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Preface 

This thesis concludes my Master in Fisheries and Aquaculture management at UiT, The Arctic 

University of Norway, Tromsø. The project has been supervised by associated professor Kim 

Præbel at UiT, and Postdoc. Dr. Owen Wangensteen.  Dr. Wangensteen performed the 

bioinformatics of the metabarcoding data in this thesis.   

The aim of this thesis was to investigate an alternative way to detect salmon lice 

(Lepeophtheirus salmonis) in the field, and investigate the possibility of counting salmon lice 

in a commercial farming facility of Atlantic salmon (Salmo salar) by using methods and tools 

based on environmental DNA (henceforth referred to as eDNA). This was performed by 

sampling water in a salmon farming facility over a couple of months, collecting live salmon 

lice at a local salmon slaughter factory and conducting an experiment in a laboratory under a 

controlled environment.  

This project has opened a new perspective to me and taught me things I never knew, 

especially when it comes to the presence and abundance of DNA in the environment and what 

is possible to do with it. 
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Abstract 
 

Salmon lice (Lepeophtheirus salmonis) is a well-known parasite in the Atlantic salmon farming 

industry in Norway, and causes losses of billions of Norwegian kroner to the industry every 

year due to fish death and salmon lice-treatment measures. A lot of resources and time is spent 

on counting salmon lice and treating the salmon against the parasite. All salmon lice counting 

means physically handling of the fish which may induce stress and cause damage to the 

protective mucus and skin layer, and even death.  

The aim of this study was to investigate the possibility of detecting salmon lice in the 

field and quantifying the amount of salmon lice in an Atlantic salmon (Salmo salar) farm based 

on sequencing of the salmon lice DNA in the environment. And further to assess how this 

method compares to traditional manual salmon lice counting. The method used was based on 

metabarcoding- analysis of extracted environmental DNA from sampled and filtered water from 

a salmon farming facility located in the northern part of Norway, over the span of a couple of 

months.  

DNA from salmon lice turned out to be detectable in the environment when using a 

fragment of the mitochondrial marker cytochrome c oxidase (Leray-XT primers), and to be of 

great abundance in the facility. It was also possible to quantify the abundance of the salmon 

lice in an experiment in a controlled environment, with the help of a standard curve. However, 

the comparison between manual counting and eDNA based counting did not yield a good 

correlation. A possible explanation for this is that the salmon lice DNA present in th water may 

also come from other life-cycle stages other than adult salmon lice. Despite this result, eDNA 

still has a promising future as a useful tool in the Atlantic salmon farming industry, not only in 

the context of salmon lice counting and surveillance.  
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Introduction  

 

Salmon lice (Lepeophtheirus salmonis) in modern aquaculture.  

About the salmon lice and their life cycle: 

Salmon lice (Lepeophtheirus spp.) are parasitic copepods which are found in marine areas north 

of the Equator. Salmon lice can be divided into two subspecies; Lepeophtheirus salmonis 

salmonis, living in the Atlantic Ocean and Lepeophtheirus salmonis oncorhynchi, located in the 

Pacific Ocean. In order for the salmon lice to survive their entire life cycle, it requires a host. 

Atlantic Salmon lice in the Atlantic ocean are found on salmonids, such as Atlantic salmon 

(Salmo salar), sea trout (Salmo trutta) and Arctic charr (Salvelinus alpinus), while the Pacific 

salmon lice goes to the Pacific salmon family (Oncorhynchus spp.). 

Salmon lice live in the ocean and thrive in salt water with salinity between 29 ppt and 

36 ppt (Bricknell et al, 2006). The salmon lice are an ectoparasite that can live on the skin of 

salmon from a few hours to about 14 days, where it lives from skin, mucus and blood (Johnson 

and Albright, 1992). Salmon lice has a direct life cycle with only salmonids as host. Parasites 

affect the host's immune system, and if there are too many parasites on a single host, it can lead 

to serious health problems and, in the worst case, death (Johnson et al, 2004).  

The life cycle of the salmon lice has been discussed for many years. For a long time, it 

was thought that the salmon lice had ten life stages, but recent research shows that it has eight 

(Boxaspen, 2006). The first two life stages of the salmon lice (Nauplius I and II) (Figure 1) are 

free living. As a free-living stage, the nauplii survives on energy reserves and are carried back 

and forth with the water currents (Boxaspen, 2006). The copepodite stage (3rd stage) is the 

infectious stage where the salmon lice find a host and adheres to it. After the copepodite stage, 

we find the chalimus stage. It was thought that chalimus consisted of four stages, whereas today 

it is thought to consists of two stages; Chalimus I and II. Chalimus I, is the first parasitic life 

stage, as the salmon lice are stationary bound to the salmonids skin using a filament. In the last 

three stages, they are motile and can move both on the individual and between individuals. 

These motile stages are called Pre-adults I and II, and finally, Adult (Hamre et al, 2013; Igboeli, 

Burka and Fast, 2013; Johnson and Albright, 1992; White, 1942). Adult male salmon lice reach 

approx. 6 mm while the female salmon lice are 12 mm (29 mm including the egg strings). Over 

the years, many tests have been made with salmon lice and there has been found that water 

flow, salinity and temperature affect the salmon lice’s ability to survive and manage to infect 
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the fish (Bricknell et al, 2006; Bron, 2006; Genna, 2005; Heuch, Nordhagen and Schram, 2000). 

Studies have shown that the female salmon lice can live up to 210 days and produce 11 pairs of 

egg strings. The first pair of egg strings is shorter and contains fewer eggs than the later 

developing egg strings. Fecundity decreases over time (Heuch, Nordhagen and Schram, 2000; 

Mustafa, Conboy and Burka, 2000). At lower temperatures, the strings are longer and contain 

more eggs (Heuch, Nordhagen and Schram, 2000). It takes longer for the egg to hatch at low 

temperatures, 45,1 days at 2 ºC, than at higher temperatures, 8.7 days at 10 ºC. A large part of 

the nauplii manages to develop into copepodites at 4ºC, which means they can stick to a host at 

low temperatures (Boxaspen and Naess, 2000). The salmon lice live longer at low temperatures. 

The salmon lice are productive and can produce many eggs quickly at high temperatures. The 

eggs hatches much faster at high temperatures, and therefore the salmon lice pressure can be 

high in late summer and autumn. 

 

 

 

Figure 1 Life cycle of salmon lice (Lepeophtheirus salmonis salmonis) with the stages from egg to mature adult) 

(Igboeli et al, 2013). 

 

https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjoouqN5ZDLAhWJbZoKHeX3Ct0QjRwIBw&url=https://www.animalsciencepublications.org/publications/af/articles/4/1/22&psig=AFQjCNGdhAsNb2Ps6T2va6hnSzwHmSnKeQ&ust=1456416640618486
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Challenges caused by the salmon lice 

Salmon lice have a clearly negative effect on the fish just like any other disease would. Feeding 

on skin, mucus and blood of the fish, they ease the access of bacteria and fungi, disturb the 

physiological balance and stress the fish which may lead to further diseases. They may even 

cause death if the damages becomes too severe (Pike and Wadsworth, 1999). The salmon lice 

do not only affect the farmed salmon, but also the wild salmon too (Rosenberg, 2008). This 

increases the pressure against the salmon industry to control the number of salmon lice in the 

production. 

Salmon lice are strictly regulated by the government regarding the amount of salmon 

lice per fish at each facility on a weekly basis. It is required that the average number of salmon 

lice do not exceed a total of 0.5 sexual mature females per fish in the whole fish farm. There 

are some exceptions to this limit, like in the spring when the wild smolt travels from the rivers 

to the sea. The limit is 0.2 sexual mature female lice per fish in the fish farm, over the span of 

a couple weeks to reduce the chance of infecting the wild smolt (Weblink#1 www.lovdata.no). 

To keep track of the number of salmon lice in a facility, manual salmon lice counting is 

performed every week throughout the year. This is done manually and 10-20 salmons are caught 

with a casting net, anesthetized, held by hand during counting and then released back into the 

cage. The stages which are registered are adult females, motile stages and attached stages. In 

the end the total number of adult females makes up the total average number for the entire 

facility. 

 

Treatment against the salmon lice 

When/if the limit of average mature salmon lice per fish (0.2/0.5) are reached or exceeded, 

measures must be done. The salmon must be de-liced, and there are many ways to do this. But 

there are two main approaches for treatment: medical and non-medical treatments. The medical 

treatments are based on bathing the salmon in water containing different substances like 

pyrethrins, pyrethroids, chitin synthesis-blockers and organic phosphorus-insecticides which 

are taken up by the salmon lice. For example, organic phosphorous-insecticides mainly work 

by inhibiting the actions of acetylcholine-esterase, which blocks the decomposition of the 

transmitter-substance acetylcholine, which again lead to overstimulating followed by blocking 

of the actual receptors and leads to death (Weblink#2  www.legemiddelverket.no). 

 

http://www.lovdata.no/
http://www.legemiddelverket.no/
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Because of possible negative effects on ecosystems, there is now focus on developing 

and improving the non-medical treatments (Weblink#3 www.hi.no). These treatments do not 

include adding non-native compounds, and are thus thought to be more environment friendly. 

One popular method is to add other fish species to the salmon cages, with the purpose of eating 

the salmon lice from the body of the salmon. The main species used as cleaner fish in Norway 

are lumpfish (Cyclopterus lumpus) and wrasse (Labrus bergylta). 

Other methods include mechanical removal of the salmon lice, the Licelazer (produced 

by Stingray Marine Solutions, (Weblink#4 www.stingray.no), Skamik, mechanical removal of 

the salmon lice with brushes and water (Weblink#5 www.skamik.no) and Optilice® which 

removes the salmon lice with heated water (Weblink6 www.optimarstette.com). The lastly 

mentioned methods may have a negative effect on the salmon due to rough handling which 

again may lead to damage in the skin and mucus layer, posing a risk of infections (Weblink7 

www.vetinst.no). 

 

 

What could be done differently? 

No matter the treatment used, there still have to be performed frequent counts of salmon lice 

which means handling of the fish and potential of reduced fish welfare. Handling of the fish 

can as mentioned earlier lead to loss of scales and damages in the mucus and skin layer, which 

give access to bacteria, cause diseases, slow growth and even death.  

Salmon lice counting is performed every week at a facility with sea temperatures over 

4 °C, during the production time of the salmon which is approximately 14-22 months 

(Weblink#8 www.laks.no). This mean that the fish is handled at a minimum of 56-88 times 

from sea setting to slaughter facilities only due to salmon lice counting. In addition, the fish 

will be handled many more times in the context of other necessary operations such as delousing, 

sorting, splitting and many more. So, if it is possible to create a tool or practice which does not 

include handling of the fish, one could save the fish from a lot of stress and other possible 

disadvantages.  

 If we then look at the costs for the breeding company, the cost of one salmon lice 

counting is: approx. 4 hours of work (depends on number of fish cages in the facility and other 

factors) x 215 kr/h (average hourly wage taken from personal work experience, but varies from 

company to company and is affected by seniority and other factors) x two - three employees 

http://www.hi.no/
http://www.stingray.no/
http://www.skamik.no/
http://www.optimarstette.com/
http://www.vetinst.no/
http://www.laks.no/
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(salmon lice counting normally require two - three persons, based on own work experience), 

which will give: 1.720-2.580 kr per salmon lice count. Total costs during the production time 

for one facility will be approx. from 1.720kr x 56 times =96.320 NOK, to 2.580kr x 88 times = 

227.040 NOK. These costs should be considered as a minimum because there are more factors 

that affect the total cost, such as loss of salmon biomass due to stress, fuel for the boats, 

anaesthetics, wear and tear on the boats and other equipment, and more.  

 

 

What is environmental DNA, and why it is used 

 

All living aquatic organisms shed DNA into the water via e.g. skin, urine and faeces and sexual 

products (Taberlet et al, 2012), and such DNA is referred to as environmental DNA (hereafter 

eDNA). By sampling and filtering water or even faeces and mud/soil, one can detect organisms, 

just based on analysing the captured eDNA (Taberlet et al, 2012). eDNA is shed intra- and 

extracellular DNA from various organisms and consists of nuclear and organelle DNA (Taberlet 

et al, 2012). eDNA degrade in the environment due to abiotic (e.g. temperature, acidity and 

UV-radiation) and biotic factors (fungi, endonucleases, bacteria and so on), and it may also be 

adsorbed in inorganic and organic particles (Dejean et al, 2011; Levy-Booth et al, 2007). The 

type of environment also affects the degradation rate, where warm and wet conditions increase 

the degradation and cold and dry conditions slows the degradation rate (Willerslev and Cooper, 

2005). The best way to store sampled eDNA during transport is in a sterile, airtight container 

inside of a cooled, dark box. Preferably a styrofoam box containing dry ice or cooling elements. 

For longer storage, the samples should be stored in a -80 °C freezer until extraction (Jerde et 

al, 2011).  

 

Extraction of DNA from samples 

There are several procedures to sample and extract DNA depending on the type of environment 

and target species as shown in Table 1.  
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Table 1 “Comparison of capture and extraction methods used for detecting biodiversity in water with eDNA. This 

selection is not exhaustive, but rather exemplifies the variability in capture methods, extraction methods, sample 

effort (i.e., water volume), sequencing approach, and combinations thereof across different taxa and freshwater 

environments.” Table from (Deiner et al, 2015). 

 

Capture 

method 

Extraction 

method 

Volume 

of water 

Locus Habita

t 

Targeted or 

metabarcod

e 

Taxonomi

c group 

Sequencin

g 

technolog

y 

Referenc

e 

Precipitation Qiagen 

DNeasy 

3 × 15 m

L 

Cyt b Lentic Targeted Amphibia

n 

Sanger (Ficetola 

et al, 

2008) 

Filtration Qiagen 

DNeasy 

5 L Cyt b Lotic Targeted Amphibia

n 

Sanger (Goldberg 

et al, 

2011) 

Filtration MO BIO 

PowerWate

r 

2 L d-loop Lotic Targeted Fish Sanger (Jerde et 

al., 2011) 

Precipitation 

and filtration 

Qiagen 

DNeasy 

2 L Cyt b Lotic Targeted Fish Sanger (Minamot

o et al, 

2012) 

Precipitation Qiagen 

DNeasy 

3 × 15 m

L 

Cyt b, 

COI 

Lentic 

and 

lotic 

Targeted Fish, 

amphibian

, 

crustacean

, insect, 

mammal 

Sanger Thomsen 

et al. 

(2012) 

Centrifugatio

n 

QIAamp 

DNA stool 

mini kit 

(250 or 

500 mL) 

NADH

5 

Lentic Targeted Mammal Sanger (Caldwell

, Raley 

and 

Levine, 

2007) 

Filtration EPICENTR

E 

4 L 16S 

rRNA 

Lotic Metabarcod

e 

Bacteria Roche 454 

GS-FLX-

Ti 

(Ghai et 

al, 2011) 

Filtration Phenol–

chloroform

–isoamyl 

10 L 16S 

rRNA 

Lentic Metabarcod

e 

Bacteria Roche 454 

GS-FLX-

Ti and 

Illumina 

GA II 

Oh et al, 

(2011) 

Filtration Phenol–

chloroform

–isoamyl 

45 L 16S 

rRNA 

Lentic Metabarcod

e 

Bacteria Sanger Debroas 

et al, 

(2009) 

Lyophilizatio

n 

MO BIO 

ultraclean 

soil DNA 

kit 

2 L 18S Groun

d water 

Metabarcod

e 

Plant Sanger Poté et al, 

(2009) 
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 The procedure used in this thesis, water filtration with SterivexTM sterile filter unit 

(Merck KGaA, armstadt, Germany. EMD Millipore Corp., Billerica, MA USA) and extraction 

with Qiagen’s DNeasy Blood & Tissue Kit (Qiagen GmbH, Hilden, Germany) was chosen 

based on recommendations for identification of macro-invertebrate species (Deiner et al, 2015).  

 

Identification of aquatic organisms using eDNA (barcoding, metabarcoding) 

Two typical methods suited for this thesis are; barcoding, which is referred to taxonomic 

identification of species based on single specimen sequencing of diagnostic barcoding markers 

(Hebert, Ratnasingham and deWaard, 2003; Figure 2).  

 

 

 

Figure 2 Procedure for testing primer (or probe) reliability, robustness and specificity (Herder et al., 2014).  

 



19 
 

Metabarcoding, which uses universal primers to amplify DNA from a group of target 

species (in this case metazoans), is the more general approach (Figure 3). When DNA 

amplification with the polymerase chain reaction (PCR) has been done, amplified fragments 

are sequenced with a Next-Generation Sequencer platform (NGS), before the result is compared 

with a reference database to identify the identity of the species included in the captured DNA  

(Taberlet et al, 2012).  

 

 

 

 

Figure 3 Methodology for analysis using an eDNA metabarcoding approach. Figure borrowed from (Valentini et 

al, 2009), modified by (Herder et al, 2014). 
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Metabarcoding was chosen in this thesis due to lack of time to design and validate novel 

primer/probes specific for salmon lice. Metabarcoding will also provide valuable information 

about which other species can be found in and around the salmon facility 

 

Quantification of aquatic organisms using eDNA 

Quantification of species with eDNA can be achieved using different approaches, despite being 

controversial. One approach is species-specific quantitative PCR (qPCR) where a threshold 

cycle that corresponds with the lowest amount of target DNA is identified. This value can then 

be compared to a standard curve with known amounts of DNA to identify the environmental 

abundance (Biggs et al, 2014). The qPCR method presently represents the gold-standard 

method for quantifying organisms using eDNA. Another approach, which this thesis is based 

on, is eDNA metabarcoding that use NGS to quantify the number of sequence reads after 

amplification.  Here, the number of sequence reads are also related to a standard curve with 

known amounts of DNA/organisms to quantify the abundance of a particular species in the 

sample (Takahara, 2012).  

The main advantage of using eDNA methods to detect and quantify organisms in aquatic 

environments is that eDNA is no-invasive and have proved more powerful in terms of detecting 

species than traditional methods (Ficetola et al, 2008; Boussarie et al, 2018). These are also 

some of the reasons of why eDNA was used in this thesis. eDNA may be a promising tool for 

the salmon industry, which potentially could reduce the handling of the fish and provide better 

welfare, by making it possible to count salmon lice without even touching the fish. There is 

clearly much to save by not performing manual salmon lice counting, when it comes to fish 

welfare and costs. Which leads to the main research question of the thesis: 

 

Is it possible to; 1, detect salmon lice in aa aquaculture facility using environmental DNA, 

and 2, perform salmon lice-counting or to keep control on the amount of salmon lice in an 

aquaculture facility, without physically handling the fish? 
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Material and methods 
  

Field procedures 

 

Water sampling 

Water was sampled at an aquaculture facility located in southern part of Skjervøy municipality, 

Troms, Northern Norway. The location contained salmon smolt from the 2017 generation 

(introduced in the sea in 2017). Seven cages had fish in it when sampling began, and eight to 

nine when sampling finished (approx. 800,000 – 1,000,000 fish in total in the facility). The 

sampling was performed every second week from start (week 29, 2017) until the sea 

temperature started to drop (week 45, 2017, Figure 4).  

  

 

Figure 4 Logged sea temperature from the salmon farming facility; Uløybukt, from week 18, 2014 to week 52, 

2017. The gap in the temperature record between 2016 and 2017 was because the facility was empty since all 

salmon was slaughtered, and no temperature was logged. Arrows indicate when sampling performed in this work 

started and ended. Curve made based on weekly recordings retrieved from Weblink#9 www.barentswatch.no.   

 

Water was collected at 1.5 m depth in three cages containing fish. To check if it was 

possible to detect any drifting eDNA, we also took samples at fixed points on the northern and 

southern side of the middle of the salmon farm (illustrated in Figure 5), respectively at 1.5 m 

and 6 m depth.  

http://www.barentswatch.no/
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Figure 5 “Skjervøy Vest” facility, and shows the locations of where the samples were taken in the facility in 

Uløybukt: in M1, M2, M3, northern and southern side (photo edited by me, taken by Ronni Bless Bekkemellem/ 

Dragon-Design Photography).  

 

1 L of water was collected from five locations within each fish cage, and mixed in a 5 

L plastic can. The can was shaken to mix the water, before 0.5 L was filtered through each of 

five filters from each cage. Additionally, 3-5 L of water was collected at each depth (1.5 and 6 

m) at one fixed position on the northern and southern side of the facility, before filtering (five 

filters x 0.5 L) to be able to monitor drifting salmon lice DNA if wanted.  

The reason water was sampled from five different location at each cage was to ensure a 

representative sample of eDNA was caught. It was assumed that the top 5 metres of the water 

column inside the cages in this survey were well mixed. This was because the fish cages were 

mounted with salmon lice skirts which act as an aid to prevent salmon lice larvae from settling 

on the fish. The skirts are tied all the way around the collar of the plastic cage itself and overlap. 

It also hangs down five meters, so that the top of the water column is protected from the larvae 

drifting in the top layer of the water. There may of course be some differences in the water 

column due to mixing when the currents are strong, and because of thermal differences in the 

different water layers, and currents made by the fish itself.  
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Decontamination and collection of seawater 

Equipment such as sampling bottles, beakers, gloves and cans were thoroughly cleaned with 10 

% bleach and 50 % EtOH at the start. To be able to collect water at desired depth, a Niskin 

sampling bottle model 1010-2.5 L from GeneralOceanics was used. One L of water from five 

spots at each cage was kept in a cleaned 5 L plastic can. The sampled water from each location 

was filtered right away before cleaning process was repeated and moving to the next location. 

A blank sample was also included by filtering air around the boat used for sampling to account 

for contamination from this source. 

 

Filtering for eDNA 

Filtering was performed by pouring water from the 5 L can to a 1 L measuring beaker to ease 

the access for the syringe. A sterile 50/60 ml syringe from BD Plastipak was used to press water 

through the filters (Filter, Sterivex, sterile filter unit, Merck KGaA, Darmstadt, Germany. EMD 

Millipore Corporation, Billerica, MA USA). A total of 0.5 L of water was pressed through each 

of the five filters from each location to achieve a good mean value of eDNA at later analysis. 

After filtering, the filters where placed in new sterile 50 ml Greiner centrifuge tube and stored 

in a Styrofoam box containing freeze packs to delay degradation of eventual DNA in the filter. 

After filtering was done, filters where transported to NFH, UiT, Tromsø, and placed in an - 80 

°C freezer until extraction.  

 

Collection of live salmon lice 

Live salmon lice were collected over the span of a couple days at the salmon slaughter factory 

of Arnøy Laks Slakteri A/S located on Lauksletta, Arnøy, in Skjervøy municipality. Over 1.000 

live salmon lice were handpicked. The most appropriate spot in the production line to pick the 

salmon lice was right after the bleeder/stunning machine. This way it was possible to get the 

salmon lice as fresh as possible. The salmon lice were kept alive in 1 L plastic containers for a 

couple of days to make sure they emptied their gastrointestinal system and in that way, avoid 

the risk of getting too much host DNA in the water during the later experiment. The water in 

the containers were changed daily to ensure survival of the salmon lice.  
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Wet lab experiment 

 

 

Figure 6 Dilution setup, all blue squares represents a 3 L can. The three top ones contained 3 salmon lice in 3 L 

of water each and where used as reservoir for “salmon lice water” which were added to the cans below. The ones 

below the three “reservoirs” contained the given amount of added salmon lice water to achieve a total volume of 

3 L.  

 

To make the standard curve, a setup was made which simulated the amount of salmon lice in a 

cage. It was based on the actual volume of one cage, number of salmon in the cage when 

sampling occurred, and the number of counted salmon lice done by the company. Calculations 

can be seen in Appendix I and II.  

  The experiment was done by placing a known number of salmon lice in closable cans 

with a known amount of filtered seawater. Filtered seawater was used to avoid contamination 

of DNA from too many other organisms. Only sexual mature female salmon lice were used in 

the experiment since those are mostly focused on in commercial salmon farming. The females 

with egg strings had the strings removed to avoid release of egg in the water during the 

experiment.  

Three salmon lice were placed in five cans each, then put in a fridge and left for 24 

hours. As an additional step, three salmon lice where placed in five cans each containing three 
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L of unfiltered sea water. Next step was to dilute “salmon lice water” from three of the filtered 

cans, into new cans to reach wanted concentrations of  salmon lice. Appendix III and Figure 6 

shows the experiment setup with the amount of filtered seawater and lice water added to the 

new cans. This tool (standard curve) is then used when DNA from the field samples is extracted.  

The DNA from the field will be compared to the standard curve to see if there is a 

compliance between the amount of DNA and actual number of salmon lice in the aquaculture 

facility. When all of the dilutions were done, three filters were filtered from each can. Then the 

filters were placed in marked 50 ml centrifuge tubes and stored at -80 °C until extraction. We 

had access to the data from the traditional salmon lice counting performed by the workers at 

the aquaculture facility that was carried out each week during the summer when the water 

sampling was carried out. This made it possible to compare the estimated amount of salmon 

lice based on DNA, to the manually counted salmon lice.  

The study required many steps both in the field and in the laboratory. An overview over 

all steps can be seen in Figure 7 below. 
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Figure 7 Overview of the steps performed from sampling of water to final analysis.  
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Laboratory procedures 

 

Table 2 Sampling dates, location and average number of salmon lice manually counted in the facilities at the 

same week sampling occurred. Number of salmon lice is per fish retrieved from www.barentswatch.no 

(weblink#10). 

 

Week Date Location Average number of 

sexual mature 

female salmon lice 

per fish 

Average number 

of salmon lice 

per fish 

29 20.07.2017 Uløy 0.00 0.01 

31 05.08.2017 Uløy 0.00 0.03 

33 19.08.2017 Uløy 0.00 0.04 

35 03.09.2017 Uløy 0.00 0.33 

37 12.09.2017 Uløy 0.00 0.30 

39 01.10.2017 Uløy 0.00 0.85 

41 15.10.2017 Uløy 0.00 3.15 

43 25.10.2017 Uløy 0.00 0.70 

45 07.11.2017 Uløy 0.00 0.00 

 

Sample dates chosen to be analysed was based on the amount of salmon lice found in traditional 

salmon lice counts performed by the farming company. As seen highlighted in Table 2, salmon 

lice appeared most abundant in weeks 29, 37, 41 and 43, and these samples was chosen for 

inclusion in this study. An overview of sample dates, facility, sampling locations in the facility 

and number of filters used at each location can be found in Appendix IV.  

 

DNA extraction 

The extraction of eDNA was performed in a locked room specially organized for eDNA 

extraction with strict routines for cleaning and introduction of material and people. The 

procedure used was: DNA extraction based on Qiagen DNeasy blood and Tissue kit (Appendix 

V). The stock of the extracted product was placed in marked 2 ml centrifuge tubes and placed 

http://www.barentswatch.no/
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in an -80 °C freezer for storage. An aliquot from each sample was placed on a 96 well PCR tray 

for further analysis.  

 

DNA quantitation 

The concentration of DNA were measured on a NanoDrop ND-1000 spectrophotometer 

(Saveen and Werner ab, ©2014, Limhamn, Sweden), using the program “Nucleic Acid”. The 

machine was initialized by placing a 1 µl drop of sterile water. The reader was cleaned and a 1 

µl drop of buffer (elution buffer) was placed on the reader to get a blank measurement. Then 

all aliquots were analyzed, as 1 µl samples.  

 

PCR 

PCR was prepared in a clean UV-cabinet with overflow of air to reduce the chance of 

contamination. The procedure used was made by associated professor Dr. Kim Præbel, NFH, 

UiT (Appendix VI).  

 

Gel run 

2 µ PCR products was ran on a 1 % agarose gel, added 5 µl ethidium bromide, at 200 V or 12 

min. The gel was then placed in an UV camera chamber which is an apparatus that illuminates 

the products in the gel, making it possible to determine the presence or absence and eventually 

the size of the product. 

 

Metabarcoding procedure 

DNA amplification 

The Leray-XT primer set (Wangensteen et al, 2018) was used, which is a highly-degenerated 

primer set targeting the 313 bp Leray fragment (Leray et al, 2013) of the mitochondrial marker 

cytochrome c oxidase subunit I (COI) from a wide selection of eukaryotic groups, including 

practically all metazoans. Forward primer used was miCOIint-XT (5`-

GGWACWRGWTGRACWITITAYCCYCC-3`), modified by Wangensteen et al., 2018, from 
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the mlCOIintF primer (Leray et al, 2013). Reverse primer used was jgHCO2198 (5`-

TAIACYTCIGGRTGICCRAARAAYCA-3`; Geller et al, 2013).  

A single 1-step PCR protocol was used to amplify the Leray-XT fragment. The metabarcoding 

primers had an eight-base oligo-tag attached (each tag with at least 3 differences out of 8 bases). 

A variable number (2-4) of leading Ns was also added to increase the sequence variability of 

the amplicon sequences (Guardiola et al, 2015). Each forward and reverse primer had the same 

sample-tag attached in both ends. E.g.: 

Primer F1: NNaacaagccGGWACWRGWTGRACWITITAYCCYCC 

Primer R1: NNNNaacaagccTAIACYTCIGGRTGICCRAARAAYCA 

Primer F2: NNNggaatgagGGWACWRGWTGRACWITITAYCCYCC 

Primer R2: NNNggaatgagTAIACYTCIGGRTGICCRAARAAYCA 

Primer F3: NNNNaattgccgGGWACWRGWTGRACWITITAYCCYCC 

Primer R3: NNaattgccgTAIACYTCIGGRTGICCRAARAAYCA 

We had 96 such different pairs, so we could multiplex up to 96 samples in one library. Since 

we analysed a total of 269 samples, we prepared a total of three different metabarcoding 

libraries, each one labelled with a different 6-base library tag, which were pooled and analysed 

together within the same MiSeq sequencing run. 

The PCR protocol included Amplitaq Gold 360 master mix (ThermoFisher) 

(Weblink#11 www.thermofisher.com), and bovine serum albumin (BSA) (Weblink#12 

www.thermofisher.com). We used a standard sample volume of 5 µl of the extracted DNA for 

all PCR amplifications. The PCR mix can be seen in Appendix VII. 

The primers were not added to the PCR master mix for aliquoting, but added to every 

individual sample because they were amplified with different versions of the primer set. PCR 

programme used can be seen in Appendix VIII and PCR plate setup in Appendix IX. 

 

Library pooling and concentration 

The amplified product was pooled in a 2 ml Eppendorf tube and homogenized 

thoroughly before it was purified using MinElute columns for removal of DNA fragments 

below 70 bp. This step did also concentrate the amplified DNA approx. 10 times. (Weblink#13 

http://www.thermofisher.com/
http://www.thermofisher.com/
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www.qiagen.com). The DNA concentration was then measured with a Qubit fluorimeter 

(Weblink#14 www.thermofisher.com), using a Broad-Range DNA quantification kit 

(Weblink#15 www.thermofisher.com).  

 

Library preparation 

A PCR-free ligation protocol was used, the NEXTflex PCR-Free DNA Sequencing Kit from 

BIOO Scientific (Weblink#16 www.biooscientific.com). 3 µg of DNA (up to 40 µl of the 

previous pool) was used as starting material. The method used for preparing a COI library was 

the same as described in the kit manual (Weblink#17 www.biooscientific.com).  

 

Library quality control and quantification 

The library was analysed with a Bioanalyzer (Weblink#18 www.genomics.agilent.com) to 

check if the ligation went well, following the manufacturer`s instructions. To be able to load 

the correct concentration of the library in the Illumina MiSeq to avoid under/over clustering in 

the flow cell, the exact concentration was determined using qPCR. The NEBNext Library Quant 

Kit from New England Biolabs (Weblink#19 www.neb.com) were used. The dilution of the 

library used was 1:5,000, 1:10,000 and 1:50,000.  

 

Library dilution and MiSeq loading 

A v3 MiSeq sequencing kit (2x300 bp) was used, but with 2x250 cycles for better error rates. 

The optimal final target concentration of the libraries is 18 pM, but as calculations in Appendix 

X show, we ended up with 16,6 pM. The loading sample including a 1 % of PhiX genomic 

library (for internal sequencing control for calculating error rates per cycle) (Weblink#20 

www.illumina.com), was prepared and loaded into the Illumina MiSeq. Calculations in 

Appendix X 

 

Bioinformatics analysis  

The bioinformatics analyses were done by Dr. Owen Wangensteen and, were based on the 

OBITools metabarcoding software suite (Boyer et al, 2016). Read quality assessment was 

performed with FastQC. Paired-end read alignment was done with Illumina paired-end, and 

http://www.qiagen.com/
http://www.thermofisher.com/
http://www.thermofisher.com/
http://www.biooscientific.com/
http://www.biooscientific.com/
http://www.genomics.agilent.com/
http://www.neb.com/
http://www.illumina.com/
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reads with a paired-end alignment quality score > 40 were retained. Demultiplexing and primer 

removal were achieved using ngsfilter. Obigrep was applied to select all aligned reads with a 

length between 303-323 bp and without ambiguous bases. Obiuniq was used to dereplicate the 

reads and the uchime-denovo algorithm (Edgar et al, 2011), implemented in VSEARCH 

(Rognes et al, 2016) was used to remove chimeric sequences. Amplicon clustering was 

performed using the SWARM 2.0 algorithm (Mahé et al, 2015) with a distance value of d=13, 

which offers a conservative solution to the high variability of the COI gene (Siegenthaler et al, 

2018). Taxonomic assignment of the representative sequences for each MOTU was performed 

using the ecotag algorithm (Boyer et al, 2016), using a local reference database (Wangensteen 

et al, 2018) containing curated COI sequences retrieved from the BOLD database 

(Ratnasingham and Hebert, 2007), and the EMBL repository (Kulikova et al, 2004). This 

algorithm uses a phylogenetic approach to assign sequences to the most reliable monophyletic 

unit, so that sequences can be assigned to different taxonomic ranks, depending on the density 

of the reference database. All MOTUs in the resulting dataset that were taxonomically assigned 

as salmon louse (Lepeophtheirus salmonis) which were probably split by SWARM 2.0 due to 

feeble links in the resulting network (Mahé et al, 2015) were collapsed into a single MOTU, in 

order to get the total of read counts from this species. 

 

Statistical analysis 

The standard curve was made by converting the reads of salmon lice of the diluted experiment 

samples (Appendix XI) from filtered water to unfiltered water. This was done because the ratio 

of salmon lice reads to total reads is lower when measured in unfiltered water (as is the case for 

all samples taken from the field). This conversion was achieved by introducing a correction 

factor, calculated from dividing the average number of salmon lice from nine samples with the 

same concentration of salmon lice, analysed in both filtered and unfiltered water, and after 

correcting for the sequencing depth between libraries 1 and 3 as explained below (Appendix 

XIII and XV).  

Due to stochastic factors during library preparation and sequencing procedures, the three 

sequenced libraries had different sequencing depths (i.e. different total number of reads 

obtained from each library) To further standardize the libraries and the field sample reads in 

order to get a quantitative response (Appendix XII), we had to correct the differences in the 

total sequencing depth of all the libraries using a correction factor based on the average of total 
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reads for two internal standards that were analysed in all libraries. Library 2 and 3 were 

converted based on the sequencing depth of Library 1 (Appendix XIV and XVI).  

The standard curve was made by plotting the corrected number of reads (Appendix XV) 

from the diluted sample using a Log-10 transformation of both axes. A linear model was 

calculated using R (R Core Team, 2017) (Figure 8). The converted field sample reads were 

plotted to the linear model after a Log-10 transformation to match the curve (Figure 9 and 10) 

and the inferred concentrations of salmon lice per salmon were calculated for all field water 

samples from this linear model. 
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Results 

A total of 22,821,455 raw reads were obtained from the sequencing of all samples. 9,154 

MOTUs with 10,234,572 reads remained after the initial quality filtering. Out of this, 1,210,616 

reads were assigned to salmon lice. 

The standard curve, based on a linear model, based on the dilution experiment (Figure 

6), showed that there was good agreement between number of salmon lice reads and number of 

mature female lice per salmon (Figure 8). Each dilution had a total of nine replicates, except 

the one that were added 500 ml of “salmon lice water” which had 8 replicates. 

 

 

Figure 8 Standard curve based on the corrected number of reads from the dilution experiment. The number of 

reads increases with the amount of added salmon lice water. Both axes were Log10-transformed. Proof of 

correlation between the amount of salmon lice and the amount of released salmon lice DNA in the water.  
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Figure 9 Average salmon lice per fish for each sampling location week 29 and 37. Results found by plotting 

Log-10 converted field sample reads to the standard curve in Figure 8. Some of the replicates for each location 

had a big difference between the number of reads, and are shown as black dots. 

 

Figure 10 Average salmon lice per fish for each sampling location week 41 and 43. Results achieved by plotting 

Log-10 converted field sample reads to the standard curve in Figure 8. Some of the replicates for each location 

had a big difference between the number of reads, and are shown as black dots. 
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Figure 11 Weekly average number of salmon lice per fish in the facility, from week 20 to week 44, 2017.  

 

Table 3 Comparison between eDNA based salmon lice count and manual salmon lice count summed up. 

 

 

 

 

 

 

Comparison between curve sample reads and field sample reads 

By comparing the calculated number of salmon lice per salmon for the cages in week 29 (Figure 

9), and the manually counted average (Figure 11), we see that M1 and M2 both estimates 0.50 

salmon lice per fish vs 0.01 manually counted (Table 3). M3 estimates approx. 3.30 salmon lice 

per fish versus 0.01 manually counted. The northern location at 1.5 m depth estimates salmon 

5 salmon lice per fish, and the southern location at 1.5 m estimates approx. 0.10 salmon lice per 

fish.  

Sampling  eDNA (salmon lice 

per fish) 

Manual count 

(salmon lice per 

fish) 

Week 29 0.00 - 5 0.01 

Week 37 0.00 - 0.85 0.30 

Week 41 0.00 - 0.60 3.15 

Week 43 0.00 - 0.15 0.70 
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Estimations for week 37 (Figure 9) shows 0.00-0,20 salmon lice per fish for all sampling 

locations, except the northern side at 1,5 m depth with approx. 0.85 salmon lice per fish. The 

manual counting estimated 0.30 salmon lice per fish in the facility (Figure 11). 

For week 41 (Figure 10), we see that M1 and M2 both estimates 0.00 salmon lice per 

fish vs 0.01 manually counted, while M3 estimates approx. 0.55 salmon lice per fish versus 

0.01 manually counted. The northern and southern locations both estimates round 0.20 salmon 

lice per fish at 1.5 m depth. The samples from 6m depth from the northern side estimates approx. 

0.60 salmon lice per fish while the southern side estimates 0.40 salmon lice per fish. The 

manually counting estimated 3.15 salmon lice per fish in the facility (Figure 11).  

Week 43 (Figure 10), estimations from all sampling locations is around 0.00-0.15 

salmon lice per fish, while the manual counting estimated 0.70 salmon lice per fish in the 

facility.  
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Discussion 

The present master thesis project had two main aims; 1) to see if salmon lice DNA were 

detectable in the field and evaluate eDNA as a tool for quantifying the amount of salmon lice 

in a salmon farm, and 2) to investigate how quantification based on eDNA compares to the 

traditional manual counting enforced by the restrictions made by the government.  

By making an experiment with a set of dilutions with increased amount of added salmon 

lice water in a controlled environment (Figure 6), the results showed that it was possible to 

make a standard curve based on the increased amount of released salmon lice DNA added with 

the salmon lice water (Figure 8). This further suggested the possibility of quantifying salmon 

lice solely based on the amount of eDNA measured from the field water samples (salmon farm 

facility), if the salmon lice were detectable in the field. The present project indeed showed that 

salmon lice DNA could be detected in the field with filtering, extraction, metabarcoding and 

further methods used in this project which leads to the next aim of the study.  

Was the eDNA based method quantitative enough to estimate the abundance of salmon 

in a salmon facility and did the estimations correlate to the manually counted number of salmon 

lice?  

Estimations of salmon lice in the field based on eDNA has not been published so far, 

but several studies on fresh and marine organisms have shown positive correlation between the 

amount of shed DNA and biomass of the target species (Nevers et al, 2018; Thomsen et al, 

2016; Takahara et al, 2012). We found that the estimated numbers of salmon lice per fish 

inferred from the sampled eDNA did not correspond that well with the manually counted 

number of salmon lice per fish during the same weeks. The expectations would be that the 

eDNA based salmon lice count number would follow the manually counted number of salmon 

lice per fish, at least to some degree. Especially in week 41 where the manually count showed 

3.15 salmon lice per fish in the facility (Table 3).  Despite this divergence in salmon lice 

abundance between the two methods, the present study has provided the initial results for future 

improvement of eDNA as a tool for monitoring salmon lice abundance. In other species, such 

as fishes, advances are being made towards developing reliable tools for detecting biomass (e.g. 

Ushio et al. 2018). Some of the reasons for the disagreement between the eDNA counting and 

the result from the manual count could stem from the practice that the average number of 

salmon lice per fish from the manual lice counting are given for all cages in the facility pooled 

together (seven to nine cages). This might be a factor that affects the reason why the number 
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was lower in the eDNA count. Some cages might have had higher number of salmon lice than 

the three cages we used in the survey. Which gave a higher total average number of salmon lice 

in the facility. Own experience with manual salmon lice counting have shown that the average 

number of salmon lice often differs a lot between the cages in the same facility, even if they lie 

next to each other. Another reason could be that metabarcoding of eDNA may not be accurate. 

Peters et al, 2017, suggests that it might would have been more appropriate to design species 

specific tools like qPCR probes which might have yielded in better quantitative information 

than the metabarcoding sequencing. However, Ushio et al, (2018) showed that metabarcoding, 

when performed with care, have equal quantitative value as qPCR, which validates the approach 

taken herein. 

Even though there were some overlap between abundance estimates obtained by manual 

counting and eDNA (in week 29 and 37), the use of eDNA as a tool for detecting abundance of 

salmon lice needs improvement. But, as the standard curve (Figure 8) showed, it was possible 

to quantify the abundance of salmon lice with environmental DNA, at least in a controlled 

environment.  

The estimated number of salmon lice per fish (Figure 9 and 10) yielded from the 

standard curve could be expected to be higher with eDNA than that of manual counting, because 

the metabarcoding method detects DNA from all life stages of the salmon louse, while manual 

counting only include the attached stages (chalimus, preadult and adult, Figure 1). The DNA 

detected in the water may indeed come from planktonic stages that cannot be counted with the 

manual recount and that could have different temporal dynamic patterns than the attached 

stages. 

One pattern that should be noticed is that the samples from the northern sample location 

showed the highest amount of reads and number of salmon lice in all weeks analysed (Figure 9 

and 10). One of the reason for this might be transport of eDNA and early life stages of salmon 

lice from all cages from the farm at the northern (and southern) sample locations approx. 150 

meters away from the centre of the facility (Figure 5). The currents might have led salmon lice 

DNA, eggs and naupli from more than the three cages used in the survey past the sampling 

points.  

One plausible explanation for higher abundance at the northern sample location, and not 

southern sample location, might be that the currents have been shown to have a slightly higher 

flow towards north in the strait between Uløya and Ravelseidet (approx. N 69° 51.3577718', S 
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69° 51.440173') in Troms, where the sampling was done (Figure 12). Troms County did a 

survey in 2009-2010 to map the ocean currents and further investigate the possible spread of 

diseases between salmon farms in the same areas. This survey resulted in an interactive map-

service where it is possible to see models of the currents, temperature, salinity and more in 

different areas of Troms County (Weblink#21 www.stroms.no).  

 

 

Figure 12 Map with modelling of the main direction of the current registered during the surveying period of 2009-

2010. Arrows indicate the main feature of the current (Weblink# 22 www.akvaplan.niva.no/os). The blue square 

indicates the approximate location and direction of the farm where the sampling was performed (North upwards).   

 

Another possibility of higher number of reads on the northern sampling location is that 

the tide has coincidentally been going the same direction (northward) on all four sampling days. 

This have unfortunately not been possible to figure out because of lacking information on the 

time of the day when the sampling occurred. The difference between high and low tide in the 

area has been recorded to be high (almost four meter) according to historical and current 

measurements (1952-2018) (Weblink#23 www.kartverket.no). This might have caused high 

movement of high water volume and carried salmon lice DNA to the northern sampling 

location. However, a recent study have shown that the tides scarcely affect the movement of 

nearshore eDNA (Kelly, Gallego and Jacobs-Palmer, 2018), and hence change the detection 

http://www.stroms.no/
http://www.akvaplan.niva.no/os
http://www.kartverket.no/
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limit. Thus, further studies are needed to understand why and how eDNA appeared more 

abundant in only one of the reference locations. 

As mentioned above, the eDNA-based counting did not correlate with the manual 

counts, but eDNA-based counting of salmon lice may nonetheless be used as a predictive, early-

detection method for future infestation outbreaks of salmon lice, but further validation is 

needed. Was the high peak in week 29 (Figure 9) detected by eDNA correlated to the peak in 

the manually counted salmon lice number in week 41 (Figure 11)? If so, have we detected an 

increased number of salmon lice eggs and nauplii? 

In this project only a limited set of samples (week 29, 37, 41 and 43) of the total set of 

samples were analysed due to economic constraints. It would therefore be of great interest to 

see how the abundance estimates for the manual counts vs. eDNA for salmon lice changed and 

/ or correlated in the weeks between week 29 and 37, as that would provide insights into what 

life stage of salmon lice that are prevalent in eDNA detection. This could even be combined 

with longer studies using a higher frequency of sampling events along different years to get a 

better picture of the temporal dynamic patterns obtained from eDNA and their correlation with 

patterns of manual salmon lice counts. 

 

Future directions for using eDNA as a survey tool for salmon lice in aquaculture 

Field practice 

From this pilot study we have learned that the experiment design could have been changed in a 

couple of ways. Sampling could have been performed in all cages in the facility to get an overall 

average of the number of salmon lice per fish in the facility as it was done in the manual method. 

Also, if this had been considered at the start of the study, we would have been able to ask the 

farming company to save the counted average from each cage in the facility and in that way, 

been able to compare the results on cage level. Sampling should also have been performed over 

a longer period, at least one year, or even throughout the whole production time of the salmon. 

Samples from all sampling days should also have been extracted and analysed to get a better 

and broader overview of the changes in the amount of DNA and salmon lice. This way one 

might have been able to see differences due to natural factors such as sea temperature, changes 

in salinity, photoperiod and more.  

 



41 
 

Laboratory 

Samples from more weeks should have been extracted to fill the gaps between the weeks 

extracted in this study e.g. between week 29 and 37 to be able to see if and how the estimated 

number of salmon lice changed according to the sea temperature, manual counting and more. 

These changes would however might have increased the total cost of the experiment and 

acquired time of the study beyond the limits of a normal master thesis.  

The time and costs could have been shortened by producing a species-specific probe for 

salmon lice. The analysis would then have been done by qPCR and replacing the metabarcoding 

procedure. The bioinformatics procedure would also be shorter since there would only be one 

species to analyse.  

The curve experiment design also had some factors that might interfered with the results. 

The curve was made with salmon lice in cans filled with filtered seawater instead of normal sea 

water. This was done because of fear of not being able to detect any salmon lice DNA in the 

most diluted cans. This has shown to be unnecessary and the curve should have been repeated 

with normal seawater only. By only using unfiltered seawater, the performed conversion 

between the filtered samples and unfiltered would have been unnecessary (see “Statistical 

analysis” in material and method, and Appendix XIII). The conversion between the three 

libraries to even out the sequencing depths should also be considered as a possible factor for 

loss of quantitative accuracy (Appendix XIV).  
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Conclusion 

This project has shown that it is possible to detect salmon lice DNA in a farm for Atlantic 

salmon, by performing metabarcoding of DNA extractions from filtered water samples. The 

project was also able to make a standard curve, showing the number of salmon lice based on 

the amount of released DNA in the water. The comparison between the eDNA based salmon 

lice count and manual count did not correlate in such a manner that the salmon lice count could 

be replaced by eDNA, per se. Nevertheless, by performing further studies and refinement of 

the used methods, environmental DNA is predicted to be of great use in salmon farming in the 

future as a method to detect and monitor pathogens and parasites, and maybe even as a 

predictive early-warning tool.  

 

Future thoughts on the use of eDNA in aquaculture regarding salmon lice and 

other possibilities 

 

Manual salmon lice counting will most likely be revolutionized by eDNA tools in the future, 

hopefully decreasing the cost, time wasting and stress related to the traditional method. Further, 

if it is possible to detect the sex of the salmon lice from environmental DNA, it will be possible 

to predict the amount of female salmon lice in a salmon facility. It would then be possible to 

calculate/estimate how many sexually mature females will appear in the following days/weeks 

according to the temperature and existing amount of sexual mature females and pre- mature 

stages.  

This project was a “pilot study” on the use of eDNA in the context of farming of Atlantic 

salmon in Norway and one of its major challenges, salmon lice. There are countless 

opportunities of possible studies that can be done in the future based on eDNA in aquaculture, 

not only on salmon farming. My predictions are that one might be able to detect diseases in fish 

farming long before an outbreak is visible and by monitoring the presence of the cause (bacteria, 

viruses, amoebas), and be able to predict possible outbreaks. This will of course require 

thorough field studies and over a long period, but the yield would be great if the fish farming 

industry is revolutionized with new molecular tools.  
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Appendix 
 

Appendix I Estimation of number of salmon lice 

based on real cage volume, number of salmon in the 

cage, and average number of salmon lice counted at 

the facility (www.barentswatch.no).  
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Appendix II Average number of salmon lice estimated to be in the facility, based on 

dilutions.  

 

 

 

 

Appendix III Setup for the wet lab curve experiment showing the different dilutions made, 

volumes needed, number of cans and filters needed. 

 

 

 

 

 

 

 

 

 

 

 

Avg nr of lice 0,0 0,1 0,2 0,3 0,5 1,5 5,0 16,7 100,0

Ratio between 

licewater and 

filtered sea 

water 3000,0 1500,0 500,0 333,3 200,0 66,7 20,0 6,0 1,0

average 

calculated 

based on data 

from facility 0,1 0,1 0,3 0,5 0,9 1,8 3,8 12,0 100,0

Amount of lice 

water added to 

filtered sea 

water  1/3000  2/3000  6/3000  9/3000  15/3000  45/3000  150/3000 500/3000

3 lice in 

3000ml 

filtered 

seawater

Average lice ml ml ml ml ml

Amount of sterile 

seawater needed each 

(ml) <---- x3 Nr of filters Nr of cans

Can A Can B Can C Can D Can E

100 3000 3000 3000 3000 3000 3000 15000 15 5

10 500 500 500 2500 7500 9 3

3,6 150 150 150 2850 8550 9 3

1,8 45 45 45 2955 8865 9 3

0,9 15 15 15 2985 8955 9 3

0,5 9 9 9 2991 8973 9 3

0,3 6 6 6 2994 8982 9 3

0,1 2 2 2 2998 8994 9 3

0,05 1 1 1 2999 8997 9 3

Tot 728 728 728 26272 84816 87 29
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Appendix IV Overview of sample dates, facility, sampling locations in the facility and number 

of filters used at each location.  

 

 

 

Appendix V Protocol for extraction of eDNA from filters, based on Qiagen DNeasy blood and 

Tissue kit. improved by Kim Præbel, UiT.  

 

DNA extraction 

Important notes: 

• Make sure that the incubator is set to 56 °C before start working.  

• Always shake tubes out of the bags, don’t put your hand inside the bag. Discard excess 

tubes. 

• Only use pipette tips with barriers  

• Never take anything out from the eDNA clean lab, in that case, don’t bring it back. Do 

not bring anything not related to the eDNA “lab”, inside the lab, while working. 

• Always discard tips/tubes/gloves if you have the slightest suspicion about 

contamination (e.g. if the tip touches the table before entering the tube/buffer bottle, the 

replace it with a new one) 

• Always start with the lowest concentration (i.e. blanks) 

Week 29 31 33 35 37 39 41 43 45 46

Location

Uløybukt, 

10726

Uløybukt, 

10726

Uløybukt, 

10726

Uløybukt, 

10726

Uløybukt, 

10726

Uløybukt, 

10726

Uløybukt, 

10726

Uløybukt, 

10726

Uløybukt, 

10726

Skjervøy 

vest, 

33097

Sample 

names Date 20.07.2017 05.08.2017 19.08.2017 03.09.2017 12.09.2017 01.10.2017 15.10.2017 25.10.2017 07.11.2017 16.11.2017

M1 Blank 1 1 1 1 1 1 1 1 1 1

M1 1,5m 5 5 5 5 5 5 5 5 5 5

M1 6m 5

M1 10m 5

M2 Blank 1 1 1 1 1 1 1 1 1 1

M2 1,5m 5 5 5 5 5 5 5 5 5 5

M2 6m 5

M2 10m 5

M3 Blank 1 1 1 1 1 1 1 1 1 1

M3 1,5m 5 5 5 5 5 5 5 5 5 5

M3 6m 5

M3 10m 5

North Blank 1 1 1 1 1 1 1 1 1 1

North 1,5m 5 5 5 5 5 5 5 5 5 5

North 6m 5 5 5 5 5 5 5 5 5 5

North 10m 5

South Blank 1 1 1 1 1 1 1 1 1 1

South 1,5m 5 5 5 5 5 5 5 5 5 5

South 6m 5 5 5 5 5 5 5 5 5 5

South 10m 5

Tot nr of 

filters 40 40 40 40 80 40 40 40 40 40
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• If extracting samples from several species, sterilize everything again with ethanol. 

• Do not touch the ends of the filters or the inside of the tube caps with hands or tweezers 

• Always wear new cleaned lab-coat and nitrile gloves. Disinfect gloves in 10 % bleach 

for 5 - 10 mins followed by 50 % EtOH- wash before work starts (the gloves are not 

clean out of the box) and between steps/samples 

 

DAY 1  

 

1. Find filters in - 80 °C freezer and place them at 4 °C for gentle thawing (will take 1-2 

hours).  

2. Wear clean lab-coat before entering the lab. Gloves on. Clean lab bench, pipets, forceps, 

pens, etc. with 10% bleach from spraying bottle, incubate for 5 - 10 mins, then wipe off 

with tissue paper. Then flush all equipment, including gloves, with 50% EtOH.  

3. To remove excess water in the filters, place the end of the filter (the end where the syringe 

is introduced) inside an eppendorf tube and place it in the same 50 ml centrifuge tube that 

contained the filter. If more than one filter in the tube, label a new tube for the second 

filter. Gently, slide the filter and Eppendorf tube back into the 50 ml tube. When done 

with the filters from one species/ station, clean (bleach+EtOH) everything again, before 

porceedig to the next species/ station.  

4. Centrifuge the tubes at 1500 x G for 3 minutes to remove the remaining seawater from 

the filter  

5. Make extraction buffer solution for adding 2.5 x the recommended volume = 500 µl per 

filter.  (Recommended volume: 20 µl Pk + 180 µl buffer ATL  2.5 x proteinase k = 50 

µl, 2.5 x 180 µl ATL = 450 µl tot = 500 µl. E.g. for 20 samples: = 1000 µl Pk, 9000 µl 

ATL  

Pipet first the 9 ml with plastic pipet (sterile conditions) and place content in a 50 ml clean 

tube. Then pipet 1 ml (1000 µl) of PK and mix in the same tube. Mix the two solutions 

together with care to avoid foam.  

6. Add 500 µl of the extraction solution to each filter (start with lowest concentration, the 

blanks), by pushing the 1000 µl tip tight to the outlet end of the filter and gently aspirating 

the solution into the filter. Take care that all the solution goes into the filter. If the filter is 

clothed, then aspirate from the inlet end of the filter. 

7. Then melt the incoming end with an EtOH burner and close it with forceps and make sure 

that it is completely sealed. Cap the lure end of the filter with a medical cap.  
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8. MAKE SURE YOU LABEL ALL THE FILTERS CORRESPONDING TO THE 

TUBES, by writing the label and the replicate letter (A, B, C…) on the filter and cover 

with tape. 

9. Then place the filters in the rotator and fasten them with an elastic rubber spring/ band.  

10. When done with all filters, transfer the rotator to the incubator oven (56 °C). Make sure 

that the rotator is moving (5 rpm) and not hitting the oven. Check the filters after a couple 

of hours and then leave them for 8 - 12 hours. 

11. Always use similar incubation time for all filters within a project. Note the time when the 

filters were placed for incubation. 

 

DAY 2/part 2 

  

1. Clean table, pipettes, etc. with 10% bleach (5 - 10 min incubation) and 50% EtOH. 

2. Note the time when the filters are removed from the incubator oven. 

2. Reopen the sealed (melted) end of the filters with a burned red needle or tweezer. Transfer 

the incubated filters to a marked 2 ml tube inside a new 5 0ml centrifuge tube. 

3. Centrifuge the 50 ml tubes containing the 2 ml tubes and the filters at 1700 x g for 3 

minutes. 

4. Carefully remove the 2 ml tubes from the 50 ml tubes with a tweezer without touching 

the cap or edge. Close the 2 ml tube and place it in a rack. Again, start with the lowest 

concentration (e.g. air  blank  real samples). 

5. Label the DNeasy spin columns with the sample names and place them in order on the 

clean table. 

6. “Measure” the approximate volume of two-three samples using a pipette with NEW tips 

for each sample. Round the mean volume to nearest 50 µl. 

7. Add an equal volume of the AL buffer as the one determined above (6.) and ensure to mix 

it with the pipette immediately, using new tips for each sample.    

8. Add an equal volume of 100 % EtOH as the one determined above (6.) and ensure to mix 

it with the pipette immediately, using new tips for each sample. 

9. Locate the spin columns in front of the samples in the rack. 

10. Transfer 630 µl of the sample into the corresponding spin column. Be careful not to make 

too many bubbles.  

11. Centrifuge the columns at 15000 x g for 2 min.  
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12. Discard the collection tube with the eluate and transfer the spin column to a new collection 

tube. Take care to “leave” as much as possible of the flow-through solution in the 

discarded collection tube. 

13. Transfer the rest of the sample to the corresponding spin column. If more than 630 µl, 

three rounds of spinning is required.   

14. Centrifuge the columns at 15000 x g for 2 min. 

15. Discard the collection tube with the eluate and transfer the spin column to a new collection 

tube. Take care to “leave” as much as possible of the flow-through solution in the 

discarded collection tube. 

16. Add 500 µl buffer AW1 (check that EtOH has been added to the buffer) using new tips 

for each tube. 

17. Centrifuge at 15000 x g for 2 minutes.  

18. Discard the collection tube with the eluate and transfer the spin column to a new collection 

tube. Take care to “leave” as much as possible of the flow-through solution in the 

discarded collection tube. 

19. Add 500 µl buffer AW2 and centrifuge for 4 mins at 20000 x g. 

20. While centrifuging, clean table, pipettes and pens (bleach+ EtOH) and label 1.5 ml 

Eppendorf tubes with the corresponding sample names. All info on the side and short 

version on the cap. 

21. Transfer the spin-columns to the corresponding Eppendorf tubes. TAKE GREAT CARE 

that no flow-through is present on the sides of the spin columns. If so, spin the columns 

again in a new collection tube at 20000 x g for 2 mins. Note what samples that have been 

centrifuged twice. Also make sure that the lid/tap of the spin column do not touch the cap 

of the Eppendorf tube to avoid contamination.  

22. Add 75 µl of buffer AE (elution buffer) to the spin columns. Make sure to aspirate the 75 

µl in the center of the membrane by aspirating the buffer just over the membrane (do not 

touch the membrane). Incubate for 1 min, then centrifuge the samples at 20000 x g for 2 

minutes.  

23. Discard the spin columns and transfer a 20 µl aliquot of the extracted DNA to a PCR plate 

(labelled with the content. Note the locations of the samples in the plate in your lab book.  

24. Freeze the DNA stock as soon as possible at - 80 °C and do only thaw the stock when 

absolutely necessary. Place the aliquot at 4 °C. 
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25. Clean the lab space, pipettes, forceps, pens, etc. in 10% bleach (5-10 min incubation) and 

50% EtOH. Clean trash and floor and stock up with lab supplies. Dispose the lab coat in 

the “dirty-bin” at the first floor. 

26. Transfer the aliquoted samples to wet ice. Perform Nanodrop/Quibit on the aliquots and 

proceed with PCR. When done, store at - 80 °C. Remember that it is better to store the 

sample at 4 °C for 1-3 days, than doing repeated freeze-thawing cycles. 

 

 

Appendix VI Procedure based on “protocol for PCR of eDNA SAMPLES, v2, 090217 BY 

Kim Præbel. UiT. 

PCR 

Important notes: 

• Never set up PCR in the same room where DNA/RNA have been extracted 

• Make sure that the work space, pipettes, tips, tubes, etc. are absolutely clean and contaminant 

free. If doubt, but new (plastic)  

• Before starting, clean workspace (positive flow fume hood), pipettes, centrifuge, etc. with 

bleach and EtOH. Place the tip boxes in the fume hood and illuminate everything (except DNA 

and chemicals) for half an hour with UV-light 

• Always include a blank (use ultrapure water for PCR-run instead of template DNA) 

• Always include a positive control. Remember to add this after all eDNA samples have been 

loaded, and the tubes are closed 

• Only use pipette tips with barriers 

• Do not bring anything not related to the eDNA “lab” inside the lab, while working 

• Always discard tips/tubes/gloves if you have the slightest suspicion about contamination (e.g. 

if the tip touches the table before entering the tube/buffer bottle, replace it with a new tip) 

• Always start with the lowest concentration (i.e. blanks) 

• Only bring the aliquot taken from the original extracted samples to avoid contamination and 

degradation of the template 
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• Always work on ice with pre-chilled tubes. Covering the wet-ice with tinfoil reduces the mess 

with water 

 

Master mix: Q5 (Q5 High-Fidelity 2X Master Mix create blunt end product) 

 

Component 

25 µl 

reaction 

50 µl 

reaction  

10 µl 

reaction 

To 7 

samples 

Final 

concentration 

Q5 High-

fidelity 2X 

Master mix 12.50 µl 25 µl 5 µl 50 µl 1X 

10 µM 

Forward 

ML3 1.25 µl 2.50 µl 0.50 µl 5 µl 0.50 µM 

10 µM 

Reverse 

ML3  1.25 µl 2.50 µl 0.50 µl 5 µl 0.50 µM 

Template 

DNA variable variable 3.50 µl   < 1,000 ng 

Nuclease-

free water to 25 µl to 50 µl 0.50 µl 15 µl   

 

Note: template DNA can be diluted 5-20x or added undiluted, depending on amount water 

filtered, eDNA in the water, and elution volume used at the extraction 

PCR program 

Step Temp Time 

Initial 
denaturation 98 °C 30 s 

40 cycles 98 °C 5 s 

Could be tested 
with 45 cycles 60 °C 20 s 

  72 °C 60 s 

Final extension 72 °C 2 min 

Hold 4 °C   
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Appendix VII PCR mix used in QPCR preparation 

Amplitaq Gold master mix 10 µl 

BSA 20 µg/µl   0.16 µl 

H2O    2.84 µl 

Forward primer 5 µM  1 µl 

Reverse primer 5 µM  1 µl 

DNA template   5 µl 

 

 

Appendix VIII PCR-program used in QPCR 

95 °C  10 min  (denaturing the blocking antibody of Taq polymerase) 

 

 

 

 

72 °C  5 min  (extension time) 

 

 

Appendix IX PCR plate setup with overview over samples before pooling and 

metabarcoding.  

 

 

04.04.2018

Pool1

curve concentration

1 2 3 4 5 6 7 8 9 10 11 12

A A1-A C1-C C2-B A6-A C6-C Blank 1 A15-A C15-C B-C A150-A C150-C E-B

B A1-B A2-A C2-C A6-B A9-A Blank 2 A15-B A45-A C-A A150-B C150-C E-C

C A1-C A2-B C9-B A6-C A9-B Blank 3 A15-C aA45-B C-B A150-C A500-A

D B1-A A2-C C9-C B6-A A9-C A-A B15-A A45-C C-C B150-A A500-B

E B1-B B2-A C45-B B6-B B9-A A-B B15-B B45-A D-A B150-B A500-C negativ

F B1-C B2-B C45-C B6-C B9-B A-C B15-C B45-B D-B B150-C B500-A negativ

G C1-A B2-C C500-A C6-A B9-C B-A C15-A B45-C D-C C150-A B500-B negativ

H C1-B C2-A C500-C C6-B C9-A B-B C15-B C45-A E-A C150-B B500-C negativ

94 °C     1 min 

45 °C     1 min x 35 cycles 

72 °C     1 min 
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Appendix X Calculating Library loading SLI 

Concentrations from qPCR: 

SLI1: 10.07 nM (94 samples) 

SLI2: 3.08 nM (84 samples) 

SLI3: 5.50 nM (91 samples) 

 

Compensation for number of samples:  

 SLI1: 3.08 x 94/84 = 3.45 nM 

 SLI2: 3.08 nM 

 SLI3: 3.08 x 91/84 = 3.34 nM 

 

Dilution of SLI1 and SLI3:  

SLI1: 10.07 nM / 3.45 nM = 2.92 times  1 µl SLI1 + 1.92 µl H2O 

SLI3: 5.5 nM / 3.34 nM = 1.65 times  1 µl SLI3 + 0.65 µl H2O 

05.04.2018

Pool 2

Sample date 25.okt 15.okt

1 2 3 4 5 6 7 8 9 10 11 12

A M1 blank M1 D M3 B N 1,5m E N 6m C S Blank M3 D M3 B S 6m A N 6m D negativ

B M2 blank M1 E M3 C S 1,5m A N 6m D N Blank M3 E M3 C S 6m B N 6m E negativ

C M3 blank M2 A M3 D S 1,5m B N 6m E M3 Blank M2 A M3 D S 6m C S 1,5m A curve (A-A)

D N blank M2 B M3 E S 1,5m C S 6M A M2 Blank M2 B M3 E S 6m D S 1,5m B curve (C-A)

E S blank M2 C N 1,5m A S 1,5m D S 6m B M1 Blank M2 C N 1,5m B S 6m E S 1,5m C curve

F M1 A M2 D N 1,5m B S 1,5m E S 6m C M3 A M2 D N 1,5m C N 6m A S 1,5m D curve

G M1 B M2 E N 1,5 m C N 6m A S 6m D M3 B M2 E N 1,5m D N 6m B S 1,5m E curve

H M1 C M3 A N 1,5m D N 6m B S 6m E M3 C M3 A N 1,5m E N 6m C N 1,5m A curve

05.04.2018

Pool 3

Sample date 12.sep 12.sep 20.jul 20.jul curve curve

1 2 3 4 5 6 7 8 9 10 11 12

A Blank N M1D M3B N 1,5M E N 6M C Blank N N 1,5m E M1 C M3 A A-A C-C negativ

B Blank S M1E M3C S 1,5M A N 6M D Blank S S 1,5m A M1 D M3 B A-B D-A Negativ

C Blank M1 M2A M3D S 1,5M B N 6M E Blank M1 S 1,5m B M1 E M3 C A-C D-B curve (A-B)

D Blank M2 M2B M3E S 1,5M C S 6M A Blank M2 S 1,5m C M2 A M3 D B-A D-C curve (C-B)

E Blank M3 M2C N 1,5M A S 1,5M D S 6M B N 1,5m A S 1,5m D M2 B M3 E B-B E-A

F M1A M2D N 1,5M B S 1,5M E S 6M C N 1,5m B S 1,5m E M2 C Blank 1 B-C E-B

G M1B M2E N 1,5M C N 6M A S 6M D N 1,5m C M1 A M2 D Blank 2 C-A E-C

H M1C M3A N 1,5M D N 6M B S 6M E N 1,5m D M1 B M2 E Blank 3 C-B
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SLI1: 2 µl of library + 3.84 µl H2O 

SLI3: 2 µl of library + 1.30 µl H2O 

 

Mixing the three libraries: 

2 µl of SLI1: 3.45 nM 

+ 2 µl of SLI2: 3.08 nM 

+ 2 µl of SLI3: 3.34 nM 

= 6 µl of pooled libraries with mean concentration of 3.29 nM 

 

Denaturing with N2OH: 

5 µl of pooled library 

+ 0.40 µl of PhiX (0.04 nM)  

+ 5.40 µl of N2OH (0.20 N) 

= 10.80 µl total 

Waited 5 min for denaturation to happen 

Then added 989.2 µl0 of HT1 hybridization buffer to get total volume of 1 ml. 

The final concentrations:  

(5 µl x 3.29 (n mol/L) + 0.40 µl x (0.04 nM) x 1000 p mol/1 nM) / 1ml x (1000 µl/1 ml)  

= 16.60 pM 

 

Percentage of PhiX: 

PhiX= ((0.04 x 0.40)/ (5 x 3.29) + (0.40 x 0.40)) x 100 = 0.96 % 
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Appendix XI Total number of salmon lice reads for every sample in the curve experiment.  
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Appendix XII Total number of salmon lice reads for each field sample  
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Appendix XIII Conversion between library 1 and 3, filtered to unfiltered, using two internal 

standards. 

  Lib 1 Lib 3 Ratio 

(lib/lib3) 

Average 

  Reads Reads 
 

  

A-B 51.504 12.806 4.02   

C-B 20.859 4.490 4.65 4.33 

 

 

Appendix XIV Conversion between library 1 and 3 and library 1 and 2. 

Library conversion factor with total reads 

Lib 1 Lib 3 Ratio Average 

A-B Internal 

P3 A-B 

  

C-B Internal 

P3 C-B 

  

177.894 36.523 4.87 
 

141.227 30.038 4.70 4.79 

 

  

Library conversion factor with total reads 

Lib 1 Lib 2 Ratio Average 

A-A Internal 

P2 A-A 

  

C-A Internal 

P2 C-A 

  

171.573 26.069 6.58 
 

151.231 79.955 1.89 4.24 
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Appendix XV Filtered samples from the curve converted to unfiltered according to the 

correction between the sequencing depth between the libraries. 

 

 

 

 

 

 

 

 

 

 

Converted from filtered to unfiltered

Sample name Read average Sample name Read average Sample name Read average

A1_A 0 B1_A 2 C1_A 5

A1_B 1 B1_B 3 C1_B 1

A1_C 2 1 B1_C 2 2 C1_C 2 3

A2_A 2 B2_A 3 C2_A 2

A2_B 2 B2_B 2 C2_B 1

A2_C 2 2 B2_C 2 2 C2_C 2 2

A6_A 69 B6_A 4 C6_A 4

A6_B 140 B6_B 80 C6_B 2

A6_C 555 255 B6_C 3 29 C6_C 13 6

A9_A 231 B9_A 2 C9_A 145

A9_B 45 B9_B 3 C9_B 2

A9_C 4 93 B9_C 2 2 C9_C 2 50

A15_A 207 B15_A 4 C15_A 2

A15_B 128 B15_B 2 C15_B 3

A15_C 28 121 B15_C 2 3 C15_C 182 62

A45_A 4775 B45_A 306 C45_A 78

A45_B 440 B45_B 82 C45_B 137

A45_C 907 2041 B45_C 463 284 C45_C 660 292

A150_A 634 B150_A 553 C150_A 393

A150_B 1228 B150_B 475 C150_B 7907

A150_C 1056 973 B150_C 1143 724 C150_C 2837 3712

A500_A 10081 B500_A 1500 C500_A 5348

A500_B 5637 B500_B 2326

A500_C 3657 6458 B500_C 15436 6421 C500_C 1690 3519
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Appendix XVI Field sample reads converted by correction factors according to the correction 

between the sequencing depth between the libraries.  

 

 

Week 29 20.jul Week 37 Week 41 Week 43

Sample name Reads Average reads Sample name Reads Average reads Sample name Reads Average reads Sample name Reads Average reads

07_20_M1_blank 0 09_12_M1_blank 5 10_15_M1_blank 76 10_25_M1_blank 0

07_20_M1_A 5 09_12_M1_A 0 N/A #VERDI! 10_25_M1_A 0

07_20_M1_B 0 09_12_M1_B 0 N/A #VERDI! 10_25_M1_B 0

07_20_M1_C 34 09_12_M1_C 0 N/A #VERDI! 10_25_M1_C 0

07_20_M1_D 627 09_12_M1_D 0 N/A #VERDI! 10_25_M1_D 0

07_20_M1_E 53 144 09_12_M1_E 5 5 N/A #VERDI! 0 10_25_M1_E 0 0

07_20_M2_blank 1737 09_12_M2_blank 10 10_15_M2_blank 47 10_25_M2_blank 0

07_20_M2_A 124 09_12_M2_A 10 10_15_M2_A 0 10_25_M2_A 0

07_20_M2_B 43 09_12_M2_B 0 10_15_M2_B 0 10_25_M2_B 0

07_20_M2_C 14 09_12_M2_C 5 10_15_M2_C 0 10_25_M2_C 0

07_20_M2_D 53 09_12_M2_D 14 10_15_M2_D 0 10_25_M2_D 4

07_20_M2_E 10 49 09_12_M2_E 10 8 10_15_M2_E 0 0 10_25_M2_E 4 4

09_12_M3_blank 0 10_15_M3_blank 4 10_25_M3_blank 4

07_20_M3_A 708 09_12_M3_A 0 10_15_M3_A 76 10_25_M3_A 4

07_20_M3_B 517 09_12_M3_B 0 10_15_M3_B 51 10_25_M3_B 4

07_20_M3_C 488 09_12_M3_C 0 10_15_M3_C 76 10_25_M3_C 0

07_20_M3_D 330 09_12_M3_D 5 10_15_M3_D 4 10_25_M3_D 0

07_20_M3_E 766 562 09_12_M3_E 10 7 10_15_M3_E 13 44 10_25_M3_E 0 4

07_20_N_blank 0 09_12_N_blank 0 10_15_N_blank 0 10_25_N_blank 0

07_20_N_1.5m_A 1359 09_12_N_1.5m_A 29 10_15_N_1.5m_A 76 10_25_N_1.5m_A 0

07_20_N_1.5m_B 1206 09_12_N_1.5m_B 86 10_15_N_1.5m_B 8 10_25_N_1.5m_B 4

07_20_N_1.5m_C 905 09_12_N_1.5m_C 680 10_15_N_1.5m_C 8 10_25_N_1.5m_C 55

07_20_N_1.5m_D 498 09_12_N_1.5m_D 244 10_15_N_1.5m_D 4 10_25_N_1.5m_D 8

07_20_N_1.5m_E 29 799 09_12_N_1.5m_E 10 210 10_15_N_1.5m_E 0 19 10_25_N_1.5m_E 0 23

09_12_N_6m_A 0 10_15_N_6m_A 89 10_25_N_6m_A 0

09_12_N_6m_B 5 10_15_N_6m_B 59 10_25_N_6m_B 0

09_12_N_6m_C 0 10_15_N_6m_C 182 10_25_N_6m_C 4

09_12_N_6m_D 38 10_15_N_6m_D 4 10_25_N_6m_D 0

09_12_N_6m_E 5 16 10_15_N_6m_E 21 71 10_25_N_6m_E 0 4

0

07_20_S_blank 5 09_12_S_blank 0 10_15_S_blank 8 10_25_S_blank 0

07_20_S_1.5m_A 19 09_12_S_1.5m_A 19 10_15_S_1.5m_A 21 10_25_S_1.5m_A 4

07_20_S_1.5m_B 0 09_12_S_1.5m_B 57 10_15_S_1.5m_B 0 10_25_S_1.5m_B 0

07_20_S_1.5m_C 0 09_12_S_1.5m_C 5 10_15_S_1.5m_C 4 10_25_S_1.5m_C 4

07_20_S_1.5m_D 0 09_12_S_1.5m_D 19 10_15_S_1.5m_D 17 10_25_S_1.5m_D 0

07_20_S_1.5m_E 0 19 09_12_S_1.5m_E 5 21 10_15_S_1.5m_E 4 9 10_25_S_1.5m_E 0 4

0

09_12_S_6m_A 0 10_15_S_6m_A 25 10_25_S_6m_A 0

09_12_S_6m_B 0 10_15_S_6m_B 21 10_25_S_6m_B 0

09_12_S_6m_C 0 10_15_S_6m_C 38 10_25_S_6m_C 0

09_12_S_6m_D 5 10_15_S_6m_D 17 10_25_S_6m_D 0

09_12_S_6m_E 19 12 10_15_S_6m_E 47 30 10_25_S_6m_E 0 0


