 2019) also urge for consid-
eration of general drivers of change in alpine-Arctic
ecosystems (Ims et al. 2019).
Our experience supports the growing evidence of the

potential for SFP to aid ecological decision-making
(Cook et al. 2014a, b, Schwartz et al. 2018). However,
our experience also emphasizes the need for appropriate
time and funding in order to be successful, as well as
long-term ongoing involvement from all involved (Reiter
et al. 2018). It is difficult to assess the potential benefit
of SFP in leading to positive biodiversity change in the
long term (Young et al. 2013). Our experience is that an
open and flexible process, where all stakeholders’ views
and opinions are included and treated as “alternative”
hypotheses confronted with data, will promote social
learning, trust and legitimacy of conservation programs
(Young et al. 2013, Sterling et al. 2017). This will
increase the likelihood of positive future biodiversity
outcomes, which is especially important in light of the
current and rapid changes to the natural world (Young
et al. 2013, Sterling et al. 2017).
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End-user involvement to improve predictions and 

management of populations with complex dynamics and 

multiple drivers. 

Ecological Applications 

 

Section S1. Strategic foresight process 

Table S1. Stakeholders involved in the process: 

Affiliation Representative 

Norwegian Biodiversity Information Center Senior Advisor 

FEFO (Landowner Finnmark) Managers and Head of wilderness division 

Ministry of Climate and Environment Adviser 

Environmental Agency Senior adviser 

NOF-BirdLife Norway Head of Conservation Science Department 

The Norwegian Forest Owners Federation Manager 

The Norwegian Association of Hunters and 

Anglers (NJFF) 

Senior Advisor 

The Norwegian Association of Hunters and 

Anglers (NJFF) - Finnmark chapter 

Leader, division for small game 

The Norwegian state-owned land and forest 

enterprise 

Senior Adviser for Hunting and Fishing 

Local pointing dog club – Lakselv, 

Finnmark 

Deputy board members 

 

Section S1.1. Decision on focus and drivers 

Stakeholders agreed that the modelling should be based on a food web approach because of the 

complexity of the suggested impacts of different drivers on willow ptarmigan (Henden et al. 

2017, Ims and Yoccoz 2017), such as small rodents and carcass abundance working through 

predation, and moth insect outbreaks working through vegetation change. However, the willow 

ptarmigan case study was also a part of larger research project (SUSTAIN) that was mandated 

by the Research Council of Norway to take an ecosystem-based approach. This also provided 

an incentive for addressing combined effects of climate and harvesting in a food web context.  
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The opinions of the stakeholder group constituted an integral part of the iterative process of 

model development. The inclusion of several of the drivers was largely driven by stakeholders’ 

opinions. For example, the inclusion of carcass abundance, even though the quality of these 

data are uncertain, and the potential impact of moth insect outbreaks, which mostly impacts 

sub-optimal willow ptarmigan habitat, was to a large degree initiated by stakeholders’ persistent 

views and opinions. Moreover, it was argued that changes in onset of spring is likely not as 

important as weather conditions in the time around hatching of mismatch in late autumn, and 

therefor onset of spring was not included in the model (partly also because of onset of spring 

was correlated with early July temperature predictor). 
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FIG. S1. The six stages of the strategic foresight process with the aims and potential tools (Cook et al., 

2014; gray shaded area) and the approach that we have used and the outputs that came out at each 

stage of the process (green shaded areas). Note that the present paper includes the first four of the 

suggested six steps in Cook et al. (2014). Figure outline adapted from Adams et al. (2018).  
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Section S2. Extended material and methods section 

 

Fig. S2. Finnmark map showing the three management regions (divided by black lines), line-transect 

areas (blue polygons) and woody vegetation (Dark green: forest, Light green: shrub, Grey: non-woody 

vegetated, White: other (non-vegetated, water, agriculture, build-up areas)). 

 

Section S2.1. Harvest statistics 

FEFO operate with an eastern, western and interior ptarmigan management area (Figure 1), 

defined based on contrasts in climate, different reindeer herding pastures and estimated 

ptarmigan densities (Asbjørnsen pers. com.). Harvest regulations were few to none from 2000 

– 2010 in Finnmark. However, from 2010 onwards, Finnmark was divided up in 138 hunting 

terrains and hunting regulations were gradually implemented based on estimated densities from 
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line-transect surveys in August and partly adjusted at the hunting terrain level based on a habitat 

model (Pedersen et al. 2012). Harvest statistics for each municipality in Finnmark exist for the 

entire period. However, because of low reporting by hunters up until 2010 (as low as 16%), the 

local landowner (i.e. management authorities) has adjusted the harvest statistics based on the 

proportion of hunters reporting each year (e.g. number reported shot / proportion of hunters 

reporting harvest). From 2010, reporting frequency has gradually increased and is currently 

high (>90%), due to both better reporting procedures and potential restrictions on hunting if 

harvest is not reported by the hunter. In the model we used the number of shot ptarmigan per 

municipality divided by the areas of the municipality, since the different municipalities vary 

greatly in size. Hence, transect lines within the same municipality were given the same value 

of the predictor.  

 

Section S2.2. Small rodent and reindeer carrion abundance 

Since spring 2004, we have used a large-scale, permanent system for monitoring rodent 

populations in the tundra of eastern Finnmark, Norway (70°N to 71°N) (Ims et al. 2011), by 

means of the small quadrat method (Myllymäki et al. 1971). The monitoring system 

encompasses 109 permanent census sites distributed in treeless tundra easily accessible from 

roads. At each site, a trapping unit (a 15-m × 15-m small quadrate) with 12 snap traps is 

activated for 2 d shortly after snow melt in late June (spring) and in mid-September (fall) every 

year. In the western and interior part of Finnmark small rodent monitoring has been conducted 

since 2000 (Yoccoz and Ims 2004), by means of live trapping (i.e. capture-mark-recapture), 

along a transect from the Porsanger fjord (69°N 24°E) along the coast to Karasjok (69°N 25°E) 

in the interior of Finnmark (Fig. 1). This monitoring system encompasses 12 permanent census 

sites distributed along valleys in birch forest. At each site, a trapping unit (60x60 m grid) with 

16 live traps (Yoccoz & Ims 2004). Trapping is conducted for two days shortly after snowmelt 
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in mid-June (spring) and mid-September (autumn) ever year. Here this transect has been split 

into the 8 northernmost sites (Porsanger fjord), representing small rodent dynamics in the 

western part, and the 4 sites around Karasjok, representing small rodent dynamics in the interior 

part of Finnmark. For the abundance of small rodents, we calculated the mean number of small 

rodents trapped across trapping grids and days in each region.      

 

We retrieved data on reindeer carcasses from the national database on livestock found dead by 

reindeer herders (www.rovbase.no). Because of varying effort in searching and documenting 

reindeer carcasses between different herding districts in Finnmark, the absolute number of 

reindeer found dead in different areas in Finnmark might not be directly comparable. 

Therefore, we used the sum of the number of reindeer found dead in Finnmark during winter 

(January-June) every year as an index of relative carcass abundance at the scale of the entire 

county. 

 

Section S2.3. Local climate variables 

To represent weather conditions during early chick life for willow ptarmigan we acquired data 

on temperature and precipitation from the Norwegian meteorological institute (MET Norway). 

This weather data is a collection of observational gridded datasets for temperature and 

precipitation that covers the Norwegian mainland (Lussana et al. 2016). The gridded datasets 

are based on the observations from the MET Norway’s Climate database and the observations 

are interpolated on a high-resolution regular grid (1 by 1 km, see Lussana et al. 2016). We used 

gridded datasets of 1-week average temperature and 1-week total precipitation, respectively. 

From the gridded datasets we extracted values per transect line (i.e. nearest cells, n=315) per 

year. 

http://www.rovbase.no/
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To represent changes in seasonality, we acquired MODIS vegetation indices from USGS 

(Didan 2015). It has been shown that vegetation index-derived phenology to a large extent 

agrees with the end-of-snowmelt for the start of the growing season and the start-of-snowing 

for the end of the growing season (Jin et al. 2017). We chose the enhanced vegetation index 

(EVI; 16-day L3 Global 250m) which is derived from atmospherically-corrected reflectance 

in the red, near-infrared, and blue spectrum (Huete et al. 2002). From these data, we estimated 

the onset of spring and onset of winter as average values for each transect-line area in 

Finnmark (n=32 line areas), using a double logistic function (Tveraa et al. 2013). 

 

Section S2.4. Moth outbreak intensity 

To calculate moth outbreak intensity (i.e. cumulative defoliation score) we followed the 

procedure used in Jepsen et al. (2009), using MODIS v6. We calculated a NDVI-anomaly 

score reflecting the degree to which the productivity in an area is lower than the potential, 

observed across the entire time period (2000-2017). For every pixel, we calculated a reference 

value as the 95% quantile of max NDVI during the summer (day of year 193-217). For every 

8-day period during the summer we calculated the anomaly compared to the reference value. 

The median over all periods constitutes the anomaly for any given pixel for a given year (see 

Jepsen et al. 2009 for more details of the method). We used the mean calculated within a 6 km 

buffer (113 km2) around each line-transect survey area as the measure of outbreak intensity to 

get estimates that are more robust for small survey areas. Since these are anomalies, larger 

negative values denote larger/more intense moth outbreaks. 

 

Section S2.5. State-space model description and JAGS-model code 

Statistical analyses  
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To assess the effect of different covariates on willow ptarmigan growth rate we used a modified 

version of the Hierarchical Distance Sampling (HDS) model from Kéry & Royle (2016) (see 

JAGS model code below). When conducting line transect-based distance sampling, the 

perpendicular distance of each observation to the transect line is recorded (Buckland et al. 

2001). The detection probability on the transect line is assumed to be perfect (i.e. p=1), and the 

detection probability p of an observation is defined by a declining function of its distance, d, to 

the transect line. In the current model, we use a half-normal detection function. Then the natural 

logarithm of the detection probability is: 

                                                                 log(𝑝) = −
𝑑2

2𝜎2                                                              (S1) 

 

where σ denote the scale parameter of the detection function. Using all the distance data from 

2000-2016, we grouped observations into 24 distance bins (max distance = 600 m, bin width = 

25 m). This binning smooths inaccuracies in distance estimation and reduces effects of smaller 

movements of animals in response to observers and dogs (Kéry and Royle 2016, Sollmann et 

al. 2016). Then, detection probability (i.e. pcap) is the integral of the distance function over the 

distance bins (Kéry & Royle 2016), providing an average detection probability for each transect 

line (i.e. length*(2*width*)) across years. Note that using a bin-width of 50m did not change 

the estimates of average detection probability. Because of potential differences in the dogs’ 

search image to dens erect woody vegetation, we modeled the scale parameter σ as a function 

of a site-specific variable (Marques and Buckland 2003, Sillett et al. 2012). We used a variable 

denoting the proportion of forest and erect woody vegetation within the sampled area of each 

line (sampled area (km2) = length * (2*width)), of each line transect: 

                                                   log(𝜎𝑠) = 𝛼𝑜 + 𝛼1 ∗ 𝑃𝑟𝑜𝑝𝐹𝑜𝑟𝑒𝑠𝑡𝑠                                                (S2) 

where 𝛼𝑜 is the intercept and 𝛼1 is the coefficient related to the site-specific habitat covariate. 



 

9 
 

Then, for the first year (t=1) we linked the observed counts of ptarmigans (y) for each transect 

line (s) to the latent abundance N in a strip using the average detection probability, pcap: 

                                                      𝑦𝑠,𝑡=1~𝑏𝑖𝑛𝑜𝑚(𝑁𝑠,𝑡=1 , 𝑝𝑐𝑎𝑝𝑠)                                                     (S3) 

Further, we assumed Ns,t=1 to be a Poisson random variable with expected value λs,t=1: 

                                                             𝑁𝑠,𝑡=1~𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑠,𝑡=1)                                                           (S4) 

Because of variability in the length of line transects and thereby the area covered, the expected 

value λs,t=1 is modelled as the product of density (D) and the surveyed area (i.e. 

length*(2*width), km2) covered for each transect: 

                                                              𝜆𝑠,𝑡=1 = 𝐷𝑠,𝑡=1 ∗ 𝑎𝑟𝑒𝑎𝑠,𝑡=1                                                   (S5) 

We assumed log density to be normally distributed with mean, 𝑚𝑢, and variance 𝜎1
2, where 𝑚𝑢 

was modelled as a function of covariates:  

                                                 log(𝐷𝑠,𝑡=1) ~ 𝑛𝑜𝑟𝑚(𝑚𝑢𝑠,𝑡=1, 𝜎1
2)                                                 (S6) 

                                             𝑚𝑢𝑠,𝑡=1 =  𝛽10,𝑟𝑒𝑔 + 𝑟𝐶𝑙1 + 𝛽1𝑥1 ∗ 𝑋1𝑠,1 ,                                       (S7) 

where 𝛽10,𝑟𝑒𝑔 is a regional fixed effect (the three management regions used by FEFO), 𝛽1𝑥 is 

a vector of coefficients associated with covariates 𝑋1𝑠,1. Due to the potential non-independence 

of transect lines very close together we included a random cluster effect (i.e. 𝑟𝐶𝑙1, ~ Norm(0, 

𝜎Cl1)). The number of unique clusters was estimated by means of cluster analysis based on the 

distances between transect lines, using the function hclust (method = single) in package stats in 

R. Based on a cutoff distance of 20 km between transect lines, the cluster analysis estimated 25 

unique clusters. 

For the other years (t > 1) we used the same model structure as above, except that we used the 

stochastic Gompertz model on 𝑚𝑢𝑠,𝑡. On the logarithmic scale, the Gompertz model becomes 

a linear, autoregressive time series model of order 1 [AR(1) process] (Dennis et al. 2006): 

                                                log(𝐷𝑠,𝑡) ~ 𝑛𝑜𝑟𝑚(𝑚𝑢𝑠,𝑡, 𝜎𝑝𝑟𝑜𝑐
2 )                                                   (S8) 

                    𝑚𝑢𝑠,𝑡 =  𝛽0,𝑟𝑒𝑔 + 𝑟𝐶𝑙 + 𝛽𝐷𝐷 ∗ 𝜇𝑠,𝑡−1 + 𝛽𝑥 ∗ 𝑋𝑠,𝑡 +  𝛽𝑇𝑟𝑒𝑛𝑑 ∗ (𝑡 − 1)   ,             (S9) 
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where 𝛽0,𝑟𝑒𝑔 is a regional fixed effect, 𝛽𝐷𝐷 is the density dependence parameter based on the 

log density the year before (i.e. 𝑚𝑢𝑠,𝑡−1), 𝛽𝑥 is a vector of coefficients associated with 

covariates 𝑋𝑠,𝑡, 𝛽𝑇𝑟𝑒𝑛𝑑 is a trend parameter to assess any excess trend across years, not 

explained by the covariates in the model, and where  𝜎𝑝𝑟𝑜𝑐
2  constitute the variance of the process 

error. Again we included a random cluster effect (i.e. 𝑟𝐶𝑙, ~ Norm(0, 𝜎Cl)). It is important to 

note that because of the trend parameter (i.e. Year), the intercept will increase or decrease as 

the years increase, depending on the sign of 𝛽𝑇𝑟𝑒𝑛𝑑. Hence, the estimated intercepts in the model 

(i.e. 𝛽0,𝑟𝑒𝑔) corresponds to the first year. Also, 𝛽𝐷𝐷 < 1 implies negative density-dependence.  

We included the following covariates in the model: average temperature and total precipitation 

during the first week of July the same year (t), onset of winter the year before (t-1), small rodent 

abundance both the same year (t) and the year before (t-1) (to represent both the functional and 

numerical response of predators to rodent abundance, respectively), carcass abundance the 

same year (t), moth outbreak the year before (t-1) and harvest rate the autumn before (t-1). 

Moreover, since many covariates consist of a mix of spatial (between sites within year) and 

temporal (between years within sites) effects, we modelled all the covariates, except small 

rodent and carcass abundance (which only has a temporal component), with an average spatial 

(Xs) and temporal effect (Xt), in addition to the “residual” covariate effect (Xs,t). The average 

spatial effect is then the average of a covariate across years per site and the average temporal 

effect is the average value of a covariate across sites per year. For initial log density (t=1), we 

used small rodent abundance the same year as well as average temperature and total 

precipitation the first week of July the same year (t) as covariates. Our analysis was performed 

using JAGS (Plummer 2003), which uses Markov Chain Monte Carlo (MCMC) simulations to 

estimate posterior probability distributions. All covariates (except year) were scaled (over all 

locations and time points), with mean = 0 and variance = 1 sd, to ease convergence and 

interpretation of effect sizes. Note that since small rodent data where acquired using different 
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sampling methods, the data from different regions where scales separately. Consequently, the 

regional intercepts denote the growth rate at average values of the covariates. All effect sizes 

from the analysis are given by the mean of the posterior distribution and the 95% Credible 

Interval (CI), if not otherwise stated. 

 

 

 

Section S2.6. - Near-term forecasting  

To assess the models ability to predict next year’s survey counts (Ps, i.e. predicted observed 

counts from distance sampling) and more importantly, whether this ability improved with 

increasing amount of data, we ran the model with t=10 to t=16 years of data. From each run of 

the model we predicted next year’s log density (predmu) for each surveyed line by using the 

model coefficients from year t and covariate values for the next year (t+1) (which are all 

measured prior to population surveys in the autumn). Note that we used the covariates scaled 

across all years and sites for each prediction of predmus,t+1. While this will influence the 

estimated parameters (since the mean and sd of any covariate would change with additional 

years), it will not affect the predictive ability as long the standardization is exactly equal to that 

of the fitted model (Eager 2017). We then predicted next year’s counts by: 

            𝑃𝑠,𝑡+1 = (exp(𝑝𝑟𝑒𝑑𝑚𝑢𝑠,𝑡+1 + 0.5 ∗  𝜎𝑝𝑟𝑜𝑐
2 ) ∗ 𝑎𝑟𝑒𝑎𝑠,𝑡+1)  ∗  𝑝𝑐𝑎𝑝𝑠   ,            (S10) 

where 𝜎𝑝𝑟𝑜𝑐
2  is the estimated sd of the process variance, area denote the surveyed area (km2) 

around each line (i.e. length * (2*width)) and pcap is the estimated site-specific detection 

probability.  

The predicted counts (Ps) were compared to the observed counts (Os) by calculating the 

symmetric mean absolute percentage error (sMAPE (Makridakis 1993, Makridakis et al. 

2018)): 

                                                    𝑠𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝑃𝑠−𝑂𝑠|

(|𝑂𝑠|+|𝑃𝑠|)

𝑠𝑖𝑡𝑒𝑠
𝑆=1                                                       (S11) 
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This measure is a frequently used measure of forecast accuracy in the forecast literature. In 

order to assess the contribution of measurement error to the models’ predictive ability we 

calculated the potential “theoretical” minimum prediction error each year based on a model 

with no process error but only Poisson variability (so called «perfect model», see R-code 

below). First, we generated a vector with length equal to the number of lines walked (N) and 

within the range of observed log counts for year t (yvec, See below for more details). We then 

performed 1000 simulation where we extracted the predicted values (ypredt) from a Poisson 

GLM of a random Poisson variable (yt), with size = N and expected values = yvec, regressed 

against yvec. We then calculated sMAPE (eq. 2 above) values for each simulation, with Os = yt 

and Ps = ypredt. Finally, we calculated the mean and standard deviation over the 1000 

simulations as a measure of theoretical minimum prediction error (see R-code below for more 

detail).   

Finally, we assessed the importance of the food web approach by comparing predictive ability 

of the full food web model (FoodWeb model) with a model containing only ptarmigan data 

(intraspecific DD and harvest, hereafter called PtarmiganOnly) and a model containing only 

ptarmigan and local climate data (intraspecific DD, harvest, temperature, precipitation and 

time of winter, hereafter called PtarmiganClimate). We did this to assess the importance for 

the management of ptarmigan in collecting additional extensive and potentially costly food 

web data. To assess whether predictive ability was different between management regions, we 

also decomposed predictive ability of the three alternative models into region-specific 

predictive ability. Note that we performed the procedure of assessing predictive ability in the 

same manner as for the FoodWeb model, only varying model structure complexity. 
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Section S3. Model coefficients and effect sizes on realized scale 

Table S2. Posterior mean and 95% credible interval of effects on ptarmigan initial density (upper part) 

and population growth (lower part) in Finnmark. In the lower table, negative parameter estimate 

indicate a negative effect on population growth, while positive estimates indicate a positive effect on 

population growth. However, for moth outbreak effects, this is reversed as outbreak intensity is 

measured as the deviance from a normal year (see material and methods section). Estimates in bold (*) 

indicate significant effects (i.e. CI not including zero). 

 

 

 

 

 

 

Initial density Posterior mean 95% Credible Interval

Region East 1.5 [-0.28 ; 3.26]

Region Inner 0.96 [-6.36 ; 7.97]

Region West 0.66 [-8.98 ; 9.61]

Rodent abundance -0.67 [-9.39 ; 7.53]

Temperature 0.06 [-1.18 ; 1.33]

Precipitation -0.41 [-1.53 ; 0.69]

Posterior mean 95% Credible Interval

Region East 0.71 [0.39 ; 1.04]

Region Inner 0.61 [0.27 ; 0.96]

Region West 0.95 [0.63 ; 1.29]

Density dependence -0.27 [-0.37 ; -0.17] *

Start of winter - residual -0.04 [-0.11 ; 0.02]

Start of winter - spatial 0.09 [-0.02 ; 0.21]

Start of winter - temporal -0.26 [-0.5 ; -0.03] *

Temperature - residual 0.12 [-0.02 ; 0.25]

Temperature - spatial -0.41 [-0.62 ; -0.2] *

Temperature - temporal 0.08 [-0.11 ; 0.27]

Precipitation - residual -0.15 [-0.24 ; -0.05] *

Precipitation - spatial 0.1 [-0.39 ; 0.58]

Precipitation - temporal -0.17 [-0.35 ; -0.01] *

Rodent abundance 0.4 [0.29 ; 0.52] *

Rodent abundance (t-1) -0.27 [-0.39 : -0.14] *

Carcass abundance 0.25 [0.08 ; 0.42] *

Moth outbreak - residual 0.26 [0.17 ; 0.35] *

Moth outbreak - spatial -0.37 [-0.51 ; -0.24] *

Moth outbreak - temporal 0.38 [-0.31 ; 0.94]

Harvest - residual -0.03 [-0.1 ; 0.04]

Harvest - spatial 0.24 [0.09 ; 0.42] *

Harvest - temporal -0.13 [-0.25 ; -0.01] *

Trend -0.03 [-0.07 ; 0]
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Effect sizes on realized scale 

Precipitation (temporal effect):  

                       for an increase in maximum precipitation of 1 sd. (~ 9.39 mm), ptarmigan  

                       population growth rate decreases by 0.17, on the log scale. 

Onset of winter (temporal effect):  

for a delay in the onset of winter of 1 sd. (~ 6.48 days) ptarmigan population   

                       growth rate decreases by 0.26, on the log scale. 

Small rodents (temporal effect):  

                       for an increase in concurrent small rodent abundance 1 sd. (~ 3.43 rodents)                

                       result in a 0.40 increase in ptarmigan growth rate, on the log scale, while a   

                       similar increase in the preceding year leads to a decrease of 0.27 in ptarmigan  

                       growth rate. Note that the number of rodents for a 1 sd. change is slightly  

                       different for the three management regions, as they are scaled individually, due  

                       to different sampling methods. The value of 3.43 denote the Western and  

                       interior parts of Finnmark. 

Moth outbreaks (residual and temporal effect):  

                       for a decrease in defoliation anomaly of 1 sd. (~ 6.95), ptarmigan  

                       population growth rate increases by 0.26 and 0.38, on the log scale, for the  

                       residual and temporal effect, respectively. Note that moth outbreaks is  

                       measured as the anomaly in NDVI and hence larger outbreaks leads to larger  

                       negative values. 

Carcass effect (temporal effect):  

                       for an increase in number of carcasses of 1 sd. (~ 417 carcasses), ptarmigan  

                       population growth rate increases by 0.25, on the log scale. 

Harvest (temporal effect):  

                for an average increase in harvest rate of 1 sd. (~ 1.23 individuals / km2), ptarmigan   

               population growth rate decreases by 0.13, on the log scale. 

 

Average spatial effects: 

Temperature: A negative spatial effect implies that in areas of Finnmark with generally higher 

temperatures, ptarmigan population growth is generally lower. In the beginning of July, this 

constitutes the interior and eastern interior parts of the county.  

Moth outbreaks: A positive spatial effect (note the inverse effect) implies that in areas of 

generally more intense outbreaks, ptarmigan population growth is generally lower. This effect 

likely relates to areas of more birch forests in the interior and eastern interior parts of 

Finnmark, where the outbreaks where most intense (See Jepsen et al. 2009) and where there is 

less optimal ptarmigan habitats. 

Harvest: A positive spatial effect implies that in areas of generally higher harvest outtake, 

ptarmigan population growth is higher. These areas are in traditionally attractive hunting areas 

in the interior and western parts of the county.  
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Variation in density among transects 

Table S3. Variation in density among transects within each region and year 

 

 

Section S4. Additional figures and tables  

 

Fig. S3. One-year ahead prediction error as estimated by sMAPE for the years 2010-2016. 

Upper left panel denote prediction error of the three candidate models and prediction error 

expected from a perfect poisson process model. Upper right panel denote contrasts in 

prediction error for the FoodWeb in the three management regions. The two lower panels 

Region Metric 2000.0 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

mean 16.9 10.4 15.6 16.0 13.5 13.3 9.6 8.4 3.6 4.0 2.8 9.5 3.3 12.1 10.3 12.5 5.5

sd 9.9 9.6 20.7 15.1 13.1 11.3 11.5 11.7 3.4 4.2 3.5 10.7 4.0 17.9 12.4 14.7 6.4

range [1.9, 37.4] [1.6, 57.7] [1.5, 114.2] [1.8, 77.8] [1.5, 54.5] [1.4, 43.6] [1.0, 53.1] [0.8, 65.8] [0.6, 16.4] [0.9, 17.3] [0.4, 16.1] [1.0, 55.4] [0.5, 21.1] [0.7, 81.6] [1.1, 71.1] [1.3, 75.2] [0.8, 37.3]

mean 6.3 5.4 19.4 19.4 14.8 15.3 9.9 7.7 2.9 4.1 3.0 9.9 5.2 8.4 13.8 19.5 10.9

sd 5.5 3.6 15.8 12.4 10.2 12.0 10.7 6.7 2.8 3.6 2.5 7.4 2.9 5.1 6.0 10.0 6.2

range [1.8, 27.0] [1.3, 23.3] [2.0, 99.3] [3.2, 84.4] [3.2, 60.2] [2.6, 72.4] [1.5, 76.0] [0.7, 42.0] [0.4, 18.5] [0.5, 18.3] [0.3, 23.3] [0.7, 60.1] [0.4, 23.1] [0.6, 37.7] [0.9, 44.9] [0.9, 78.3] [0.6, 58.7]

mean 15.8 13.2 30.2 34.4 28.4 30.3 21.7 22.6 6.8 7.2 6.2 18.3 6.0 8.6 17.3 20.3 9.5

sd 11.8 7.3 14.7 13.7 13.2 12.2 8.2 13.4 7.1 6.3 7.2 19.1 6.9 8.0 10.4 17.6 10.3

range [0.4, 88.3] [0.7, 44.2] [1.2, 105.1] [1.6, 63.6] [1.4, 109.6] [1.5, 79.7] [1.4, 48.6] [1.5, 94.4] [0.9, 47.9] [0.9, 34.1] [1, 46.0] [1.4, 122.9] [1, 58.6] [1.3, 54.5] [1.9, 73.1] [2, 148.5] [1.6, 109.0]

East

Interior

West
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denote contrasts in prediction error in the three management regions for the PtarmiganClimate 

and PtarmiganOnly model, respectively. 

 

 

 

Fig. S4. Regional short-term prediction ability. A-C) show the three candidate model’s ability 

to predict next year’s mean observed density (counts/sampling area) for the eastern, Inner and 

western part of Finnmark, respectively. Arrows point to the model that each year predicts next 

years observed density best. 
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Fig. S5. The time series data for the different predictors in the model. For those predictors 

where we have adequate spatial replication, we show data as box plots. 
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Abstract
1	 Assessing the effectiveness of conservation actions to halt population declines is 
challenging when confounded by other factors. We assessed whether culling of 
red fox, a predator currently increasing in number in the sub-Arctic, contributed to 
recent recovery of the critically endangered Fennoscandian population of Lesser 
White-fronted Goose Anser erythropus, while controlling for potentially confound-
ing food web dynamics.

2	 Using 19 years of data, 10 before and 9 after the implementation of annual red fox 
culling, we estimated the effect of this action on annual performance of the goose 
population. We corrected for the potentially confounding effects of cyclic rodent 
dynamics and semi-domestic reindeer carrion abundance, both of which are 
expected to trigger predator functional and numerical responses, as well as for 
annual variation in spring phenology.

3	 Goose reproductive success fluctuated in synchrony with the rodent cycle and 
was negatively related to abundant carrion. When accounting for these aspects of 
food web dynamics, there was no evidence for an effect of red fox culling on re-
productive success. There was, however, a tendency for fox culling to increase 
adult survival.

4	 Our analysis suggests that goose performance in their breeding area is influenced 
by fluctuating offspring predation, mediated by mainly natural (rodents) and partly 
anthropogenic (semi-domestic reindeer) dynamic components of the food web.

5	 Synthesis and applications. The effect of a decade-long red fox culling on goose 
reproductive success and survival is currently uncertain, despite predation driving 
reproductive success through changes in rodent and reindeer carrion abundance. 
New management actions may consist of regulation of reindeer herd sizes and/or 
removal of carcasses to reduce the subsidizing effect of reindeer carrion on meso-
predators. Getting robust evidence regarding the impact of red fox culling on 
population recovery depends on continuing research to disentangle food web 
dynamics and efficiency of management actions.
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1  | INTRODUC TION

Conservation programmes for endangered populations often lack 
a strategy for evaluating their effectiveness (Sutherland, Pullin, 
Dolman, & Knight, 2004). Making such evaluations is challenging, 
especially when the cause of the population decline is uncertain 
(Caughley, 1994) and when populations have become so small that 
proper experimental designs underpinning the evaluation of actions 
are not feasible (Taylor et al., 2017). Therefore, management deci-
sions and their evaluations are often based on ecological intuition 
rather than scientific evidence (Sutherland et al., 2004).

Conservation actions are typically considered successful when 
the size of the target population increases (Taylor et al., 2017). 
Population dynamics, however, is governed by biotic and abiotic in-
teractions. Therefore, attributing a population recovery to a given 
management action requires considering potential confounding fac-
tors (Angerbjörn et al., 2013). Here, we evaluated the effectiveness 
of a management action implemented to reverse the negative trend 
of the critically endangered Fennoscandian population of Lesser 
White-fronted Goose Anser erythropus.

This goose species is a long-distance migrant that breeds in sub-
Arctic tundra and overwinters in temperate Eurasia. Three distinct 
populations exist, of which the Fennoscandian population is con-
sidered a single management unit (Ruokonen et al., 2004), despite 
the occurrence of immigration of males from the neighbouring 
West Russian population (Ruokonen, Aarvak, Chesser, Lundqvist, 
& Merila, 2010). The Fennoscandian population was breeding 
in large numbers in northern Fennoscandia until 1920, but in the 
1970s, small population sizes started to cause concern (Norderhaug 
& Norderhaug, 1982). In 2008, the population was estimated to be 
less than 20 breeding pairs (Aarvak, Leinonen, Øien, & Tolvanen, 
2009) and conservation actions were deemed necessary to prevent 
it from extinction. Actions including habitat restoration, surveillance 
of stopover sites and attempts to reduce poaching have been im-
plemented through two EU Life projects (Vougioukalou, Kazantzidis, 
& Aarvak, 2017). The most prominent action is culling of red foxes 
Vulpes vulpes in the goose breeding area. This action is motivated 
by two hypothesized impacts of red fox predation: (a) that it is a 
key determinant of goose reproductive success (Aarvak, Øien, & 
Karvonen, 2017), and (b) that it causes early reproductive failure and 
the subsequent choice of an alternative moult migration route asso-
ciated with reduced adult survival (Øien, Aarvak, Ekker, & Tolvanen, 
2009; Figure 1a). Both hypotheses are based on the long-term in-
crease of red fox abundance in the Arctic (Elmhagen et al., 2017), 
while the second posits on the potential risk of adult birds being il-
legally shot at moulting and staging areas in Russia and, especially, 
north-western Kazakhstan (Jones, Martin, Barov, & Szabolcs, 2008). 

There, hundreds of hunters may be unaware of species protection 
and unknowingly illegally hunt Lesser White-fronted geese (Jones, 
Whytock, & Bunnefeld, 2017). No estimates of hunting effects 
on survival rates are available. However, 7 out of 10 transmitter-
equipped failed breeders took the alternative route between 1995 
and 2006, of which two were later reported shot and three had the 
signal ceasing abruptly in the supposedly risky areas (Aarvak & Øien, 
2003; Lorentsen et al., 1999; Øien et al., 2009). Additionally, four 
ringed geese were recovered shot-to-death in those areas (Lorentsen 
et al., 1999). Although this is not a strong evidence for a higher risk 
along this migratory route, these observations are consistent with 
this hypothesis. The fact that this goose population was decreasing 
by 4.4% annually before the onset of the red fox culling programme 
and increased approximately by 15% annually after (Aarvak et al., 
2017; Figure 1b), may suggest a positive effect of this management 
action. This interpretation, however, may be confounded by other 
dynamical components of the sub-Arctic food web that have also 
changed in recent decades.

First, population cycles of small rodents are important drivers of 
tundra food web dynamics (Ims & Fuglei, 2005) exerting an indirect 
impact on bird breeding success through the alternative prey mech-
anism (e.g. Ims, Henden, Thingnes, & Killengreen, 2013; McKinnon, 
Berteaux, & Bêty, 2014). Numerical and functional responses of fox 
populations to rodent cycles are key components of this mechanism, 
which typically causes breeding success of many bird species (the 
alternative prey) to fluctuate in synchrony with the rodent cycle. 
While long-term declines in rodent cycle amplitude may have con-
tributed to population declines in northern bird species (Elmhagen, 
Kindberg, Hellström, & Angerbjörn, 2015; Kausrud et al., 2008), the 
fact that recent rodent peak densities in northern Fennoscandia 
have been relatively high (Angerbjörn et al., 2013; Ims et al., 2017) 
could have had a positive effect.

Secondly, reindeer Rangifer tarandus are a key component of tun-
dra food webs (Ims et al., 2007). Fennoscandian semi-domesticated 
reindeer are maintained at high population densities and often sub-
jected to high mortality rates (Tveraa et al., 2007). Reindeer car-
casses constitute a significant part of the winter diet of red foxes in 
the low phase of the rodent cycle (Killengreen et al., 2011). The in-
crease in red fox abundance has been partly attributed to increased 
availability of reindeer carrion (Elmhagen et al., 2017; Henden, Stien, 
Bårdsen, Yoccoz, & Ims, 2014; Ims et al., 2017), resulting from in-
creased herd sizes and changed winter climate (Tveraa, Stien, 
Brøseth, & Yoccoz, 2014). The numerical response of the red fox 
to increased carrion availability is expected to have a negative ef-
fect on other prey species (Henden, Ims, & Yoccoz, 2009), including 
the Lesser White-fronted Goose (Lee, Cranswick, Hilton, & Jarrett, 
2010).

K E Y W O R D S

carrion, culling, Lesser White-fronted goose, management evaluation, red fox, reindeer, 
rodents, tundra food web
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A third important component is spring phenology. In the Arctic, 
spring onset typically exhibits large variability between years 
(Tveraa, Stien, Bårdsen, & Fauchald, 2013), with a trend towards ear-
lier springs during the last decades in Fennoscandia (Karlsen et al., 
2009). Spring phenology is expected to affect reproductive success 
in birds (Visser, Holleman, & Gienapp, 2006), for example, by reduc-
ing nesting performance in geese in response to extensive snow 
cover at onset of breeding (e.g. Madsen et al., 2007; Reed, Gauthier, 
& Giroux, 2004).

We evaluated whether red fox culling had the expected positive 
effect on Fennoscandian Lesser White-fronted Goose reproductive 
success and avoidance by adult birds of the alternative, supposedly 
riskier migration route, while accounting for rodent population dy-
namics, amount of reindeer carrion and spring phenology. We based 
our analysis on a 19-year time series on goose demography that 
included 10 years before and 9 years after the onset of the man-
agement action. We predicted goose breeding success, as well as 
the number of adults not embarking on the alternative migration 

route: (a) to fluctuate in synchrony with the rodent cycle due to 
the alternative prey mechanism, and (b) to respond negatively to 
increases in reindeer carcasses, because these would enhance fox 
survival during the winter, leading to higher spring fox abundance 
and thereby greater predation risk (Figure 2; Appendix S1). We pre-
dicted the association between goose population dynamics, rodent 
population dynamics and reindeer carrion abundance to be weaker 
after the implementation of the fox culling programme, since the 
mediation role of red fox would come undone if foxes are effectively 
removed. Finally, we expected early snowmelt to improve access to 
nesting sites and thus increase goose-nesting performance.

2  | MATERIAL S AND METHODS

2.1 | Monitoring of the goose population

Approximately 90% of the Fennoscandian Lesser White-fronted 
Goose population breeds in Finnmark County, Norway (69°N–71°N, 

F IGURE  1  (a) Map showing the study area and the migration routes of the Fennoscandian Lesser White-fronted Goose. In the autumn, 
successful breeders and fledglings migrate over Europe to the wintering sites in Greece (black arrows). Breeders failing at an early stage and 
non-breeders tend to migrate to moulting tundra areas in western Russia, from the Kanin to the Taymyr Peninsula (Aarvak & Øien, 2003). 
From there, the autumn migration route takes them through Central Asia with Kazakhstan as a major staging ground, before turning west 
to the same wintering areas in Greece as the successful breeders (grey arrows). Due to hunting, geese may experience high mortality on 
this route. (b) Annual goose population size counted during the spring monitoring. The vertical dotted line indicates the onset of the red fox 
culling programme. (c) Annual number of reindeer found dead in the study area
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F IGURE  2  (a) Diagram showing the annual cycle of the Fennoscandian Lesser White-fronted Goose population, food web dynamics, 
monitoring and predator control. Darkest bars mean higher availability and accessibility of the prey item for red foxes. In the study area, 
rodents show 3–5-year population cycles. (b) Conceptual model depicting a priori interactions between the main species. Full arrows 
show predation by the main predator, the red fox, on the different prey items. Dashed arrows depict expected indirect predator-mediated 
relationships. Thicker arrows mean preference for that prey when it is abundant. (c) Model-based predictions (see Appendix S1) showing the 
effect of alternative resource supplies (small rodents and reindeer carcasses) on predation pressure exerted by red foxes on goose offspring 
(eggs and chicks). The model predicts that small rodents should show apparent facilitation to geese, while reindeer carrions should show 
apparent competition with geese
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Figure 1a, Aarvak et al., 2009). Geese typically arrive at the staging 
site at the coastal Valdak Marshes, Stabbursnes (70°10′N 24°40′E) 
in mid-May, and move to the core inland breeding area by Lake 
Iešjávri after a staging period of about 1 week (Øien et al., 2009). 
Eggs hatch at the end of June, and successful pairs start moulting 
and become flightless. In mid-August, adults and fledglings return 
to the staging area and stay there for 3 weeks before embarking 
on the autumn migration. Breeding and staging sites are likely to 
be exclusively utilized by Fennoscandian breeding pairs, because 
immigration of birds from Russia is restricted to males and follows 
pair formation during the non-breeding season (Ruokonen et al., 
2010). Immigration is therefore unlikely to occur between the two 
staging periods. We monitored the goose population annually at 
the staging site, in spring (since 1990) and autumn (since 1994, 
Figure 2a). In spring, we recorded the total number of individuals 
and potential breeding pairs. We identified individuals based on 
unique patterns in the black belly patch by means of telescopes 
and digital videos. In autumn, we recorded the total number of 
adults, juveniles, broods and brood sizes. These counts provided 
a minimum number of birds that is probably close to the number 
of birds that utilized the breeding area, under the assumption that 
most birds also used the staging site. Because the belly patch pat-
tern changes slightly each year, individuals could not be identified 
across years. See Øien, Aarvak, Lorentsen, and Bangjord (1996) 
and Aarvak et al. (2009).

2.2 | Red fox culling

Field inspectors from the Norwegian Environment Agency culled red 
foxes in February–May during 2008–2016 in an area of 1,242 km2 
encompassing the goose breeding grounds (Figure 1a). Culling was 
aided by means of snowmobiles and snow conditions that allow de-
tection of fresh fox tracks, and finished when snow conditions made 
the search for fox tracks ineffective. The number of foxes culled 
varied considerably between years (mean [range] = 101 [10, 360]), 
owing to both variation in snow conditions and fox numerical re-
sponse to rodent cycles (Figure S1). By means of a removal model 
fitted to the number of red foxes culled every year, we estimated the 
reduction in fox population size due to culling as varying between 
22% and 43% among years (Appendix S2; Figure S2).

2.3 | Dynamical and environmental components

Data on small rodent population dynamics come from a monitor-
ing programme conducted in the coastal birch forest along the 
Porsanger Fiord, approximately 50 km from the goose breeding 
area. The numerically dominant rodent species in the study region, 
the grey-sided vole Myodes rufocanus, was live-trapped on eight 
60 × 60 m grids each year in June and September between 1998 and 
2016. The rodent index was derived from capture–mark–recapture 
data as described in Ehrich, Yoccoz, and Ims (2009). We used the av-
erage number of individuals per trapping grid and year as a measure 
of rodent abundance (Figure S3).

Data on reindeer carrion come from the national database on 
livestock found dead by reindeer herders (www.rovbase.no). As 
an index of carrion availability, we used the number of reindeer 
carcasses found between 1998 and 2016 in the herding areas of 
Karasjok West and Kautokeino East, which include the main goose 
breeding area (Figure 1c). This index does not result from a rigorous 
sampling design, as the search for dead reindeer is opportunistic. 
Thus, carcass abundance is likely to be underestimated. However, 
the number of livestock found dead strongly correlates with the 
number of animals claimed lost by reindeer herders (r = 0.76, 95% 
CI [0.39, 0.92], n = 14), a metric used in previous studies (e.g. Tveraa 
et al., 2014), and with the estimated minimum available carrion bio-
mass (r = 0.99, 95% CI [0.98, 1.00], n = 14; see Appendix S3).

We used Normalized Difference Vegetation Index (NDVI) re-
mote sensing data from the Global Inventory Modeling and Mapping 
Studies (GIMMS), with 8-km spatial and bimonthly temporal reso-
lution, to measure vegetation green up in spring in the study area 
(Pettorelli, 2013; Figure S4). We used this NDVI product as a mea-
sure of phenology because it is the only satellite product available 
over the whole period of our study. GIMMS-based NDVI correlates 
well with winter snow depth and spring temperature (Nielsen et al., 
2012) and gives a spatially explicit measure of spring conditions. See 
Appendix S4.

2.4 | Data analysis

We used three measures of the annual goose performance. First, 
the proportion of breeding pairs that were successful in year t, 

b(t)=
Ba(t)

Ps (t)
, where Ba is the number of breeding pairs that had at least 

one fledgling counted during the autumn monitoring, and Ps is the 
number of potential breeding pairs counted during the spring 

monitoring. Second, the average brood size, j(t)= Fa(t)

Ps(t)
, where Fa is 

the total number of fledglings counted during the autumn moni-
toring. These two variables were highly correlated (r [95% 
CI] = 0.97 [0.93, 0.99], n = 19), but we decided to analyse both as 
they reflect different aspects of the breeding success. Lastly, we 
calculated the ratio of adult birds in the autumn (Aa) to adult birds 

in the spring (As), a(t)=
Aa(t)

As(t)
. The ratio can exceed 1 because in some 

years more adult birds are counted during the autumn monitoring 
than in the spring monitoring. This ratio is assumed to give an in-
verse estimate of how common the use of the eastern and likely 
more risky migration route is among adults, because adults that fly 
that route should have left before the autumn surveys were con-
ducted. The correlations between this ratio and the other two 
measures of annual performance were 0.66 (95% CI [0.30, 0.86], 
n = 19) and 0.74 (95% CI [0.42, 0.89], n = 19), respectively. To eval-
uate the different hypotheses regarding the impact of fox culling 
on the performance of the goose population, we developed a suite 
of seven a priori models that included different combinations of 
confounding factors while avoiding overparameterization. The 
seven models were fitted to each of the three measures of goose 
performance. We then assessed the influence of each parameter 

http://www.rovbase.no
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by evaluating whether effect sizes were similar across models. We 
did not use model selection criteria or model averaging methods 
because our aim was to assess the consistency of parameters 
across different models, not to find the most supported models or 
to provide an overall estimate. For sensible interpretation of ef-
fects, this approach is preferred to other approaches such as 
model averaging, especially when interactions among predictors 
are tested (Cade, 2015). Rodent abundance, number of reindeer 
found dead, rodent abundance the previous year, onset of spring 
and the categorical variable “culling” indicating the absence or 
presence of red fox culling, were entered as predictor variables. 
Density-dependence was not included, given the low goose popu-
lation density in the breeding area. Because we expected small 
rodent abundance to be a key driver of variation in breeding suc-
cess, this variable was present in all the models. We tested for an 
interaction between rodent abundance and number of reindeer 
carcasses to evaluate whether red fox responses might reach 
some degree of saturation during the rodent peak. We also tested 
for interactions between culling and both rodent abundance and 
number of reindeer carcasses, because we expected the effect of 
the latter two variables to become weaker after the onset of the 
fox culling programme. Similarly, we tested for an interaction be-
tween culling and rodent abundance the previous year, because 
we expected any delayed effect of rodent abundances through 
predator numerical responses to be dampened by fox culling.

We used generalized linear mixed models to model annual varia-
tion in the proportion of breeding pairs that were successful, the av-
erage brood size and the ratio of adults in autumn to spring. We used 
a logit link function and assumed a binomial distribution to analyse 
the proportion of breeding pairs that were successful. For both av-
erage brood size and ratio of adults in autumn to spring, we used a 
log link function assuming a Poisson distribution, modelling Fa as the 

response with log (Ps) as an offset for average brood size, and Aa as 
the response with log(As) as the offset for the ratio of adults in au-
tumn to spring. Because of overdispersion, we used quasi-likelihood 
methods for all models (Ver Hoef & Boveng, 2007). Model fit was 
evaluated by residual diagnostics. To avoid systematic patterns in 
the residuals, we included a random rodent cycle effect (five catego-
ries reflecting the five rodent cycles in our time series: 1998–2000, 
2001–2004, 2005–2008, 2009–2012, 2013–2016; Figure 3) in the 
models for proportion of successful pairs and average brood size. 
We assessed multicollinearity with correlation plots and Variance 
Inflation Factors, and excluded highly correlated variables from the 
same models. We performed all statistical analyses with r 3.4.3 (R 
Core Team, 2017). Estimates of effect sizes and uncertainty of co-
variates on average brood size from the function glmmPQL in the mass 
package (Venables & Ripley, 2002) were similar to those provided 
by the glmmTMB function in the more recent glmmTMB package 
(Magnusson et al., 2017). We chose to use glmmPQL because it al-
lows fitting quasi-likelihood methods also with binomial-distributed 
data for mixed models, that is, for analysis of b(t). Parameter esti-
mates of all fitted models are provided in Tables S1–S3.

3  | RESULTS

The proportion of breeding pairs that were successful ranged be-
tween 0.04 (in 2000) and 1.00 (in 2010), while average brood size 
ranged between 0.08 (in 2000) and 3.18 (in 2010; Figure 3). The 
ratio of adults in autumn to spring varied between 0.16 (in 2000) 
and 1.50 (in 2007; Figure S5). The average proportion of success-
ful pairs and the average brood size in the 9 years after the onset 
of fox culling was similar to the 10 years before, while the ratio of 
adults in autumn to spring slightly increased (Table 1). The 19-year 
study included four full rodent cycles with a period of 4–5 years be-
tween the peaks (Figure 3). The two cycles after the onset of the 
fox culling programme tended to show somewhat higher peak densi-
ties than the cycles before (Figure 3; Table 1). Number of reindeer 

F IGURE  3 Time series of measures of Lesser White-fronted 
Goose (LWfG) breeding success (proportion of breeding pairs that 
were successful and average brood size) and rodent abundance 
(average catches per grid). Note that the scale on the two y-axes is 
different. The vertical green line indicates the onset of the red fox 
culling programme

TABLE  1 Mean, minimum and maximum values of the different 
variables before and after the onset of the culling programme. 
Rodent abundance is expressed as average voles captured per 
trapping grid. Note that the ratio of adults counted in the autumn 
to spring can be higher than 1 (see Section 2). Onset of spring 
represented vegetation green up, with higher values representing 
greener vegetation and thus earlier spring

Variable Before (n = 10 years) After (n = 9 years)

Proportion 
successful pairs

0.49 (0.04–0.85) 0.47 (0.09–1.00)

Fledglings per pair 1.51 (0.08–3.00) 1.57 (0.39–3.18)

Ratio adults autumn 
to spring

0.71 (0.16–1.50) 0.89 (0.50–1.40)

Rodent abundance 12.00 (1.88–24.88) 17.97 (1.13–41.75)

Number of carcasses 263 (88–544) 384 (181–621)

Onset of spring 0.43 (0.28–0.61) 0.42 (0.30–0.56)
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found dead was on average higher after the onset of the culling pro-
gramme (Table 1) and ranged between 88 (in 2003) and 621 (in 2011; 
Figure 1c).

Rodent abundance showed a positive effect on both the pro-
portion of breeding pairs that were successful (Figure 4a; Table S1) 
and average brood size (Figure 4c; Table S2). On average, 92% of 
breeding pairs were successful in years with rodent peaks (i.e. ~40 
voles/grid), while on average only 21% was successful in the rodent 
crash phase (i.e. ~5 voles/grid). Similarly, fledgling success was on 

average 4.2 during a peak phase and 0.7 in the crash phase. In all 
models that included a reindeer carrion effect (Tables S1 and S2), 
an increase in the number of reindeer found dead tended to show a 
negative effect on the measures of breeding success (Figure 4b,d). 
Approximately 24% of breeding pairs were successful and 0.7 fledg-
lings were produced per breeding pair in years with high carrion 
abundance (i.e. ~600 reindeer found dead), whereas approximately 
61% of breeding pairs were successful and 1.9 fledglings were pro-
duced per breeding pair in years with low carrion abundance (i.e. 
~100 reindeer found dead). Estimated effect sizes for carrion abun-
dance were consistent among the models (Tables S1 and S2). There 
was no evidence for an effect of onset of spring, rodent abundance 
the previous year or an interaction between rodent and carcass 
numbers on the measures of breeding success (Tables S1 and S2). 
Most importantly, there was no evidence for the fox culling pro-
gramme and its interactions with other predictors to affect mea-
sures of breeding success (Tables S1 and S2).

With respect to the ratio of adults in autumn to spring, the mod-
els only suggested a weak effect of small rodent abundance (Table 
S3). We did not find support for an effect of other predictors and 
their interactions (CIs widely overlapping 0), but point estimates for 
the effect of carrion abundance were consistently negative in all 
the models (Table S3). In addition, the model including rodent abun-
dance, carrion abundance and culling suggested that culling could in-
crease the ratio (Figure 5), but the evidence is inconclusive because 
of wide confidence intervals and considerable variation in effect size 
estimated from different models.

4  | DISCUSSION

Using 19 years of data, we contrasted 9 years of conservation ac-
tion (red fox control) against 10 years of non-action, on measures 

F IGURE  4 Effect of small rodent 
abundance and reindeer carcass 
abundance on the proportion of Lesser 
White-fronted Goose breeding pairs 
that were successful (a, b) and average 
brood size (c, d). Full line indicates model 
prediction (based on model 2 in Tables S1 
and S2 respectively), dashed lines indicate 
95% confidence interval, dots are partial 
residuals. Slope (β) estimates (95% CI) on 
the logit (a and b) and the log scale  
(c and d) are provided on top of each 
panel. Predictors are here rescaled 
(rodents/10, carcasses/100). Note that 
the scale on the y-axes differs between 
(c) and (d)

F IGURE  5 Effect of red fox culling on the ratio of adult geese 
counted in the autumn to the spring. This measure is assumed to 
reflect the portion of the Lesser White-fronted geese that takes the 
alternative, likely riskier migration route through western Russia. 
Nine years of fox culling (2008–2016) are compared to 10 years 
without management actions (1998–2007). Predicted values, SEs 
(thick black lines) and 95% CIs (whiskers) are based on model 5 in 
Table S3. Note that the ratio of adults in the fall to adults in the 
spring can be higher than 1 (see Section 2)
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of annual performance of the Fennoscandian Lesser White-fronted 
Goose population while accounting for food web components ex-
pected to affect predation pressure. As expected, we found goose 
breeding success to fluctuate in synchrony with the rodent cycle 
(i.e. apparent facilitation, Figure 2b,c), and to decrease in years with 
high abundance of reindeer carcasses (i.e. apparent competition, 
Figure 2b,c). This suggests that temporal variation in predation, me-
diated by major fluxes in the tundra food web, is likely to be an im-
portant driver of goose population dynamics. While red foxes were 
expected to play a pivotal role in these dynamics, we found no evi-
dence for red fox culling to affect these food web interactions.

As is typical for most critically endangered populations, the tar-
geted goose population is so small and spatially restricted that using 
replicates and controls in a rigorous experimental management design 
is not feasible. An equivalent red fox culling action performed in the 
context of Arctic fox conservation in Fennoscandia (Angerbjörn et al., 
2013) benefited from the existence of several remaining populations, 
among which different actions could be allocated to provide evidence 
of a positive effect of red fox culling. Here, despite a design based on 
a single before–after comparison, the lack of evidence for a positive 
effect on goose breeding success after 9 years of intensive red fox 
control suggests that the management action has not been effective 
in this respect. Both failing at emptying the area of foxes and/or com-
pensatory immigration (Lieury et al., 2015; Newsome, Crowther, & 
Dickman, 2014) after the completion of the culling may explain this re-
sult. Alternatively, the biological impact of red fox predation on goose 
dynamics may have been overrated, as the importance of other gen-
eralist predators such as corvids and eagles (Henden et al., 2014) may 
have been overlooked. Also, the possibility of a substitutable effect by 
other nest predators, such as mustelids (Parker, 1984), may disguise 
the effect of fox removal on goose dynamics. We found a tendency 
for the ratio of adult geese in autumn to spring to be higher after the 
onset of the red fox control programme. This may suggest that fewer 
adults embarked on the likely riskier migration through western Asia. 
Thus, the red fox culling may have affected goose behaviour in a way 
that made them stay in the sub-Arctic for longer and then use the 
putatively safer migration route. Such a positive effect of culling may 
have contributed to the recent increase in the goose population, but 
the uncertainty in the model estimates makes it impossible to draw 
firm conclusions at this point.

The role of rodent cycles as drivers of predation pressure 
on eggs and chicks has previously been shown for many tundra-
nesting birds (e.g. Ims et al., 2013; McKinnon et al., 2014) as well as 
other Arctic geese (e.g. Gauthier, Bêty, Giroux, & Rochefort, 2004; 
Summers & Underhill, 1987). Nonetheless, the relationship between 
Lesser White-fronted Goose reproductive success and the vole 
cycle appears to be exceptionally strong and temporally consistent 
(Figure 3). Northern rodent cycles show systematic changes over 
time (Henden et al., 2009) and appear to be particularly sensitive 
to climatic change (Kausrud et al., 2008). Thus, the Fennoscandian 
population may be negatively impacted if the rodent cycles become 
more irregular and dampened due to increased climate warming 
(Nolet et al., 2013).

The negative relation between reindeer carrion abundance and 
goose breeding success provides the first empirical support for 
the hypothesis that resource-driven (i.e. bottom-up) mesopreda-
tor release (Killengreen et al., 2011) may negatively affect tundra-
breeding birds (Henden, Ims, Fuglei, & Pedersen, 2017; Henden 
et al., 2014). In Finnmark, 56% of the carcass availability occurs 
in the mid-late winter (i.e. February–May, Figure S6), when body 
conditions of mesopredators/scavengers are likely to be at their 
lowest. Hence, high carrion availability likely enhances red fox sur-
vival during this critical period, increasing the probability of preda-
tion during the bird's nesting season in June/July. Therefore, with 
respect to the conservation of the Lesser White-fronted Goose 
and tundra birds in general, changes in reindeer management 
strategies should be considered.

Contrary to previous studies on bird breeding success (Madsen 
et al., 2007; Reed et al., 2004), we found no direct effect of spring 
phenology on both measures of goose reproductive success, al-
though estimates were in the expected direction. The spatial res-
olution of the GIMMS data may have been too coarse to catch 
the precise phenology of the relatively small goose breeding area. 
However, using the higher resolution MODIS NDVI data on a shorter 
time period did not reveal any effect of spring phenology (Tables S4–
S6). This suggests that Arctic geese might be able to start nesting as 
soon as enough suitable nest sites have become free of snow, even 
at a time when much of the tundra is still snow covered (Madsen 
et al., 2007). Alternatively, NDVI might have been a low-quality 
proxy compared with a more direct measure of timing of snowmelt, 
which was not available for our study.

5  | CONCLUSIONS

The Lesser White-fronted Goose case study has both general and 
specific implications. Generally, it highlights challenges in assess-
ments of management efforts applied to small populations that are 
subjected to complex food web dynamics, especially when such 
dynamics involves compensatory mechanisms (e.g. predator func-
tional and numerical responses) or transience (e.g. changing rodent 
cycle). This emphasizes the need for obtaining long-term data, not 
only on the conservation target itself but also on important drivers 
in the food web. Here, we benefited from long time series on the 
dynamics of rodent and reindeer carrion, which could be linked to 
the performance of the goose population, allowing us to conclude 
that the red fox culling action has not improved goose reproductive 
success. To determine the cause of this lack of effect, we would have 
required direct time-series data on predator functional and numeri-
cal responses, which are extremely hard to obtain.

Another important insight is that subtle changes, but still de-
mographically influential changes in performance, may be involved 
in the response of the target population to management actions. 
As indicated by our analysis, it is possible that red fox culling has 
increased the survival rate of adult geese by affecting their migra-
tory behaviour. Nevertheless, the high uncertainty in our estimates 
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implies that more data are required to determine whether nest 
predation rates truly influences adult survival. In addition, compre-
hensive demographic analyses will be necessary to assess the influ-
ence of nest predation on the long-term growth rate of this goose 
population.

Our study provided also the first empirical support for the hy-
pothesis that high availability of ungulate carrion exert a negative 
impact on ground-nesting tundra birds (Killengreen et al., 2011). 
The hypothesized mechanism involves mesopredator species 
that act also as facultative scavengers, which both expand into 
carrion-rich ecosystems and respond numerically to the surge in 
the carrion pool (Henden et al., 2014), thereby exerting a cascad-
ing impact on native species. Given the large extent of occurrence 
of semi-domesticated reindeer in the Eurasian tundra, and the 
acknowledged range expansion of boreal mesocarnivores like the 
red fox into the Arctic (Elmhagen et al., 2017), the implications of 
our study extend beyond the borders of Northern Fennoscandia. 
Furthermore, changes in climate and herding strategies are likely 
to affect patterns of reindeer mortality. Although earlier springs 
and longer growing seasons should benefit semi-domesticated 
reindeer (Tveraa et al., 2013), density dependence and unfavour-
able snow condition (e.g. ice-crusted snow from more frequent 
thaw-freeze cycles) may lead to very high winter mortality, sub-
sidizing the facultative scavenger community. Accordingly, we 
suggest that management strategies for both semi-domestic and 
wild populations of reindeer, as well as other boreal and Arctic un-
gulates, should account for the potential subsidizing effect of car-
rions. In the case of the endangered Lesser White-fronted Goose 
population, new management actions could aim at regulating herd 
size to reduce winter mortality or removing carcasses in the sur-
roundings of the breeding area, although distant carcasses may 
still exert an impact by sustaining populations of highly mobile 
predators. Overall, it is important to continue both the population 
monitoring and the management assessment including new data, 
in order to better assess the importance of red fox culling in the 
population recovery.
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Supplementary Information 1 

Appendix S1 2 

Generating predictions for how alternative prey abundance affects predation on geese 3 

Motivated by the work of Suryawanshi et al. (2017), we were interested in developing a 4 

theoretical framework to explore under which conditions we observe the hypothesized 5 

mechanisms. We generated the predictions shown in Fig. 2c based on a model of how 6 

alternative resource supplies (i.e. small rodents or reindeer carcasses) may affect predation 7 

pressure, in this case exerted by red foxes on geese. Predation pressure can be a combination of 8 

numerical and functional responses, thus we combined these responses following a previously 9 

published model (Fryxell & Lundberg 1994) that allowed us to make explicit our assumptions 10 

on how different prey resources affect predation. Unfortunately, we are not aware of any direct 11 

measurements of red fox foraging behaviour on rodents or carcasses, so we rely on qualitative 12 

evidence to build the model assumptions.   13 

Red foxes can respond both functionally and numerically to rodent cyclic dynamics. Red 14 

foxes have been shown to have high proportion of rodents in their diet when rodent abundance 15 

becomes high, i.e. towards the peak phase of the rodent population cycle (Killengreen et al. 16 

2011; Ims et al. 2017). This likely means there is a minimum density of rodents that, if 17 

exceeded, makes the foxes behaviourally switch to and consume almost exclusively rodents. 18 

This follows optimal foraging theory, assuming rodents are the most profitable prey item 19 

(Macarthur & Pianka 1966; Charnov 1976; Fryxell & Lundberg 1994). In addition, red foxes 20 

can respond numerically to small rodents, usually showing higher density the year after a rodent 21 

peak (Lindström 1989; Henden, Ims & Yoccoz 2009). 22 

Reindeer carrion can also be an important resource. For example, in Finnmark red foxes 23 

subsist primarily on reindeer carcasses during the low phase of the rodent cycle (Killengreen et 24 

al. 2011). Reindeer carcasses are more abundant in the late winter (56% of dead livestock is 25 



 

2 
 

found between February and May) so we expect carrion consumption by foxes to happen mostly 26 

in this period, i.e. before the goose-breeding period. Therefore, given that food has been shown 27 

to be a limiting factor for red fox populations (Lindström 1989), we expect foxes to respond 28 

numerically in the same year to reindeer carrion through increased survival and reproduction. 29 

Our modelling does not distinguish between survival and reproduction, but assumes that the 30 

numerical response includes the combined effects of these processes. 31 

To generate predictions based on these assumptions, we used a diet choice model following 32 

Fryxell & Lundberg (1994). In this model, the probability 𝑎𝑅 for attacking an alternative 33 

resource 𝑅 (rodents or carrion) depends on the density of the alternative resource 𝑅 so that 34 

𝑎𝑅(𝑅) =  
𝑅𝑏

1 + ℎ𝑅𝑅𝑏
 35 

where 𝑏 is a shape parameter and ℎ𝑅 is the handling time of that alternative resource. This form 36 

allows us to create curves of different shapes for different values of 𝑏. We assume small values 37 

of 𝑏 (𝑏 < 2) to account for some likely behavioural variation, because assuming high values 38 

for 𝑏 would create curves that are very close to a step function and thus represent perfect diet 39 

choice based on optimal foraging theory. The attacking of geese is assumed to be of secondary 40 

importance to the other prey types, so that abundance of other prey types is primarily what 41 

determines responses of foxes.  42 

We included this probability of attack 𝑎𝑅  in the multispecies disc equation (Macarthur & 43 

Pianka 1966; Charnov 1976; Fryxell & Lundberg 1994), which determines the predation rate 44 

on the focal prey item (i.e. the 𝐺 geese). Predation rate on the geese 𝑧𝐺(𝐺) is then defined as  45 

𝑧𝐺(𝐺) =
𝑎𝐺𝐺𝑃

1 + 𝑎𝑅𝑅ℎ𝑅 + 𝑎𝐺𝐺ℎ𝑔
 46 

Where 𝑎𝐺 is the probability for attacking geese 𝐺 and ℎ𝑔 is the handling time of geese. We 47 

assumed the geese population 𝐺 to be at a relatively constant low value, therefore what drives 48 

the change in predation rate 𝑧𝐺(𝐺) is largely a function of attack 𝑎𝑅(𝑅) on alternative resources 49 
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(rodents or carrion), abundance of alternative resources 𝑅, and abundance of predators 𝑃. We 50 

included this predation function in the dynamical predator-prey model based on Fryxell & 51 

Lundberg (1994) to determine how predation changes as a function of the different alternative 52 

resource abundances 𝑅 (rodents or carrion) and the abundance of predators 𝑃 (foxes). For the 53 

sake of reducing complexity, we considered the alternative resources (rodents and carrion) to 54 

act independently of one another on the focal prey (geese) in the model, meaning that we 55 

modelled two different systems, one with rodents and one with carrion. Future theoretical work 56 

could look at the interactive effect of all three species, although this is challenging because it is 57 

unlikely that they can easily coexist in a model. We also do not consider other prey or caching 58 

behaviour. 59 

The model defines the rate of change of alternative resource 𝑅, geese 𝐺, and predators 𝑃 to 60 

be governed by 61 

 𝑑𝑅

𝑑𝑡
=  𝜇𝑅𝑅 (1 −

𝑅

𝐾𝑅
) −

𝑎𝑅𝑅𝑃

1 + 𝑎𝑅𝑅ℎ𝑅 + 𝑎𝐺𝐺ℎ𝑔
− 𝑚𝑅𝑅 

 

(1) 

 𝑑𝐺

𝑑𝑡
=  𝜇𝐺𝐺 (1 −

𝐺

𝐾𝐺
) −

𝑎𝐺𝐺𝑃

1 + 𝑎𝑅𝑅ℎ𝑅 + 𝑎𝐺𝐺ℎ𝑔
− 𝑚𝐺𝐺 

 

(2) 

 𝑑𝑃

𝑑𝑡
= 𝑃 (

𝑎𝑅𝑒𝑅𝑅 + 𝑎𝐺𝑒𝐺𝐺

1 + 𝑎𝑅𝑅ℎ𝑅 + 𝑎𝐺𝐺ℎ𝑔
− 𝑚𝑃) 

(3) 

   

where 𝜇𝑖 is the maximum growth rate of prey species 𝑖, 𝐾𝑖 represents carrying capacity of prey 62 

species 𝑖, 𝑚𝑖 is the mortality rate of species 𝑖, and 𝑒𝑖 is the energy conversion of prey species 𝑖 63 

into predators.  64 

We ran numerical simulations of this model (see Fig. S7 for an example output of a 65 

simulation). Simulations started from low initial conditions for the state variables and were 66 
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stopped after state variables had reached their attractor. We used these final densities from the 67 

attractor (for rodents, densities over the last full predator-prey cycle) to calculate the predation 68 

rate on geese (shown in Fig. 2c). The result was the combined multi-species functional and 69 

numerical responses of the predators to their prey.  70 

A range of patterns can be generated depending on exact parameters, especially for the 71 

rodent cycles, which can have slightly different shapes. Predation can increase or decrease with 72 

rodent abundance depending on the phase of the cycle. However, we generally found patterns 73 

similar to the one shown in Fig. 2c, i.e. we observed low predation rate on geese at high rodent 74 

abundance and high predation rate on geese at high carrion supply.  75 

Parameters for Fig. 2c are 𝑏 = 2, 𝜇𝑅 = 8, 𝜇𝐺 = 1.4, 𝐾𝑅 = 16, 𝐾𝐺 = 8, 𝑚𝑅 = 0.01, 𝑚𝐺 =76 

0.01, 𝑚𝑃 = 0.6, ℎ𝑅 = 1, ℎ𝐺 = 4, 𝑒𝑅 = 1, 𝑒𝐺 = 1 and changes in abundance due to the 77 

endogenously-generated predator-prey cycles are used to generate the predation curve for 78 

rodents. Parameter values of 𝑏 = 0.1, 𝜇𝑅 = 4, 𝑚𝑅 = 0.01, 𝑚𝑃 = 0.2, ℎ𝑅 = 1, 𝑒𝑅 = 1 while 79 

manipulating carrying capacity 𝐾𝑅 to get different abundances are used to generate the 80 

predation curve for carrion. For both predation curves, we set 𝐺 = 1 to calculate the predation 81 

rate since we assumed goose abundance to be low and most parameter values lead to unstable 82 

equilibria for two prey species with only one predator (Fryxell & Lundberg 1994). We also 83 

tested whether results changed when we imposed a constraint that the probability 𝑎𝑅 for 84 

attacking the alternative resource 𝑅 versus the probability 𝑎𝐺 for attacking geese 𝐺 must sum 85 

to 1, so that 𝑎𝑅 + 𝑎𝐺 = 1, but it did not qualitatively change results. We found that the ranges 86 

of parameters 𝑏 = [0.1; 2], 𝜇𝑅 = [4;  8], 𝑚𝑃 = [0.5;  0.6], led to cycles, while the ranges of 87 

parameters 𝑏 = [0.1; 2], 𝜇𝑅 = [4;  8], 𝐾𝑅 = [2;  16], 𝑚𝑃 = [0.2;  0.4], did not lead to cycles. 88 

For parameters where we observed cycles, we found a positive influence of the alternative prey 89 

on the geese (apparent facilitation) in agreement with previous predictions on the impact of 90 

predator switching (Abrams & Matsuda 1996). For parameters where we did not observe cycles, 91 
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we found a negative influence of the alternative prey on the geese (apparent competition), as it 92 

is often observed (Holt & Bonsall 2017). Thus, we used the model assumptions and output as 93 

support that our hypothesized predictions are feasible. However, we caution that more data is 94 

needed on fox responses to different prey types in order to make more accurate predictions on 95 

how predation on geese should be affected by rodents and carrion. 96 

 97 

 98 

 99 

 100 

 101 
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 103 

 104 

 105 
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 108 
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 110 

 111 

 112 

 113 

 114 

 115 
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Appendix S2 117 

Removal and catch per unit effort models for the fox population 118 

We estimated the total population size of the fox population based on the reduction in catch 119 

per unit effort over time within a culling season. The red fox culling program commenced in 120 

2008. In the period 2012-2016, the field inspectors from the Norwegian Environment Agency 121 

who culled red foxes also recorded the search effort on the days they were searching for foxes 122 

as the distance driven (km) by snowmobiles.  123 

Assuming a closed fox population over the culling season (no immigration, emigration, 124 

mortality or reproduction of significance), the population size will decrease as animals are 125 

removed by the culling, and the catch per unit effort is expected to decrease due to the reduction 126 

in the density of animals. 127 

Let 𝑁𝑡 be the population size at survey day 𝑡 and 𝑅𝑒𝑚𝑜𝑣𝑒𝑑𝑡 being the number of individuals 128 

that has been removed by culling from the population in the period from day 0 to day 𝑡 − 1. 129 

We then have that  130 

 131 

𝑁𝑡 =  𝑁0 −  𝑅𝑒𝑚𝑜𝑣𝑒𝑑𝑡                             (eq. 1) 132 

 133 

where 𝑁0 is the initial fox population size before culling commences. Assuming all animals 134 

have the same probability of being detected and culled, 𝑝𝑡, and detections are independent 135 

between occasions, the number of animals culled on day 𝑡, 𝐶𝑢𝑙𝑙𝑡, will follow a binomial 136 

distribution (Borchers et al. 2002): 137 

 138 

𝐶𝑢𝑙𝑙𝑡~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑡, 𝑝𝑡)                                                                         (eq. 2) 139 

 140 
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The probability of detecting and culling a fox is expected to depend on the search effort. 141 

Here we model the relationship between the search effort on day 𝑡, 𝐸𝑓𝑓𝑜𝑟𝑡𝑡 and 𝑝𝑡 using the 142 

model: 143 

 144 

𝑝𝑡 = 1 − 𝑒−𝜃×𝐸𝑓𝑓𝑜𝑟𝑡𝑡                   (eq. 3) 145 

 146 

We assume the detection parameter, 𝜃, to be constant accross surveys.  147 

If culling has no effect on 𝑁𝑡, we suggest as an alternative to eq. 1 to model the data: 148 

 149 

𝑁𝑡 =  𝑁0                                                                                (eq. 4) 150 

 151 

We fitted the removal/cpue model (eq. 1-3), and the pure cpue model (eq. 2-4) to the data 152 

on foxes culled using a maximum likelihood approach. The parameter 𝑁0 was allowed to vary 153 

among years. Using AIC as criteria, it was clear that the removal/cpue model (AIC = 480.6) 154 

fitted the data better than the pure cpue model (AIC = 488.7). 155 

The estimated reduction in the fox population size due to culling, estimated as sum(𝐶𝑡)/ 𝑁0, 156 

varied among years between 22% and 43 % (Fig. S2, top-left). Variation in initial fox 157 

population size 𝑁0, estimated reduction in the fox population size, number of shot foxes, and 158 

effort followed the same among-year pattern (Fig. S2). 159 

 160 

 161 

 162 

 163 

 164 

 165 
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Appendix S3 166 

Details of carrion biomass calculation  167 

Herders can obtain compensation for animal loss due to predation by large carnivores (lynx 168 

Lynx lynx, wolverine Gulo gulo, wolf Canis lupus, brown bear Ursus arctos, golden eagle 169 

Aquila chrysaetos) upon suitable documentation of the type of predation. Qualified personnel 170 

of the management authorities use differences in killing techniques to decide upon the cause of 171 

death of livestock found dead, whenever possible. For the scavengers, the available reindeer 172 

carrion biomass is likely to be more important than the raw number of carcasses. Thus, we 173 

initially used data on livestock found dead in the herding regions of Karasjok West and 174 

Kautokeino East to calculate the minimum yearly amount of biomass available for scavenging. 175 

We divided the dataset by sex and age (calf, adult) of the carcass found, and extracted 176 

frequencies for each cause of death (lynx, wolverine, golden eagle, wolf, brown bear, other 177 

causes). The number of brown bear kills was very small and was included in the category “other 178 

causes”. We multiplied sex- and age- specific mean body weight by the frequency of carcasses 179 

in each category to get an estimate of the biomass available, and we subtracted estimates of 180 

predator-specific daily food requirement obtained from the literature (Brown & Watson 1964; 181 

Andren et al. 2011; Wikenros et al. 2013). We assumed daily food requirement to reflect the 182 

amount of biomass immediately consumed by a given predator and, therefore, not available for 183 

scavenging. The estimated mean annual biomass was 5093 kg for Karasjok West (range = 1179, 184 

9925) and 2325 kg for Kautokeino East (range = 800, 3740). Although being corrected for 185 

predator consumption, the estimated reindeer biomass was highly correlated with the number 186 

of reindeer found dead (r = 0.99, 95% CI [0.98, 1.00], n = 14). Thus, we chose to use the latter 187 

to elongate the time series (1998-2016), because body weight data are available only for the 188 

period 2000-2015. Data on body weights were obtained from annual reports of the Norwegian 189 

agriculture agency, which summarise data from government approved slaughter houses (see 190 
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e.g.  Anonymous. 2012. Ressursregnskap for reindriftsnæringen. Reindriftsforvaltningen, Alta. 191 

126 p.). 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 
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Appendix S4 216 

We extracted Normalized Difference Vegetation Index (NDVI) remote sensing data for the 217 

study area using the Minimum Convex Polygon (MCP) delimiting the Lesser White-fronted 218 

Goose core breeding area, and one-pixel buffer around this MCP. We calculated the average 219 

NDVI in the study area for June (i.e. when the geese start reproducing) as an estimate of annual 220 

variation in vegetation green-up. Because Global Inventory Modeling and Mapping Studies 221 

GIMMS data is available until 2015, while Moderate Resolution Imaging Spectroradiometer 222 

(MODIS) data on 250 m spatial resolution is available for the period 2000-2016, we used the 223 

linear relationship between estimates obtained from GIMMS and MODIS from 2000-2015 to 224 

predict GIMMS value for 2016. The correlation between these two variables for the period 225 

2000-2015 is r = -0.67 ( 95% CI [-0.88, -0.27], n = 16). The linear regression with GIMMS as 226 

response variable and MODIS as predictor variable had the following form: 227 

𝑦 = 0.0087𝑥 + 1.8123 228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 
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 241 

Fig. S1. Culled red foxes in relation to rodent abundance in the previous year (mean catches 242 

per trapping grid). Fox culling started in 2008.  243 

 244 

 245 

 246 

 247 

 248 
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 249 

 250 

 251 

Fig. S2. (Top-left) Estimated annual reduction in the fox population size because of culling 252 

with 95% profile likelihood confidence interval bars. (Top-right) Estimated initial population 253 

size of foxes (𝑁0) with 95% profile likelihood confidence interval bars, and number shot each 254 

year (N shot). (Bottom) Total effort per year. 255 

 256 

 257 

 258 
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 260 

Fig. S3. Time series of the number of Lesser-White fronted Goose breeding pairs that were 261 

successful, the number of fledglings in the autumn, and rodent abundance (average catches per 262 

grid). Note that the scale on the two y-axes is different. The green line indicates the onset of the 263 

red fox culling program. 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 
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 272 

Fig. S4. Annual variation in the Normalized Difference Vegetation Index (NDVI) computed in 273 

June from the Global Inventory Modeling and Mapping Studies (GIMMS), measuring 274 

vegetation green-up. NDVI values close to zero represent absence of vegetation (thus late 275 

spring) while higher values, towards 1, represent greener vegetation (thus earlier spring). 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 
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 286 

Fig. S5. Time series of rodent abundance (average catches per grid) and ratio of adult birds 287 

counted in autumn to adult birds counted in spring, in the Lesser White-fronted Goose 288 

population. Note that the scale on the two y-axes is different. The green line indicates the onset 289 

of the red fox culling program. 290 

 291 
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 292 

Fig. S6. Number of reindeer found dead across years (in colors) and months (x-axis). 56% of 293 

the carcasses is found between February and May. Black line represents the mean. 294 

 295 

 296 

 297 
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 306 

Fig. S7. Example numerical simulation results illustrating the cycles of the alternative prey R 307 

(light blue line), predator P (dark blue line), and probability of attack 𝑎𝑅(𝑅) (magenta dashed 308 

line). In this case, the alternative resource is assumed to be the rodents. 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 
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Table S1. Coefficient estimates and 95% confidence intervals for the 7 a-priori models explaining between-year variation in the proportion of 320 

Lesser White-fronted Goose breeding pairs that were successful. Estimates are on logit scale. 321 

 322 

Variables/Model 
(1)  

R*C + S 
(2) 

R + C + S 
(3) 

R + C*Cu 
(4) 

R*Cu + C 
(5) 

R + C + Cu 
(6) 

R + Rt-1*Cu 
(7) 

R + Rt-1 + Cu 

Rodents (R) 
0.1067  

(0.0176 ; 0.1959) 
0.1070  

(0.0687 ; 0.1454) 
0.1067  

(0.0671 ; 0.1463) 
0.1013  

(0.0328 ; 0.1699) 
0.1071  

(0.0684 ; 0.1457) 
0.1143  

(0.0660 ; 0.1625) 
0.1146  

(0.0669 ; 0.1624) 

Carrion (C) -0.0032  
(-0.0081 ; 0.017) 

-0.0032  
(-0.0066 ; 0.0002) 

-0.0035  
(-0.0092 ; 0.0022) 

-0.0031  
(-0.0067 ; 0.0004) 

-0.0031  
(-0.0067 ; 0.0003) 

- -  

Spring Onset (S) 0.3003  
(-3.7406 ; 4.3411) 

0.2988 
(-3.6805 ; 4.2781) 

- - - - - 

Rodents t-1 (Rt-1) - - - - - 0.0034  
(-0.0775 ; 0.0844) 

-0.0060  
(-0.0414 ; 0.0295) 

Culling (Cu) - - -0.3514  
(-2.8782 ; 2.1754) 

-0.2305  
(-1.9188 ; 1.4578) 

0.1278  
(-1.3826 ; 1.1271) 

-0.4762  
(-2.1492 ; 1.1967) 

-0.6263  
(-1.8742 ; 0.6216) 

Rodents*Carrion  8.4e-7  
(-0.0002 ; 0.0002) 

- - - - - - 

Carrion*Culling - - 
0.0006 

(-0.0066 ; 0.0079) 
- - - - 

Rodents*Culling - - - 0.0088  
(-0.0743 ; 0.0919) 

- - - 

Rodents t-1*Culling - - - - - -0.0116  
(-0.1018 ; 0.0785) 

- 
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Table S2. Coefficient estimates and 95% confidence intervals for the 7 a-priori models explaining between-year variation in the Lesser White-323 

fronted Goose average brood size. Estimates are on log scale. 324 

 325 

Variables/Model 
(1)  

R*C + S 
(2) 

R + C + S 
(3) 

R + C*Cu 
(4) 

R*Cu + C 
(5) 

R + C + Cu 
(6) 

R + Rt-1*Cu 
(7) 

R + Rt-1 + Cu 

Rodents (R) 
0.0464  

(0.0027 ; 0.0901) 
0.0496  

(0.0314 ; 0.0678) 
0.0503  

(0.0323 ; 0.0683) 
0.0554  

(0.0164 ; 0.0943) 
0.0497  

(0.0317 ; 0.0677) 
0.0498  

(0.0255 ; 0.0742) 
0.0501  

(0.0258 ; 0.0745) 

Carrion (C) -0.0023  
(-0.0054 ; 0.0008) 

-0.0021  
(-0.0039 ; -0.0004) 

-0.0020  
(-0.0053 ; 0.0014) 

-0.0022  
(-0.0040 ; -0.0003) 

-0.0022  
(-0.0040 ; -0.0004) 

- -  

Spring Onset (S) 0.1142  
(-2.1993 ; 2.4277) 

0.1067  
(-2.1599 ; 2.3733) 

- - - - - 

Rodents t-1 (Rt-1) - - - - - 0.0093  
(-0.0414 ; 0.0599) 

0.0006  
(-0.0259 ; 0.0271) 

Culling (Cu) - - 0.2542  
(-1.1506 ; 1.6589) 

0.1763  
(-0.8194 ; 1.1720) 

0.0717  
(-0.6665 ; 0.8098) 

-0.3344  
(-1.3828 ; 0.7139) 

-0.5021  
(-1.1404 ; 0.1362) 

Rodents*Carrion  7.5e-6  
(-9.4e-5 ; 0.0001) 

- - - - - - 

Carrion*Culling - - 
-0.0005 

(-0.0044 ; 0.0035) 
- - - - 

Rodents*Culling - - - -0.0073  
(-0.0513 ; 0.0366) 

- - - 

Rodents t-1*Culling - - - - - -0.0118  
(-0.0707 ; 0.0471) 

- 
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Table S3. Coefficient estimates and 95% confidence intervals for the 7 a-priori models explaining between-year variation in the ratio of adult 326 

Lesser White-fronted geese counted in the autumn to the spring. Estimates are on log scale. 327 

 328 

Variables/Model 
(1)  

R*C + S 
(2) 

R + C + S 
(3) 

R + C*Cu 
(4) 

R*Cu + C 
(5) 

R + C + Cu 
(6) 

R + Rt-1*Cu 
(7) 

R + Rt-1 + Cu 

Rodents (R) 
0.0249  

(-0.0196 ; 0.0709) 
0.0199  

(0.0011 ; 0.0380) 
0.0138  

(-0.0058 ; 0.0331) 
0.0405  

(-0.0013 ; 0.0836) 
0.0140  

(-0.0056 ; 0.0331) 
0.0158  

(-0.0024 ; 0.0339) 
0.0164  

(-0.0015 ; 0.0341) 

Carrion (C) -0.0004  
(-0.0032 ; 0.0023) 

-0.0007  
(-0.0022 ; 0.0007) 

-0.0020  
(-0.0046 ; 0.0005) 

-0.0009  
(-0.0023 ; 0.0005) 

-0.0010  
(-0.0025 ; 0.0004) 

- -  

Spring Onset (S) 0.1380  
(-2.2622 ; 2.5047) 

0.1033  
(-2.2124 ; 2.3966) 

- - - - - 

Rodents t-1 (Rt-1) - - - - - 0.0230  
(-0.0198 ; 0.0649) 

0.0106  
(-0.0072 ; 0.0282) 

Culling (Cu) - - -0.1279  
(-1.1221 ; 0.8825) 

0.7735  
(-0.0149 ; 1.5963) 

0.3048  
(-0.1468 ; 0.7568) 

0.2372  
(-0.5628 ; 1.0454) 

0.0314  
(-0.4423 ; 0.5013) 

Rodents*Carrion  -1.3e-5  
(-0.0001 ; 9.1e-5) 

- - - - - - 

Carrion*Culling - - 
0.0015 

(-0.0018 ; 0.0046) 
- - - - 

Rodents*Culling - - - -0.0323  
(-0.0790 ; 0.0135) 

- - - 

Rodents t-1*Culling - - - - - -0.0150  
(-0.0613 ; 0.0319) 

- 

329 
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Table S4. Coefficient estimates and 95% confidence intervals for the 2 a-priori models 

explaining between-year variation in the proportion of Lesser White-fronted Goose breeding 

pairs that were successful and including MODIS-based NDVI data as a measure of spring 

phenology, for the time period 2000-2016. Estimates are on logit scale. 

Variables/Model 
(1)  

R*C + S 
(2) 

R + C + S 

Rodents (R) 
0.1090   

(0.0122; 0.2057) 
0.1097  

(0.0681 ; 0.1513) 

Carrion (C) -0.0027   
(-0.0081 ; 0.0027) 

-0.0027  
(-0.0065 ; 0.0011) 

Spring Onset (S) -0.0231  
'(-0.0792 ; 0.0331) 

-0.0230  
(-0.0779 ; 0.0319) 

Rodents*Carrion  1.9e-6   
(-0.0002 ; 0.0002) 

- 

 

 

Table S5. Coefficient estimates and 95% confidence intervals for the 2 a-priori models 

explaining between-year variation in the Lesser White-fronted Goose average brood size and 

including MODIS-based NDVI data as a measure of spring phenology, for the time period 

2000-2016. Estimates are on log scale. 

Variables/Model 
(1)  

R*C + S 
(2) 

R + C + S 

Rodents (R) 
0.0448   

(-0.0040; 0.2057) 
0.0491  

(0.0294 ; 0.0689) 

Carrion (C) -0.0021   
(-0.0056 ; 0.0014) 

-0.0019  
(-0.0038 ; 0.0001) 

Spring Onset (S) -0.0132  
(-0.0491 ; 0.0227) 

-0.0130  
(-0.0478 ; 0.0218) 

Rodents*Carrion  1.0e-5   
(-0.0001 ; 0.0001) 

- 
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Table S6. Coefficient estimates and 95% confidence intervals for the 2 a-priori models 

explaining between-year variation in the ratio of adult Lesser White-fronted geese counted in 

the autumn to the spring and including MODIS-based NDVI data, for the time period 2000-

2016. Estimates are on log scale. 

Variables/Model 
(1)  

R*C + S 
(2) 

R + C + S 

Rodents (R) 
0.0228   

(-0.0212; 0.0681) 
0.0188  

(0.0001 ; 0.0370) 

Carrion (C) -0.0005   
(-0.0032 ; 0.0023) 

-0.0007  
(-0.0022 ; 0.0008) 

Spring Onset (S) -0.0015  
(-0.0345 ; 0.0304) 

-0.0012  
(-0.0327 ; 0.0294) 

Rodents*Carrion  1.0e-5   
(-0.0001 ; 0.0001) 

- 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

23 
 

References for Supplementary Information 

Abrams, P.A. & Matsuda, H. (1996) Positive indirect effects between prey species that share predators. 
Ecology, 77, 610-616. 

Andren, H., Persson, J., Mattisson, J. & Danell, A.C. (2011) Modelling the combined effect of an obligate 
predator and a facultative predator on a common prey: lynx Lynx lynx and wolverine Gulo gulo 
predation on reindeer Rangifer tarandus. Wildlife Biology, 17, 33-43. 

Borchers, D.L., Buckland, S.T., Zucchini, W. & Stephens, W.E. (2002) Estimating animal abundance: 
closed populations. Springer Science & Business Media. 

Brown, L.H. & Watson, A. (1964) The golden eagle in relation to its food supply. Ibis, 106(1), 78-100. 
Charnov, E.L. (1976) Optimal foraging: attack strategy of a mantid. The American Naturalist, 110.971, 

141-151. 
Fryxell, J.M. & Lundberg, P. (1994) Diet Choice and Predator-Prey Dynamics. Evolutionary Ecology, 8, 

407-421. 
Henden, J.A., Ims, R.A. & Yoccoz, N.G. (2009) Nonstationary spatio-temporal small rodent dynamics: 

evidence from long-term Norwegian fox bounty data. Journal of Animal Ecology, 78, 636-645. 
Holt, R.D. & Bonsall, M.B. (2017) Apparent Competition. Annual Review of Ecology, Evolution, and 

Systematics, Vol 48, 48, 447-471. 
Ims, R.A., Killengreen, S.T., Ehrich, D., Flagstad, Ø., Hamel, S., Henden, J.A., Jensvoll, I. & Yoccoz, N.G. 

(2017) Ecosystem drivers of an Arctic fox population at the western fringe of the Eurasian 
Arctic. Polar Research, 36. 

Killengreen, S.T., Lecomte, N., Ehrich, D., Schott, T., Yoccoz, N.G. & Ims, R.A. (2011) The importance of 
marine vs. human-induced subsidies in the maintenance of an expanding mesocarnivore in the 
arctic tundra. Journal of Animal Ecology, 80, 1049-1060. 

Lindström, E. (1989) Food Limitation and Social Regulation in a Red Fox Population. Holarctic Ecology, 
12, 70-79. 

Macarthur, R.H. & Pianka, E.R. (1966) On Optimal Use of a Patchy Environment. American Naturalist, 
100, 603-609. 

Suryawanshi, K.R., Redpath, S.M., Bhatnagar, Y.V., Ramakrishnan, U., Chaturvedi, V., Smout, S.C. & 
Mishra, C. (2017) Impact of wild prey availability on livestock predation by snow leopards. 
Royal Society Open Science, 4. 

Wikenros, C., Sand, H., Ahlqvist, P. & Liberg, O. (2013) Biomass Flow and Scavengers Use of Carcasses 
after Re-Colonization of an Apex Predator. Plos One, 8. 

 



 



  

Paper IV 



 



 

1 
 

Life cycle analysis of an endangered migratory bird shows 1 

no evidence that predator control drove population 2 

recovery  3 

Filippo Marolla1*, Tomas Aarvak2, Sandra Hamel3, Rolf A. Ims1, Marc Kéry4, Jarad P. Mellard1, 4 

Chloé R. Nater5, Michael Schaub4, Manolia Vougioukalou6, Nigel G. Yoccoz1 5 

 6 

1Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, 9037, Norway; 7 

2Norwegian Ornithological Society, BirdLife Norway, NO 7012, Trondheim, Norway; 8 

3Département de biologie, Université Laval, 1045 avenue de la Médecine, Québec (Qc), G1V 0A6, Canada; 9 

4Swiss Ornithological Institute, 6204 Sempach, Switzerland; 10 

5Department of Biology, NTNU, NO-7491 Trondheim, Norway; 11 

6Hellenic Ornithological Society, Themistokleous str. 80, Athens, 10681. 12 

 13 

 14 

*Correspondence author. E-mail: filippo.marolla@uit.no 15 

mailto:filippo.marolla@uit.no


 

2 
 

Abstract 16 

To be effective, management interventions that aim to halt the decline of endangered 17 

populations should target those demographic rates that are more likely to influence population 18 

growth rate. Demographic investigations are particularly challenging for migratory species 19 

because limiting factors can operate at any stage of the life cycle. The critically endangered 20 

Fennoscandian population of lesser white-fronted goose Anser erythropus is monitored at 21 

several staging areas across its migration and breeding range and it is also subjected to 22 

conservation actions, including culling of red foxes in the breeding area. A goal of the fox 23 

culling is to induce adult birds to avoid an alternative autumn migration route through Western 24 

Asia where mortality is expected to be higher than on the regular migration route through 25 

Eastern Europe. After a long-term decline, the population has recently shown signs of recovery, 26 

which has been linked to the conservation efforts. We used 17 years of counts carried out at 27 

breeding, wintering, and intermediate staging areas to parameterize a seasonal state-space 28 

model describing population dynamics throughout the annual cycle. We found no evidence that 29 

adult goose survival is lower on the allegedly riskier migration route. We conclude that there is 30 

no current evidence that red fox culling contributed to the recent population recovery, given our 31 

model, the available data and previous analyses of reproductive success. Still, we found 32 

indications that adult survival at staging and wintering sites may have improved in the latest 33 

years, possibly due to the positive impacts of another set of conservation actions carried out 34 

approximately at the same time the red fox culling started. This study highlights the challenge 35 

of assessing the efficacy of separate conservation actions when proper experimental designs are 36 

unfeasible and suggests that a combination of cross-national efforts is likely needed for 37 

conservation of endangered migratory populations.  38 
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1. Introduction 39 

Information on demographic processes such as survival, fecundity and recruitment is 40 

crucial to develop effective population management strategies (Mills, 2007; Williams, Nichols, 41 

& Conroy, 2002). When this information is lacking, the risk is to direct management efforts 42 

towards vital rates that have little impact on the population growth rate (Johnson, Mills, 43 

Stephenson, & Wehausen, 2010). In avian management, for instance, focusing on improving 44 

nesting success is common even when its contribution to population performances is unknown 45 

(Gaines, Dinsmore, & Murphy, 2020). For small and endangered populations, we typically lack 46 

detailed data and thereby rely on life-history expectations based on other populations or species 47 

to identify management targets. This may be hazardous because the relative importance of vital 48 

rates can differ largely between healthy and declining populations of the same species, let alone 49 

of different species (Beissinger & Westphal, 1998; Johnson et al., 2010). 50 

Understanding the demographic processes underlying population dynamics is even more 51 

challenging for migratory species, because factors that limit population growth can operate at 52 

any stage of the annual cycle (Sutherland, 1996). The environmental conditions experienced at 53 

each stage of the annual cycle can have both direct (i.e. immediate) and carry-over (i.e. delayed) 54 

effects on the population dynamics, adding another layer of complexity (e.g. Layton-Matthews, 55 

Hansen, Grotan, Fuglei, & Loonen, 2019; Rockwell, Bocetti, & Marra, 2012). So far, most 56 

studies on migratory birds have focused on the breeding season. However, birds usually spend 57 

more time at non-breeding sites (Faaborg et al., 2010) and limitations during the non-breeding 58 

period can actually drive population dynamics (Rushing et al., 2017; Wilson et al., 2018). Thus, 59 

more investigations assessing population dynamics throughout the full-annual cycle are needed 60 

(Hostetler, Sillett, & Marra, 2015; Marra, Cohen, Loss, Rutter, & Tonra, 2015; Rushing, Ryder, 61 

& Marra, 2016).  62 

The lesser white-fronted goose Anser erythropus is a migrant goose species that breeds in 63 
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sub- and low-arctic tundra and overwinters in temperate wetlands across Eurasia. Once 64 

common in northern Fennoscandia, the Fennoscandian lesser white-fronted goose population 65 

experienced a drastic decline during the 20th century, reaching the lowest size in 2008 with less 66 

than 20 breeding pairs estimated (Aarvak, Leinonen, Øien, & Tolvanen, 2009). A large 67 

conservation network spanning several countries across the population’s range was built 68 

already in the mid-1980s to improve knowledge and conservation status of the population 69 

(Ekker & Bø, 2017). Among several interventions, 12 years of predator control (red fox culling) 70 

in the core breeding area in northern Norway were claimed as one of the main reasons for the 71 

recent recovery of the population, which consists now of approximately 100 birds (Aarvak, 72 

Øien, & Karvonen, 2017). Red fox control was started with a double goal: increasing 73 

reproductive success and avoiding early reproductive failure. Early failed breeders seem to 74 

leave the breeding areas earlier in the season and embark on a long migratory journey through 75 

Western Asia, where mortality is expected to be higher than on the regular migration route 76 

through Eastern Europe (Øien, Aarvak, Ekker, & Tolvanen, 2009). Since 2008, an estimated 77 

22-43% of the local red fox population was culled every year between February and May, 78 

before the arrival of the geese at their breeding site (Marolla et al., 2019). We recently 79 

demonstrated that there is no current evidence that fox culling improved goose breeding success 80 

(Marolla et al., 2019). Breeding success appeared to be primarily driven by the functional 81 

response of predators to cyclic dynamics of small rodent populations, and partly by the 82 

numerical response of predators to the abundance of ungulate carcasses during winter. Still, it 83 

remains unclear whether a more subtle influence of fox culling on the choice of the goose 84 

autumn migration route could have influenced adult survival and contributed to the population 85 

recovery (Marolla et al., 2019).  86 

The Fennoscandian population of lesser white-fronted goose performs a seasonal migration 87 

between the wintering grounds in Greece and the breeding areas in Troms and Finnmark County, 88 
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northern Norway (Fig. 1). The reproductive season lasts from late-May to mid-August. Adult 89 

birds leave the breeding areas along with the fledglings in September, after a staging period of 90 

about three weeks at the coastal Valdak Marshes, Stabbursnes, Norway (70°10′N 24°40′E). The 91 

regular migration route, here termed the “European Route”, takes them first to the Kanin 92 

Peninsula in northwestern Russia. Then, the birds fly southward through eastern 93 

Germany/western Poland, have an important stopover at Hortobágyi in eastern Hungary, and 94 

finally reach the wintering areas at Lake Kerkini and in the Evros Delta in northern Greece. 95 

Spring migration starts in March and follows approximately the same route, simply in the 96 

opposite direction. Birds return at the staging areas at Valdak Marshes in early- to mid-May 97 

and move to the core inland breeding area about a week later (Aarvak & Øien, 2003). Field 98 

observations suggest that, to reach the wintering grounds in Greece, non-breeders and breeders 99 

that failed early in the season could undertake an alternative moulting migration through 100 

western Russia and north-western Kazakhstan, here termed the “Asian Route” (Øien et al., 101 

2009). There, the risk of geese being illegally shot is expected to be high (Jones, Whytock, & 102 

Bunnefeld, 2017). Recoveries of shot birds in these areas provide anecdotal support to this 103 

hypothesis (Marolla et al., 2019). Lower adult survival on the supposed riskier migration route 104 

through Western Asia was perceived as a major cause of population decline (Øien & Aarvak, 105 

2009). Reducing early breeding failure, and thus the number of birds venturing on the supposed 106 

dangerous route, was a reason behind the implementation of the red fox culling program. 107 

Here, we used 20 years (1998-2017) of count data of the Fennoscandian population of 108 

lesser white-fronted goose at different stopovers across its range to model population dynamics. 109 

Our primary interest was to estimate season-specific vital rates and compare survival 110 

probabilities on the two migration routes. We were also interested in assessing the effects of 111 

the red fox culling program at the breeding site and comparing these effects to the potential 112 

effects of other conservation initiatives carried out at some of the staging areas. These initiatives 113 
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aimed at minimizing illegal shooting and improving habitat quality (Vougioukalou, Kazantzidis, 114 

& Aarvak, 2017). Ultimately, we were interested in obtaining insights on the relative 115 

contribution of vital rates to the recent population recovery. We expected 1) survival on the 116 

allegedly riskier Asian migration route to be lower than on the regular European Route; 2) the 117 

probability that birds avoid the Asian Route to increase after the start of the fox culling program 118 

in 2008; and 3) the change in this probability to contribute the most to the change in the realized 119 

population growth rate after the initiation of fox culling (i.e. predator control influences the 120 

population growth rate) as compared to potential changes in other vital rates.  121 
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2. Materials and methods 122 

2.1 Population counts 123 

The goose population is monitored at different locations along the European Route (Fig.1). 124 

We used data collected between 1998 and 2017 at the three major stopovers in northern Norway, 125 

Hungary, and Greece, where the population breeds, stages, and overwinters, respectively. Total 126 

counts are performed at each location, and birds are assigned to age classes whenever possible. 127 

In Norway, counts have been carried out at the staging sites at the Valdak Marshes in spring 128 

(May-June, since 1990) and autumn (August-September, since 1994), i.e. before and after the 129 

breeding period, under the assumption that all birds that breed in the core breeding area (~50 130 

km away) also use these staging sites. Unique patterns in the black belly-patches of the geese 131 

allow individual recognition of the birds across the two seasons, but not across years because 132 

these patterns change between years (Aarvak et al., 2009). In spring, the number of yearlings 133 

(i.e. 2nd calendar-year birds), potential breeders (i.e. >2 years old birds that are part of a breeding 134 

pair) and non-breeders (i.e. >2 years old birds that are not part of a breeding pair) was recorded. 135 

In autumn, fledglings, successful breeders (i.e. birds in a breeding pair with at least one 136 

fledgling), and unsuccessful breeders (i.e. birds not part of a family group) were counted. 137 

Information on clutch size and early chick survival was not available because birds spread 138 

across the breeding area during summer and are difficult to survey. 139 

In Hungary, counts have been performed at Hortobágyi National Park since 1990 during 140 

both the autumn and the spring migration. Long distances between birds and observers as well 141 

as frequent presence of heat haze in this hot steppe area do not allow differentiation between 142 

young and adult birds nor individual recognition. Therefore, only the maximum number of birds 143 

observed is available. For unknown reasons, very few individuals utilized the Hungarian 144 

stopover in 2018 and 2019. Because of this bias in the time series, we decided to exclude these 145 

two years from the analysis.  146 
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In Greece, reports of staging lesser white-fronted geese date back to the early 1900s. Total 147 

counts, however, have been systematically carried out only since 2005. Counts were carried out 148 

at the two major staging areas of Lake Kerkini and  in the Evros Delta and on multiple occasions 149 

during the goose winter staging period (from as early as October until as late as March). At both 150 

sites, conditions allow identification of juveniles and adults, for which the overall maximum 151 

observed number is eventually reported.   152 

 153 

2.2 Demographic model 154 

Estimating demographic rates of animal populations typically requires marking and 155 

recapturing of individual animals. This method can be difficult to implement (Rodríguez-Caro 156 

et al., 2019) especially for endangered populations (Wielgus, Gonzalez-Suarez, Aurioles-157 

Gamboa, & Gerber, 2008). Count data, however, are often available for birds and many other 158 

animal taxa (Link & Sauer, 1998). To circumvent the issue of marking animals, various 159 

statistical methods for demographic assessment based on count data have been developed (e.g. 160 

Gross, Craig, & Hutchison, 2002; Gross, Ives, & Nordheim, 2005; Link, Royle, & Hatfield, 161 

2003; Rodríguez-Caro et al., 2019; Zipkin et al., 2014). These methods are typically referred to 162 

as “inverse modelling” (Caswell, 2000; González, Martorell, Bolker, & McMahon, 2016), 163 

where vital rates are estimated from age class-specific counts. Here, we built a seasonal state-164 

space population model for the lesser white-fronted goose population based on age-structured 165 

count data. In the state-space modelling framework, an observation process that accommodates 166 

the measurement error of the results of a survey, as well as the lack of fit of the process model, 167 

is linked to an underlying population dynamics model for the true age-specific abundance, i.e., 168 

the process model (de Valpine & Hastings, 2002; Kéry & Schaub, 2011). The true population 169 

abundance, therefore, is modelled as a latent state variable, while the observations are modelled 170 

as conditional on these unknown states. We used Bayesian methods to implement our model 171 
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and estimate demographic parameters and associated uncertainty, and thus obtain insights on 172 

important age-/stage-transitions in population dynamics of Fennoscandian lesser white-fronted 173 

geese. 174 

 175 

2.2.1 Model of population dynamics 176 

The life cycle model of the Fennoscandian lesser white-fronted goose population is shown 177 

in Fig. 2. The model included five stopover locations that matched the locations where the 178 

population counts are performed, i.e. Norway Spring (pre-breeding survey), Norway Autumn 179 

(post-breeding census), Hungary Autumn, Greece Winter, and Hungary Spring. We chose the 180 

annual cycle to start with Norway Spring, i.e. the pre-breeding survey at the Valdak Marshes 181 

staging sites in northern Norway. We included five stage classes that are a combination of three 182 

age classes (juveniles or 1st calendar-year birds; yearlings or 2nd calendar-year birds; adults or 183 

≥ 3rd calendar-year birds) and three states of reproductive status for the oldest age class (non-184 

breeders, failed breeders, and successful breeders). We assumed even sex ratio of fledglings 185 

and adults and no difference in survival between sexes. We also assumed that breeding begins 186 

at age 2, because yearlings have never been observed associated with fledglings during the post-187 

breeding survey (T. Aarvak, pers. comm.). This is a sensible assumption because goose species 188 

typically do not breed before turning 2-years old (Finney & Cooke, 1978; Viallefont, Cooke, & 189 

Lebreton, 1995; Warren, Fox, Walsh, & P., 1992). The reproductive status and outcome of the 190 

adults determine whether an individual will undertake the migration to the wintering grounds 191 

in Greece through the European or the Asian Route (Fig. 2). Successful breeders are assumed 192 

to always fly along the European Route and non-breeders to always fly along the Asian Route, 193 

whereas potential breeders that failed breeding can make a choice between the two routes. 194 

Yearlings do not breed, so they are assumed to always fly the Asian Route. Because we adopted 195 

a seasonal model, age-specific abundances across consecutive stopovers are a function of 196 
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survival, fecundity, and age-specific abundance at the previous stopover. To account for 197 

demographic stochasticity in this small population, age-specific abundances are described by 198 

stochastic processes. In the following equations, true latent population abundances (𝑁) as well 199 

as observed counts (𝑦) are indexed by age class, stopover location, and year, in this order. 200 

 201 

Breeding season: from Norway Spring to Norway Autumn 202 

The number of juveniles (𝐽) in Norway Autumn (𝑁𝐴, i.e. after the breeding period) in 203 

year 𝑡 is modelled as a Poisson process: 204 

𝑁𝐽,𝑁𝐴,𝑡 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝛼𝑡𝑝𝑡𝑁𝑃𝐵,𝑁𝑆,𝑡) 205 

where 𝛼𝑡 is the probability that a potential breeder (𝑃𝐵) in Norway Spring (𝑁𝑆) reproduces 206 

successfully, 𝑝𝑡 is the product of the per capita fecundity (i.e. average number of fledglings per 207 

breeding individual) and the early chick survival, and 𝑁𝑃𝐵,𝑁𝑆,𝑡  is the number of potential 208 

breeders in Norway Spring. 209 

In Norway Autumn, the adult component ( 𝐴𝑑 ) of the goose population consists of 210 

successful breeders (𝑆𝐵) and potential breeders that failed breeding and chose to migrate over 211 

the European Route (𝐹𝐵). The number of successful breeders and the number of failed breeders 212 

at this stopover in year 𝑡 are modelled as binomial processes: 213 

𝑁𝑆𝐵,𝑁𝐴,𝑡 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑃𝐵,𝑁𝑆,𝑡, 𝛼𝑡𝑆𝐴𝑑,𝑁𝑁,𝑡) 214 

𝑁𝐹𝐵,𝑁𝐴,𝑡 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙[𝑁𝑃𝐵,𝑁𝑆,𝑡, (1 − 𝛼𝑡)𝜑𝑡𝑆𝐴𝑑,𝑁𝑁,𝑡 ] 215 

where 𝑆𝐴𝑑,𝑁𝑁,𝑡 is adult survival from Norway Spring to Norway Autumn (𝑁𝑁) and 𝜑𝑡 is the 216 

probability that a potential breeder that failed breeding remains in Norway and thus chooses the 217 

European Route. 218 

 219 

Autumn migration: from Norway to Greece  220 

Juveniles, successful breeders, and failed breeders that remained in Norway are assumed 221 



 

11 
 

to follow the European Route and utilize the Hungarian stopover area. The number of juveniles 222 

and the number of adults in Hungary Autumn (𝐻𝐴) in year 𝑡 (𝑁𝐽,𝐻𝐴,𝑡 and 𝑁𝐴𝑑𝐸,𝐻𝐴,𝑡 where the 223 

𝐸 stands for European Route) are modelled as binomial processes: 224 

𝑁𝐽,𝐻𝐴,𝑡 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝐽,𝑁𝐴,𝑡, 𝑆𝐽,𝑁𝐻,𝑡) 225 

𝑁𝐴𝑑𝐸,𝐻𝐴,𝑡 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑆𝐵,𝑁𝐴,𝑡 + 𝑁𝐹𝐵,𝑁𝐴,𝑡, 𝑆𝐴𝑑,𝑁𝐻,𝑡) 226 

where 𝑆𝐽,𝑁𝐻,𝑡 and 𝑆𝐴𝑑,𝑁𝐻,𝑡 are, respectively, juvenile and adult survival from Norway Autumn 227 

to Hungary Autumn (𝑁𝐻).  228 

Eventually, juveniles and adults fly from Hungary to the wintering grounds in Greece. The 229 

number of juveniles in Greece Winter (𝐺𝑊) in year 𝑡 is modelled as a binomial process: 230 

𝑁𝐽,𝐺𝑊,𝑡 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝐽,𝐻𝐴,𝑡, 𝑆𝐽,𝐻𝐺,𝑡) 231 

where 𝑆𝐽,𝐻𝐺,𝑡 is juvenile survival from Hungary Autumn to Greece Winter (𝐻𝐺). At the Greek 232 

stopover area, birds that took the Asian Route re-join the population. Therefore, the number of 233 

adults in Greece Winter at time 𝑡 is given by:  234 

𝑁𝐴𝑑,𝐺𝑊,𝑡 =  𝑁𝐴𝑑𝐸,𝐺𝑊,𝑡 + 𝑁𝑁𝐵,𝐺𝑊,𝑡 + 𝑁𝑃𝐵𝑓,𝐺𝑊,𝑡 235 

where 𝑁𝐴𝑑𝐸,𝐺𝑊,𝑡 is the number of adults from Hungary Autumn that survived the last stretch of 236 

the European Route, 𝑁𝑁𝐵,𝐺𝑊,𝑡  is the number of adult non-breeders in Norway Spring that 237 

survived the Asian Route, and 𝑁𝑃𝐵𝑓,𝐺𝑊,𝑡 is the number of potential breeders in Norway Spring 238 

that chose to leave Norway after failing the breeding attempt and survived the Asian Route. 239 

These three adult components are modelled as binomial processes: 240 

𝑁𝐴𝑑𝐸,𝐺𝑊,𝑡 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝐴𝑑𝐸,𝐻𝐴,𝑡, 𝑆𝐴𝑑,𝐻𝐺,𝑡) 241 

𝑁𝑁𝐵,𝐺𝑊,𝑡 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑁𝐵,𝑁𝑆,𝑡, 𝑆𝐴𝑑,𝑁𝐺,𝑡) 242 

𝑁𝑃𝐵𝑓,𝐺𝑊,𝑡 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙[𝑁𝑃𝐵,𝑁𝑆,𝑡, (1 − 𝛼𝑡)(1 − 𝜑𝑡)𝑆𝐴𝑑,𝑁𝐺,𝑡] 243 

where 𝑆𝐴𝑑,𝐻𝐺,𝑡 is adult survival from Hungary Autumn to Greece Winter (𝐻𝐺), and 𝑆𝐴𝑑,𝑁𝐺,𝑡 is 244 

adult survival from Norway Spring to Greece Winter (𝑁𝐺), i.e. on the Asian Route. 245 
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Because we assumed that yearlings do not reproduce, in the model they leave Norway 246 

before the breeding period and follow the Asian Route to join the population in Greece. 247 

Therefore, the number of yearlings in Greece Winter in year 𝑡 is modelled as a binomial process: 248 

𝑁𝑌,𝐺𝑊,𝑡 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑌,𝑁𝑆,𝑡, 𝑆𝑌,𝑁𝐺,𝑡) 249 

where 𝑁𝑌,𝑁𝑆,𝑡 is the number of yearlings in Norway Spring and 𝑆𝑌,𝑁𝐺,𝑡 is yearling survival from 250 

Norway Spring to Greece Winter (𝑁𝐺). 251 

 252 

Spring migration: from Greece to Norway 253 

The whole population is assumed to follow the European Route to reach the breeding areas 254 

in northern Norway. Therefore, in Hungary Spring (𝐻𝑆), the number of juveniles (𝑁𝐽,𝐻𝑆,𝑡), 255 

yearlings (𝑁𝑌,𝐻𝑆,𝑡), and adults (𝑁𝐴𝑑,𝐻𝑆,𝑡) in year 𝑡 are modelled as binomial processes: 256 

𝑁𝐽,𝐻𝑆,𝑡 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝐽,𝐺𝑊,𝑡, 𝑆𝐽,𝐺𝐻,𝑡) 257 

𝑁𝑌,𝐻𝑆,𝑡 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑌,𝐺𝑊,𝑡, 𝑆𝑌,𝐺𝐻,𝑡) 258 

𝑁𝐴𝑑,𝐻𝑆,𝑡 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝐴𝑑,𝐺𝑊,𝑡, 𝑆𝐴𝑑,𝐺𝐻,𝑡) 259 

where 𝑆𝐽,𝐺𝐻,𝑡 , 𝑆𝑌,𝐺𝐻,𝑡 , 𝑆𝐴𝑑,𝐺𝐻,𝑡  are respectively juveniles, yearling, and adult survivals from 260 

Greece Winter to Hungary Spring (𝐺𝐻). 261 

Eventually, the birds complete the annual cycle by moving to northern Norway. The 262 

number of yearlings in Norway Spring in year 𝑡 + 1 (𝑁𝑌,𝑁𝑆,𝑡+1 ) depends on the number of 263 

juveniles that make it from Hungary Spring to Norway Spring and thus move into the next age 264 

class. This is modelled as a binomial process: 265 

𝑁𝑌,𝑁𝑆,𝑡+1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝐽,𝐻𝑆,𝑡, 𝑆𝐽,𝐻𝑁,𝑡) 266 

where 𝑆𝐽,𝐻𝑁,𝑡  is juvenile survival from Hungary Spring to Norway Spring (𝐻𝑁). Adults in 267 

Norway Spring include yearlings that move into the adult stage and individuals already in that 268 

stage. Of these adults, some become part of a breeding pair and thus turn into potential breeders, 269 
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while others do not. Therefore, the number of potential breeders in Norway Spring in year 𝑡 +270 

1 (𝑁𝑃𝐵,𝑁𝑆,𝑡+1) is given by: 271 

𝑁𝑃𝐵,𝑁𝑆,𝑡+1 = 𝑁𝑃𝐵𝑌,𝑁𝑆,𝑡+1 + 𝑁𝑃𝐵𝐴𝑑,𝑁𝑆,𝑡+1 272 

 where 𝑁𝑃𝐵𝑌,𝑁𝑆,𝑡+1 is the number of yearlings that moved to the adult age class and became part 273 

of a breeding pair, and 𝑁𝑃𝐵𝐴𝑑,𝑁𝑆,𝑡+1 is the number of adults that became part of a breeding pair. 274 

These two components of the adult population are modelled as binomial processes: 275 

𝑁𝑃𝐵𝑌,𝑁𝑆,𝑡+1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑌,𝐻𝑆,𝑡, 𝜔𝑡𝑆𝑌,𝐻𝑁,𝑡) 276 

𝑁𝑃𝐵𝐴𝑑,𝑁𝑆,𝑡+1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝐴𝑑,𝐻𝑆,𝑡, 𝜔𝑡𝑆𝐴𝑑,𝐻𝑁,𝑡) 277 

where 𝜔𝑡 is the probability that a bird becomes part of a breeding pair, and 𝑆𝑌,𝐻𝑁,𝑡 and 𝑆𝐴𝑑,𝐻𝑁,𝑡 278 

are respectively yearling and adult survivals from Hungary Spring to Norway Spring (𝐻𝑁). The 279 

number of non-breeders in Norway Spring in year 𝑡 + 1 (𝑁𝑁𝐵,𝑁𝑆,𝑡+1) is given by: 280 

𝑁𝑁𝐵,𝑁𝑆,𝑡+1 = 𝑁𝑁𝐵𝑌,𝑁𝑆,𝑡+1 + 𝑁𝑁𝐵𝐴𝑑,𝑁𝑆,𝑡+1 281 

where 𝑁𝑁𝐵𝑌,𝑁𝑆,𝑡+1 is the number of yearlings that moved to the adult age class and did not 282 

become part of a breeding pair, and 𝑁𝑁𝐵𝐴𝑑,𝑁𝑆,𝑡+1 is the number of adults that did not become 283 

part of a breeding pair. These two components of the adult population are modelled as binomial 284 

processes:  285 

𝑁𝑁𝐵𝑌,𝑁𝑆,𝑡+1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑌,𝐻𝑆,𝑡, (1 − 𝜔𝑡)𝑆𝑌,𝐻𝑁,𝑡) 286 

𝑁𝑁𝐵𝐴𝑑,𝑁𝑆,𝑡+1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝐴𝑑,𝐻𝑆,𝑡, (1 − 𝜔𝑡)𝑆𝐴𝑑,𝐻𝑁,𝑡). 287 

We point out that we view these survival probabilities as estimates of apparent survival. 288 

The migratory range of the Fennoscandian lesser white-fronted goose population partially 289 

overlaps that of the neighbouring West Russian population as they share part of the Asian 290 

migration route (Øien & Aarvak, 2009). Immigration of male individuals from the Russian 291 

population occurs (Ruokonen, Aarvak, Chesser, Lundqvist, & Merila, 2010) and may confound 292 

true survival in the statistical inference from our model. Still, the Fennoscandian population is 293 
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considered a single management unit (Ruokonen et al., 2004). 294 

 295 

2.2.2 Observation model 296 

We modelled the observation processes (i.e. the mapping of the latent stage-specific 297 

population sizes on the observed counts, 𝑦) as normal distributions conditional on the true local 298 

population abundance and the stopover-specific residual error (𝜏𝑜𝑏𝑠𝑥). We assumed to have no 299 

systematic over- or underestimation of counts at any of the five stopovers. In Norway Spring, 300 

yearlings (𝑦𝑌,𝑁𝑆,𝑡), potential breeders (𝑦𝑃𝐵,𝑁𝑆,𝑡), and non-breeders (𝑦𝑁𝐵,𝑁𝑆,𝑡) are observed in 301 

every year 𝑡. Therefore: 302 

𝑦𝑌,𝑁𝑆,𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝑌,𝑁𝑆,𝑡+1, 𝜏𝑜𝑏𝑠1) 303 

𝑦𝑃𝐵,𝑁𝑆,𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝑃𝐵,𝑁𝑆,𝑡, 𝜏𝑜𝑏𝑠1) 304 

𝑦𝑁𝐵,𝑁𝑆,𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝑁𝐵,𝑁𝑆,𝑡, 𝜏𝑜𝑏𝑠1) 305 

In Norway Autumn, juveniles (𝑦𝐽,𝑁𝐴,𝑡), successful breeders (𝑦𝑆𝐵,𝑁𝐴,𝑡), and failed breeders 306 

that chose to migrate over the European Route (𝑦𝐹𝐵,𝑁𝐴,𝑡)  are observed in every year 𝑡 . 307 

Therefore: 308 

𝑦𝐽,𝑁𝐴,𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝐽,𝑁𝐴,𝑡, 𝜏𝑜𝑏𝑠2) 309 

𝑦𝑆𝐵,𝑁𝐴,𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝑆𝐵,𝑁𝐴,𝑡, 𝜏𝑜𝑏𝑠2) 310 

𝑦𝐹𝐵,𝑁𝐴,𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝐹𝐵,𝑁𝐴,𝑡, 𝜏𝑜𝑏𝑠2) 311 

In Hungary Autumn, age classes are not separated. Therefore, in each year 𝑡 we have a 312 

single count: 313 

𝑦𝑇𝑂𝑇,𝐻𝐴,𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝐽,𝐻𝐴,𝑡 + 𝑁𝐴𝑑,𝐻𝐴,𝑡, 𝜏𝑜𝑏𝑠3) 314 

In Greece Winter, only juveniles (𝑦𝐽,𝐺𝑊,𝑡) and adults (𝑦𝐴𝑑,𝐺𝑊,𝑡) are observed in each year 315 

𝑡 because yearlings are counted as adults. Therefore:  316 

𝑦𝐽,𝐺𝑊,𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝐽,𝐺𝑊,𝑡, 𝜏𝑜𝑏𝑠4) 317 
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𝑦𝐴𝑑+𝑌,𝐺𝑊,𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝑌,𝐺𝑊,𝑡 + 𝑁𝐴𝑑,𝐺𝑊,𝑡, 𝜏𝑜𝑏𝑠4) 318 

In 2009 and 2010, however, only the total population size was recorded in Greece Winter, and 319 

therefore the observed counts for these years were modelled as: 320 

𝑦𝑇𝑂𝑇,𝐺𝑊,𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝐽,𝐺𝑊,𝑡 + 𝑁𝑌,𝐺𝑊,𝑡 + 𝑁𝐴𝑑,𝐺𝑊,𝑡, 𝜏𝑜𝑏𝑠4) 321 

In Hungary Spring, age classes are again not separated. Therefore, in each year 𝑡: 322 

𝑦𝑇𝑂𝑇,𝐻𝑆,𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝐽,𝐻𝑆,𝑡 + 𝑁𝑌,𝐻𝑆,𝑡 + 𝑁𝐴𝑑,𝐻𝑆,𝑡, 𝜏𝑜𝑏𝑠5) 323 

 324 

2.2.3 Population growth rate 325 

We calculated annual population growth rate 𝜆𝑡 by dividing the total population size in 326 

Norway Spring in year 𝑡 + 1 by the total population size in Norway Spring in year 𝑡: 327 

𝜆𝑡 = (𝑁𝑌,𝑁𝑆,𝑡+1 + 𝑁𝑃𝐵,𝑁𝑆,𝑡+1 + 𝑁𝑁𝐵,𝑁𝑆,𝑡+1) (𝑁𝑌,𝑁𝑆,𝑡 + 𝑁𝑃𝐵,𝑁𝑆,𝑡 + 𝑁𝑁𝐵,𝑁𝑆,𝑡)⁄  328 

 329 

2.2.4 Effect of small-rodent cycles 330 

The reproductive success of the Fennoscandian lesser white-fronted geese is known to be 331 

strongly dependent on the population density of cyclic small rodent species (Marolla et al., 332 

2019). To account for this, we modelled the product of the per capita fecundity and the early 333 

chick survival (𝑝𝑡) as a function of rodent abundance on a log link scale: 334 

𝑙𝑜𝑔(𝑝𝑡) = 𝜇𝑝 + 𝛽𝑟𝑜𝑑𝑒𝑛𝑡𝑠 × 𝑅𝑜𝑑𝑒𝑛𝑡𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑡 335 

where 𝜇𝑝  is the log of the mean vital rate and 𝑅𝑜𝑑𝑒𝑛𝑡𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑡  is an index of rodent 336 

abundance (average number of individuals per trapping grid each year) derived from a capture-337 

mark-recapture survey described in Ehrich, Yoccoz, and Ims (2009) and conducted 338 

approximately 50 km from the goose breeding area. Small rodent species are known to have 339 

synchronized population cycles over much larger distances (Stenseth & Ims, 1993). The 340 

probability that a potential breeder reproduces successfully (𝛼𝑡) and the probability that failed 341 

breeders avoid the allegedly riskier migration route (𝜑𝑡) may also be influenced by rodent 342 
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abundance. Nonetheless, the effect of rodent abundance on these parameters was unidentifiable 343 

likely due to limited data and we decided to exclude it.   344 

 345 

2.2.5 Demographic assessment of goose management 346 

When we tried to estimate the temporal variability in all vital rates in our fairly complex 347 

model, issues of parameter identifiability arose with our data set. With the limited count data 348 

available, we could only estimate probabilities of seasonal survival and choosing the riskier 349 

Asian route that are constant across years. To assess the effect of the red fox culling program 350 

on the probability that failed breeders avoid the allegedly riskier migration route, we adopted 351 

the strategy of (Marolla et al., 2019). We tested whether this probability (𝜑𝑡) changed after the 352 

implementation of the culling program in 2008 by modelling it as a function of a categorical 353 

variable ‘Culling’, which indicates whether fox culling occurred in a given year or not. We used 354 

a logit link function to model this probability: 355 

𝑙𝑜𝑔𝑖𝑡(𝜑𝑡) = 𝜇𝜑 + 𝛽𝑐𝑢𝑙𝑙𝜑 × 𝐶𝑢𝑙𝑙𝑖𝑛𝑔𝑡 356 

where 𝜇𝜑 is the logit of the mean vital rate. 357 

Conservation initiatives other than red fox culling, however, were implemented 358 

approximately in the same period at the autumn and winter staging sites in Hungary and Greece. 359 

These initiatives aimed at minimizing poaching and accidental shooting as well as improving 360 

habitat quality, and could have been important for the population increase. Therefore, we also 361 

assessed whether adult autumn survival probabilities on the two legs of the European Route 362 

(𝑆𝐴𝑑,𝑁𝐻,𝑡 and 𝑆𝐴𝑑,𝐻𝐺,𝑡) and adult winter survival (𝑆𝐴𝑑,𝐺𝐻,𝑡) were different before and after 2008. 363 

For consistency, we also tested for a change after 2008 in adult survival on the Asian Route 364 

(𝑆𝐴𝑑,𝑁𝐺,𝑡). These four survival probabilities were modelled with a customary logit function: 365 

𝑙𝑜𝑔𝑖𝑡(𝑆𝐴𝑑,𝑁𝐻,𝑡) = 𝜇𝑆𝐴𝑑,𝑁𝐻,𝑡
+ 𝛽𝑐𝑢𝑙𝑙𝑆1 × 𝐶𝑢𝑙𝑙𝑖𝑛𝑔𝑡 366 

𝑙𝑜𝑔𝑖𝑡(𝑆𝐴𝑑,𝐻𝐺,𝑡) = 𝜇𝑆𝐴𝑑,𝐻𝐺,𝑡
+ 𝛽𝑐𝑢𝑙𝑙𝑆2 × 𝐶𝑢𝑙𝑙𝑖𝑛𝑔𝑡 367 
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𝑙𝑜𝑔𝑖𝑡(𝑆𝐴𝑑,𝐺𝐻,𝑡) = 𝜇𝑆𝐴𝑑,𝐺𝐻,𝑡
+ 𝛽𝑐𝑢𝑙𝑙𝑆3 × 𝐶𝑢𝑙𝑙𝑖𝑛𝑔𝑡 368 

𝑙𝑜𝑔𝑖𝑡(𝑆𝐴𝑑,𝑁𝐺,𝑡) = 𝜇𝑆𝐴𝑑,𝑁𝐺,𝑡
+ 𝛽𝑐𝑢𝑙𝑙𝑆4 × 𝐶𝑢𝑙𝑙𝑖𝑛𝑔𝑡 369 

where 𝜇𝑆𝑥
 is the logit of the mean survival probability. We point out that, because only the 370 

maximum number of birds observed throughout the winter in Greece was available, the 371 

parameter that we call ‘adult winter survival’ (𝑆𝐴𝑑,𝐺𝐻,𝑡) overlaps and thus is partly confounded 372 

with survival during both autumn and spring migration between Greece and Hungary. 373 

 374 

2.2.5 Model fitting 375 

We fitted the model using Markov chain Monte Carlo methods implemented in JAGS 376 

(Plummer, 2003) by the R package jagsUI (Kellner, 2015). We assigned vague priors to all 377 

parameters (see JAGS code in Appendix S1) and slightly more constrained priors to the 𝛽𝑐𝑢𝑙𝑙𝑆𝑥 378 

parameters to enhance their rates of convergence (i.e. normal distributions with mean = 0 and 379 

variance = 10). To initiate the model, we provided initial population abundances in Norway 380 

Spring at 𝑡 = 1 using available data. We ran four chains with 500,000 iterations, a thinning rate 381 

of 50, and burn-in of 100,000, yielding 32,000 draws from the joint posterior distribution of the 382 

parameters. Convergence of Markov chains was evaluated by visual inspections of time series 383 

plots of the draw and by ensuring that the Gelman-Rubin convergence statistics R-hat was 384 

below 1.1 (Brooks & Gelman, 1998). We summarised posterior distributions by their mean and 385 

95% credible interval [CI]. 386 

 387 

2.3 Transient LTRE 388 

We performed a transient Life Table Response Experiment (LTRE) as described by Koons, 389 

Iles, Schaub, and Caswell (2016) to estimate the contribution of the five vital rates modelled as 390 

a function of ‘Culling’ to the realized change in the population growth rate after the 391 

implementation of the fox-culling program. The transient LTRE is based on the idea that 392 
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environmental conditions can influence the population growth rate not only directly through 393 

their effects on the vital rates, but also indirectly by inducing transient (i.e. ephemeral) changes 394 

in the structure of the population. The transient LTRE accounts for these changes and allows 395 

distinguishing between such direct and indirect effects. We were interested in estimating the 396 

contribution of variability in each vital rate 𝜃𝑖 to the change in 𝜆𝑡 between successive time steps, 397 

i.e. 𝛥𝜆𝑡 . Specifically, the drivers of change in geometric mean growth rates 𝛥𝑙𝑜𝑔𝜆𝑔 can be 398 

decomposed between two time intervals of equal duration, 𝑎 and 𝑏, as follows: 399 

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
𝜃𝑖

𝛥𝑙𝑜𝑔𝜆𝑔 ≈ (𝑙𝑜𝑔𝜇𝑖,𝑏
− 𝑙𝑜𝑔𝜇𝑖,𝑎

)(𝑒̅𝜇𝑖

𝐴 + 𝑒̅𝜇𝑖

𝑛̂ ) 400 

where 𝜇 is the mean of vital rate 𝑖 over a time interval (i.e. 𝑎 or 𝑏), 𝑒̅ is the so-called “real time 401 

elasticity” calculated for a reference population described by the mean of the interval-specific 402 

vital rates between intervals 𝑎 and 𝑏, 𝐴 describes the direct effect of a change in a vital rate on 403 

𝛥𝑙𝑜𝑔𝜆𝑔, and 𝑛̂ describes the indirect effect of a change in population structure on 𝛥𝑙𝑜𝑔𝜆𝑔 (see 404 

Koons et al., 2016 for details). For the implementation of the transient LTRE in R, we adapted 405 

the R code provided in Appendix S7 in Koons, Arnold, and Schaub (2017).  406 
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3. Results 407 

Our model estimated that the Fennoscandian population of lesser white-fronted goose 408 

declined from 70 [61 – 79] birds in Norway Spring in 1998 to 38 [31 – 46] birds in Norway 409 

Spring in 2007, the year before the start of the red fox culling program. The population reached 410 

its lowest level in 2009 with 34 birds estimated [28 – 41], and then increased up to 109 birds 411 

[100 – 119] in 2017 (Fig. 3). Notably, the population did not increase gradually after 2009, but 412 

rather experienced abrupt positive changes in abundance after summers with high small rodent 413 

abundances in 2011 and 2015 (Fig. S1). Overall, the average annual population growth rate 414 

changed from 0.95 [0.77 - 1.15] on average before the onset of the fox-culling program to 1.15 415 

[0.96 - 1.36] afterwards.  416 

Estimates for all demographic parameters are shown in Fig. 4 and Table 1. Average 417 

apparent survival was quite high for all ages and migration legs (Fig. 1). Juvenile survival 418 

ranged from 0.77 to 0.86 between the migration legs, yearling survival ranged between 0.87 419 

and 0.89, and adult survival ranged between 0.89 and 0.97. Importantly, and contrary to our 420 

expectations, average adult apparent survival on the supposedly riskier Asian Route (0.89 [0.64 421 

- 1.00]) was estimated to be similar to the average adult apparent survival along the European 422 

Route (0.87 [0.65 - 0.98]). We calculated this value as the product of adult survival from 423 

Norway Autumn to Hungary Spring and adult survival from Hungary Spring to Greece Winter.  424 

With respect to the effects of the management actions evaluated in our model, the 425 

probability that failed breeders avoid the Asian Route (𝜑) increased on average after the 426 

implementation of the red fox culling program, although high uncertainty around this estimate 427 

made this evidence inconclusive (𝛽𝑐𝑢𝑙𝑙𝜑 = 1.10, [-0.53 - 3.65] on logit scale, Fig. 5). Apparent 428 

adult survival probabilities on the European Route, the Asian Route, and on the wintering 429 

grounds also increased on average after the onset of fox culling, and by a larger magnitude 430 

compared to the probability that failed breeders avoid the Asian Route. However, these 431 
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estimates also had a high uncertainty associated (on the logit scale: 𝑆𝐴𝑑,𝑁𝐻,𝑡 = 2.11 [-1.94 - 7.06]; 432 

𝑆𝐴𝑑,𝐻𝐺,𝑡 = 2.71 [-1.19 - 7.37]; 𝑆𝐴𝑑,𝐺𝐻,𝑡 = 2.84 [-0.69 - 7.31]; 𝑆𝐴𝑑,𝑁𝐺,𝑡 = 2.40 [-1.59 - 7.20]; Fig. 433 

5). 434 

The transient LTRE analysis led to inconclusive results owing to the very diffuse posterior 435 

distributions of the vital rate contributions to the realized population growth rate, that is, due to 436 

the substantial uncertainty associated with our demographic estimates. The estimated mean of 437 

the overall contribution of the parameter describing winter survival (“Hun->Gre” in Fig. S2) 438 

was slightly higher than the mean of the contribution of the other parameters. The posterior 439 

probability distribution of this parameter had also a slightly heavier tail (Fig. S2). The direct 440 

effects of vital rates contributed more to the realized population growth rate compared to the 441 

indirect effects (Fig. S3).   442 
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4. Discussion 443 

Benefiting from twenty years of seasonal population surveys producing count data at 444 

several stages across its entire year-round range, we parameterized a seasonal, demographic 445 

state-space model for the Fennoscandian population of lesser white-fronted goose in order to 446 

address unanswered and frequently-debated questions about the effects of conservation actions 447 

on the recent population recovery. As lack of effect of a predator control action on the 448 

reproductive success (parameters 𝛼  and 𝑝) had already been demonstrated (Marolla et al., 449 

2019), here we focused on the possibility that predator control could have influenced the goose 450 

population growth rate by affecting birds’ migratory behaviour and the survival probabilities 451 

specific to the different migration routes. Indeed, red fox culling in the breeding area in northern 452 

Norway was initiated not only to increase reproductive success, but also to reduce early 453 

breeding failure that could induce birds to migrate through Western Asia instead of Eastern 454 

Europe. Illegal-hunting pressure and thus mortality was expected to be higher along the Asian 455 

than along the European migration route (Aarvak & Øien, 2003; Jones et al., 2017; Lorentsen 456 

et al., 1999; Øien et al., 2009). 457 

Contrary to our expectations, we found no evidence that birds are exposed to a higher 458 

mortality risk on the Asian Route, with the estimated adult survival on the Asian Route being 459 

similar to that on the European Route. Although there was high uncertainty, the probability that 460 

failed breeders do not embark on the migration through Asia slightly improved during the 461 

culling period (Fig. 5). Still, even if the red fox culling program may have achieved its purpose 462 

of increasing this probability, this potential effect would be unlikely to have influenced 463 

population growth rate because the Asian Route appears not as risky as expected. This result is 464 

relevant for the conservation of the goose population, because significant efforts have been put 465 

in the culling program during the last decade. Combined with what Marolla et al. (2019) found, 466 

we conclude that, based on this model and the available data, there is currently not evidence 467 
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that red fox culling influences the growth rate of this lesser white-fronted goose population. 468 

Nevertheless, we caution against strong inference because the potential immigration of 469 

individuals belonging to the Russian population during the autumn migration through western 470 

Asia may have confounded the estimates of survival.  471 

Interestingly, our analysis suggested that the probability of avoiding the Asian Route might 472 

not be the only parameter that has changed in the years following the onset of fox culling. 473 

Survival probabilities on both migration routes and wintering grounds increased on average 474 

after 2008, by a higher magnitude compared to the probability of avoiding the Asian route. The 475 

large statistical uncertainty makes it impossible to draw firm conclusions about the degree of 476 

any such change in these demographic rates. This result, however, may reflect a positive effect 477 

of another set of conservation interventions that were implemented to improve bird safety at 478 

several staging areas along the European Route. Between 2005 and 2009, a first EU LIFE-479 

Nature project laid the foundation for an international cooperation among many of the countries 480 

that host the Fennoscandian lesser white-fronted goose population during its annual cycle 481 

(Tolvanen, Øien, & Ruokolainen, 2009). This initiative led to the development of National 482 

Action Plans for the lesser white-fronted goose in Norway, Finland, and Estonia. It also 483 

identified the need of preventing poaching and accidental shooting in Greece, promoted public 484 

awareness campaigns in Estonia and Hungary, and recommended to carry out conservation 485 

efforts also in the countries located along the Asian Route. This cooperation was continued 486 

between 2011 and 2017 through a second LIFE project, which led to the implementation of 487 

patrolling systems in Greece and Bulgaria, hunting ban of all goose species including the similar 488 

greater white-fronted goose Anser albifrons at the Evros Delta in Greece, habitat restoration 489 

initiatives in Greece and Hungary, and the development of National Action Plans in Hungary, 490 

Bulgaria, and Greece (Vougioukalou et al., 2017). Remarkably, no lesser white-fronted geese 491 

were found shot at project sites during the second LIFE project (Vougioukalou et al., 2017), 492 
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although the 2008’s economic crisis may have contributed to decrease hunting activities in 493 

Greece (Kazantzidis, Vasiliadis, Ilias, & Makrygianni, 2015). Taken together, these 494 

conservation measures may have prevented the population from further decline by improving 495 

conditions at the staging areas. In addition, we acknowledge the possibility that the potential 496 

increase in survivals may be linked to the increase in some greater white-fronted goose 497 

populations that partially share the Asian Route with other goose species including the lesser 498 

white-fronted goose and are permitted to be hunted (Fox & Leafloor, 2018; Jones et al., 2017). 499 

Unfortunately, the goose counts that were available prevented us from reliably estimating 500 

the contribution of each survival probability to the change in realized population growth rate 501 

after fox culling began in 2008. Although the mean contribution of the parameter describing 502 

winter adult survival was slightly higher than the contribution of the other survival probabilities, 503 

the statistical uncertainty around the estimates was too large to draw any strong inference. 504 

Therefore, we cannot really conclude that winter adult survival was more important than the 505 

other vital rates to invert the declining population trend. Moreover, winter survival here is partly 506 

confounded with survival during migration between Hungary and Greece, both in the autumn 507 

and in the spring, because only a single maximum count per winter was available for Greece. 508 

However, the fact that all the survival probabilities that were allowed to vary in the model may 509 

have increased after 2008 suggests that a comprehensive approach, with conservation actions 510 

implemented at different stopovers along the entire migration flyways, may be key to ensure 511 

the conservation of such a small population. Because reproductive success is tightly linked to 512 

small rodent population cycles in northern Fennoscandia (Marolla et al., 2019) and the 513 

amplitude of the rodent cycles may be becoming increasingly dampened (Cornulier et al., 2013; 514 

Kausrud et al., 2008; Nolet et al., 2013), ensuring protection at key staging sites of the 515 

population in good reproductive years may be fundamental to increase recruitment and thereby 516 

population size. Indeed, the goose population experienced abrupt increases in size following 517 
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good reproductive years in the period when conservation actions were already in place. 518 

Because of identifiability issues, we were unable to estimate temporal variability in the 519 

demographic parameters. This might be an important limitation, especially considering the 520 

large between-year variability in breeding success in the lesser white-fronted goose population 521 

(Marolla et al., 2019). It is possible that the lack of data from Greece in the period 1998-2004, 522 

combined with the absence of information on age-structure in Hungary and the fact that 523 

yearlings are distinguished nowhere but in Norway, has caused the parameters and their 524 

associated uncertainty to be unidentifiable. In integrated population models (Schaub & Abadi, 525 

2010), most of the information to estimate apparent survival probabilities comes from capture-526 

recapture data that are currently not available for our goose population. However, previous 527 

studies showed that with this type of inverse modelling that we used it is possible to estimate 528 

between-year variability (e.g. Gross et al., 2005; Link et al., 2003). Thus, this issue might be 529 

circumvented with more years of data that will come in as the monitoring proceeds. This could 530 

be investigated also with simulated data of different sample sizes. 531 

 532 

Conservation and management implications 533 

Evaluating the effectiveness of conservation/management actions on small populations is 534 

challenging, because proper experiments designed to include controls as well as temporal and 535 

spatial replications of actions are usually not achievable (Taylor et al., 2017). Removing or 536 

controlling predators is usually beneficial to declining bird populations, but unsuccessful 537 

programs are not rare (Dicks et al., 2019; Williams et al., 2019). Based on a management design 538 

including spatial contrasts, it has been shown that culling of red foxes likely contributed to 539 

increase the population density of ptarmigan Lagopus lagopus in northern Norway (Henden, 540 

Ehrich, Soininen, & Ims, MS). Moreover, red fox culling likely contributed to prevent local 541 

extinction of the arctic fox Vulpes lagopus (Ims et al., 2017). However, through a combination 542 
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of food-web analysis (Marolla et al., 2019) and state-space modelling of the realized population 543 

dynamics (this study), we found no evidence for a contribution of fox culling to the recent 544 

increase in abundance of the Fennoscandian lesser white-fronted goose population. In Marolla 545 

et al. (2019), we discussed that compensatory immigration (Lieury et al., 2015; Newsome, 546 

Crowther, & Dickman, 2014), substitutable effect of other nest predators (Henden et al., 2014; 547 

Parker, 1984), and insufficient culling may explain the apparent lack of influence on goose 548 

reproductive success. Here, we found that apparent adult goose survival is unlikely to differ 549 

between the two major migration routes that were expected to differ in terms of illegal hunting 550 

pressure, although compensatory immigration from the neighbouring Russian population of 551 

lesser white-fronted goose may have masked some patterns in true survival. Still, we found 552 

indications that the remarkable effort of implementing conservation actions in several countries 553 

to ensure population protection throughout the annual cycle may have been beneficial to the 554 

population. That population dynamics at non-breeding sites can be as or even more important 555 

than dynamics at breeding sites is increasingly acknowledged (Hostetler et al., 2015; Marra et 556 

al., 2015). It is therefore plausible that increased safety at staging sites combined with improved 557 

habitat conditions has ensured high survival and recruitment, and that this has been particularly 558 

important in years with high reproductive success.  559 

In this respect, it will be important not only to continue the monitoring at the currently 560 

surveyed staging sites, but also to include new locations in the monitoring scheme. For instance, 561 

the implementation of a systematic monitoring program at important bird areas in Kazakhstan 562 

has been proposed (T. Aarvak, pers. comm.), following on the heels of recent pilot surveys 563 

(Cuthbert et al., 2018). Including this data in the demographic model we have developed in this 564 

study could help disentangling whether a certain leg of the Asian Route is indeed affected by 565 

higher goose mortality. Another aspect of the model that could be improved in the near future 566 

is the partial confounding between survival during winter staging in Greece and survival during 567 
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the migration between Hungary and Greece, both in the autumn and in the spring. Daily count 568 

data were not readily available for this study, but once organized, they will allow to specify 569 

arrival and departure time to and from the Greek sites, and thus define a winter staging period 570 

that does not overlap with migration. Moreover, we encourage to always trying providing age-571 

structure counts; in staging areas where these data are difficult to obtain such as Hungary, even 572 

having the age-structure for a random sample of birds may aid getting better parameter 573 

estimates. We believe that iterating both the demographic analysis and the management 574 

evaluation over the coming years will be crucial to better understand whether the flyway 575 

conservation approach adopted for the Fennoscandian lesser white-fronted goose is actually 576 

preventing the extinction of the population and also to optimize the approach further. 577 
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6. Figures 591 

 592 

Fig. 1 – Simplified representation of the life cycle of the Fennoscandian lesser white-fronted 593 

goose population with the two autumn migration routes, i.e. the European Route and the Asian 594 

Route. Numbers are model estimates (mean ± 95% Credible Interval) of leg- and age-specific 595 

survival probabilities. For graphical purposes, the arrows do not show exactly the itinerary 596 

covered by the birds but only an approximation.  597 

 598 
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 599 

Fig. 2 – Life cycle of the Fennoscandian Lesser White-fronted Goose population. Dashed 600 

arrows depict the alternative, allegedly riskier, migration route through Western Asia (the Asian 601 

Route). Y = Yearling; NB = Non-Breeder; PB = Potential Breeder; J = Juvenile; FB = Failed 602 

Breeder; SB = Successful Breeder; Ad = Adult. Definitions of demographic parameters can be 603 

found in Table 1.   604 
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 605 

Fig. 3 – Observed (solid black line) and estimated (dashed blue line) total number of individuals 606 

of the Fennoscandian lesser white-fronted goose population. The grey area represents 95% 607 

credible intervals.  608 
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 609 

Fig. 4 – Mean ± 95% Credible Intervals of estimated posterior distributions of vital rates in the 610 

Fennoscandian lesser white-fronted goose population model. All parameters except 𝛽𝑟𝑜𝑑𝑒𝑛𝑡𝑠 611 

and 𝑝 are probabilities and thus vary between 0 and 1. Survival probabilities are grouped by 612 

age class and reported following the goose migration scheme (from bottom to top). For 613 

interpretation of the labels, see Table 1.  614 
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 615 

Fig. 5 – Mean ± 95% Credible Intervals of estimated posterior distributions of changes in the 616 

five selected vital rates after the implementation of the red fox culling program in 2008. 617 

β_cullS1 = change in adult survival from Norway Autumn to Hungary Autumn (i.e. first leg of 618 

autumn migration on the European Route). β_cullS2 = change in adult survival from Hungary 619 

Autumn to Greece Winter (i.e. last leg of autumn migration on the European Route plus a 620 

portion of winter staging). β_cullS3 = change in adult survival from Greece Winter to Hungary 621 

Spring (i.e. a portion of winter staging plus first leg of spring migration on the European route). 622 

β_cullS4 = change in adult survival from Norway Autumn to Greece Winter, i.e. autumn 623 

migration on the Asian Route. β_cullφ = change in probability that failed breeders avoid the 624 

Asian Route.  625 
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7. Tables 626 

Table 1 – Definition of parameters in the Fennoscandian lesser white-fronted goose population 627 

model, along with estimated posterior means and 95% Credible Intervals for the whole study 628 

period (1998-2017). 629 

 630 

Parameter Definition Posterior Mean 95% CI

α
Probability of 

breeding 

successfully
0.38 0.28; 0.49

p
Product of 

fecundity and 

chick survival
0.66 0.41; 1.01

ϕ

Probability that 

a failed breeder

 chooses the 

European Route

0.43 0.18; 0.74

ω
Probability of

becoming part of a

breeding pair 
0.85 0.81; 0.90

S_Ad,NN
Adult survival from

Norway Spring to

Norway Autumn
0.96 0.86; 1.00

S_Ad,NH
Adult survival from

Norway Autumn to

Hungary Autumn
0.95 0.81; 1.00

S_Ad,HG
Adult survival from

Hungary Autumn to

Greece Winter
0.91 0.70; 1.00

S_Ad,GH
Adult survival from

Greece Winter to

Hungary Spring
0.91 0.78; 1.00

S_Ad,HN
Adult survival from

Hungary Spring to

Norway Spring
0.97 0.91; 1.00

S_Ad,NG
Adult survival from

Norway Spring to

Greece Winter
0.89 0.64; 1.00

S_J,NH
Juvenile survival from

Norway Autumn to

Hungary Autumn
0.86 0.64; 1.00

S_J,HG
Juvenile survival from

Hungary Autumn to

Greece Winter
0.77 0.56; 1.00

S_J,GH
Juvenile survival from

Greece Winter to

Hungary Spring
0.84 0.63; 1.00

S_J,HN
Juvenile survival from

Hungary Spring to

Norway Spring
0.85 0.64; 1.00

S_Y,NG
Yearling survival from

Norway Spring to

Greece Winter
0.89 0.65; 1.00

S_Y,GH
Yearling survival from

Greece Winter to

Hungary Spring
0.87 0.60; 1.00

S_Y,HN
Yearling survival from

Hungary Spring to

Norway Spring
0.88 0.63; 1.00

βrodents Effect of small rodent

abundance on p 0.05 0.04; 0.06
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Supplementary material 1 

Appendix S1 2 

JAGS code for the state-space model 3 

cat(" 4 
    model{ 5 
    # Seasonal stage-structured population model for the Fennoscandian LWfG 6 
    # age at first breeding = 2 years 7 
    # the 'year' starts with Norway Spring, for which we provide initial age-specific abundance 8 
    # alfa = prob. of reproducing successfully 9 
    # phi = prob. of staying in Norway given failed reproduction 10 
    # omega = prob. of forming a breeding pair 11 
     12 
    #--------------------------------------------------------- 13 
    # Define priors for the parameters 14 
    #--------------------------------------------------------- 15 
     16 
    # Observation error 17 
    tau.obs.1 <- pow(sigma.1, -2) 18 
    sigma.1 ~ dunif(0.5,30)    19 
    sigma2.1 <- pow(sigma.1, 2) 20 
    tau.obs.2 <- pow(sigma.2, -2) 21 
    sigma.2 ~ dunif(0.5,30) 22 
    sigma2.2 <- pow(sigma.2, 2) 23 
    tau.obs.3 <- pow(sigma.3, -2) 24 
    sigma.3 ~ dunif(0.5,30) 25 
    sigma2.3 <- pow(sigma.3, 2) 26 
    tau.obs.4 <- pow(sigma.4, -2) 27 
    sigma.4 ~ dunif(0.5,30) 28 
    sigma2.4 <- pow(sigma.4, 2) 29 
    tau.obs.5 <- pow(sigma.5, -2) 30 
    sigma.5 ~ dunif(0.5,30) 31 
    sigma2.5 <- pow(sigma.5, 2) 32 
     33 
    # Initial population size 34 
     35 
    N[1,1,1] ~ dpois(7) 36 
    N[2,1,1] ~ dpois(2) 37 
    N[3,1,1] ~ dpois(50) 38 
     39 
    # Demographic parameters 40 
    for(t in 1:nyears){ 41 
     42 
    # Seur (Survival European route) varies over two age classes (juv and ad), seasons, and year 43 
    # Sy (Survival yearlings) varies over three seasons and year 44 
    # Skaz (Survival Kazakhstan route) varies only over year 45 
    # p (product of per-capita fecundity and early chick survival) varies over two age classes (2Y and       46 
#3Y+) and year 47 
    # alfa varies over two age classes (2Y and 3Y+) and year 48 
    # phi varies over year 49 
    # omega varies over year 50 
     51 



 

2 
 

    SeurAd[1,t] <- mean.sad.1 52 
    SeurJuv[1,t] <- mean.sjuv.2 53 
    SeurJuv[2,t] <- mean.sjuv.3 54 
    SeurJuv[3,t] <- mean.sjuv.4 55 
    SeurJuv[4,t] <- mean.sjuv.5 56 
    SeurAd[5,t] <- mean.sad.5 57 
     58 
    # The following adult survivals are modelled as a function of red fox culling 59 
    logit(SeurAd[2,t]) <- mu.sad.2 + betaCull.sad.2*Culling[t] # Norway Autumn to Hungary Autumn 60 
    logit(SeurAd[3,t]) <- mu.sad.3 + betaCull.sad.3*Culling[t] # Hungary Autumn to Greece Winter 61 
    logit(SeurAd[4,t]) <- mu.sad.4 + betaCull.sad.4*Culling[t] # Greece Winter to Hungary Spring 62 
     63 
    Sy[1,t] <- mean.sy.1 64 
    Sy[2,t] <- mean.sy.2 65 
    Sy[3,t] <- mean.sy.3 66 
     67 
    logit(Skaz[t]) <- mu.skaz + betaCull.skaz*Culling[t]    # Survival on Asian route 68 
     69 
    log(p[t]) <- mu.p + betaRod*Rodents[t] 70 
     71 
    alfa[t] <- mean.alfa 72 
     73 
    logit(phi[t]) <- mu.phi + betaCull.phi*Culling[t]  74 
     75 
    omega[t] <- mean.omega 76 
    } 77 
 78 
    mean.sad.1 ~ dunif(0,1) 79 
    mean.sjuv.2 ~ dunif(0,1) 80 
    mean.sad.2 ~ dunif(0,1) 81 
    mu.sad.2 <- logit(mean.sad.2) 82 
    mean.sjuv.3 ~ dunif(0,1) 83 
    mean.sad.3 ~ dunif(0,1) 84 
    mu.sad.3 <- logit(mean.sad.3) 85 
    mean.sjuv.4 ~ dunif(0,1) 86 
     87 
    mean.sad.4 ~ dunif(0,1) 88 
    mu.sad.4 <- logit(mean.sad.4) 89 
     90 
    mean.sjuv.5 ~ dunif(0,1) 91 
    mean.sad.5 ~ dunif(0,1) 92 
     93 
    mean.sy.1 ~ dunif(0,1) 94 
    mean.sy.2 ~ dunif(0,1) 95 
    mean.sy.3 ~ dunif(0,1) 96 
     97 
    mean.skaz ~ dunif(0,1) 98 
    mu.skaz <- logit(mean.skaz) 99 
     100 
    betaRod ~ dnorm(0, 0.01)   # why did we use dunif(-10,10) for our effects on ptarmigans? 101 
    mean.p ~ dunif(0,5) 102 
    mu.p <- log(mean.p) 103 
     104 
    mean.alfa ~ dunif(0,1) 105 
     106 
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    mean.phi ~ dunif(0,1) 107 
    mu.phi <- logit(mean.phi) 108 
    betaCull.phi ~ dnorm(0,0.1) 109 
    betaCull.sad.2 ~ dnorm(0,0.1) 110 
    betaCull.sad.3 ~ dnorm(0,0.1) 111 
    betaCull.sad.4 ~ dnorm(0,0.1) 112 
    betaCull.skaz ~ dnorm(0,0.1) 113 
     114 
    mean.omega ~ dunif(0,1) 115 
     116 
    #----------------------------------------- 117 
    # Derived parameters 118 
    #----------------------------------------- 119 
     120 
    # Population growth rate (from Norway Spring to Norway Spring) 121 
     122 
    for(t in 1:(nyears-1)){ 123 
    lambda[t] <- Ntot[t+1]/(Ntot[t]+0.001) 124 
    } 125 
     126 
     127 
    #--------------------------------------------------------- 128 
    # Likelihood for population count data (state-space model) 129 
    # -------------------------------------------------------- 130 
     131 
    # System process  132 
     133 
    # Norway Autumn, i.e. season 2 134 
    for(t in 1:nyears){ 135 
    meanjuv[t] <- N[3,1,t]*alfa[t]*p[t]#*0.5                   136 
    N[1,2,t] ~ dpois(meanjuv[t])                                            # Juveniles 137 
    N[2,2,t] ~ dbin((1-alfa[t])*phi[t]*SeurAd[1,t], N[3,1,t]) # Failed Breeders 138 
    N[3,2,t] ~ dbin(alfa[t]*SeurAd[1,t], N[3,1,t])                  # Successful Breeders 139 
     140 
    # Hungary Autumn, i.e. season 3 141 
    N[1,3,t] ~ dbin(SeurJuv[1,t], N[1,2,t])                         # Juveniles 142 
    N[2,3,t] ~ dbin(SeurAd[2,t], (N[2,2,t]+N[3,2,t]))        # Adults Europe 143 
     144 
    # Greece Winter, i.e. season 4 145 
    N[1,4,t] ~ dbin(SeurJuv[2,t], N[1,3,t])                   # Juveniles 146 
    N[2,4,t] ~ dbin(Sy[1,t], N[1,1,t])                            # Yearlings 147 
    M[1,t] ~ dbin(Skaz[t], N[2,1,t])                             # transition Non-Breeders 148 
    M[2,t] ~ dbin((1-alfa[t])*(1-phi[t])*Skaz[t], N[3,1,t]) # transition Potential Breeders 149 
    M[3,t] ~ dbin(SeurAd[3,t], N[2,3,t])                      # transition Adults Europe  150 
    N[3,4,t] <- M[1,t] + M[2,t] + M[3,t]                      # Adults 151 
     152 
    # Hungary Spring, i.e. season 5 153 
    # observed values here are for the following calendar year, because the goose year start in June 154 
    N[1,5,t] ~ dbin(SeurJuv[3,t], N[1,4,t])                   # Juveniles 155 
    N[2,5,t] ~ dbin(Sy[2,t], N[2,4,t])                           # Yearlings 156 
    N[3,5,t] ~ dbin(SeurAd[4,t], N[3,4,t])                   # Adults 157 
     158 
    # Norway Spring, i.e. season 1 159 
    N[1,1,t+1] ~ dbin(SeurJuv[4,t], N[1,5,t])                     # Juveniles 160 
    L[1,t] ~ dbin(Sy[3,t]*(1-omega[t]), N[2,5,t])               # Transition Yearling Non-Breeders 161 
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    L[2,t] ~ dbin(SeurAd[5,t]*(1-omega[t]), N[3,5,t])           # Transition adults Non-Breeders 162 
    N[2,1,t+1] <- L[1,t] + L[2,t]                                             # Non-Breeders 163 
    R[1,t] ~ dbin(Sy[3,t]*omega[t], N[2,5,t])                        # transition Yearling Potential Breeders 164 
    R[2,t] ~ dbin(SeurAd[5,t]*omega[t], N[3,5,t])                # transition Adult Potential Breeders 165 
    N[3,1,t+1] <- R[1,t] + R[2,t]                                            # Potential Breeders 166 
     167 
    } 168 
     169 
    # Total population size in Norway Spring to calculate growth rate 170 
    for(t in 1:nyears){ 171 
    Ntot[t] <- N[1,1,t] + N[2,1,t] + N[3,1,t]  172 
    }   173 
     174 
    # Observation process 175 
    for(t in 1:nyears){ 176 
     177 
    # Norway Spring, i.e. season 1 178 
    y[1,1,t] ~ dnorm(N[1,1,t], tau.obs.1)                   # yearlings 179 
    y[2,1,t] ~ dnorm(N[2,1,t], tau.obs.1)                  # adults not in pairs (non-breeders) 180 
    y[3,1,t] ~ dnorm(N[3,1,t], tau.obs.1)                  # adults in pairs (breeders) 181 
     182 
    # Norway Autumn, i.e. season 2 183 
    y[4,2,t] ~ dnorm(N[1,2,t], tau.obs.2)                  # juveniles 184 
    y[5,2,t] ~ dnorm(N[2,2,t], tau.obs.2)                  # failed breeders on European route 185 
    y[6,2,t] ~ dnorm(N[3,2,t], tau.obs.2)                  # successful breeders 186 
     187 
    # Hungary Autumn, i.e. season 3 188 
    y[7,3,t] ~ dnorm(N[1,3,t] + N[2,3,t], tau.obs.3)  # total count 189 
     190 
    # Greece Winter, i.e. season 4 191 
    y[4,4,t] ~ dnorm(N[1,4,t], tau.obs.4)                       # juveniles 192 
    y[8,4,t] ~ dnorm(N[2,4,t] + N[3,4,t], tau.obs.4)      # adults 193 
    y[7,4,t] ~ dnorm(N[1,4,t] + N[2,4,t] + 194 
    N[3,4,t], tau.obs.4)                                               # total count 195 
     196 
    # Hungary spring, i.e. season 5 197 
    y[7,5,t] ~ dnorm(N[1,5,t] + N[2,5,t] +  198 
    N[3,5,t], tau.obs.5)                                               # total count 199 
     200 
    } 201 
     202 
    } 203 
    ", fill=TRUE)  204 
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 205 

Fig. S1 – Time series of rodent abundance (average catches per grid) and population size of the 206 

Fennoscandian lesser white-fronted goose (total counts carried out in Norway in the spring). 207 

Note that the scale on the two y‐axes is different. The vertical green line indicates the onset of 208 

the red fox culling programme 209 

 210 

 211 
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 218 
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 220 

Fig. S2 – Results of the transient LTRE analysis. Posterior distributions of overall contributions 221 

(i.e. direct + indirect effect) of the five vital rates modelled as a function of ‘Culling’ to the 222 

realized change in population growth rate of the Fennoscandian Lesser White-fronted Goose 223 

population after the implementation of the fox-culling program.  224 
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 225 

Fig. S3 – Contribution of direct and indirect effects of the five vital rates modelled as a function 226 

of ‘Culling’ to the realized change in the population growth rate of the Fennoscandian lesser 227 

white-fronted goose population after the implementation of the fox-culling program. Note that 228 

we magnified the portion of the figure with the boxes to emphasize the differences between 229 

mean contributions. However, large uncertainty makes impossible any reliable inference on 230 

which vital rates contributed the most.  231 
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