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Abstract
Every year, millions of scientific images are acquired in order to study the auroral
phenomena. The accumulated data contain a vast amount of untapped informa-
tion that can be used in auroral science. Yet, auroral research has traditionally
been focused on case studies, where one or a few auroral events have been inves-
tigated and explained in detail. Consequently, theories have often been developed
on the basis of limited data sets, which can possibly be biased in location, spatial
resolution or temporal resolution.

Advances in technology and data processing now allow for acquisition and anal-
ysis of large image data sets. These tools have made it feasible to perform sta-
tistical studies based on auroral data from numerous events, varying geophysical
conditions and multiple locations in the Arctic and Antarctic. Such studies require
reliable auroral image processing techniques to organize, extract and represent
the auroral information in a scientifically rigorous manner, preferably with a min-
imal amount of user interaction. This dissertation focuses on two such branches
of image processing techniques: machine learning classification andmulti-viewpoint
analysis.

Machine learning classification: This thesis provides an in-depth description on the
implementation ofmachine learningmethods for auroral image classification; from
raw images to labeled data. The main conclusion of this work is that convolutional
neural networks stand out as a particularly suitable classifier for auroral image
data, achieving up to 91 % average class-wise accuracy. A major challenge is that
most auroral images have an ambiguous auroral form. These images can not be
readily labeled without establishing an auroral morphology, where each class is
clearly defined.

Multi-viewpoint analysis: Three multi-viewpoint analysis techniques are evaluated
and described in this work: triangulation, shell-projection and 3–D reconstruction.
These techniques are used for estimating the volume distribution of artificially in-
duced aurora and the height and horizontal distribution of a newly reported au-
roral feature: Lumikot aurora. The multi-viewpoint analysis techniques are com-
pared and methods for obtaining uncertainty estimates are suggested.

Overall, this dissertation evaluates and describes auroral image processing tech-
niques that require little or no user input. The presented methods may therefore
facilitate statistical studies such as: probability studies of auroral classes, investiga-
tions of the evolution and formation of auroral structures, and studies of the height
and distribution of auroral displays. Furthermore, automatic classification and cat-
aloging of large image data sets will support auroral scientists in finding the data
of interest, reducing the needed time for manual inspection of auroral images.
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Preface

During the dark and cold winter-season in Northern Norway, you learn to appreci-
ate and wonder over the spectacular auroral displays that suddenly appear in the
night sky. It was therefore a great privilege to be offered a PhD position in space
physics at UiT – The Arctic University of Norway, where I could study the auroral
phenomena in detail.

Initially, when I started the doctoral project in January 2017, I was intrigued by iono-
spheric modification experiments, where auroral emissions are artificially induced
by ground-based facilities. This interest, supervised by Björn Gustavsson and Juha
Vierinen, led to the work presented in Paper [IV] of this thesis.

Later, after taking a course on auroral substorms at UNiS – The University Centre
in Svalbard, I was involved in a project where a previously unreported auroral fea-
ture was discovered. The analysis of this feature, named Lumikot1 aurora, led to
Paper [III] of this thesis.

In the latter part of my doctoral studies, I became interested in machine learn-
ing and its largely untapped potential in auroral science. This motivated me to
study pattern recognition and the previous work in this field of research. During
this time, I started discussions on deep neural networks and auroral science with
Kristoffer Wickstrøm from the Machine Learning Group at UiT, Derek McKay, then
at NORCE – The Norwegian Research Centre and Björn Gustavsson from the Space
Physics Group at UiT. These discussions initiated a collaborative project, together
with Noora Partamies from the Department of Arctic Geophysics at UNiS, that ulti-
mately led to Papers [I] and [II] of this thesis.

This dissertation is the result of the work presented in Papers [I], [II], [III] and [IV].
Chapter 1 provides an overview of the Aurora Borealis and artificial aurora, intro-
ducing the theoretical context of the included papers. Chapter 2 presents an ex-
tended introduction to auroral image classification with machine learning meth-
ods; from raw images to labeled data. Chapter 3 provides a description of multi-
viewpoint analysis techniques, where the overall goal is to retrieve volumetric in-
formation from auroral images. Finally, Chapter 4 summarizes the presented work
with concluding remarks and a discussion on future projects.

1Singular: Lumikko. Plural: Lumikot, after the Finnish word for weasel
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Chapter 1

Introduction

Man stod der undrende igjen, – sligt nordlys har jeg aldrig seet hverken før eller
siden. Og der nede under os laa fjorden mørk og rolig.

– Fridtjof Nansen, Paa ski over Grønland

This dissertation focuses on processing techniques of auroral images. The topic is
introduced by a description of the Aurora Borealis in Section 1.1 and an overview
of artificial aurora in Section 1.2.

1.1 Aurora Borealis
The Aurora Borealis, commonly called the Northern lights, is a spectacular display
that can be observed at Arctic latitudes. In the early days of science, the aurora
was considered to be a meteorological phenomena, traditionally referred to as
“weather lights” (Brekke, 2012). In the late 19th century however, it was proposed
that the auroral displays typically form along annular belts encircling the magnetic
poles and that the auroral activity is correlated with the sunspot number, indicat-
ing that the auroral driving mechanisms are dependent on both the Earth’s mag-
netic field and solar conditions (Feldstein, 1986; Moss and Stauning, 2012). This
notion was later supported by the Terrella1 experiment of Kristian Birkeland at the
beginning of the 20th century. Birkeland demonstrated that luminous rings ap-
pear around the Northern and Southern poles of the Terrella (a magnetized ball
painted with a florescent layer) when bombarded by electrons in a vacuum cham-
ber. Birkeland used the Terrella experiment as an analogy to argue that the auroral
emissions around the magnetic poles of the Terra (the Earth) are caused by elec-
trons streaming from the Sun.

Today, the coupling between the Sun and the Earth remains an active field of re-
search and millions of scientific images are acquired annually to study the auroral
phenomena. A brief summary of the auroral driving processes, as currently under-
stood, is presented in this section. This overview is central for understanding why
and how auroral images are classified in Papers [I] and [II], and understanding the

1Terrella: from Latin, meaning “little Earth”
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2 CHAPTER 1. INTRODUCTION

analysis of the Lumikot aurora in Paper [III]. The section is organized chronologi-
cally, following the journey of the charged particles: from the ejection of particles
from the Sun to the precipitation into the Earth’s atmosphere.

The Solar Wind
The stream of charged particles that is constantly expanding from the Sun is called
the solar wind and originates from the solar corona, the nonuniform aura of hot
(∼106 K) particles that envelops the Sun (Gosling, 2014). The processes that heat
the corona and accelerate the solar wind are poorly understood and still an ac-
tive field of research. It is however proposed that charged particles can escape
from the Sun through coronal holes, where the magnetic field is open, and from
regions where the magnetic field is closed via rearrangement of the open-closed
field boundary (Antiochos et al., 2011). Furthermore, large-scale bursts of particles
are observed several times per day during active solar periods and approximately
once every week during quiet periods. It is suggested that the large-scale ejections,
called coronal mass ejections, are released as the solar atmosphere reconfigures it-
self in response to changes in the solar magnetic field (Gosling, 2014).

The solar corona can be observed directly during total solar eclipses, as seen in
Figure 1.1, where the irregular structure indicates that the solar wind does not ex-
pand homogeneously, but is mainly released in streams. The plasma that streams

Figure 1.1: A photograph of the total solar eclipse over Ny-Ålesund, Svalbard, on 20 March
2015. The corona appears as an irregular aura that extends from∼2000 km to 5 solar radii
above the optical surface of the Sun, structured with radially extending rays (Brekke, 2012).
Copyright Nathalie Grenzhaeuser.
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from the Sun consists primarily of electrons and protons and is essentially fully
ionized with a negligible resistance. The solar wind plasma therefore satisfies the
frozen in condition, where the local magnetic field expands with the ejected plasma
(and vice versa) (Gosling, 2014). Themagnetic field that expands into the interplan-
etary space is known as the Interplanetary Magnetic Field (IMF). Overall, the solar
wind velocity, the IMF magnitude and the IMF orientation determine the energy
and particle input from the solar wind to the magnetic field of the Earth and there-
fore influence the auroral activity in the polar regions (Perreault and Akasofu, 1978;
Rostoker et al., 1988).

Plasma Convection in the Magnetosphere
As the solar wind approaches the Earth, the solar particles and the embeddedmag-
netic field interacts with the Earth’smagnetic field, hereafter called the geomagnetic
field, and the frozen in approximation ceases to be generally valid in the interac-
tion region. The geomagnetic field is often approximated as a dipole in the near-
Earth space. However, large-scale currents are induced when the solar wind in-
teracts with the magnetic field that is surrounding the Earth, ultimately producing
additional magnetic fields that combines with the geomagnetic field. The resulting
magnetic field that is enclosing the Earth is the magnetosphere (Ganushkina et al.,
2018; Luhmann and Solomon, 2007). The shape of the magnetosphere is dynamic,
but can generally be described by a spheroid towards the dayside and by a highly
elongated structure (the magnetotail) towards the nightside, as illustrated in Fig-
ure 1.2.

The solar wind is not fully deflected at the magnetopause. Both energy and par-
ticles from the solar wind may enter the magnetosphere when the solar wind in-
teracts with the magnetosphere. The particle and energy transfer from the solar
wind to the magnetosphere is closely related to the IMF orientation, as well as the
IMFmagnitude and the solar wind velocity (Rostoker et al., 1988; Tenfjord and Øst-
gaard, 2013). Maximum transfer at the dayside magnetopause occurs when the
IMF orientation is anti-parallel to the geomagnetic field, i.e. Southward relative to
the Northward geomagnetic field at the dayside magnetopause. This corresponds
to a negative magnetic field (z) component (Bz < 0) in the Geocentric Solar Mag-
netic (GSM) coordinate system (Laundal and Richmond, 2017).

During (Bz < 0) conditions, the IMF connects with the geomagnetic field at the day-
side magnetopause and transfers energy and particles into the magnetosphere
viamagnetic reconnection. Magnetic reconnection is a physical process wheremag-
netic fields with opposing orientation merge, forming a new magnetic field topol-
ogy and releasingmagnetic energy via plasma energization (Phan et al., 2000). Con-
sequently, plasma is jetted away from the magnetic reconnection region, with a di-
rection perpendicular to the original flow. The jetted plasma satisfies the frozen in
condition and the merged magnetic field therefore flow with the plasma (Baumjo-
hann and Treumann, 2012). These particles and the embeddedmagnetic fieldmay
undergo a cyclic convection within the magnetosphere, first proposed in Dungey
(1961), and therefore named the Dungey cycle.
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Figure 1.2: The Earth’s magnetosphere with named regions and current systems. The in-
terplanetarymagnetic field (IMF) has a Southward orientation in the figure, i.e. anti-parallel
to the Northward geomagnetic field at the dayside magnetopause. The magnetopause is
the dynamic boundary between themagnetosphere and the interplanetary space, defined
at the dayside by the balance of the kinetic pressure from the solar wind and the magnetic
pressure from the magnetosphere. The magnetopause is typically located at ∼10 Earth
radii from the Earth towards the dayside while the magnetic tail can extend up to hun-
dreds of Earth radii towards the nightside (Baumjohann and Treumann, 2012). The Figure
is adapted from Rexer (2015) with small additions.

The Dungey cycle timescale is roughly 1 hour, from the merging and opening of
the magnetic fields in the dayside magnetopause to the re-merging and closing
of the magnetic fields in the nightside magnetotail (Jackman et al., 2014). In this
thesis, opened magnetic fields refer to a topology where the magnetic field has
one footpoint connected to the Earth and the other connects with the IMF (outside
the magnetosphere), while closed magnetic fields refer to a topology where both
magnetic footpoints are connected to the Earth. A scheme of the Dungey cycle is
depicted in Figure 1.3.

It should be noted that the Dungey cycle is an idealized steady-state model of the
magnetospheric plasma convection during Southward IMF (Bz < 0) conditions.
Steady state in this context refers to the situation where the reconnection rate,
defined by the amount of magnetic flux merged per unit time, at the dayside mag-
neopause (ϕD) is balanced with the reconnection rate in the nightside magnetotail
(ϕN ) (Baumjohann and Treumann, 2012). A steady state configuration is however
rarely achieved in reality due to the variability of the solar wind, the convection
time-lag and since the magnetotail both can accumulate energy during (ϕD > ϕN )
conditions and unload the stored energy during (ϕD < ϕN ) conditions (Zhang et al.,
2015).
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Figure 1.3: The diagram illustrates the plasma convection in the magnetopshere during
Southward IMF (Bz < 0) conditions. 1; the Southward IMF reconnects with the Northward
geomagnetic field (BE

z > 0) at themagnetopause, resulting in amergedmagnetic field with
an open magnetic configuration. 2–6; the open magnetic field (and the frozen-in plasma)
is “dragged” over the polar cap and towards the nightside magnetotail by the solar wind
flow. 7; the open magnetic field from the Northern and Southern hemispheres meet and
reconnects at the X-point. 8; plasma is jetted away from and towards the Earth by the
released magnetic energy at the X-point. The plasma (and the embedded magnetic field)
is eventually brought back to the dayside by the return flow, maintaining the equilibrium
condition and completing the magnetospheric plasma convection cycle (Baumjohann and
Treumann, 2012; Tenfjord et al., 2015). Note that the sketch is not to scale. During steady-
state conditions, the tail reconnection region (the X point) is located in the distant mag-
netotail, ∼100–200 Earth radii towards the nightside (Baumjohann and Treumann, 2012).
The Figure is reprinted from Rexer (2015).

The Magnetospheric Substorm

Themagnetospheric substorm describes the loading and unloading of energy in the
magnetotail by three distinct phases; growth, expansion and recovery. Typically, a
magnetospheric substorm event has a duration of 3–4 hours, although another
substorm may be initiated before the conclusion of the previous one (Akasofu,
2017).

The growth phase is characterized by a significant loading of energy in the magne-
totail (Baker et al., 1985; McPherron, 1970). In an isolated substorm event, this can
occur if the IMF quickly turns from a quasi-static Northward (Bz > 0) orientation
with (ϕD ≈ ϕN ) to a quasi-static Southward (Bz < 0) orientation with (ϕD > ϕN ).
As energy is being loaded into the magnetotail, the tail cross-section increases (in
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the xy-plane) and the neutral sheet current is enhanced. This leads to a thinning
of the central region of the magnetotail, the plasma sheet, depicted in Figure 1.2.
After ∼1 hour of energy loading into the magnetotail, perturbations appear within
the thin plasma sheet. The magnetotail may then become unstable, triggering the
second phase of the substorm; the expansion phase (Akasofu, 2013; Baumjohann
and Treumann, 2012).

The expansion phase is initiated by magnetic reconnection in the near-Earth mag-
netotail (at ∼30 Earth radii) and a sudden enhancement in the magnetotail recon-
nection rate (Angelopoulos et al., 2008; Sergeev et al., 2011). During the expan-
sion phase, the perturbed magnetotail starts unloading the accumulated energy
(ϕD < ϕN ) in a pulse-like manner by ejection of fast plasma flows. The magnetic re-
connection in the near-Earth tail ceases after∼45minutes, initiating the final stage
of the substorm; the recovery phase (Baumjohann and Treumann, 2012).

During the recovery phase, the reconnection region moves further out into the
magnetotail and the stored energy in the magnetotail continues to unload (ϕD <
ϕN ). The recovery phase typically ends after ∼1–2 hours, when the reconnection
region reaches the distantmagnetotail and a stable configuration (ϕD ≈ ϕN ) is once
again attained.

The Auroral Substorm
Hitherto, the plasma convection outside the Earth’s atmosphere has beendescribed.
However, plasma also streams into and from the Earth’s atmosphere, both during
magnetic substorms and during quiet periods. More specifically, the charged parti-
cles flow into and from the ionosphere, the partly ionized upper atmosphere (∼80–
700 km), in field-aligned currents (Milan et al., 2017). The field-aligned currents
connect the ionosphere to the plasma sheet and the ring current system, as illus-
trated in Figure 1.2 (Baumjohann and Treumann, 2012). The ionospheric footpoint
of the field aligned currents encircle the magnetic poles and define the Northern
and Southern auroral ovals, the annular belts where auroral displays most com-
monly appear. As the energetic particles enter the upper-atmosphere, they ionize,
heat and excite neutral constituents, ultimately producing auroral displays that are
characteristic for the magnetosphere–ionosphere coupling conditions in the asso-
ciated mangetospheric region.

The sequence of auroral displays over the polar regions during themagnetospheric
substorm was first described by Akasofu (1964) on a global scale and named the
auroral substorm. Akasofu (1964) characterized the generic auroral substorm evo-
lution after an extensive study of data from all-sky cameras and magnetometers
in Alaska, Canada and Siberia. Note that in the initial description of the auroral
substorm, only the expansion and recovery phases were defined, and the interval
between isolated substorm events was named the quiet phase. Later, McPher-
ron (1970) proposed to include the growth phase as the precursive stage of the
substorm. Figure 1.4 depicts the idealized substorm evolution on a global scale,
including examples of all-sky images that illustrates the characteristic signatures
of the indicated substorm phase and location.
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Figure 1.4: The Akosofu diagram illustrating the auroral substorm evolution including im-
ages that exemplify the characteristic signatures. The black circles indicate the magnetic
latitudes with magnetic noon towards the top and magnetic dawn towards the right. The
all-sky images are rotated to match the orientation of the field-of-view of the marked cam-
era location, depicted by the red circles. A and B; a growth phase arc system is drifting
Southwards and the Southernmost arc intensifies. C and D; the arc intensification initiates
the rapid expansion of the bright and highly dynamic auroral bulge. E and F; after max-
imum expansion, the auroral substorm enters the recovery phase with pulsating auroral
patches that drift towards the morning sector. The auroral displays slowly approach the
quiet stage (A), concluding the auroral substorm. The Akosofu diagram is adapted from
Feldstein et al. (2014) under the Creative Commons Attribution 3.0 Unported license, ini-
tially re-rendered from Akasofu (1964). The sample images are acquired by the all-sky
camera in Kiruna, Sweden, operated by the Swedish Institute of Space Physics.

Figure 1.4 illustrates what Akasofu (1964) and McPherron (1970) suggested; the
auroral emissions that appear in the ionosphere are linked to the magnetospheric
substorm. The coupling between the ionosphere and the magnetosphere is an
active field of research today. One of the goals is to understand the general map-
ping between the auroral displays and the associated magnetospheric production
mechanisms. This topic is treated in Chapter 2; Auroral Image Classification, and
is further discussed in Paper [I].

The Auroral Emissions
The charged high-energy particles that precipitate into the upper-atmosphere ion-
ize the constituents in their path, ultimately modifying the ionospheric plasma.
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The penetration depth of the charged particles is mainly dependent on their en-
ergy and the atmospheric neutral density. Figure 1.5 presents typical neutral den-
sity profiles in the Arctic upper-atmosphere, the ionization rate profiles for mono-
energetic electron populations and typical electron density profiles under different
ionospheric conditions.
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Figure 1.5: To the left, the main ionospheric constituents from the NRLMSISE–00 atmo-
spheric model in the auroral altitude range (Picone et al., 2002). In the middle, the asso-
ciated penetration depth for mono-energetic electron populations with an isotropic pitch
angle distribution, calculated using the parameterized ionization rate model in Fang et al.
(2008). To the right, the ionsopheric electron content under sunlit (summer midday), mid-
night and auroral conditions. The electron density data is based on Figure 4.2 from Brekke
(2012).

During auroral events, the precipitating particles significantly modify the electron
density at ∼90–150 km by ionization of neural constituents, an enhancement of
two orders of magnitude is presented in Figure 1.5. The de-attached electrons pro-
duced in these collisions, the secondary electrons, have energies that typicallymatch
the peak of the cross-section energy range for various excited levels of atoms,
molecules and ions in the upper atmosphere. Numerous emission lines, both visi-
ble and invisible to the naked eye, are therefore enhanced during auroral events.

The auroral intensity spectrum depends on the flux-energy distribution of the pre-
cipitating particles and the ionospheric background conditions (e.g. differences in
the neutral density, temperature and solar zenith angle). A typical intensity spec-
trum, approximately in the visible wavelength region, during an auroral event is
presented in Figure 1.6.

The main production mechanisms for three of the brightest optical emission lines;
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Figure 1.6: A typical auroral spectrum. The auroral emission spectrum was acquired at the
Poker Flat Research Range in Fairbanks, Alaska, by the auroral spectral imager presented
in Goenka et al. (2015) with courtesy of Jeff Baumgardner, CSP, Boston University. The
re-printed spectrum values were extracted from Fig 6. in Goenka et al. (2015).

at 4278 Å, 5577 Å and 6300 Å, and the near infrared line, at 8446 Å, will be presented
in this section as these emission lines are considered in Paper [IV]. It is however
beyond the scope of this introduction to consider all emission lines and bands that
are excited during auroral events. The review of the emission lines is inspired by
the descriptions in Gustavsson (2000) and in Gustavsson and Eliasson (2008).

The Auroral Blue Line – 4278 Å

The auroral blue line is produced by de-excitation of excited ionized molecular ni-
trogen and can be observed towards the lower edge of bright auroral displays.
More specifically, the 4278 Å photon is emitted by the transition of the excited
N+

2 (B
2Σ+

u ) state to the first vibrational level of the ground state of the molecular
nitrogen ion, N+

2 (X
2Σ+

u ) (Gustavsson, 2000). The main source of N+
2 (B

2Σ+
u ) excita-

tion is direct electron (e−) impact:

N2 + e− → N+
2 (B

2Σ+
u ) + 2e− (1.1)

The N+
2 (B

2Σ+
u ) excitation state has a threshold energy of 18.75 eV (relative to the

ground state of N2) and emits a photon promptly (typically within 10−8 seconds)
after excitation (Gilmore et al., 1992). The 4278 Å emission is mainly produced at
lower altitudes (as compared to the auroral green line) and is therefore associated
with precipitation of high energy electrons.

The Auroral Green Line – 5577 Å

The auroral green line is typically the brightest auroral emission. The 5577 Å pho-
ton is emittedwhen the second lowest excited state of atomic oxygenO(1S) relaxes
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Figure 1.7: A bright auroral display with distinct colors. The apparent purple emission is
mainly caused by the 4278 Å emission and is located towards the lower border of the bright
auroral structure. The red auroral emission can be seen towards the top of the altitude-
extending rays. Photo credit; Njål Gulbrandsen.

to the lowest excited state O(1D). The two main sources of O(1S) are:

• Direct electron collisions with atomic oxygen:

O + e− → O(1S) + e− (1.2)

• Excitation by energy transfer from the N2(A
3Σ+

u ) state:

N2(A
3Σ+

u ) +O → N2 +O(1S) (1.3)

TheO(1S) state has a threshold energy of 4.17 eV and a radiative lifetime of approx-
imately 0.7 seconds. The long lifetime leads to collisional de-excitation, also known
as quenching, to become significant at altitudes below∼100 km (Brekke, 2012). The
O(1S) states that are quenched transfer their energy to the neural constituents by
kinetic energy transfer and excitation of vibrational or rotational states, without
emitting photons. The quenching rate is dependent on the collisional frequency
and therefore increases as the neutral density increases at lower altitudes.
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The Auroral Red Line – 6300 Å

The 6300 Å emission is induced by relaxation of the meta-stable O(1D), the lowest
excited atomic oxygen state, to the ground state. The major ionospheric sources
of the excited O(1D) state are:

• Excitation by dissociative recombination of an excited molecular oxygen ion
(O+

2 ) with an electron:
O+

2 + e− → O +O(1D) (1.4)

• Excitation by direct electron collisions with atomic oxygen:

O + e− → O(1D) + e− (1.5)

with smaller contributions from other processes, such as; energy transfer from
excited atomic nitrogen states and cascading from O(1S) .

O(1D) has a threshold energy of 1.96 eV and a long radiative lifetime of 107 sec-
onds. Quenching of O(1D) is the dominant de-excitation process at typical auroral
altitudes, due to the long lifetime, andmost excitedO(1D) states are quenched be-
fore emitting a photon during auroral events. Consequently, the red auroral emis-
sion is predominantly seen towards the top of auroral displays where the quench-
ing rate is lower.

The Near Infra-Red Line – 8446 Å

The near infra-red emission is not visible to the naked eye but can be detected
by auroral cameras. The 8446 Å emission is emitted by the transition O(3p3P ) →
O(3s3S) and themain source ofO(3p3P ) is direct electron impact on atomic oxygen:

O + e− → O(3p3P ) + e− (1.6)

TheO(3p3P ) excitation state has a threshold energy of 10.99 eV and emits a photon
promptly after excitation (Gustavsson, 2000).

1.2 Artificial Aurora
The idea of artificially modifying the ionospheric F-region (at 150–800 km altitude)
by stimulating the plasma with High-Frequency (HF) radio waves in the 3–10 MHz
frequency range has been theoretically discussed since the 1960s (Farley Jr, 1963;
LeLevier, 1969) and experimentally studied since the 1970s (Biondi et al., 1970;
Utlaut, 1970). Biondi et al. (1970) first reported that optical emissions are artificially
enhanced when HF radio waves are transmitted into the upper-atmosphere, and
observations of the auroral emission lines has since been an important diagnostic
tool for studying the modified plasma.

The enhanced emissions are often refereed to as artificial aurora when produced
at auroral latitudes and artificial airglow when induced at sub-auroral latitudes.
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The emissions appear at various wavelengths, with intensities and forms depend-
ing on both ionospheric conditions and the parameters of the transmitted radio
waves, such as: power, frequency, polarization, beam pattern and the duration of
the transmission. Field aligned rayed structures have for example been observed
during very high-power transmission, above ∼400 MW effective radiative power
(Kendall et al., 2010; Pedersen et al., 2009), while auroral patches, depicted in Fig-
ure 1.8, are typically observed at lower pump powers (Brändström et al., 1999;
Grach et al., 2007; Gustavsson et al., 2001).

Figure 1.8: To the left, an image of the dusk sky, after sunset, near Abisko, Sweden, with a
distance of approximately 140 km from the European Incoherent SCATter (EISCAT) Heating
facility near Tromsø, Norway (Rietveld et al., 2016). To the right, a similar image but with
ongoing HF transmission from the EISCAT Heater. The artificial aurora appears as a patch
in the middle of the image. The images have a (54◦×54◦) field-of-view and are acquired
by an Auroral Large Imaging System (ALIS) camera with a narrow-band filter, designed to
capture emissions in the 6300 Å auroral line (Brändström, 2003).

The relationship between the enhanced emissions and the radio wave parameters
is however not fully understood and still an active field of research.

An overview of ionospheric modification experiments and the current theoretical
understanding is presented in this section. This summary introduces the topic
of Paper [IV], where the 3–D distribution estimates of artificially induced auroral
patches are presented.

Ionospheric Modification Experiments
Most commonly in ionospheric science, the upper atmosphere is studied by pas-
sive investigations, where the researcher observes the natural phenomena that ap-
pear or wait for a particular phenomena to occur. In contrast, during HF transmis-
sion experiments, the researcher is activelymodifying a small volume of the upper-
atmosphere and studies the response. These active investigations are therefore
often refereed to as ionospheric modification experiments. The response can be
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studied repeatably and under somewhat controlled conditions by adjustment of
the transmitted wave parameters, thus turning the overhead ionosphere into a
plasma laboratory (Streltsov et al., 2018).

Currently, there are three active facilities dedicated to conducting ionosphericmod-
ification experiments: theHigh-frequency Active Auroral Research Program (HAARP)
facility near Gakona, Alaska, the Sura Ionospheric Heating Facility near Nizhny Nov-
gorod, Russia and the EISCAT Heating facility near Tromsø, Norway. For technical
details of these facilities, see for example Streltsov et al. (2018).

The EISCAT Heater is now the only ionospheric modification facility co-located with
a functioning Incoherent Scatter (IS) radar, after the collapse of the Arecibo receiver
platform on December 1, 2020. The experimental setup at EISCAT is illustrated in
Figure 1.9, depicting the 32meter IS radar and the EISCAT Heater beams. The great

Figure 1.9: To the left, a diagram of the EISCAT heater beam and the IS radar beam in the
meridional plane. The beams are not to scale and side-lobes are ignored for illustrative
purposes. To the right, a photography of the 32 meter dish with aurora in the background.
Note that the artificial aurora, induced by the EISCATHeater is typically located 100–150 km
above the peak-height of auroral arcs and is generally dimmer, smaller and less structured
than natural auroral displays. Additionally, notice that the EISCAT Heater array is posi-
tioned ∼0.5 km from the dish antenna and is not depicted in the image. Illustration credit;
Theresa Rexer, and photo credit; Njål Guldbrandsen.

advantage of the co-located IS radar is that the ionosphere can be monitored dur-
ing HF transmission, allowing studies of the growth, decay and steady-state plasma
response.

The IS radars are transmitting radiowaves in the VeryHigh (30–300MHz) Frequency
(VHF) and Ultra High (300–1000 MHz) Frequency (UHF) range into the upper-atmo-
sphere and receive the signal that is scattered back from the free ionospheric elec-
trons by the Thompson scattering process (Kudeki and Milla, 2010). The backscat-
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tered signal is dependent on the collective state of the plasma within the observed
volume. Thus, after processing, estimates of the plasma parameters (electron den-
sity, electron temperature, ion temperature and ion drift velocity) can be deter-
mined from the signal. See for example Kudeki andMilla (2010) for an introductory,
but thorough description of the IS radar theory.

Figure 1.10 presents results from an ionospheric modification experiment at the
EISCAT Heating facility, illustrating the electron temperature and the auroral emis-
sion enhancements. The ionospheric modifications, depicted in Figure 1.10, were
induced by transmission of right-hand circular polarized radio waves, i.e. Ordinary-
mode (O-mode) waves in the plasma. The O-mode waves, transmitted approxi-
mately anti-parallel to the magnetic field, generally induce the strongest artificial
aurora response and is therefore the focus in this thesis. Yet strong eXtraordinary-
mode (X-mode) response have been reported (Blagoveshchenskaya, 2020) and will
likely be investigated further in future studies.

Additionally, theHF transmission triggers other observable phenomena in the iono-
sphere that are not treated in this thesis, such as: artificial ionization (Bernhardt
et al., 2016; Pedersen et al., 2009), stimulated electromagnetic emissions (SEE)
(Leyser, 2001), enhancement of the IS radar spectrum ion andplasma lines (Carlson
et al., 1972; Rietveld et al., 2000), enhancement of the topside IS spectrum ion line
(Isham et al., 1999; Rexer et al., 2018, 2021), wide altitude ion line enhancements
(WAILEs) (Bazilchuk, 2019; Senior et al., 2013) and generation of Ultra, Extremely
and Very Low Frequency (ULF/ELF/VLF) waves, see e.g. Streltsov et al. (2018) and
references therein.

The Wave–Plasma Interaction
At auroral latitudes, when high frequency O-mode radio waves are transmitted
anti-parallel to the magnetic field, the electromagnetic wave energy is dissipated
by the ionospheric plasma, and electrostatic plasma waves are artificially excited
(Bernhardt et al., 2016).

Most of the transmitted radio wave energy is dissipated within a small altitude re-
gion, referred to as the resonance region (Gurevich, 2007). The altitude of the res-
onance region is determined by the height where the transmitted radio waves are
in resonance with naturally occurring ionospheric plasma waves. Assuming a cold
plasma and heavy (stationary) ions, the upper border of the resonance region is
defined by the height where the transmitted radio waves with frequency (f0) are in
resonance with the Langmuir waves with frequency (fp):

fp(z) =
1

2π

√
ne(z)q2e
ϵme

(1.7)

Where (z) is the altitude, ne(z) is the altitude dependent plasma density, (me) is the
electron mass, (qe) is the elementary electron charge and (ϵ) is the vacuum per-
mittivity. Langmuir waves characterize the natural oscillations of electrons around
their equilibrium position in a plasma. In a magnetized plasma, as in the iono-
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Figure 1.10: Results from an ionospheric modification experiment at EISCAT. The EISCAT
HF transmitter, the EISCAT UHF IS radar and four ALIS imaging stations were operated
simultaneously during this experiment. The EISCAT Heater transmitted radio waves in
a pulsed modulation. The periods with ongoing transmission are indicated by the gray
boxes, where the light gray boxes indicate 6.200 MHz transmission and the dark boxes
indicate 5.423 MHz transmission. The IS radar electron temperature data is presented in
the top panel and the average intensities in 6300 Å, 5577 Å and 8446 Å (within the heating
patch pixels from images taken in Abisko, Kiruna, Silkimoutka and Tjautjas) are presented
in rows 2–4. A distinct response in the electron temperature is observed and enhanced
auroral emissions are seen during periods with ongoing HF transmission. Magnified and
background subtracted 6300 Å images from the Abisko imaging station are presented at
the bottom. Note that the rather slow growth and decay of the 6300 Å enhancement is
due to the long radiative lifetime of the excited O(1D) state. The polar star can be seen as
a bright speckle just right of the artificial aurora patch.
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sphere, the electrons oscillate along themagnetic fieldwith the Langmuir frequency
(Chen et al., 1984).

The lower border of the resonance region, typically located 2–10 kilometers below
the upper border, is determined by the altitude where the the transmitted radio
waves are in resonance with the Upper Hybrid (UH) waves (Gurevich, 2007). The
UH waves characterize the electron oscillation perpendicular to the magnetic field
with frequency:

fh(z) =
√

f 2
p (z) + f 2

e (z) (1.8)

Where (fe) is the electron gyro-frequency, the frequency of the circular motion of a
charged single-particle in a magnetic field:

fe(z) =
|qe|BE(z)

2πme

(1.9)

Where (BE) is the altitude dependent geomagnetic field strength. A frequency-
altitude diagram, illustrating the relationship between the transmitted frequency
(f0), the Langmuir frequency (fp), the upper-hybrid frequency (fh) and harmonics
of the gyro-frequency (fe), is presented in Figure 1.11.

Figure 1.11: An illustration of the frequency-altitude relationship between the transmit-
ted electromagnetic waves (f0) and the essential electrostatic plasma waves; the Langmuir
(plasma) frequency (fp), the upper-hybrid frequency (fh) and the elctron gyro-frequency
(fe). The strong wave–plasma interaction occurs generally within the resonance region,
between the bottomside altitude where (f0 ≈ fu) and (f0 ≈ fp). Note that the transmit-
ted wave frequency (f0) can be adjusted, as indicated by the range of green frequencies,
altering the height of the resonance region. Illustration credit; Theresa Rexer.

The ionosphere is often approximated as a layer of plasma enveloping the Earth
with an altitude dependent density profile and a locally uniform density within
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each infinitesimal height shell. However, natural perturbations within the plasma
give rise to small-scale field aligned striationswith depleted plasma densities (Kelley
et al., 1982), illustrated in Figure 1.12. The field-aligned striations causes significant
refraction of the electromagnetic waves, when the transmitted radio waves reach
the resonance region and travel through the nonuniform plasma.

The refraction leads to self-focusing of the transmitted radio waves and an en-
hanced power flux is ducted into the depleted plasma regions (Gondarenko et al.,
2005). This triggers an instability, known as the resonance instability, where the stri-
ations expand due to the increased power flux, thus leading to enhanced flux fo-
cusing and continued depletion growth (Gurevich, 2007). The small-scale striations
with sizes ∼1 m perpendicular to the magnetic field will expand to ∼100–1000 m
sized plasma cavities during the first 10–30 seconds of HF transmission before sta-
bilizing, while the size along themagnetic field is∼10 kilometers (Coster et al., 1985;
Milikh et al., 2008). After that point, close to 100 % of the transmitted power flux is
dissipated within the resonance region, provided that the transmitted power flux
exceeds ∼30 µW/m2 (Senior et al., 2012).

Figure 1.12: To the left, an illustration of the spatial profile of a field aligned plasma stria-
tion. To the right, the plasma striation in the Langmuir frequency space with the resonance
height marked for a 6.200 MHz pump wave. Equation 1.7 is used to convert electron den-
sity to Langmuir frequency. The upper border of the resonance region is defined by the
height where the transmitted radio waves are in resonance with the Langmuir waves (indi-
cated by the top line). The lower border is determined by the height where the radio waves
are in resonance with the upper hybrid waves (indicated by the dashed line). Note that the
anti-parallel magnetic field direction (y-axis) is given in kilometers while the spatial extent
in the plane perpendicular to the magnetic field (x-axis) is given in meters.

Observations of the IS radar spectrum during the first ∼100 milliseconds after HF
transmission onset indicate that the resonance between the HF radio waves and
the Langmuir waves dominate during this period (Djuth et al., 2004). Furthermore,
simulations of electromagnetic waves in a slightly perturbed plasma suggest that
Langmuir waves induce electric fields within the striations that efficiently energizes
electrons, triggering the resonance instability (Gondarenko et al., 2005).
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As the small-scale striations expand into larger cavities, the resonance between the
transmitted radio waves and the upper hybrid waves generally becomes the domi-
nant resonance process. Moreover, when the UHwaves are excited within the cav-
ities, parametric decay instabilities are activated (Najmi et al., 2016). The parametric
decay instability is a cascading effect, where the primary UH waves are mode con-
verted into secondary UH waves and lower hybrid waves, followed by excitation of
electron Bernstein waves (Najmi et al., 2017).

It is beyond the scope of this thesis discuss the secondary waves and the associ-
ated mode conversion of the electrostatic waves. However, it is important to note
that different electrostatic waves induce different compositions of electric fields
within the cavities. These electric fields then energize the local electrons, and their
resulting energy distribution is highly dependent on the population of electrostatic
waves within the cavities (Najmi et al., 2017).

Energization of Ionospheric Electrons
In the recent reviewarticle on ionosphericmodification experiments, Streltsov et al.
(2018) stated that one of the outstanding issues for future ionosphericmodification
experiment research is to: Investigate generation of supra-thermal electrons and their
energy spectrum for different pump frequencies.

It is known from observations of artificial aurora that electrons are accelerated to
high energies (>10 eV) during ionospheric modification experiments (Gustavsson
et al., 2005). Furthermore, simulations and observations imply that the electron
energy distribution is strongly dependent on the relationship between the trans-
mitted frequency and the harmonics of the electron gyro frequency (Gustavsson
et al., 2006; Najmi et al., 2017).

A pronounced supra-thermal tail forms when the transmitted radio waves inter-
act with the ionospheric plasma close to an harmonic (n) of the electro gyro fre-
quency (f0 ≈ nfe). The relationship between the pump wave frequency and the
gyro-harmonics is depicted in Figure 1.11. It is suggested that the high-energy tail
forms when the electron acceleration is dominated by the electric fields associated
with the UH waves (Najmi et al., 2017).

In contrast, when transmitting radio waves away from the electron gyro-harmonics
(f0 ̸≈ nfe), electrons are mainly energized by electron Bernstein waves, which re-
sult in an energy distribution more similar to a thermal (Maxwell-Boltzmann) en-
ergy distribution. This notion is supported by observational evidence (Gustavsson
et al., 2006), and is further discussed in Paper [IV]. However, additional studies and
ionospheric modification experiments are needed to form a conclusive theory for
the dependence of the electron energy on the HF frequency.



Chapter 2

Auroral Image Classification

As I write it has again begun to snow, and more thickly than a moment ago. I
have been busily examining the little flakes

– Johannes Kepler, On the Six-Cornered Snowflake

Every snowflake and every galaxy is different. Similarly, every Aurora Borealis dis-
play is different. Nevertheless, the shapes of snowflakes, galaxies and Aurora Bo-
realis are not random, but occur in certain patterns. Identifying and defining these
reoccurring patterns, hereafter called classes, is the goal of morphological classi-
fication. The motivation for morphological classification is to understand the un-
derlying conditions for formation and the generalized properties of the classes.
Morphological classification is widely used for sorting objects, such as snowflakes
by the Nakaya diagram in Figure 2.1, stars by the Hertzsprung–Russell diagram and
galaxies by theHubble sequence. These classification schemes have contributed to
the science within the respective disciplines and have made it easier to communi-
cate research and educate new researchers. Yet, there is no set of definitions or di-
agrams that are widely accepted for sorting auroral displays. In other words; there
is no consensus of howmany auroral classes exists and what they are. This makes
interpretation of auroral displays difficult and is also a disadvantage for communi-
cating auroral research. Without a clear consensus of the auroral classes, there is a
great risk that scientists that read an article or talk together about an auroral class
(e.g. named auroral breakup) have a different mental perception of the class. Nat-
urally, this will lead to confusion or disagreement at some point and thus limit the
exchange of knowledge. Aurora classification is therefore an inherently important
part of auroral research.

Furthermore, after the breakthrough of the deep learning area, the value of la-
beled data has greatly increased. It has been firmly demonstrated that labeled
images can be used to train deep neural networks for automatic classification of
e.g. character (Wu and Chen, 2015), brain tumor (Amin et al., 2018) or facial im-
ages (Balaban, 2015). However, labeled auroral images have not been widely used
for deep neural network classification of auroral displays. As the field of machine
learning is rapidly progressing, it is to be expected that auroral image classification
will become an important part of auroral science in the years to come.

19
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Figure 2.1: The Japanese physicist Ukichiro Nakaya made the first artificial snowflakes in
the 1930s and sorted the snowflakes into a morphological diagram, known as the Nakaya
diagram. Every snowflake is different, nevertheless, Nakaya revealed a generalmorpholog-
ical dependence on temperature and supersaturation (humidity). There is no such diagram
for the auroral morphology where auroral forms are related to solar wind, magnetospheric
and/or ionospheric conditions. The Figure is reprinted from Libbrecht (2017), Copyright;
Annual Reviews, all rights reserved.

Ideally, a machine learning classifier should be able to take any pre-processed au-
roral image as input and automatically output the label that best describes the
depicted auroral form (e.g. as breakup, arc or patchy aurora). There are two dif-
ferent strategies for automatic classification using machine learning; supervised
and unsupervised learning methods.

Supervisedmachine learningmethods usemanually labeled data to infer the func-
tion that maps the input (the auroral image) to the output (the auroral label). The
supervised learning methods have the advantage that we can choose the labels
being used by the classifier. The disadvantage is that manually labeled images are
required for training the classifier and for testing its performance. Preferably a
lot of images need to be manually labeled without significant contamination of bi-
ases and subjective interpretations. The needed amount of labeled data depends
on the classification problem complexity, the desired accuracy, the method being
used and the contamination of misclassified or ambiguous labels in the training
and testing data.

In contrast, unsupervised methods do not use manually labeled data, but rather
the information within the dataset (the auroral images) to divide the images into
groups. The unsupervised algorithms groups images based on the similarity and
dissimilarity with the other images in the dataset in a manner such that similar im-
ages are grouped together while each group is separated from the other groups.



2.1. PRE-PROCESSING FOR AURORAL CLASSIFICATION 21

The advantage of the unsupervised machine learning methods is that they are a
more objective way of grouping data, using the data itself to group the images
rather than classification based on human interpretation, which can be biased and
unreliable. The disadvantage is that the resulting groups are not necessarily desir-
able for the classification problem at hand.

For auroral research, it is crucial the classifier groups together images that have
a defined physical meaning and a scientific purpose, this can not be ensured by
the unsupervised machine learning methods. Only supervised classification meth-
ods are therefore considered in this thesis. This chapter deals with the classifica-
tion of all-sky auroral images. The chapter is structured didactically, from the pre-
processing of the raw images to automatic classification into auroral labels. Sec-
tion 2.1 presents a proposed auroral image pre-processing procedure that can be
applied to to any all-sky image. In Section 2.2, the auroral morphology is discussed
and appropriate auroral labels for machine learning classification are suggested.
Section 2.3 deals with the extraction of auroral features from the images. Finally,
Section 2.4, evaluates and describes three machine learning classification meth-
ods; K-nearest neighbor (K-NN), Support Vector Machine (SVM) and Convolutional
Neural Network (CNN).

2.1 Pre-Processing for Auroral Classification
The goal of the pre-processing procedure is to standardize the input to the classifier
such that similar auroral forms also appear similar in the pre-processed images, in-
dependently of the camera being used. Furthermore, the standardization reduces
bias effects, makes the manual labeling easier to conduct and allows for adding
together training and testing data from several studies and cameras. A description
of a suggested pre-processing procedure is presented below with simultaneous
image examples from two different cameras illustrating the pre-processing proce-
dure in Figure 2.2:

1. Rotate and/or flip the images to direct geomagnetic North towards the top
and East towards the left. A similar orientation will reduce bias effects from
the camera orientation. In addition, the classifier might not be rotation in-
variant, making the orientation of the auroral form significant for the classi-
fication of an image into the auroral label. This is particularly important for
orientation dependent classes, e.g. for discerning the E-W aligned arcs asso-
ciated with the growth phase from the N-S arcs associated with the onset.

2. Normalize the intensity of the images in the data set so that the sensitivity
is similar for all cameras and all exposure times being used. In addition, for
classifiers using color (RGB) images, the spectral response can be normalized
at the auroral emission lines in Red 6300 Å, Green 5577 Å and Blue 4278 Å.
This requires sensor quantum efficiency information which can be obtained
e.g. fromMauer andWueller (2009). This step is important since the intensity
of the auroral display is an important characteristic for many auroral forms.
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3. Define the smallest square that encapsulates the entire all-sky image. The
framing step is illustrated by the blue box in Figure 2.2. The square cropping
ensures that the image ratios are similar, reducing bias effects and further
increasing the robustness of the classifier.

4. Resize the squared image to (256×256) pixels. This step is necessary since
most classifiers only accept an image of a certain size. In addition, for train-
ing/testing purposes, it is usually not desirable to use the full resolution im-
ages since these often are unnecessarily large and will cause a slow conver-
gence of the classifier.

5. Filter the image using a (3×3) 2–D median filter. The median filtering reduces
bias effects from the location of stars, remove bad pixels and reduce noise.

6. Crop the central (128×128) pixels image. The central image cropping ismarked
by the red squares in Figure 2.2. The central cropping reduces the number
of image frames with auroral features towards the horizon, which often look
similar due to small elevation angles and fish-eye distortion. Labeling the
auroral forms towards the horizon therefore do not provide any additional
information and might instead contaminate statistical studies. Focusing on
the auroral forms in the center of the image also reduces the ambiguity of
the auroral displays and therefore eases the manual labeling. Furthermore,
the cropping reduces light pollution and cloud contamination which often is
seen only at low elevation angles.

The pre-processing procedure above can be edited in many ways, depending on
the study and the available set of cameras. The pre-processing procedure should
be applicable on data from most cameras without requiring a lot of a priori in-
formation of the optical system parameters. However, there is a trade-off be-
tween robustness and the amount of pre-processing required. For example, for
ionosphere-magnetosphere coupling studies, it might be desirable to classify mag-
netic longitude-latitude projections of the auroral forms. In addition, the longitude-
latitude projection will correct some of the camera-dependent fish-eye distortions
and allows for adding together classified images from a camera array system in
a mosaic pattern. The projection step can be fitted between step 5 and 6 in the
suggested pre-processing procedure. Note however that the longitude-latitude
projection requires the field-of-view transformation matrix and an estimate of the
auroral altitude, whichmight not be known in advance. An example of a longitude-
latitude projection is shown in Figure 2.3, and the projection technique is further
discussed in Chapter 3.

Note also that sky condition software that discerns images with auroral conditions
and images that are polluted by clouds already exist, see sky condition classification
for color images in Rao et al. (2014) and for black-and-white images in Clausen and
Nickisch (2018). Furthermore, calculators for celestial objects, e.g. Rhodes (2019),
provides accurate estimates of the Sun and Moon positions, thus images during
twilight ormoonlit periods canbe automatically excluded at a pre-processing stage.
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Figure 2.2: Demonstration of the pre-processing procedure with two different cameras, at
Kiruna to the left and Abisko to the right. After the pre-processing, the output images have
standardized orientation, pixel sensitivity and resolution. Training and testing of the classi-
fier on the pre-processed images will enhance the overall performance and the robustness
of the classifier. The red and yellow arrows indicate the image orientation with respect to
the geomagnetic pole. The blue and red boxes indicate image cropping frames that are
used during the pre-processing procedure. The Kiruna camera is operated by the Swedish
Institute of Space Physics (IRF) while the Abisko camera is operated by the Hiroshima City
University, Radio Communication and Science Laboratory, in collaboration with IRF.
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Figure 2.3: The figure illustrates an alternative pre-processing procedure where an all-sky
image from Kilpisjärvi, Finland, is projected to amagnetic longitude-latitude shell at an alti-
tude of 110 km, then cropped according to the red box. The additional projection step can
be fitted between step 5 and step 6 in the suggested pre-processing procedure. Note how-
ever that the final step (the central image cropping) now must be defined by a longitude-
latitude range or by the biggest central box that can be fitted within x◦ from zenith. Also,
note that only the image pixels > 20◦ is projected to the magnetic longitude-latitude shell
in the figure.

Sky-condition classification and aurora classification during twilight and/ormoonlit
periods is therefore not treated in this thesis.

2.2 Labels for Auroral Image Classification
The supervised machine learning methods require a set of labeled images both to
train the automatic classifier and to test its performance. The labeled data defines
the mapping function from the image features to the associated label. Thus, great
care is needed for defining appropriate labels. Each label should meet a set of
criteria:

1. The auroral labels should be scientifically useful. This promotes labels that
are associated with physical properties and characteristic production mech-
anisms. In addition, it is advisable to use auroral labels that have been previ-
ously studied, preferably by both imagers and satellites, and therefore have
a broader appeal and scientific foundation.

2. All labels should be common with at least ∼1 % of the auroral images fitting
into each label. The ∼1 % criteria ensures a somewhat balanced distribution
of labeled images, which is important for efficient and reliable training of the
classifier. Furthermore, the ∼1 % criteria promotes labels that describes the
generic substorm, rather than auroral forms that are based on case studies.

3. All labels should be clearly defined and easy to recognize under different geo-
magnetic conditions and at different elevation angles. This reduces the label
ambiguity andmakes the manual labeling more reliable. Furthermore, eleva-
tion angle independence makes statistical studies easier to conduct.
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In addition, it should be noted that the observed auroral displays are highly de-
pendent on the field-of-view. This is clearly depicted in Figure 2.4. Generally when
studying the global auroral substorm, the larger auroral forms are of interest and
the small scale structures might not be relevant for the global dynamics. On the
other hand, the narrow field-of-view cameras have been used for studies of for ex-
ample the electron energy distribution of small-scale auroral structures (Dahlgren
et al., 2008) and the the generation mechanism of flickering aurora (Whiter et al.,
2010), which requires high spatial and temporal resolution. The work presented in
this chapter and in Papers [I] and [II] focuses on images acquired by all-sky cameras
and auroral classes that describes the larger auroral forms without including char-
acterizations based on temporal behavior. However, the techniques presented
here could be extended to include the temporal dynamics.

Figure 2.4: Simultaneous auroral images from 4 cameras in Apatity, Russia. The different
fields-of-view reveal small scale drape structures within seemingly smooth auroral struc-
tures in the all-sky image. a) is an image captured by an all-sky camera, b) is taken by a
67◦ diagonal field-of-view camera while c) and d) are acquired by cameras with 18◦ diag-
onal field-of-view. The Figure is reprinted from Kozelov et al. (2012), under the Creative
Commons Attribution 3.0 License.
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Essential Auroral Labels
Hitherto, most of the night-time auroral classification studies have all used differ-
ent pre-processing procedures and auroral labels, making it difficult to compare
the results. In addition, it has not been common for the night-time auroral classifi-
cation studies to use labels with a clear physical interpretation. In order to obtain
information about geophysical conditions from auroral images, it is crucial to be
able to associate the auroral displays to physical processes or conditions. Future
studies should therefore opt for using auroral labels with a clear characteristic of
each class and an associated physical meaning. In addition, accumulation of train-
ing and testing data from several studies and cameras could be achieved if a com-
mon pre-processing procedure and similar auroral labels were used. Accumula-
tion of big training and testing sets from several studies will improve the applied
machine learning tools and accelerate the progress in the field of auroral image
classification.

After analysis of magnetometer data in relation to the auroral substorms (McPher-
ron, 1970), most auroral studies have agreed upon that 3 substorm phases can be
identified in an isolated substorm. Furthermore, simultaneous image and satellite
observations have shown that each phase has characteristic auoral displays and
generation mechanisms, e.g. (Akasofu, 2013; Donovan et al., 2008; Sergeev et al.,
2011; Zou et al., 2010). In the simplest and most idealized case, for an observer
located at high latitudes during an auroral substorm: An isolated auroral arc in the
evening sector is associated with the growth phase; Auroral breakup (bright auro-
ral bulge, coronal aurora and auroral spirals) near magnetic midnight is associated
with the expansion phase; and patchy aurora in the morning sector is associated
with the recovery phase (Akasofu, 2012). It is therefore natural to include auroral
arcs, breakup and patchy to any labeling set as essential labels in addition to faint
aurora/clear sky, when there is a quiet ionosphere-magnetosphere coupling along
the field lines overhead. The essential labels meet all three criteria as they are
scientifically useful and sound (criteria 1), common and descriptive of the generic
substorm (criteria 2) and clearly defined (criteria 3). The relationship between the
phases, displays, Ionosphere-magnetosphere (I-M) coupling and the magnetotail
processes are summarized in the Table 2.1. Typical sample images of each auroral
label are shown in black-and-white in Figure 2.5 and in color in Figure 2.6.

Successful classification of millions of auroral images even into just 4 classes (arcs,
breakup, patchy and faint aurora/clear sky) will become highly useful for auroral re-
searchers. Most importantly, labeled images will exclude the bulk of images that
are not of interest for a particular auroral study and thus reduce the needed time
for tedious image inspection. Note that a working auroral image classification tool
is also useful for studies of auroral forms which are not included in the set of la-
bels. For example, Lumikot (discussed in Paper [III]) are believed to only occur
near growth-phase arcs, a labeled set of images therefore eases the data analy-
sis by making it possible to only look for Lumikot in the images classified as arcs.
In addition, a large labeled data set will facilitate statistical auroral studies, auroral
evolution studies and studies for relating the auroral forms tomagnetospheric and
solar wind conditions.
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Phase and display I–M coupling Magnetotail process

Quiet and Growth

Auroral arc is characterized by
auroral emissions distributed
in East-West aligned structures
spanning across the image.
Auroral arcs are stable auroral
forms that can last from a few
to several minutes (Partamies
et al., 2015) and span lengths up
to hundreds of kilometers with
widths ranging from a minimum
of 50 m to a maximum of 10 km
(Davis, 1978).

Auroral arcs forms by quasi-static
particle acceleration in a region
close to the ionosphere, and they
magnetically map to the plasma
sheet. Simultaneous satellite
and ground imaging observations
have related the stable auroral
arc to a characteristic V-shaped
electron energy spectrum (Col-
pitts et al., 2013), these arcs are
therefore often called inverted-V
aurora (Karlsson et al., 2020). The
arcs run parallel to the auroral
oval and the magnetic latitudes.

The growth phase is character-
ized by energy loading. Energy
is loaded into the magneotail if
the solar wind flux is consider-
able and if the intrinsic Bz is
Southward. Energy can not be
dissipated significantly into the
ionosphere if the conductivity is
low (if Bz suddenly turned South-
ward) and energy is accumulated
into the tail. Consequently, the
tail cross section is increasing
and the near-Earth plasma sheet
is thinning. The magneotail is
stretched, causing the auroral
oval to drift equatorwards.

Expansion

Auroral breakup is character-
ized by bright and large auroral
forms which covers most of the
image frame. Auroral breakup
displays are seen as the auroral
bulge is expanding and includes a
variety of different features such
as spirals (often referred to as the
Westward traveling surge) Elphin-
stone et al. (1996) and coronal au-
rora (Akasofu, 2012).

The sudden brightening of the
most equatorward arc is consid-
ered as the initiation (the onset)
of the auroral breakup. The on-
set is hypothesized to be trig-
gered by the formation of a sub-
storm current wedge, a near-
Earth (∼8 RE ) current disruption,
linking the cross-tail current to
the ionosphere (Lui, 2011). Var-
ious plasma flows and instabili-
ties play a key role in the sub-
storm current wedge formation,
the process is however not fully
understood and an active field of
research.

When the accumulated energy
reaches∼ 5×1022 ergs−1 and the
conductivity in the ionosphere is
high, plasma instabilities are de-
veloping and reconnection is trig-
gered in the near-Earth magneo-
tail (Akasofu, 2013). The en-
ergy is released into the iono-
sphere in a pulse-like manner
by ejection of fast plasma flows.
The plasma sheet is thickening
and the tail cross section is de-
creasing after the initial recon-
nection bursts and as the expan-
sion phase evolves.

Recovery

Patchy aurora is characterized
by diffuse aurora consisting of ir-
regular shapes which cover large
portions of the image. The in-
tensity of the auroral emission is
weak and associated with pulsat-
ing aurora. Each patch has a typ-
ical extent of tens of kilometers
and a pulsation period of ∼10
seconds. (Lessard, 2012)

The diffuse patches are caused
by pitch-angle scattering of en-
ergetic electrons to the iono-
sphere. THEMIS satellite obser-
vations have shown that whistler
mode chorus waves in the mag-
netosphere, at 8–12 RE , are cor-
related with pulsating aurora and
thus also patchy aurora (Li et al.,
2011).

The recovery phase is initiated
by the disruption of the large-
scale magnetic reconnection as
the plasma sheet is thickening
and the magnetosphere again is
approaching a stable configura-
tion. The ionospheric conductiv-
ity is however high and the mag-
netosphere continues to release
energy into the ionosphere with
a rate of ∼ 1018–1019 ergs−1 (Aka-
sofu, 2013).

Table 2.1: The magnetospheric processes associated with the substorm phases and the
essential auroral classes. The table is inspired by the labels in Paper [I] and descriptions in
Akasofu (2013) and in Lui (1991).
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Figure 2.5: Black-and-white sample images from each auroral label (arcs, breakup and
patchy). The all sky images are acquired by the MIRACLE imager near Kilpisjärvi, Finland
(Sangalli et al., 2011b). Note that the intensity scaling in the breakup images is not the
same as for the arcs and patchy images.

Figure 2.6: Color images from each auroral label (arcs, breakup and patchy). The all-sky im-
ages are taken in Kiruna, Sweden, and operated by the Swedish Institute for Space Physics.
These images are among the raw images that were used for training and testing the clas-
sifiers in Paper [I].
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Additional Auroral Labels

It is clear to those who have studied auroral images that most auroral displays
do not fit into the canonical labels in Figures 2.5 and 2.6. This indicates that the
displays shown in Figures 2.5 and 2.6 and the associated mechanism described
in Table 2.1 does not fully represent the auroral activity in Arctic regions. Note
that the essential labels in Table 2.1 primarily describe the evolution of nighttime
aurora along the auroral oval. However, aurora also appears outside the nighttime
auroral oval, but often then with a different morphology.

Dayside aurora, seen in polar regions during the winter season, is not driven by
magnetotail processes, but is directly driven by the solar wind interaction with the
dayside magnetosphere (Frey et al., 2019). The different driving mechanism is vi-
sually echoed in the dayside auroral display, which is dominated by drapery, radial
and hot-spot aurora, as well as auroral arcs (Niu et al., 2018). Polar cap aurora
is caused by precipitation along the open field lines at the polar cap and often
appears as Sun-aligned arcs. Polar cap arcs are associated with a Northward in-
terplanetary magnetic field and low magnetospheric activity (Reidy et al., 2018),
completely in contrast to the auroral activity along the auroral oval. At subauroral
latitudes, auroral forms such as the Stable Auroral Red (SAR) arcs and the newly
reported Strong Thermal Emission Velocity Enhancement (STEVE) arcs can be ob-
served (Gallardo-Lacourt et al., 2021). SAR arcs originates from thermal heating
of atomic oxygen in the subauroral ionosphere as the inner edge of the ring cur-
rent interacts with the plasmasphere during geomagnetic storms (Mendillo et al.,
2016). The production mechanism of the STEVE arcs, depicted in Figure 2.7, is still
an unresolved problem. However, simultaneous satellite and image data indicate
that STEVE arcs are not caused by precipitation of energetic particles, but is pro-
duced locally in the ionosphere, and should therefore not be classified as aurora,
but as an exotic ionospheric emission phenomena (Gallardo-Lacourt et al., 2018;
MacDonald et al., 2018).

Figure 2.7: The STEVE phenomena is characterized by a thin East-West aligned arc with
purple color at subauroral latitudes. The images are taken near Regina, Saskatchewan,
Canada by Notanee Bourassa, and published in MacDonald et al. (2018). The Figure is
reprinted under the Creative Commons NonCommercial license.
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In this thesis, the auroral morphology associated with nighttime at the auroral oval
is in focus. There are several labels that could be considered in addition to or as
sub-labels to the labels described in Table 2.1. In this chapter, the labels used in
Paper [I] are presented, discussed and employed as an example of an auroral label
set that can be used for machine learning classification of auroral images. Thus, in
addition to the 3 classes described in Table 2.1 and the faint aurora/clear sky class,
the labels; colored aurora, discrete aurora and edge aurora were included after in-
specting thousands of both black-and-white and color auroral images and after
several iterations of trial and error with various label sets. A description of the dis-
play, physical meaning and comments on the scientific use of the additional labels
are presented in Table 2.2. The labels described in Table 2.2 satisfy the criteria (1–
3), listed in the introduction to this section. Typical examples of the auroral labels
used in Paper [I] are presented in Figure 2.8.

Notice that the auroral arcs label includes multiple East-West aligned structures
(sometimes refereed to as arc systems) in contrast to the single growth phase arc
depicted in Figures 2.5 and 2.6. Furthermore, note that each of the additional la-
bels include several sub-labels that have a more distinct physical interpretation.
However, the data set that was used in the classification study reported in Papers
[I] and [II] did not allow for further sub-divisions while maintaining an acceptable
amount of training/testing data within each label. Further sub-division could be
achieved by expanding the data set. An additional data inquiry was however not
conducted in the initial study as time was limited and the the main goal was to
demonstrate that machine learning methods can be used for reliable automatic
auroral image classification, not to perform an extensive manual labeling study.

Auxiliary Auroral Labels and Bias Control
Even with the inclusion of the additional labels, most auroral images still do not
fit clearly into any label or are a mixture of several labels. These images are am-
biguous, and the appropriate label is a matter of subjective interpretation. The
labeling of ambiguous auroral images is further complicated since there is no con-
sensus within the auroral research community on how many auroral labels exist
and what they are. Thus, it is unreasonable to expect the classifier to label these
images correctly if not even auroral experts can agree on what the correct label is.
Ambiguous images should therefore be omitted from training and testing of the
machine learning classifiers.

In Paper [I], ambiguous auroral images were labeled as unknown-complicated and
excluded from the training and testing data sets. Furthermore, the initial pre-
processing stage did not exclude all images with clouds, light pollution and noise.
These images were labeled as rejected and also excluded from the training and
testing data. Sample images labeled as unknown-complicated and rejected are pre-
sented in Figure 2.9.

An additional step that can be added to reduce bias effects is to manually label the
entire data set independently multiple times and only use the agreeing labels for
training and testing. This procedure was implemented in the study presented in
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Display Physical description Scientific Usage

Colored aurora

An image is classified as colored
aurora if the aurora, of any shape
and form, has a prominent red,
blue or purple emission. Colored
aurora often appear as auroral
rays, drapes or curled structures
(see row 2, column 3 and 4), but
also as East-West aligned struc-
tures (see column 1 and 2)

Distinct colored aurora occurs
when the electron energy dis-
tribution has a pronounced low
or high energy tail, changing the
electron penetration depth into
the ionosphere (Fang et al., 2008).
Blue and purple auroral displays
are usually seen when electrons
penetrate deeper into the iono-
sphere, as compared to electrons
causing the green aurora. Red
aurora, however, is produced at
higher altitudes and character-
izes lower energy electron precip-
itation. In addition, ionospheric
conditioning, such as auroral pre-
cipitation during a sunlit iono-
sphere, is known to produce dis-
tinct colored emissions (Shiokawa
et al., 2019; Størmer, 1929)

The typical precipitation energy
and the atmospheric composi-
tion in the altitude range of 90–
130 km causes green (5577 Å) to
be the dominant color inmost au-
roral displays. As a result, most
auroral cameras have a narrow
band green filter that neglects the
morphology of the distinct col-
ored aurora. Studies of distinctly
colored emissions might there-
fore be underrepresented, as in-
dicated by the newly reported
STEVE phenomena (MacDonald
et al., 2018). Furthermore, dis-
tinctly colored aurora indicate
precipitation with a skewed en-
ergy distributions or ionospheric
conditioning, these auroral dis-
plays might be characteristic of
traceable and interesting produc-
tion mechanisms.

Discrete aurora

Auroral emission appears as
vortical structures, broken arcs
and North-South aligned arcs
or a combination of several
discrete shapes. Many of these
shapes are seen in association
with highly dynamic aurora,
see Colpitts et al. (2013) and
pre-onset auroral forms, in
particular Poleward Boundary
Intensification (PBI) (Mende et al.,
2011). Discrete-irregular auroral
forms are not as bright and
not as large as auroral breakup
forms.

Simultaneous imaging and satel-
lite observations have related
discrete aurora with electron
precipitation triggered by Alfvén
waves in the magnetosphere
(Colpitts et al., 2013). Further-
more, PBIs are hypothesized to
be enhanced as plasma flow
bursts from the open polar
cap field crosses the nightside
polar cap boundary into the
closed field region (Lyons et al.,
2011). Some of the PBIs develop
into North-South aligned arcs,
associated with channels of
enhanced earthward flows within
the plasma sheet (Nishimura
et al., 2010).

Discrete-irregular aurora is of
particular interest for studies
of precipitation acceleration
processes and triggering
mechanisms of auroral onset.
Nishimura et al. (2010) proposed
a time sequence leading to auro-
ral onset where the equatorward
drift of the North-South aligned
arcs (also called streamers)
occurs prior to the auroral onset,
suggesting that the onset is trig-
gered after the streamer reaches
the equatorward arc. Note
however that not all streamers
triggers an onset as plasma sheet
conditions must be opportune
(Lyons et al., 2011).

Edge aurora

Images with auroral emission oc-
curring only at the edge of the
image are labeled as edge au-
rora. There is no particular form
or shape associatedwith Edge au-
rora

Edge aurora occurs when there
is precipitation along the field
lines that are projected towards
the edge of the image, there is
no characteristic auroral appear-
ance related to edge aurora and
therefore no associated produc-
tion mechanisms.

Edge aurora was defined as an in-
dependent class in order to make
the classifier more robust since
information about the depicted
auroral forms is limited and there
is a significant uncertainty of the
auroral form outside the image
frame. However, the location of
the aurora in a time series of im-
ages is often valuable informa-
tion for determining the auroral
drift. Edge aurora was therefore
added as an additional label.

Faint aurora/clear sky

Dark images without a clearly visi-
ble aurora are labeled as faint au-
rora/clear sky.

Faint aurora/clear sky images are
associated with a very weak elec-
tron precipitation.

Images without auroral emission
indicates a quiet ionosphere–
magnetosphere environment
along the field lines overhead.

Table 2.2: An example of labels that can be used for classifying color auroral images.
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Figure 2.8: Four sample images of each auroral class. The auroral images have been pre-
processed according to the 6-step pre-processing procedure in Section 2.1. The direction
with respect to the magnetic pole is indicated by the arrows in the bottom right.
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Figure 2.9: Sample images of excluded auroral images in Paper [I]. The top row illustrates
aurora with ambiguous form labeled as unknown-complicated. The bottom row shows im-
ages labeled as rejected, these images were excluded from the training/testing data due
to unwanted features, from left to right; a person in the bottom left corner, lidar emis-
sion and a passing aircraft. Note that these images have been pre-processed by the 6-step
pre-processing procedure in Section 2.1.

Paper [I], and discussed in detail in Paper [II], where expert One labeled the images
in consecutive order while expert Two labeled the images independently in random
order. Only the agreeing labels of expert One and Two were considered to have
an unambiguous auroral form suitable for training and testing of the supervised
classifiers.

In the end, although 14030 auroral images were initially considered, only ∼4050
images had an auroral form that was considered unambiguous by both experts.
∼95 % (3846) of these images were labeled similarly by both experts and used as
the final labeled data set. The 3846 labeled image data set was then randomly
split into a training set (3000 images) and a testing set (846 images). Unless oth-
erwise stated, the same data set is used in Sections 2.3 and 2.4 to exemplify the
feature extraction techniques and the training- and testing of the supervised ma-
chine learning classifiers.
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2.3 Feature Descriptors
Ideally, we want to use all the information within the labeled training images to de-
velop a classifier. At the same time, we want to represent the information within
the training images as robustly and compactly as possible in order to save comput-
ing time and to reliably train the classifier on only the significant image features.
Feature descriptors are computer vision techniques that extracts the important
features of an image (such as shape, texture and color) and represent these fea-
tures in a vector with a reduced size, as compared to the size of the initial image.
In the limiting cases; with no reduction, the full resolution image is used for train-
ing and testing, in contrast, with heavy reduction, the image is reduced to a simple
feature vector with only a few global parameters that characterize the entire im-
age, such as the mean standard deviation (σ̄) and the mean intensity (Ī) of the im-
age pixels. In Syrjasuo and Partamies (2011), several feature extraction techniques
were tested and compared for aurora detection in black-and-white all-sky images.
It was concluded that global feature extraction techniques were outperformed by
local feature extraction techniques. In contrast to the global techniques, the local
feature extraction techniques divide the image into regions or key points and rep-
resent the entire image as a feature vector by combining the local features from
all regions/key points. Note however that the appropriate feature extraction tech-
nique depends on the classification problem at hand, i.e. what part of the image
information is relevant and necessary for adequately solving for the project task.

Global Feature Extraction: The Keogram Representation
In auroral science, a common global feature extraction technique is the keogram
representation of images, a keogramexample presented in Figure 2.10. The keogram
summarizes the auroral activity of an entire day by slicing the central North-South
column of the images and consecutively stacking them along the time-axis. Al-
though the keogram representation successfully reduces the data size, (for exam-
ple from an image matrix with dimension (256×256×3) to a feature vector of with
length (256×3), it excludes a lot of the spatial information within the auroral im-
ages. Thus, the keogram feature extraction technique is not adequate for auroral
classification into time-invariant subclasses, e.g. according to the labels described
in Figure 2.8. The keogram representation might however be a good option, if the
time dimension is included, for automatic classification of periods with aurora and
possibly onset detection. Time-dependent auroral image classification is not the
subject of this thesis, but is briefly discussed in Chapter 4.

Local Feature Extraction: The Histogram of Oriented Gradients
In this Section, the Histogram of Oriented Gradients (HOG)method, first presented
in (Dalal and Triggs, 2005), is described as an example of a local feature descriptor
that can be used for auroral image feature extraction. The basic idea of the HOG
method is that objects in images often can be characterized by their directional
gradient properties (e.g. for extracting edge and texture characteristics) and that
these gradients can be represented as a collection of local histogramswithin image
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Figure 2.10: At the top, color images from the Kiruna all-sky camera. At the bottom, a
keogram representation of the images acquired on the 28th of February, 2019. The red
box in the all-sky images represents the N-S slices which are consecutively stacked along
the x-axis (time-axis) to generate the keogram. Clouds are causing the beige color (∼00:00–
04:20 UT). Twilight occurs after ∼04:20 and the gap in data acquisition between ∼04:40–
17:10 is due to daylight. After ∼17:10, daylight is fading and a growth phase arc becomes
visible (see all-sky image at 18:14) as it is drifting Southwards and intensifies (image at
18:31), triggering the auroral onset (breakup image at 18:39). Auroral activity continues
throughout the night with a second onset at ∼20:40 UT.

regions. The HOG method was used for extracting the auroral image features in
Paper [I]. Note that there are several local feature extraction techniques that could
be considered, e.g. the Local Binary Pattern (LBP) method and the Scale-Invariant
Feature Transform (SIFT) descriptor, both methods tested and compared in (Rao
et al., 2014). However, it is beyond the scope of this thesis to present an overview
of feature extraction techniques. Instead, the Histogram of Oriented Gradients
method is described in detail and it is demonstrated how this method can be used
to extract auroral features in all-sky images.

The HOG method is a commonly used feature extraction technique in computer
vision. The descriptor was initially developed for detecting humans in images, but
is a versatile tool that also has been used for various tasks such as vehicle detec-
tion (Mao et al., 2010), handwritten digit recognition (Ebrahimzadeh and Jampour,
2014) and text recognition in photographs (Bissacco et al., 2013). Furthermore, the
method is not sensitive to changes in background illumination and is therefore ro-
bust for image classification during twilight, moonlit or light polluted periods, as
long as the light source is not within the image frame. The HOG method can be
described as a 4-step image processing procedure if no color normalization is ap-
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plied:

1. Calculate oriented gradients: The image gradients are calculated by convo-
lution with a simple 1–D [-1,0,1] mask producing the gradient along the x-axis
(Gx) and the transposed mask provides the gradient along the y-axis (Gy) for
each pixel (i, j). The magnitude G at each pixel is calculated by the l2 norm:

G(i, j) =
√

G2
x(i, j) +G2

y(i, j) (2.1)

And the orientation (θ) of the gradient at each pixel is calculated as:

θ(i, j) = tan−1(Gy(i, j)/Gx(i, j)) (2.2)

Note that although 3 gradients are calculated for each pixel in color (RGB)
images, only the maximum gradient and the associated orientation are used
in the proceeding steps. The gradient magnitudeG(i, j) and orientation θ(i, j)
are displayed for images with arc, discrete and patchy aurora in the second
row of figure 2.11.

2. Divide the image into cells and blocks The next step is to divide the image
into cells and blocks by defining the regions where the local features will be
evaluated. Appropriate sizes can be selected by matching the cell and block
sizes to the sizes of the features of interest in the images, here each cell is
defined as a 16×16 pixel region and each block is defined as a 4×4 cell region
(i.e. a 64×64 pixel region). The cell size is displayed in the middle display of
the bottom row in Figure 2.11 as the red boxes and the block size is depicted
as the blue box.

3. Generate the histogram of oriented gradients At each cell (16×16 pixel),
the gradient magnitudes G(i, j) are binned to form a histogram. The mag-
nitude of the gradient determines the accumulated bin value and the asso-
ciated bin is determined from the orientation θ(i, j). Here 8 orientation bins
over (0–360◦) were selected.

4. Normalize the histograms The pixel binning into the histogram represen-
tation is sensitive to brightness variations. Since auroral forms, for example
an auroral arc, can appear with a variety of different intensities, it is advanta-
geous to normalize the brightness sensitivity so that all arcs, independently
of the intensity, have a similar feature vector. The 16 (4×4 cells) histograms
in each block can be represented as a 128 dimension local feature vector
(128 = 16 histograms × 8 bins in each histogram). The block vector is then
normalized using the l2 norm. The normalized histogram in each cell is dis-
played in the third row of Figure 2.11 as an angle (rose) histogram where the
length of each petal is scaled according to the bin value. The normalization
processing is iterated for all blocks positions over the image with an overlap
factor of (2 × 2) cells, i.e. 9 possible block positions.
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arc discrete patchy

arc gradient and orientation discrete gradient and orientation patchy gradient and orientation

arc HOG features discrete HOG features patchy HOG features

Figure 2.11: The figure illustrates how the auroral features are extracted using the His-
togram of Oriented Gradients (HOG) method. Step 1 is to calculate the oriented gradients,
displayed in the second row by the magnitude to the left and the orientation to the right.
Note that only the maximum gradient magnitude of the 3 color channels at each pixel is
used, thus the images become black-and-white after processing step 1. Step 2 is to di-
vide the image into cells and blocks, as indicated by the red and blue boxes in the mid-
dle of row 3. Step 3 is to generate the histogram of oriented gradients at each cell. The
histograms are thereafter normalized in step 4. The normalized histograms of oriented
gradients are displayed in row 3 as angle (rose) histograms where a large horizontal petal
symbolize a large gradient along the y-axis and a large vertical petal represent a large gra-
dient along the x-axis.
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The final feature vector output (x) from the HOGmethod is a 1152 dimension vec-
tor (1152 = 128 dimension local block feature vector x 9 possible block positions).
Thus, the HOG method reduced the data size of each image by 98 %, from an im-
agewith 49152 data points (128×128×3 pixel) to a feature vector representation of
length 1152. Furthermore, the HOGmethod compactly and robustly extracted the
oriented gradients of the image which often provide good discriminative power.

The testing data feature vector space can be studied in order to compare the global
features and the local HOG features. The testing data is plotted to the left in Fig-
ure 2.12 as a function of the global features; the mean standard deviation (σ̄) and
the mean intensity (Ī). In addition, although it is impossible to plot the testing data
in the 1152 HOG feature vector space, it is however possible to do a dimension re-
duction using for example the t-distributed Stochastic Neighbor Embedding (t-SNE)
method, see Van der Maaten and Hinton (2008) for details on the t-SNE technique.
The t-SNE dimension reduced plot of the testing data in HOG-space is shown to the
right of Figure 2.12.
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Figure 2.12: To the left, the labeled auroral test images plotted as a function of the mean
standard deviation (σ̄) and the mean intensity (Ī). To the right, the test labels in the dimen-
sion reduced (t-SNE) HOG feature vector space. In general, the labeled images are better
separated in the HOG feature vector space than in the global [σ̄, Ī] feature vector space.

By comparing the distribution of labeled images in Figure 2.12, it is clear that the
labels are better separated in the HOG feature vector space than in the [σ̄, Ī]-space,
with one exception; breakup. Themean standard deviation (σ̄) and themean inten-
sity (Ī) of images labeled as breakup are considerably higher than the mean stan-
dard deviation and intensity of the other auroral forms, making the breakup [σ̄, Ī]
parameters a separable feature. However, the [σ̄, Ī] features are less successful
for separating other auroral labels. On the other hand, the images labeled as arcs,
edge, faint and patchy appear asmore or less separated clusters in the HOG feature
vector space. A trained classifier is therefore expected to detect images with these
auroral forms. However, the images labeled as breakup, colored and discrete are
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not clearly clustered. This suggests that the breakup, colored and discrete auroral
forms do not have distinguishable gradient features. Thus, other feature descrip-
tors could be considered to better characterize these auroral forms. Note that an
alternative feature extraction approach is considered in the convolutional neural
network classification.

2.4 Machine Learning Classification
A direct approach for determining if an image with an unknown auroral form (AU )
is similar to an image with a known (labeled) auroral form (AL) is to calculate the
Euclidean distance:

dE =

√∑
i,j,c

(AU(i, j, c)− AL(i, j, c))
2 (2.3)

where (i, j, c) are the pixel values and color channels.

The Euclidean distance can be used for image classification by calculating the dis-
tance to all labeled images in the training data. The unknown image (AU ) is then
assigned to the same label as the image that minimized (dE). However, comparing
each test image to all training images in this manner is both computationally slow
and not very robust to the natural variation between auroral images. Thus, other
classification techniques should be considered. Here three techniques are evalu-
ated and discussed for the auroral image classification task; K-Nearest Neighbor
(K-NN), Support Vector Machine (SVM) and Convolutional Neural Network (CNN).

The classifiers are trained and tested on color images acquired by the all-sky cam-
era located near Kiruna, Sweden and operated by the Swedish Institute for Space
Physics, the same data set that was used in the study leading to Papers [I] and [II].
The data set consists of 3000 labeled training images and 846 labeled testing im-
ages. All images have been pre-processed according to the 6-step pre-processing
procedure described in Section 2.1.

K-Nearest Neighbor (K-NN)
The K-Nearest Neighbor algorithm (K-NN) is a simple but popular supervised ma-
chine learning classifier (Theodoridis and Koutroumbas, 2009b), that has previ-
ously been used for both night-time aurora classification (Syrjäsuo and Donovan,
2004) and dayside aurora classification (Wang et al., 2010). The K-NN classifier uses
the Euclidean distance, see Equation 2.3, (or any other appropriate distance mea-
sure) to calculate the distance between an unknown sample and all labeled sam-
ples in the training data. The approach is similar to the Euclidean distance (dE)
minimization with one exception: Instead of assigning the label of the unknown
sample to the same label as the sample that minimized the Euclidean distance (the
1-Nearest Neighbor), the K-NN assigns the label to the majority of labels within the
K-Nearest Neighbors of the unknown sample (the K number of samples with the
smallest Euclidean distance).
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In addition, it is common to use the K-NN classifier on extracted feature vectors for
image classification problems rather than the full-resolution data. The feature vec-
tor is used in order to reduce computation time and increase robustness towards
the natural variation between the auroral images. Figure 2.13 illustrates howan im-
age with an unknown auroral form can be classified using the 5-Nearest Neighbors
in the [σ̄, Ī]-space. Note that the appropriate number of neighbors (K) depends on
the classification task and the available training/testing data. In general, increas-
ing the number of nearest neighbors (K) makes the classifier less sensitive to the
natural variation between samples (i.e. avoiding over-fitting the data). However, if
K is too large, the classifiers smooths the decision boundary too much and starts
under-fitting the classification boundary.

The 3-NN and the 5-NN classifiers, using both the global features [σ̄, Ī] and the local
features extracted by the HOGmethod, are considered in this section. The perfor-
mance can be evaluated by studying the confusionmatrices for K = 3 in Figure 2.14
and for K = 5 in Figure 2.15.

The confusion matrix summarizes the class-wise performance. The diagonal en-
tries represents the accuracy, the proportion of correctly classified images for each
class. Ideally, all diagonal entries should be 1 and all non-diagonal entries should
be 0. The row entries mark the classified distribution of all images labeled as ’row’.
For example, if all ’row’ entries are 0 except the diagonal entry (which is 1), then
all images are correctly classified. If the diagonal entry is 0.9 and another entry is
0.1 along the same ’row’, then 90 % of the images are labeled correctly and 10 % of
the images labeled (manually) as ’row’ are classified erroneously according to the
nonzero ’column’. By reading the row entries we can determine how the images
labeled (manually) as ’row’ are classified (automatically) by the algorithm. More-
over, the column entries represent the distribution of the true labels of all images
predicted as class ’column’. By reading the column entries we can determine what
kind of images (manually labeled as indicated by the associated ’row’) end up as
being classified (automatically) as ’column’. Overall, the confusion matrix summa-
rizes which labels within the test data are confused (mixed) and which are well
separated and identified by the classifier.

In addition, the precision, recall and F1-scores are calculated in order to compactly
present and compare the overall performance of the classifiers. Precision is de-
fined as:

Precision =
true positive

true positive+ false positive
(2.4)

andmeasures the classifiers ability for not labeling positive samples as negative. A
true positive is when themodel correctly predicts the positive class. A false positive
is when the model incorrectly predicts the positive class. Recall is defined as:

Recall =
true positive

true positive+ false negative
(2.5)

and measures the classifiers ability to find positive samples. A false negative is
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Figure 2.13: An illustration of a 5-Nearest Neighbor classification within a mixed region.
In the top left, the training data plotted as a function of σ̄ and Ī. Top right, a zoomed in
image of the training data plot with a new sample, representing an auroral image with an
unknown auroral form, added at [20, 30]. Bottom left, the 5-Nearest Neighbors are located.
Bottom right, a count of the labels is performed (3 arcs, 1 colored and 1 discrete) and the
new point is labeled as arcs (the majority). Note that if there is a tie between two or more
labels, then the nearest neighbor among the tied groups is used.
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Figure 2.14: To the left, the 3-NN confusion matrix using the [σ̄, Ī] features. To the right,
the 3-NN confusion matrix using the HOG features. Overall, the 3-NN classifier using HOG
features performbetter than the 3-NN classifier using the [σ̄, Ī] features, with breakupbeing
the only clear exception (as expected by studying the feature vector spaces in Figure 2.12).
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Figure 2.15: To the left, the 5-NN confusion matrix with the [σ̄, Ī] features. To the right,
the 5-NN confusion matrix using the HOG features. Again, the HOG feature classification
outperforms the [σ̄, Ī, ] feature classification. Overall, the 5-NN classifier is outperformed
by the 3-NN classifier.
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when the model incorrectly predicts the negative class. F1-score is defined as:

F1 = 2 · precision · recall
precision+ recall

(2.6)

and acts as a weighted average of precision and recall.

Table 2.3: The Table summarizes the precision, recall and F1-score for the K-NN classifier
with K = 3 (3-NN) and K = 5 (5-NN) using the HOG features. Note that these results are also
reported in Paper [I].

Algorithm Precision Recall F1-score
3-NN 0.84 ± 0.0 0.56 ± 0.0 0.58 ± 0.0
5-NN 0.66 ± 0.0 0.54 ± 0.0 0.53 ± 0.0

The results presented in Figures 2.14 and 2.15 and in Table 2.3 can be summarized
as follows: It can be concluded, by comparing the confusion matrices, that the
K-NN classifier performed better using the HOG feature vectors than the global
[σ̄, Ī] vectors. Furthermore, the 3-NN classifier generally performs better than the
5-NN classifier. Nevertheless, even when using the HOG features and K = 3, the
algorithm was not able to classify reliably breakup, colored or discrete aurora and
had a low edge aurora accuracy (< 90 %). The overall conclusion with the available
data set is therefore; the K-NN algorithm does not provide a satisfactory auroral
image classification accuracy (> 90 %), neither using the [σ̄, Ī] features nor the HOG
feature vectors.

Decision Tree – Linear Support Vector Machine (SVM)
It is interesting, although intuitive, to observe that different feature vectors pro-
vide varying class-wise discriminative power in the K-NN classification. For exam-
ple, breakup was well classified using the simple [σ̄, Ī] feature vector while arcs and
patchy aurora was better separated in the HOG feature vector space. This obser-
vation can be exploited to create a decision tree, where each branch represent a
binary logical operator (the image is either classified as -1 or +1) that discerns one
auroral class from the rest using a suitable feature vector. An example of such a
decision tree is presented in Figure 2.16. The Support Vector Machine (SVM) clas-
sifier (Cortes and Vapnik, 1995) is a well-known and robust binary classifier that is
suitable for this task.

The SVM classifier has previously been used in (Rao et al., 2014) for classifying color
images into three classes; aurora, no aurora and cloudy. In Paper [I], the linear SVM
classifier was one of the evaluated classificationmethods. The SVM classifier in Pa-
per [I] was used in a one-against-all classification scheme for themulti-class auroral
image classification problem. Although the SVM classifier is a binary classifier that
can not be used directly in the multi-class case, the one-against-all technique han-
dles this problem by considering M two-class problems, where M is the number of
classes. For details, see e.g. (Theodoridis and Koutroumbas, 2009c). Note however
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Figure 2.16: The diagram depicts the logical structure of the SVM decision tree used for
classification of an unknown input image. Firstly, a trained SVM classifies the image, rep-
resented by the feature vector x = [Irange, Ī], as faint (–1) or aurora (+1), where (Irange) is
the maximum-minimum pixel value difference of a heavily (7 × 7) median filtered version
of the input image and (Ī) is the mean pixel value. Secondly, if the image is classified as au-
rora, the image is divided into one central region and four edge regions, the central region
is defined by the red circle in the auroral image while the four edge regions are defined by
the regions left out by the circle. The feature vector at this branch consists of the standard
deviation and mean intensity ratio between the central region and the edge region with
the highest mean pixel value. Another linear SVM is then used to classify the features with
central auroral emission (–1) and emission predominantly at the edge (+1). Thirdly, if the
image is classified as aurora with central emission, the feature vector x = [Irange, Ī] is once
again used to classify breakup images. At the 4th and 5th decision branch, the HOG feature
vectors are used to classify patchy aurora and auroral arcs. Lastly, the intensity range and
mean pixel values in the three (RGB) image color channels are used as feature vectors to
discern colored aurora and discrete aurora.
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that this approach is different to the more transparent and adaptive decision tree
approach presented in this section. Both approaches are compared and evaluated
towards the end of this section.

At all branches of the decision tree, an auroral image (Ai) is represented by a
suitable feature vector (xi) with dimension (p). In addition, the decision tree is
designed in such a way that all feature vectors in the labeled training data set
(X = {x1,x2, ...,xN}) belong to either class (ωi = ω1) or (ωi = ω2) at each branch.
If the feature vectors are linearly separable by some hyperplane with dimension
(p − 1), defined by the wight vector (w) and the threshold (w0), then the task be-
comes finding the hyperplane;

g(x) = wTx+ w0 = 0 (2.7)

that has the highest discriminative power on the training data. This can be achieved
by using the support vectors (the nearest points to the hyperplane) tomaximize the
margins (z) (Theodoridis and Koutroumbas, 2009c), defined as:

z =
|g(x)|
||w||

(2.8)

The hyperplane can be defined such that the support vectors belonging to class (ω1)
are equal to 1 and the (ω2) support vectors are equal to –1. With this convention,
the margin becomes:

z =
1

||w||
+

1

||w||
=

2

||w||
(2.9)

And the decision line is such that:

wTx+ w0 ≥ 1,∀x ∈ ω1

wTx+ w0 ≤ −1,∀x ∈ ω2 (2.10)

Thus, maximizing (z) is equivalent to searching for the parameters (w, w0) that min-
imize the cost function; L(w, w0):

L(w, w0) =
1

2
||w||2 (2.11)

subject to;

yi(w
Txi + w0) ≥ 1, i = 1, 2, ..., N (2.12)

where (yi = +1) for (ω1) samples and (yi = −1) for (ω2) samples. Minimizing the cost
function L(w, w0) is a nonlinear optimization problem that is beyond the scope of
this thesis to cover, see for example (Theodoridis and Koutroumbas, 2009c) for a
description of this procedure. It should however be noted that any local minimum
reached by the cost function is also global and unique, thus the optimal hyperplane
classifier of a SVM is unique. Figure 2.17 illustrates how the support vectors can be
used to define the support vector machine, i.e. the optimal decision hyperplane
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Figure 2.17: The Figure illustrates how labeled images are used to train and test a linear
SVM classifier. Top left, the training images labeled as breakup and faint are plotted. Top
right, the line g(x) thatminimizes Equation 2.11 is plotted alongwith the associated support
vectors and margins. The support vectors lie on either the +1 or the –1 hyperplane margin
border; wTx + w0 = ±1. Bottom left, the trained SVM classifier is used to classify images
in the testing data. Bottom right, all labels are correctly classified although one faint data
point fell within the margin.

(in this case a line), that discerns faint and breakup images, represented by the
([Irange, Ī]) feature vectors.

In general, it can not be assumed that the labeled feature vectors are linearly sepa-
rable. Nevertheless, with some adjustments, the SVM technique is still applicable.
In this thesis, this problem is handled by introducing a slack variable (ξ) into the
cost function (Equation 2.11):

L(w, w0) =
1

2
||w||2 + Fξ

N∑
i=1

ξi (2.13)

where (ξi = 0) for all feature vectors that are correctly classified and outside the
margins. The features that are correctly classified but inside the margins have
a value (0 < ξi ≤ 1) while the feature vectors that are misclassified have values
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(ξi > 1). In words: we insist on the linear separator although the data is not lin-
early separable by introducing a slack term that penalizes themisclassified feature
vectors and the vectors that fall within the margins.

The constant (Fξ) controls the influence of the slack variables on the decision hyper-
plane which now is determined by the competing terms in the minimization of the
cost function (Equation 2.13). The hyperplane g(x) that minimizes Equation 2.13
with (Fξ = 1) for breakup classification (the third branch in Figure 2.16) is presented
in Figure 2.18.
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Figure 2.18: The Figure illustrates how a linear SVM can be trained and tested with labeled
feature vectors that are not linearly separable. Top left, the feature vectors labeled as
breakup are plotted in red while the other feature vectors are plotted in blue, it is clear
that the classes are mixed and not linearly separable in the [Irange, Ī] feature vector space.
Top right, minimizing Equation 2.13 yields the decision hyperplane g(x) (in this case a line)
represented by the solid line. The feature vectors with nonzero (ξi) are encircled and the
(wTx + w0 = ±1) margins are plotted as dashed lines. Bottom left, the testing data is
classified by the decision hyperplane g(x). Bottom right, the true labels of the feature
vectors are revealed, it is clear that a few samples were misclassified by the linear decision
line. However, all the misclassified feature vectors are located near the decision line and
are therefore likely to represent somewhat ambiguously labeled images.

The overall performance of the linear SVMdecision tree classification on the testing
set is presented as a confusion matrix in Figure 2.19. It is clear that the general
performance of the SVM classifier is better than the K-NN performance. However,
the SVM classifier has a problem with detecting the colored and discrete auroral
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forms. In addition, there is a tendency of error propagation in the decision tree
where the classifier struggles to classify the auroral classes at the lower part of the
decision tree; even the arcs class, that was classified with 96 % percent accuracy
by the 3-NN classifier using the HOG feature vectors, only reaches an accuracy of
0.77 % using the same feature vectors but with the SVM decision tree classifier.
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Figure 2.19: The linear SVM decision tree confusion matrix. Overall, the SVM decision
tree classifier outperforms the K-NN classifiers. However, the SVM decision tree classifier
has a problem detecting colored and discrete aurora and struggles with error propagation
through the decision tree.

The SVM precision, recall and F1 scores are presented in Table 2.4 along with the
resulting scores from the 3-NN and 5-NN classifiers with HOG feature vectors. In
addition, the linear SVMone-against-all classification precision, recall and F1 scores
from Paper [I] are added to Table 2.4 for comparison. The SVM decision tree and
the SVM one-against-all performance is comparable with a similar F1-score.

Table 2.4: The Table summarizes the precision, recall and F1-score of the classifiers; 3-NN,
5-NN, SVM decision tree and SVM one-against-all. The 3-NN, 5-NN and SVM one-against-all
scores are calculated using the HOG feature vectors while the SVM decision tree feature
vectors differs according to the binary classification branch, see Figure 2.16 for details.
Note that the 3-NN, 5-NN and SVM one-against-all scores are also reported in Paper [I].

Algorithm Precision Recall F1-score
3-NN 0.84 ± 0.0 0.56 ± 0.0 0.58 ± 0.0
5-NN 0.66 ± 0.0 0.54 ± 0.0 0.53 ± 0.0
SVM decision tree 0.71 ± 0.0 0.74 ± 0.0 0.72 ± 0.0
SVM one-against-all 0.78 ± 0.0 0.70 ± 0.0 0.72 ± 0.0

The main drawback of the SVM one-against-all approach is that only one feature
vector representation can be used; here the results using the HOG feature vector
is reported. On the other hand, the main drawback of the SVM decision tree ap-
proach is the error propagation through the tree. However, the great asset of the
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decision tree approach is its transparency and adaptive power. The slack variable
constant (Fξ), here set to 1 at all branches, could be adjusted and more advanced
feature vectors could be used to increase the performance of the branches with
low classification accuracy. In addition, although only linear SVM classifiers were
considered anddiscussedhere, an enhancedperformance is expected if non-linear
SVM classifiers also were evaluated, see for example Theodoridis and Koutroum-
bas (2009d) for details.

Neural Networks
Artificial neural networks are inspired by biological neural networks. Yet, even the
largest artificial neural networks with∼1000million parameters are tiny compared
to the human brain with roughly 100 billion neurons and ∼ 1015 connections be-
tween the neurons (Deweerdt, 2019). Nevertheless, similar to the human brain, ar-
tificial networks are highly versatile and can be specialized, using training data, to
solve numerous tasks, such as speech recognition, computer-aided medical diag-
nosis and character recognition (Theodoridis and Koutroumbas, 2009a). For some
tasks, such as playing chess (Silver et al., 2017) and some image classification tasks
(Buetti-Dinh et al., 2019), the deep neural networks even achieve superhuman per-
formances, despite its relatively simple architecture.

Figure 2.20 is a diagram of a fully connected neural network, where each node in a
layer (L) is connected to all nodes in layer (L− 1). A node represents a placeholder

Figure 2.20: A fully connected neural networkwith two hidden layers (L-1) and (L). The num-
ber of neurons and the activation value of each neuron in the input layer is determined by
the image pixel dimension (128×128×3) and the pixel values. The arrows between the lay-
ers represent the connections between the neurons. The output layer provides the scores
of each class. The scores are normalized to probabilities using the softmax function, Equa-
tion 2.16. The predicted class probability is thereafter compared to the true label vector
of the image and the performance of the network is quantified using the cost function (c).
The cost function is minimized by optimizing the weights and biases of the network (the
connections), subject to N training images and labels. Note that the network architecture
can be specialized for the task at hand by optimizing the network hyper-parameters (the
number of hidden layers and the number of neurons in each layer).

for a floating number. In the input layer, these nodes are the vector representation
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of the pixel values in the image. The node values in the layers after the input layer
are determined by a set of weights (w) and biases (b) that need to be optimized to
perform the task at hand. The connections between neuron (j) in layer (L) to all
neurons in layer (L− 1), see Figure 2.20, can be expressed as:

zLj =

(∑
k

wL
jka

L−1
k

)
+ bLj (2.14)

where (aL−1
k ) is the value (the activation) of neuron (k) in layer (L − 1). The activa-

tion of neuron (aLj ) is then determined from the connections (zLj ) by a non-linear
activation function σ(zLj ), allowing the networks to model non-linear relationships.
A commonly used activation function is the rectified linear unit function (ReLU):

ReLU(x) = max(0, x)
aLj = σ(zLj ) = ReLU(zLj ) (2.15)

Note that the number of neurons in the output layer in Figure 2.20 has the same
dimension as the number of target classes (7 in the auroral image classification ex-
ample), and can therefore be used to compare the network output to the true label
input. The output values of these neurons, the class scores (s), are normalized to
probabilities that sum to 1 using the softmax function (Theodoridis and Koutroum-
bas, 2009d). For class (o), out of (O) classes, with the associated output score (so),
the softmax probability is given by:

Po =
eso∑O
o=1 e

so
(2.16)

The predicted label probability vector of image number (n) with the associated true
label vector (labeln) are used to evaluate the network performance. Ideally, the tar-
get class predicted probability should be 1 while all other predicted class probabil-
ities should be 0. Thus, the goal is to find the weights (w) and biases (b) that min-
imize the difference between the predicted class probability vector and the true
label vector, see Figure 2.20, subject to (N ) training images and labels.

For each image matrix (An), the performance is quantified by the cost function
(c), often evaluated by the cross-entropy loss function. While the optimization is
achieved by minimizing the summed cost function (L):

L =
1

N

N∑
n=1

c(w, b;An, labeln) (2.17)

Note that (c) is a function of all the weights and biases that define the network. At
first, these weights and biases are randomly initialized. The weights and biases are
thereafter optimized byminimizing (L). At this point in time, it is common to use the
Adam stochastic gradient decent optimizer and the backpropagation algorithm to
update the weights and biases to minimize (L) (Kingma and Ba, 2014; Theodoridis
and Koutroumbas, 2009d). It is however beyond the scope of this thesis to discuss
the optimization task.
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The network architecture in Figure 2.20 could be implemented directly and used
to classify the auroral images. However, fully connected neural networks are sub-
optimal for the auroral image classification tasks due to the large input data size
(128×128×3) and therefore the excessive amount of connections needed to per-
form the classification task adequately. Consequently, a fully connected neural
network would be time consuming to train and prone to overfitting. Overfitting in
this context is when the network is successfully optimized using the training data,
but does not perform well on data beyond the domain of the training data.

A Convolutional Neural Network (CNN) is a more suitable architecture that is com-
monly used for image classification tasks. CNNs are regularized versions of the
fully connected neural network with fewer parameters relative to the amount of
hidden layers (the network depth).

A CNN typically consists of tree types of layers; convolutional, pooling and fully
connected layers.

• Convolutional layers: The inclusion of the convolutional layers to the neu-
ral network is motivated by the ability of the convolution operation to extract
image features with high class-wise discriminative power. The convolution fil-
ters are not pre-defined, as in the HOG gradient feature extraction technique,
but are optimized to solve the classification task at hand. In the convolu-
tional layers, the image volumes play a similar role as the neurons in the fully
connected network and the convolution filters act as the connection weights.
Therefore, in order to maintain a notation analogous to Equation 2.15, we
express the activation of a convolved image (j) of layer L as (aLj ) and the asso-
ciated convolution filter as (wL

j ). With this notation, the connection between
(aLj ) and (aL−1

k ) can be expressed as:

aLj = σ
(
wL

j ∗ aL−1
k + bLj

)
aLj = σ(zLj )

aLj = ReLU(zLj ) (2.18)

where (∗) denote the convolution operation and (k) is the data depth index
in layer (L − 1). The first convolutional layer, from the input image (a01) to
the convolved images (a1K), is illustrated as K convolution operations with K
different filters in Figure 2.21.

• Pooling layers: The pooling layers are used to reduce the size of the data be-
ing propagated through the network. This is motivated by a desire to speed
up computation and increase the robustness of the CNN. A pooling layer have
no unknown parameters (no optimization needed) but is defined by a prede-
fined pooling filter size (fp) and a stride (sp). Pooling filters with size (fp = 2)
and stride (sp = 2) are often used. The data reduction is achieved by extracting
a representative value within a sliding pooling window (fp × fp). The average
value (average pooling) or the maximum value (max pooling) are commonly
used as the representative value within the pooling window. The output im-
age matrix is populated by sliding the pooling window across the entire input
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image with a step size of (sp) pixels. The pooling is performed over all image
channels. Thus, the pooling reduces the input image volume of size (n×n×nc)
to an output image volume of size (np × np × nc), where (np) is determined (if
no padding is included) by:

np =

⌊(
n− fp
sp

+ 1

)⌋
(2.19)

For example, if a pooling window of size (fp = 2) and a stride of (sp = 2) is
used (pooling without overlap), then an input image of size (128 × 128 × 3) is
reduced by a factor of 4 to an output image of size (64× 64× 3).

• Fully connected layers: The convolutional and pooling layers are used to ex-
tract the auroral features and reduce the feature data size. However, these
features needs to be combined and evaluated in order to perform a predic-
tion of the image label. This task is accomplished by the fully connected lay-
ers. The fully connected layers are designed similarly to the fully connected
layers in the fully connected neural network (Figure 2.20), but the input is
now the convolved feature maps and not the full resolution auroral image.
The output of the fully connected layers is the label score vector that can be
transformed to predicted label probabilities using the softmax function, as
described in Equation 2.16.

Different combinations of the convolution, pooling and fully connected layers re-
sult in different CNNarchitectures. AlexNet is often considered as thebreakthrough
of deep CNNs after winning the 2012 ImageNet image classification contest with
1.2 million training images divided into 1000 target labels (Krizhevsky et al., 2012).
Figure 2.22 is a diagram of the AlexNet architecture with 7 output scores (corre-
sponding to the 7 auroral target labels in Figure 2.8).

In the context of deep neural networks, the term deep refers to the depth of the
classifier, i.e. consisting of multiple hidden layers, often with millions of parame-
ters (wights and biases) that needs to be optimized. As with the fully connected
network in Figure 2.20, the optimization is achieved by minimizing the cost func-
tion (L), subject to (N ) training images and labels. Note however that the CNN
optimization is now a combination of the weights and biases that define the con-
volutional activations (Equation 2.18) and the weights and biases that define the
fully connected activations (Equation 2.15).

After the breakthrough of AlexNet, several deep CNN architectures have been de-
signed and employed for various image classification task such as; character recog-
nition (Wu and Chen, 2015), brain tumor classification (Amin et al., 2018) and facial
recognition (Balaban, 2015). However, CNNs have not been widely used for au-
roral image classification. Classification of dayside aurora using CNNs have been
studied in Han et al. (2017); Niu et al. (2018); Yang and Zhou (2020). While CNN
classification of nighttime aurora has only been studied (and published) in Clausen
and Nickisch (2018), prior to Paper [I].
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Figure 2.21: An illustration of the convolution procedure from one layer (in this example
the input layer) to the next layer. The input image (a01) is convolved with (K) (RGB) filters.
The size (f ) and number of filters (K) are hyper-parameters that are specified (pre-defined)
for the given CNN architecture. The convolutional layer extracts auroral features with high
discriminative power by optimizing the weights in each filter (in this example (3×3×3) = 27
weights) and the associated bias. For illustration purposes, the biases are all set to zero
(b1 = b2 = bK = 0) and a gradient (Prewitt) filter is used along the x-axis at the top (k = 1),
along the the y-axis in the second row (k = 2) and along the diagonal at the bottom (k = K).
The ReLU function is used as the activation function (σ).
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Figure 2.22: A diagram of the AlexNet architecture with 7 target classes. Alexnet consist
of 5 convolutional (conv) layers, 3 max pooling (max pool) layers and 3 fully connected
(FC) layers. The convolution filter size and the data dimension are indicated in each data
volume. The input image needs to be resized to (224 × 224 × 3) pixels before being feed
to the network. The convolutional networks (usually) propagate the features through the
network by a stepwise reduction in the image (n) size and an increased data volume depth
(nc). At the end of the convolutional/pooling layers, the data volume is flattened into a 1–D
vector. The combined 1–D feature vector is the input to the fully connected layers. The
number of nodes in the fully connected layers are indicated by the number below the FC
columns. The final output of AlexNet is the target class scores from the fully connected
layers. The class scores are normalized to predicted class probabilities using the softmax
function.

In Clausen and Nickisch (2018), a pre-trained CNN was used to extract features
from black-and-white THEMIS images with only the last layer of the CNN being op-
timized using auroral image training data. The output features were classified into
the 6 classes; clear/no aurora, cloudy, moon, arc, diffuse, and discrete. An average
class-wise accuracy of 82%was achieved, butwith an enhanced confusion between
the auroral subclasses (arc, discrete and diffuse).

Paper [I] wasmotivated by the lack of studies where nighttime auroral images were
classified using CNNs. We were further inclined to conduct the study given the
high performance of CNNs for other image classification tasks in general and the
promising results from Clausen and Nickisch (2018) in particular. The objective
of Paper [I] was to study the auroral image classification performance of different
CNN architectures that were trained from scratch, in contrast to the pre-trained
CNN approach in Clausen and Nickisch (2018). Furthermore, Clausen and Nickisch
(2018) experienced enhanced confusion between auroral subclasses (arc, discrete
and diffuse). Paper [I] therefore focused on classifying auroral subclasses into even
more subclasses while aiming at achieving an error rate (<10 %), which is consid-
ered sufficient for operational purposes (Syrjasuo and Partamies, 2011).

The error rate (<10%) goalwas achievedby theResidual LearningNetwork (ResNet)
architecture (He et al., 2016), but not by the AlexNet architecture, as presented in
Paper [I]. The main differences between the ResNet and the AlexNet architecture
is the network depth and the addition of skip connections between the convolu-
tional layers in the ResNet architecture. Ideally, we want to design a very deep CNN
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that can extract complex image features. However, the weights and biases of very
deep CNNs are difficult to optimize using gradient decent and backpropagation, ul-
timately leading to a degradation of the CNN performance with an increasing the
number of layers.

The ResNet CNN architecture solves this problem by adding skip connections be-
tween the convolutional layers. It is beyond the scope of this thesis to study the
design of deep CNNs architectures, however a brief description of the basic con-
cept of the skip connections used in ResNet-50 is included. The skip connections
can be mathematically expressed in terms of the connections between the acti-
vations of the convolutional layers in Equation 2.18. Starting with the connection
between the activations in layer (L− 1) to layer (L) over the entire data volume:

aL = σ
(
wL ∗ aL−1 + bL

)
aL = σ(zL) (2.20)

Similarly, the connection between the activations in layer (L) to layer (L+1) can be
expressed as

aL+1 = σ
(
wL+1 ∗ aL + bL+1

)
aL+1 = σ(zL+1) (2.21)

Now, the problem with the optimization of very deep CNNs is that information
between layers, for example from layer (aL−1) to layer (aL+1), needs to propagate
through layer (aL). In He et al. (2016), it was demonstrated that the diminishing of
the information throughput in CNNs can be largely avoided by adding the residual
activation to the activation function. Thus, in the ResNet architecture, the activation
function of layer (L+ 1) can be expressed as:

aL+1 = σ
((
wL+1 ∗ aL + bL+1

)
+ aL−1

)
aL+1 = σ(zL+1 + aL−1) (2.22)

The addition of (aL−1) to the (aL+1) activation function acts as an identity mapping
from (aL−1) to (aL+1), which can be adjusted during the optimization of the weights
(wL+1) and biases (bL+1). Explicitly including the identity mapping eases the infor-
mation throughput in the ResNet architecture, allowing training of deeper CNNs
without fast performance degradation.

In Paper [I], two ResNet architectures were evaluated; ResNet-18 with 18 convo-
lutional layers and ResNet-50 with 50 convolutional layers (i.e. much deeper net-
works than the 5 convolutional layers in AlexNet). ResNet-50 achieved the highest
performance with an average class-wise accuracy of 91 %. The resulting ResNet-50
performance on the testing data is presented as a confusion matrix in Figure 2.23.
In addition, the precision, recall and F1 scores are summarized in Table 2.5 for the
classifiers; AlexNet, Resnet-18 and ResNet-50.

Overall, the convolutional neural networks outperforms the K-NN and the SVM
classifiers. The enhanced performance of the CNNs is due to the superior feature
extraction capability that is optimized for the auroral image classification task. For
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Figure 2.23: The ResNet-50 classification confusion matrix. The ResNet-50 classifier clearly
outperforms both the K-NN and the SVM classifers, see Figures 2.14, 2.15 and 2.19 for
comparison. The ResNet-50 classifier is able to detect and classify most images correctly,
but with some problems discerning colored and discrete images. In addition, ∼12 % of the
testing images labeled as breakup are classified as arcs.

the K-NN and SVM classifiers, the features were extracted by fixed and manually
defined techniques. However, defining feature vectors with high discriminative
power is a challenging task, as seen in the [σ̄, Ī] and HOG feature vector spaces in
Figure 2.12. For comparison, the dimension reduced (t-SNE) feature vector space
output of the ResNet-50 architecture is presented in Figure 2.24. It is clear that the
auroral images are much better separated in the final ResNet-50 feature vector
space, than in the [σ̄, Ī] and HOG feature vector spaces.

To conclude; automatic auroral image classification is a suitable task for convolu-
tional neural networks. In particular, the ResNet-50 architecture achieved an error
rate (<10 %), which is considered to be sufficient for operational purposes (Syrja-
suo and Partamies, 2011).
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Table 2.5: The Table summarizes the precision, recall and F1-score of the CNN classifiers.
In addition, the results from the K-NN and SVM classifiers are added for comparison. The
uncertainty in the CNN scores are calculated from the average performance of 10 runswith
random parameter initialization of the weights and biases.

Algorithm Precision Recall F1-score
3-NN 0.84 ± 0.0 0.56 ± 0.0 0.58 ± 0.0
5-NN 0.66 ± 0.0 0.54 ± 0.0 0.53 ± 0.0
SVM decision tree 0.71 ± 0.0 0.74 ± 0.0 0.72 ± 0.0
SVM one-against-all 0.78 ± 0.0 0.70 ± 0.0 0.72 ± 0.0
AlexNet 0.88 ± 0.03 0.88 ± 0.03 0.87 ± 0.03
ResNet-18 0.92 ± 0.03 0.87 ± 0.05 0.89 ± 0.04
ResNet-50 0.92 ± 0.03 0.89 ± 0.04 0.90 ± 0.03

Figure 2.24: The auroral test images in the dimension reduced (t-SNE) ResNet-50 feature
vector space. It is clear that most classes are well separated and are expected to obtain
a high classification accuracy. However, the colored and discrete images are somewhat
mixed, as indicated by the confusion matrix in Figure 2.23. Nevertheless, the ResNet-50
architecture achieved an average class-wise accuracy of 91 %, which is comparable to the
95 % label agreement between the two experts. The Figure is reprinted from Kvammen
et al. (2020), under the Creative Commons Attribution 4.0 License.





Chapter 3

Multi-Viewpoint Analysis
of Auroral Images

When once your point of view is changed, the very thing which was so damning
becomes a clue to the truth.

– Sir Arthur Conan Doyle, The Complete Sherlock Holmes

The aurora has a three-dimensional (3–D) intensity distribution, yet isolated cam-
eras represent the emission as a 2–D projection, diminishing the volumetric infor-
mation. The spatial information is however needed to calculate auroral quantities
such as: excitation rates, electron precipitation energies, optical flow velocities and
ionospheric electric fields (Whiter et al., 2013).

Consequently, assumptions of the 3–D distribution are typically made when nu-
merical input is required. For example, an auroral height of 110 km is commonly
assumed, often without considering the uncertainty of this estimate. Still, even for
a thin–stable auroral arc, the peak height can vary up to 40 km along its length
(Sangalli et al., 2011a), making height assumptions a significant uncertainty factor
in auroral studies.

Dubious spatial assumptions can be avoided if the aurora is observed simulta-
neously from separated locations by using multi-viewpoint analysis techniques.
Three suchmethods are described in this chapter; triangulation in Section 3.2, shell
projection in Section 3.3 and tomography-like reconstruction in Section 3.4, where
the overall objective is to retrieve 3–D auroral information from the 2–D images.

Both images of the naturally occurring Aurora Borealis, discussed in Section 1.1,
and images of artificially induced aurora, discussed in Section 1.2, are used to illus-
trate the techniques. In particular, all-sky images of the Lumikot aurora are used
to exemplify the stereoscopic triangulation and shell projection methods, support-
ing the results and analysis in Paper [III]. While wide field-of-view (54◦–90◦) images
of artificial aurora are used to exemplify the multi-viewpoint triangulation and the
tomography-like reconstruction, describing the technique that was applied in Pa-
per [IV]. However, the presentedmethods can, in principle, be used for any distinct
auroral feature.

59
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3.1 3–D Projection and Image Pre-Processing
In order to obtain the volumetric information from the image projections, with-
out relying on a priori assumptions, it is required that the imaging stations ob-
serve the object of interest with overlapping fields-of-view and that the imaging
stations are well-separated (with baselines >∼10 km). In addition, since the au-
rora is a highly dynamic phenomena, it is also critical that the images are taken
near-synchronously (separated in time by <∼0.1 seconds). The appropriate base-
line separation and the necessary timing precision is however dependent on the
studied auroral phenomena and the camera system.

Moreover, information about the camera’s position, orientation and the pointing
direction of each pixel (i.e. the field-of-view) is needed in order to map features
within an image into the 3–D scene, this is illustrated in Figure 3.1.

Figure 3.1: At the top, an auroral image acquired by the MIRACLE all-sky camera located in
Kilpisjärvi, Finland, with a few marked pixels (enlarged in the figure for clarity). At the bot-
tom, the corresponding pixel line-of-sights in a 3–D Euclidean coordinate system with the
camera station at the origin. Each pixel value is assumed to be the line-of-sight integrated
column emission rate (i.e. image formationwithout error). Thus, it is impossible from a sin-
gle image (without a priori assumptions) to determine if the peak emission height should
be located at for example 90 km or 130 km, as illustrated by the projected images. Note
also that there is a non-linear relationship between pixel distances in the all-sky images
and the corresponding distances in the projected planes, making it difficult to infer the
horizontal size of auroral features without 3–D projection.

The position of a scientific camera is normally provided by the host observatory
while the field-of-view can be estimated by geometric calibration using stellar po-
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sitions. In Papers [III] and [IV], the orientation and field-of-view was estimated by
identifying stars in the image and matching them with the corresponding stars in
the Yale Bright Star Catalog (Hoffleit and Jaschek, 1991). The sky position of the
cataloged stars has been accurately measured, providing precise line-of-sight esti-
mates for the pixels containing stars, taking the atmospheric refraction at the time
of observation into account. The field-of-view of the entire image can thereafter be
calculated by fitting an appropriate camera model to the pointing direction of the
star pixels, for example by using the Auroral Image Data Analysis (AIDA) toolbox
(Gustavsson, 2015). The AIDA star calibration tool typically provides line-of-sight
estimates with 1σ accuracies of ±0.2 pixel, which is sufficient for most auroral re-
search purposes (Gustavsson et al., 2008a).

In the following sections, it is assumed that the cameras are perfectly calibrated
and that the images are formed without error. Thus, optical aberration, atmo-
spheric absorption, detector imperfections and other effects are not discussed in
this thesis. For a through description of the image formation and an error analy-
sis of wide field-of-view camera systems, see for example Gustavsson (2000). Note
however that optical- andmechanical vignetting is corrected by flat-field-correction
and that noise, to some extent, is reduced by 2–D median filtering.

In addition, the auroral images are background subtracted in order to enhance and
isolate the auroral feature of interest. An example of the background subtraction
procedure for simultaneous stereo observations of Lumikko1 aurora, acquired by
theMIRACLE imaging stations in Kilpisjärvi and Abisko, is presented in Figure 3.2. A
similar procedurewas used for isolating the artificially induced auroral patch. How-
ever, a thorough description of the pre-processing procedures is omitted since the
appropriate method depends on background conditions, the camera system and
the feature of interest, thus making it difficult to specify a general pre-processing
procedure for multi-viewpoint analysis.

3.2 Triangulation
Triangulation of auroral displays has been used to estimate the height of the emis-
sion since the first scientific stereo-imaging observations near Alta, Norway (Størmer,
1916; Vegard and Krogness, 1920). Størmer (1916) established that the height of
the peak auroral brightness is typically located at 100–110 km by analyzing thou-
sands of image pairs. Still, triangulation of auroral features continues to provide
useful results as the camera technology and imageprocessing techniques advances
(Kozelov et al., 2019; Sangalli et al., 2011a).

The main advantage of triangulation is that the method can be used to estimate
the 3–D coordinate of any point that is recognizable in simultaneous multi-station
images, without a priory assumptions. The disadvantage however is that triangu-
lation do not provide distribution estimates of the volume emission rates.

The triangulation problem for the stereo-imaging case, with (n = 2) imaging sta-

1Singular: Lumikko. Plural: Lumikot, from the Finnish word for weasel
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Figure 3.2: The Lumikko, discussed in detail in Paper [III], is recognized in the images as a
patch of aurora, located equatorward of the auroral arc, that is rapidly traversing parallel
to the arc. In order to isolate the feature of interest (the Lumikko), a background subtrac-
tion procedure was performed: 1. The image is filtered with a 2–D median filter. 2. A
region enclosing the feature of interest is manually defined and cut out. 3. The cut im-
age is in-painted, where the interpolated pixel values are estimated by solving a system
of partial differential equations (D’Errico, 2012). 4. The filtered image is subtracted by the
extrapolated image, isolating the feature of interest.

tions, and for the multi-station case, with (n > 2), is formulated differently in this
section and therefore treated separately.

Stereoscopic Triangulation
The first step of stereoscopic triangulation is to define the lines-of-sight (L1) and
(L2), from the camera positions (r1) and (r2), towards an identified common point
(P̂ ) that represent the object of interest in the 3–D scene.

Various techniques can be used for determining the lines-of-sight, for example; the
midpoint of a fitted model, the location of feature edges or matching points along
epipolar lines. However, for the Lumikko triangulation case, the position of the
brightest pixel of a heavily 2–D median-filtered image version is used. This point
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is illustrated in Figure 3.3 by the yellow square in the Kilpisjärvi image (camera 1)
and by the red square in the Abisko image (camera 2). The pointing direction of
these pixels (the star-calibrated lines-of-sight) defines the skew lines (L1) and (L2),
and can be expressed in a 3–D Euclidean space as:

L1 = r1 + λ1ê1

L2 = r2 + λ2ê2 (3.1)

with separation:

LD = L2 −L1 (3.2)

where (ê1) and (ê2) are the line-of-sight unit vectors, with (unscaled) pointing direc-
tions as indicated by the red and yellow arrows in Figure 3.3, while (λ1) and (λ2) are
the scaling factors, determining the lengths along the lines-of-sight. The stereo-
scopic triangulation point (T S) is defined as the midpoint of the shortest possible
line (L̃D) that separates (L1) and (L2).

Figure 3.3: Triangulation of the Lumikko in the 5577 Å emission line. Top left, a repre-
sentative Lumikko pixel is located in the Kilpisjärvi and Abisko images, determined by the
position of the brightest pixel value of a (5×5) median filtered image version (not shown).
Bottom left, the corresponding lines-of-sight from Kilpisjärvi (yellow) and Abisko (red) are
drawn in the 3–D scene. To the right, a zoomed in illustration of the skew lines in proximity
to the triangulation point (green dot), defined as the midpoint of the shortest possible line
(black arrow) that separates the lines-of-sight.

Note that two lines generally do not intersect in 3–D (unlike the 2–D case) and that
there exist no unique solution for the parallel case. Thus, assuming that the lines
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(L1) and (L2) are non-parallel, the shortest possible distance can be expressed as
a minimization problem:∣∣∣L̃D

∣∣∣ =√((r2 + λ̃2ê2)− (r1 + λ̃1ê1)
)2

(3.3)

where (λ̃1) and (λ̃2) are determined by;

λ̃1, λ̃2 = argmin
λ1,λ2

√
((r2 + λ2ê2)− (r1 + λ1ê1))

2 (3.4)

However, theminimization problem canbe solved analytically, since the separation
line (LD) is perpendicular to the skew lines when the distance is minimal, i.e: (ê1 ⊥
L̃D) and (ê2 ⊥ L̃D):

ê1 · ((r2 + λ̃2ê2)− (r1 + λ̃1ê1)) = 0 (3.5)

ê2 · ((r2 + λ̃2ê2)− (r1 + λ̃1ê1)) = 0 (3.6)

Solving these two linear equations for (λ̃1) and (λ̃2) yields (L̃1) and (L̃2), the points
along the lines-of-sight that minimizes the separation distance. Thus, the triangu-
lation point can be calculated in terms of (L̃1) and (L̃2):

T S = L̃1 +
L̃D

2
or equivalently; T S = L̃2 −

L̃D

2

T S =
(r1 + λ̃1ê1) + (r2 + λ̃2ê2)

2
(3.7)

The triangulation point solution for the Lumikko example is presented in Table 3.1.

Table 3.1: The Lumikko coordinates with respect to the Kilpisjärvi imaging at the origin.
The uncertainty is estimated by the length of the separation line (L̃D) components.

Technique Stereoscopic triangulation
East [km] –154 ± 1
North [km] 27 ± 1
Height [km] 110 ± 2

Multi-Viewpoint Triangulation
A more robust triangulation estimate can be obtained if the feature of interest is
observed by more than two sites. For the multi-station imaging case with (n > 2)
considered lines-of-sight, defining the set of 3–D lines;

L1 = r1 + λ1ê1

L2 = r2 + λ2ê2

...
Ln = rn + λnên (3.8)
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there exist;

nLD
=

(
n

2

)
=

n(n− 1)

2
(3.9)

separation lines, and therefore no unique midpoint solution. The triangulation
problem must therefore be reformulated. The triangulation point (TM ) for the
multi-station case can be defined as the estimated point (P̂ ) that minimizes the
mean Euclidean distance to the (n) considered lines-of-sight:

∣∣∣L̃D

∣∣∣ = 1

n

√√√√ n∑
i=1

(
TM − (ri + λ̃iêi)

)2
(3.10)

where (TM ), (λ̃1), (λ̃2) ... (λ̃n) are determined by;

TM , λ̃1, λ̃2, ...λ̃n = arg min
P̂ ,λ1,λ2,...λn

1

n

√√√√ n∑
i=1

(
P̂ − (ri + λiêi)

)2
(3.11)

Equation 3.11 defines an over-determined system that can not be optimized ana-
lytically. However, an estimate can be obtained numerically by searching for the
parameters (P̂ , λ1, λ2, ...λn) that minimizes themean Euclidean distance error func-
tion.

A suitable start guess (P̂ 0) for the estimated triangulation point can be obtained by
stereoscopic triangulation, preferably using the station-pair with the largest base-
line. Figure 3.4 presents the best-fit results from a numerical search, applied on
the images of artificial aurora observed by the ALIS stations near Abisko (–65.5,
58.3, –0.7), Kiruna (0.4, 1.7, –0.0), Silkimoutka (53.3, 21.6, –0.3) and Tjautjas (14.6,
–56.6, –0.2), where the coordinates are given in kilometers in the Eastward, North-
ward and altitude direction with respect to the location of the Swedish Institute for
Space Physics (IRF) in Kiruna, Sweden, at the origin.

The triangulation point solution for the artificial aurora example is presented in
Table 3.2.

Table 3.2: The artificial aurora coordinates with respect to IRF at the origin. The uncertain-
ties are estimated by the length of the mean Euclidean distance components (L̃D).

Technique multi-station triangulation
East [km] –52.6 ± 0.3
North [km] 151.8 ± 0.2
Height [km] 247.2 ± 0.2
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Figure 3.4: Triangulation of artificial aurora in the 6300 Å emission line. At the top, the
simultaneous multi-station images from Abisko, Kiruna, Silkimoutka and Tjautjas. As for
the Lumikko triangulation, the line-of-sight from each station is determined by the pointing
direction of the brightest pixel value,marked in each image. Bottom left, the corresponding
3–D lines are drawn. Bottom right, the lines-of-sight in the vicinity of the triangulation point
(blue dot) are illustrated. Note that the aurora patch appear smaller in the Kiruna image
since the Kiruna field-of-view is 90◦, while the other cameras have a 54◦ opening angle.

3.3 Shell Projection
The fundamental idea of the shell projection technique is that a feature, observed
simultaneously frommultiple sites with overlapping fields-of-view, can bemapped
onto a common height-shell (in the 3–D scene). The mapped multi-station im-
ages are highly correlated if the projection height is close to the center of the true
emission-altitude distribution. While poorly correlated projections indicate that
the estimated height is far from the true center, this effect is depicted in Figure 3.5.
Thus, the auroral height can be estimated by searching for the altitude that maxi-
mizes the correlation.

The shell projection technique was used to estimate the Lumikot height in Pa-
per [III]. Previously, the method has been used to estimate the altitude of artificial
aurora in Ashrafi et al. (2005) and the altitude of pulsating aurora in e.g. Partamies
et al. (2017) and Partamies et al. (2019). Furthermore, the method was extensively
analyzed for synthetic stereoscopic images of auroral arcs in Whiter et al. (2013).

The main advantage of the shell-projection technique is that the method can be
automated and used to estimate the height of any auroral featurewithout assump-
tions. The main shortcoming is that the auroral emission has an extended altitude
distribution and can not be projected onto an infinitesimal height-shell without er-
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Figure 3.5: To the left, the Lumikko images from Kilpisjärvi (red intensity contours) and
Abisko (black-and-white image), projected onto three height shells at; 90 km, 118 km and
150 km. The camera locations are indicated by the red box (Kilpisjärvi) and black box
(Abisko). The Lumikko projections are poorly correlated at 90 km and 150 km (the mapped
feature in the image and the contour plot do not overlap), but is well matched at 118 km.
To the right, the residual of the Abisko projection subtracted by the Kilpisjärvi projection,
a correlation value of one indicate fully overlapping images whereas a correlation of zero
represent completely un-matched projections. Note that the altitude axis is not to scale
with the xy-plane.

ror and loss of information. Whiter et al. (2013) reported an altitude bias of about
–2 km, as compared to the peak-height of the synthetic arcs, almost independently
of the evaluated arc widths and the location of the arc in the image-pairs.

Note that a horizontal height-layer has been assumed in the previous work, and
that the technique therefore was named the horizontal plane method in Whiter
et al. (2013). However, the analogous technique presented in this section is named
the shell-projection method since the curvature of the Earth is taken into account.

First, the stereoscopic case is considered, with images from two (n = 2) separated
stations; (A1) and (A2). The objective is to find the height (z) that maximizes the
correlation (C). The correlation is evaluated on images projected onto a common
height shell at altitude (z); (Az

1) and (Az
2), over all pixels (i, j):

C12(z) =

∑
i,j

([
Az

1(i, j)− Āz
1

] [
Az

2(i, j)− Āz
2

])
√√√√(∑

i,j

[
Az

1(i, j)− Āz
1

]2)(∑
i,j

[
Az

2(i, j)− Āz
2

]2) (3.12)
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where (Āz
1) and (Āz

1) are the mean pixel values. (C12 = 1) indicate that the projected
images are perfectly correlated, while (C12 = 0) represents completely un-matched
projections.

Thus, the best-fit height (z̃) of the auroral feature, observed by a stereoscopic imag-
ing system, can be estimated by solving the optimization problem:

z̃2 = argmax
z

(C12(z)) (3.13)

Equation 3.13 can be generalized for the multi-viewpoint (2 ≥ n) case, where all
(unordered) combinations of the projected image pairs are considered:

npairs =

(
n

2

)
=

n(n− 1)

2
(3.14)

The generalized correlation value optimization problem can be expressed as:

z̃n = argmax
z

 1

npairs

n∑
l,m=1
l ̸=m

Clm(z)



= argmax
z


1

npairs

n∑
l,m=1
l ̸=m

∑
i,j

([
Az

l (i, j)− Āz
l

] [
Az

m(i, j)− Āz
m

])
√√√√(∑

i,j

[
Az

l (i, j)− Āz
l

]2)(∑
i,j

[
Az

m(i, j)− Āz
m

]2)
 (3.15)

where (l) and (m) are the index of two separated imaging stations. Note how-
ever that if the feature of interest is observed by more than two stations, it is
recommended to consider using the 3–D reconstruction technique, discussed in
Section 3.4.

Equation 3.13 is used to estimate the best-fit height for the stereoscopic Lumikko
case, by scanning over a typical auroral altitude range (between 90 km and 150 km)
with 1 km resolution. In addition to the correlation value, the normalized summed
residual value (R12) is evaluated:

R12(z) =

∑
i,j

√
[Az

1(i, j)− Az
2(i, j)]

2

∑
i,j

√
[Az

1(i, j) + Az
2(i, j)]

2
(3.16)

The normalized residual value is used to quantify the relative error of the projected
images at height (z), thus providing an estimate of the uncertainty of the best-fit
height. The correlation and the relative error results are presented in Figure 3.6.
Note that Equation 3.16 was used in the optimization task in Paper [III]. Bothmeth-
ods (maximizing the correlation or minimizing the normalized summed residuals)
converge towards the same best-fit height, as seen in Figure 3.6.
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Figure 3.6: The correlation value results are indicated by the blue circles, obtained using
Equation 3.12. The best-fit Lumikko height (118 km) is depicted as the black vertical line.
The red circles indicate the residual error value, in per cent above the best-fit value. The
projection results within 20 % of the best-fit error value, marked by filled circles, are used
as an uncertainty estimate, corresponding to the altitude uncertainty interval; [114, 124].

In addition to the best-fit height, it is often useful to estimate the auroral feature
coordinates and distribution in the xy-plane (i.e. the East-North-plane). This can be
achieved by fitting a parameterized model to the feature of interest. The Lumikko
aurora, projected onto the xy-plane, has a 2–D distribution that can be approxi-
mated by an asymmetric (σx ̸= σy) 2–D Gaussian function:

f2D(x, y) = I0 · exp

(
−

(
((x− x0) cos(ϕ)− (y − y0) sin(ϕ))2

2σ2
x

+
((x− x0) sin(ϕ) + (y − y0) cos(ϕ))2

2σ2
y

))
(3.17)

where (I0) is the midpoint intensity and (x0, y0) are the midpoint coordinates in the
Eastward and Northward direction. (σx) and (σy) are the distribution widths and (ϕ)
is the rotation angle. The 2–D distribution approximation is illustrated in Figure 3.7.
The mean spatial parameters of the fitted Gaussians are used to quantify the co-
ordinates and distribution widths in the East-North-plane. The overall results are
presented in Table 3.3.

The resulting coordinates estimated by the shell-projection technique is different
from the coordinates calculated by the stereoscopic triangulation, as seen in Ta-
ble 3.3. The reason for the disagreement is that the methods calculate different
representative coordinates. The triangulation technique estimate the 3–D coordi-
nate of the brightest point within the Lumikko feature, while the shell projection
method estimate a point similar to the centroid of the 3–D structure. In general,
these points are not identical and the resulting coordinates are therefore not di-
rectly comparable.
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Figure 3.7: The 2–D Gaussian fit to the Lumikko projections in the xy-plane (i.e. the East-
North-plane). To the left, the xy-projections of the Lumikko, from the best-fit height, ob-
served at Kilpisjärvi and Abisko. The white contour lines indicate the best-fit of an asym-
metric 2–D Gaussian. The Lumikko coordinates and distributions estimates in the xy-plane
is determined by the mean values of the fitted Gaussians. In the middle, mean Gaussian
parameter values are used to create a representative Lumikko distribution. To the right,
the residual pixel values of the projected images subtracted by the representative 2–D
Gaussian. The Gaussian distribution is a reasonable approximation, with no significant
structures omitted by the fit, making the parameter results meaningful.

Table 3.3: The Lumikko coordinates with respect to the Kilpisjärvi station at the origin. The
best-fit coordinate and distribution values are presented with error intervals, correspond-
ing to the z-coordinate uncertainty interval; [114, 124]. The results from the triangulation
method are added for comparison.

Technique Stereoscopic triangulation Shell projection
East [km] –154 ± 1 –170 [–176, –166]
North [km] 27 ± 1 31 [28, 35]
Height [km] 110 ± 2 118 [114, 124]
Width West-East [km] 64.5 [62.2, 67.7]
Width South-North [km] 11.2 [10.8, 11.8]
Rotation [◦] 1.14 [1.09, 1.18]
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3.4 3–D Reconstruction
The full 3–D intensity structure of artificial aurora is estimated by tomography-like
reconstruction in this section. The overall objective of the 3–D reconstruction is
to estimate the emission distribution within a modeling volume, illustrated in Fig-
ure 3.8, so that the projections of the modeled aurora best fit the observations.

Figure 3.8: At the top, a diagram of the 3–D reconstruction problem geometry for the arti-
ficial aura example. The modeling volume is roughly defined by the volume ranging from
±50 km East, ±50 km North and ±100 km altitude of the triangulation point (black box).
The HF radio waves, transmitted from the EISCAT Heater (blue box), is illustrated by the
black line. In the middle, the isocontour projections of the modeling volume onto the the
ALIS camera stations in Abisko, Kiruna, Silkimoutka and Tjautjas, the identified triangu-
lation point is marked by the black square. At the bottom, the observed artificial aurora
images in the 6300 Å line. The objective is to construct a 3–D auroramodel with projections
that match the observations.
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In standard tomographic problems, such as medical scanning of brain tumors with
Positron-Emission Tomography (PET) (Yen et al., 1982) or identifying bone fractures
with Computed Tomography (CT) scanning (Shaffer et al., 1980), the object of in-
terest is observed from as many positions as required until an adequate recon-
struction is obtained. In reconstruction of auroral displays however, the object of
interest is observed from a very limited number of positions (camera stations) and
all camera stations are generally located at altitudes below the object of interest.
Thus, the aurora is observed from a suboptimal set of viewing-directions, a set-
up that makes the observations close to being linearly dependent, as described in
Gustavsson et al. (2001).

The aurora reconstructionproblem is therefore ill-posed and cannot be adequately
solved analytically, using e.g. the 3–D versionof the inverse Radon transform (Radon,
1986), nor by conventional tomographic methods, using for example Algebraic Re-
construction Techniques (ART) (Gordon et al., 1970), without significant use of a
priori information. Ill-posed, in this context, refers to a reconstruction problem
that is sensitive to noise and either have no exact solution or an infinite number of
solutions (Gustavsson, 2000). The ill-posed problemmust therefore be regularized.
A parameterized aurora model is used in this section to regularize the reconstruc-
tion problem and thus transforming the 3–D reconstruction task into a well-posed
problem, in a restricted sense.

A parameterized 3–D reconstruction technique was used in paper [IV] to estimate
the excitations rates of artificial aurora in the green (5577 Å), red (6300 Å) and infra-
red (8446 Å) lines. This method was first used to estimate the artificial aurora vol-
ume distribution in the red line in Gustavsson et al. (2001) and later in both the
green and red lines in Gustavsson et al. (2008a). Pedersen et al. (2010) also used
a parameterized aurora model to estimate the 5577 Å volume emission rates dur-
ing very high power HF transmission at HAARP, causing artificial ionization and a
descending wave–plasma resonance altitude. In addition, techniques for recon-
structing the 3–D distribution of “naturally” occurring aurora have been studied,
for example, by black aurora modeling in Gustavsson et al. (2008b) and by recon-
struction of auroral arcs in e.g.; Frey et al. (1996), Frey et al. (1998), Aso et al. (1998)
and Partamies et al. (2012).

The main advantage of the parameterized reconstruction technique is that the full
3–D intensity structure can be robustly estimated, using only a few unknown pa-
rameters. Moreover, the best-fit parameter values provide results that can be used
tomonitor the temporal evolution of the auroral structure and can further be com-
pared to other events. The disadvantage, however, is that the emission distribu-
tion is heavily regularized, constraining the solution space. Thus, great care must
bemade when parameterizing the problem. There is a risk that the best-fit param-
eter results are meaningless if the aurora model do not adequately reconstruct
the ‘true” auroral distribution. The projections of the aurora model must there-
fore be compared to the multi-viewpoint observations and evaluated before being
presented as statistically significant 3–D emission rate reconstructions.
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In this section, it is assumed that the artificial aurora can be (meaningfully) repre-
sented by an asymmetric (σxy ̸= σz) 3–D Gaussian distribution:

f3D(x, y, z) = I0 · exp

(
−

(
(x− x0)

2

2σ2
xy

+
((y − y0) + (z − z0) sin(θ))2

2σ2
xy

+
(z − z0)

2

2σ2
z

))
(3.18)

where (I0) is the maximum emission rate, located at the center of the emission
volume (x0, y0, z0). (σxy) and (σz) are the widths in the horizontal plane and along
the altitude axis, while (θ) is magnetic field angle from zenith, ∼12 degrees South
at the EISCAT Heating facility. This model was selected after inspecting the shape
of the artificial aurora in the images, studying the results from previous work, e.g.
Gustavsson et al. (2001) and Gustavsson and Eliasson (2008), and inference based
on the shape of the transmitted HF beam pattern, as presented in paper [IV].

The aurora model can be constructed within the modeling volume by voxel ele-
ments (3–D cubes) where each voxel has a uniform intensity distribution, as sug-
gested by Gordon (1974) and illustrated in Figure 3.8 by the depicted 20 km cubes.
However, the voxel approximation results in a discontinuous intensity transition
from one voxel to the next. This approach is therefore suboptimal for reconstruct-
ing smoothly varying objects (such as the 6300 Å artificial aurora). The voxels are
thus exchanged in favor of overlapping three-dimensional spheroid elements with
a symmetric (cos2) base function distribution, as suggested in Rydesäter and Gus-
tavsson (2000) and further disused therein.

In the presented work, the spheroid centers are uniformly spaced within the mod-
eling volume on a 3–D grid with 1 km resolution. The spheroids elements are se-
lected to have a 2 km extent in each direction (0.5 km overlap to each neighbor), re-
sulting in a fully spatially filling model space. The projected contribution from each
spheroid element to a specified camera location and field-of-view can be accurately
calculated by the dot-projection algorithm, proposed in Rydesäter and Gustavsson
(2000). Model images of the constructed aurora distribution are thus formed by
calculating and adding the projected intensity contribution from all (51× 51× 101)
spheroid elements.

Figure 3.9 presents a 3–D aurora model, constructed by spheroid elements with
intensities determined by the Gaussian distribution function. As a start guess, the
triangulation point result (TM ) from Section 3.2 was used as the center of the au-
rora model (x0, y0, z0) and the intensity at the center (I0) was set to 3×106 m−3s−1,
similar to the 6300 Å emission rate results from Gustavsson et al. (2008a). Finally,
a 20 km width was used both in the horizontal plane and along the magnetic field
direction, reported as typical scale sizes in Gustavsson et al. (2001).

The high residual values in Figure 3.9 indicate that the constructed 3–Dmodel is an
inadequate reconstruction of the “true” aurora emission distribution. Once again,
in order to obtain a better estimate, an optimization problem is defined. The goal
is to optimize the Gaussian parameters such that the difference between themod-
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Figure 3.9: At the top, a 3–D aurora model constructed by the 3–D spheroid elements with
intensities quantified by theGaussian distribution functionwith guessed initial parameters.
The projections of the 3–D aurora model to the location and field-of-view of the imaging
stations are presented in the first row, calculated by the dot-projection algorithm. The
intensity is presented in Rayleigh (R) units. The observed images are shown in the second
row. The third row displays the residual emission, the observed images subtracted by
the associated model projection. At the bottom, the residuals normalized by the standard
deviation value (σ). The summed absolute normalized residual values, Es(V ), over the
indicated pixel region is provided as an error measure. The black-and-white images are
artificially colored to better illustrate the residuals and highlight the quality of the fit.
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eled images and the observed images is minimal. In this section, a weighted sum
of the squared image residuals, E(V ), is used to evaluate the fit:

E(V ) =

n∑
s

∑
i,j

(
As(i, j)− Âs(i, j, I(V ))

)2
n∑
s

∑
i,j

σ2
s(i, j)

(3.19)

where (V ) denote the parameter vector for the 3–D Gaussian emission distribu-
tion I(V ). As before, (n) is the number of imaging stations and (s) is the station
index. As(i, j) denote the observed image at station (s) with pixel indices (i, j), while
Âs(i, j, I(V )) represent the corresponding image projection of the 3–D model. Fi-
nally, σs(i, j) is the pixel-dependent standard deviation, calculated from the noise
characteristic of the CCD, known to be normally distributed N (µ, Ic + 100), where
(Ic) is the expected pixel intensity (Rydesäter et al., 2001). Note that the presented
error function is different from the error function in Paper [IV], where it was as-
sumed that the pixel uncertainty was equal over the entire CCD and the weights
σs(i, j) were therefore omitted.

In order to ease the analysis, amatrix representation of the error function is formu-
lated. First, the observed data (As(i, j)) is reshaped into a 1–D vector (D) with size
(nD), containing all the pixel values from all stations. Secondly, the corresponding
modeled data (Âs(i, j, I(V ))) is reshaped into a 1–D vector Ĝ(V ) with similar size.
Finally, with this formulation, the sum of the squared residuals can be calculated
by matrix multiplication (Theodoridis and Koutroumbas, 2009c):

nD∑
i

(Di −Gi(V ))2 =
(
D − Ĝ(V )

)T (
D − Ĝ(V )

)
(3.20)

Using this expression, the error function is re-written as:

E(V ) = (Dobs − Ĝ(V ))TΣ−1
D (Dobs − Ĝ(V )) (3.21)

where (Σd) is the data covariance matrix, in this case a diagonal matrix of size
(nD ×nD), containing the pixel intensity variance (σ2

s(i, j)) information. The data co-
variancematrix is diagonal since the pixel intensities are only statistically correlated
within the point-spread function, which in this case has a full-width half maximum
(<1) pixel Gustavsson (2000). Thus, it is assumed that there is no pixel-to-pixel
co-variance (perfect point-spread function) and the expressions in Equations 3.19
and 3.21 are therefore analogous.

The best-fit parameters are determined by minimizing E(V ), an optimization task
that is often referred to as weighted least-squares fitting:

Ṽ = argmin
V

(E(V )) (3.22)

where (Ṽ ) denotes the best-fit parameters. The best-fit aurora model is presented
in Figure 3.10. The Gaussian parameters are optimized by the Nelder-Mead sim-
plex search algorithm (Lagarias et al., 1998; Nelder and Mead, 1965) and reaches a
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Figure 3.10: An illustration of the best-fit aurora model. Although some residuals remain,
there are no large clusters of pixels with high (σ) values. Thus, the fit is meaningful and
the optimized parameters can be used as a statistically significant estimate of the “true”
auroral volume distribution.
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minimum after 279 iterations (∼2 min of calculation time on a laptop with a 3GHz
i5 dual core processor).

The best-fit aurora model has projections that adequately fit the observed images.
However, the uncertainty of the optimized parameters remains to be determined.
The uncertainty can be estimated by calculating the error function response to
small changes in the best-fit parameters, E(Ṽ +∆V ). This task can be mathemat-
ically expressed in terms of the discretized Jacobian matrix (Aster et al., 2013a):

J =
∆E(Ṽ )

∆V
(3.23)

(J ) is a (nD×nP ) dimensional matrix, where (nP ) is the number of partial derivatives
to evaluate, six for the Gaussianmodel. A change of (∆I0 = 105m−3s−1), (∆x0 =∆y0 =
∆z0 = 1 km) and (∆σxy = ∆σz = 0.5 km) is selected. The effect of the parameter
change to amodeled image is presented in Figure 3.11. Here it is worth noting that
increasing or decreasing the∆-valuesmade no significant change in the parameter
uncertainty results, tested within reasonable bounds for∆-scaling factors of 0.5, 2,
4 and 10.
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Figure 3.11: The effect of the change (∆I0 = 105m−3s−1), (∆x0 = ∆y0 = ∆z0 = 1 km) and
∆σxy = ∆σz = 0.5 km) to a modeled image, projected to the location and field-of-view in
Abisko. The (∆y0) and (∆z0) derivatives appears to be highly correlated for the Abisko imag-
ing station. Also, note that the effect of the (∆I0) change is much smaller than for the other
derivatives.
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The parameter covariancematrix (ΣṼ ) can nowbe determined by the data variance
matrix (Σd) and the Jacobian derivatives (J ), see Aster et al. (2013a) for details:

ΣṼ = (JTΣ−1
d J)−1 (3.24)

ΣṼ is a (nP × nP ) dimensional matrix, in this case (6 × 6), where the diagonal en-
tries are the parameter variances (σ2

Ṽ
), assuming that the estimated parameters

themselves behave like random variables. The best-fit parameters and the corre-
sponding uncertainties are presented in Table 3.4.

Table 3.4: The artificial aurora parameters. The East-North coordinates are presented with
respect to the location of the Swedish Institute for Space Physics in Kiruna, Sweden, at the
origin. The best-fit 3–D reconstruction parameters are presented with 1±σṼ uncertainties.
The results from the multi-viewpoint triangulation method are added for comparison.

Technique multi-station triangulation 3–D reconstruction
East [km] –52.6 ± 0.3 –49.3 ± 0.1
North [km] 151.8 ± 0.2 150.3 ± 0.3
Height [km] 247.2 ± 0.2 243.9 ± 0.5
Horizontal width [km] 13.2 ± 0.1
Altitude width [km] 16.5 ± 0.3
Intensity [106m−3s−1] 4.0 ± 0.1

The resulting coordinates from the 3–D reconstruction is slightly different from the
multi-viewpoint triangulation results. The reason for this difference is likely that
the auroral emission distribution can not be fully represented by a 3–D Gaussian,
thus the coordinate of maximum emission might be off-set from the estimated
Gaussian centroid.

It should be noted that a better fit can be obtained if more shape parameters are
added to the model function, e.g. by allowing the model to have different widths
below and above the height center or bymaking the widths independent along the
x– and y-axis.

However, using an excessively complex model should be avoided in order to pre-
vent high parameter correlation (and thus high uncertainty) and model aliasing.
Model aliasing, in this case, refers to a situation where several parameter combi-
nations result in similar projections, complicating the parameter estimation and
the interpretation of the resulting model.

Model aliasing effects can be studied by performing several parameter optimiza-
tion runs with different initializations (start guesses) and comparing the results.
10 optimization runs were tested for the artificial aurora example and all runs
converged towards the same parameter solution (although some initializations re-
quired a larger number of iteration steps). It can therefore be concluded that the
selected set of parameters are not prone to aliasing effects.

Moreover, the parameter correlation can be determined by analyzing the param-
eter covariance matrix. The correlation of two parameters is the scaled covari-
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ance (Aster et al., 2013b), calculated using ΣṼ (i, j) for parameters with indices
(i) and (j) as:

Cij =
ΣṼ (i, j)√

ΣṼ (i, i)ΣṼ (j, j)
(3.25)

The resulting correlation values for all parameter-pairs are presented by the cor-
relation matrix in Figure 3.12. The (y0) and (z0) parameters are highly correlated, as
expected from studying the ∆y0 and ∆z0 derivatives in Figure 3.11.
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Figure 3.12: The σṼ Pearson correlation values. The (y0) and (z0) parameters are highly
correlated due to the unfortunate position of the camera stations, all located South and
below of the studied auroral emission.

The reason for the high (y0)–(z0) correlation is that all imaging stations are located
South and below of the object of interest, as seen in the top panel of Figure 3.10,
making the emissiondistribution somewhat ambiguous in theNorth-altitudeplane.
This uncertainty could be avoided by adding observations from another camera,
seeing the object of interest in a different plane, preferably locatedWestward, East-
ward or directly below the object of interest.





Chapter 4

Conclusion and Outlook

Analysis of big data sets is a rapidly progressing field of research with a largely un-
tapped potential in auroral science. This thesis has presented auroral image pro-
cessing techniques that are suitable for big data sets, requiring a minimal amount
of user interaction. The processing techniques can be divided into two branches:
machine learning classification methods, evaluated and discussed in Chapter 2, and
multi-viewpoint analysis techniques, studied in Chapter 3.

4.1 Concluding Remarks

Auroral Image Classification with Machine Learning Methods
Three machine learning classifiers were trained, tested and compared: K-Nearest
Neighbor (K-NN), Support VectorMachine (SVM) andConvolutional Neural Network
(CNN). The main conclusion of the presented work is that the CNN is a particularly
suitable classifier for auroral image data and outperforms the K-NN and SVM clas-
sifiers.

The enhanced performance of the CNN is due to the superior feature extraction ca-
pability. TheCNNoptimizes the feature extraction process for the available training
data, while the K-NN and SVM classifiers require pre-defined feature vectors with
high discriminative power, which are challenging to obtain from auroral images.

Six different CNN architectures were evaluated in Paper [I]. All networks achieved
precisions above 80 % and the ResNet–50 architecture stood out with the high-
est performance, obtaining an overall precision of 92 % and an average class-wise
accuracy of 91 %. Thus, the ResNet–50 classifier is adequate for operational pur-
poses, with error rates below 10 % (Syrjasuo and Partamies, 2011).

The networkswere trained and tested on imagedatawithout clearly ambiguous au-
roral forms. Classification of ambiguous images is problematic since the “correct”
label is a matter of subjective interpretation and possible bias factors. Paper [II]
discusses the implications of biases in the training and testing data for machine
learning classification and further provides suggestions on how to manually label
image data with high integrity.

81
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Multi-Viewpoint Analysis of Auroral Images
The overall objective of multi-viewpoint analysis techniques is to obtain 3–D auro-
ral information from the 2–D image projections. Three such methods have been
evaluated and described: triangulation, shell projection and 3–D reconstruction.

The appropriate technique for a particular auroral study depends on the investi-
gated feature, the camera system geometry and background conditions, but the
general conclusions are:

• The triangulation method can be largely automated and is suitable for esti-
mating the 3–D position of the peak auroral intensity. This information can
further be used as a priori input to more advanced multi-viewpoint analysis
techniques.

• The shell projectionmethod can be fully automated and used without a priori
information. The method is suitable for for estimating the mean height and
the horizontally projected emission distribution of auroral displays.

• The 3–D reconstruction method estimates the full volumetric auroral distri-
bution and can be fully automated. The method does however require heavy
regularization.

The shell projection method was used in Paper [III] to estimate the height (115–
120 km) and the horizontally projected midpoint coordinate of the newly reported
auroral feature: Lumikot aurora. A velocity estimate (≈ 12 km/s Eastward or West-
ward) was inferred by calculating the coordinate displacement in consecutive im-
ages. The processes that cause the bidirectionalmovement of Lumikot aurora, par-
allel to the growth-phase arc, is unknown andmay be significant for understanding
the mechanisms leading to the substorm onset.

The volume excitation rates of artificial aurora were estimated by the 3–D recon-
struction method in Paper [IV]. The reconstruction results are significant since the
altitude distribution of the excitation rates does not agree with theoretical predic-
tions from previous work (Gustavsson and Eliasson, 2008). An anisotropic electron
acceleration, caused by the radio wave–plasma interaction, may explain the dis-
crepancy.

4.2 Outlook

The Auroral Morphology
Auroral image classificationhas great potential for statistically relating auroral forms
to magnetospheric–ionospheric coupling processes and conditions. However, this
field of research is constrained by subjective interpretations and biases. In the
presented work, approximately two-thirds of the auroral images were labeled as
having an ambiguous form, and therefore not used in the training and testing of
the classifiers.
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After Akasofu (1964) characterized the dynamic morphology of auroral substorms,
numerous auroral features (e.g. auroral streamers, auroral fingers, Sun-aligned
arcs, black aurora and flickering aurora) have been reported in addition to, or as
sub-classes of, the initial classes. However, it is not always clear (without an exten-
sive literature search) how these classes relate to each other, to magnetospheric–
ionospheric conditions and to the auroral substorm in general. The communica-
tion of auroral research is further complicated since auroral forms often are re-
ferred to by different terms. For example, Sun-aligned arcs also go by the names:
high-latitude polar arcs, theta auroras, teardrops, and horse collar auroras (Elphin-
stone et al., 1996). Overall, these problems make auroral science prone to confu-
sion, ambiguity, misinterpretation and further makes it difficult to introduce new
scientists to the field.

Formulating an updated auroral morphology would therefore greatly benefit the
auroral research community in general, but also the field of auroral image classifi-
cation in particular, and should be considered in future work. The morphological
diagram could be branched, including definitions of the auroral classes and sub-
classes, illustrations of typical displays and short descriptions of the relationship
to processes and conditions in the magnetosphere–ionosphere (when applicable).
Inspiration could be taken frommorphological classification of snowflakes (Nakaya
diagram), stars (Hertzsprung–Russell diagram) or galaxies (Hubble sequence).

Suggestions for Future Endeavors in Auroral Classification
The aurora is a dynamic phenomena and the auroral classes (e.g. arcs, breakup and
patchy) have temporal characteristics. Thus, including the time dimensionwill likely
enhance the classification performance. In practice, this can be achieved using a
CNN, where 3–D volumes (short videos) with stacked consecutive images (e.g. 3–10
frames in each volume) are labeled by the most prominent auroral feature in the
sample video, and used instead of single image frames.

In addition, the classification performance on mixed data sets, including images
from several cameras and locations, should be studied in order to detect possi-
ble camera-specific bias effects. It is crucial that biases are minimized in order to
obtain reliable statistical results from the classified auroral images. The camera-
specific bias effects can be reduced by image pre-processing and by adding labeled
images from different cameras to the training data.

A pre-processing procedure, standardizing the image input to the classifier, was
suggested in Section 2.1. However, only careful examination of the classification
performance on mixed data sets can determine if the suggested pre-processing
procedure is adequate.

3–D Auroral Reconstruction in Conjunction with EISCAT3D
At present, there is a new incoherent scatter radar under construction in North-
ern Fenno-Scandinavia: EISCAT3D, and its “first light” observations are expected
in the next few years (Kero et al., 2019). When completed, it is anticipated to be
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the world’s most advanced incoherent scatter radar, providing volumetric mea-
surements of the ionospheric plasma parameters with high spatial and temporal
resolution (McCrea et al., 2015).

For auroral science, the EISCAT3D radar will make it feasible to study the 3–D struc-
tural evolution of auroral forms with sub-second resolution based on both vol-
umetric plasma measurements and 3–D auroral reconstructions. Moreover, the
energy and spatial distribution of the precipitating electrons can be estimated by
combining the plasma measurements and the optical observations, e.g. using the
Generalized-Aurora Computed Tomography (G-ACT) method, proposed in Tanaka
et al. (2011), or by using the 3–D inversion technique presented in Simon Wedlund
et al. (2013).

Finally, studies of artificial aurora with EISCAT3D in conjunction with optical ob-
servations will provide new and exciting methods for examining the radio wave–
plasma interaction. In particular, the rise and fall of plasma cavities can be inves-
tigated in detail using aperture-synthesis radar imaging techniques (Stamm et al.,
2021), and analysis of the plasma cavity formation in relation to 3–D excitation rate
estimates will likely give new insights to the electron energization process.



References

Akasofu, S.-I.: The development of the auroral substorm, Planetary and Space Sci-
ence, 12, 273–282, 1964.

Akasofu, S.-I.: Auroral morphology: A historical account and major auroral fea-
tures during auroral substorms, Auroral phenomenology and magnetospheric
processes: earth and other planets, 197, 29–38, 2012.

Akasofu, S.-I.: The relationship between the magnetosphere and mag-
netospheric/auroral substorms, Annales Geophysicae, 31, 387–394, doi:
10.5194/angeo-31-387-2013, URL https://angeo.copernicus.org/articles/31/
387/2013/, 2013.

Akasofu, S.-I.: Auroral substorms: search for processes causing the expansion
phase in terms of the electric current approach, Space Science Reviews, 212,
341–381, 2017.

Amin, J., Sharif, M., Yasmin, M., and Fernandes, S. L.: Big data analysis for brain
tumor detection: Deep convolutional neural networks, Future Generation Com-
puter Systems, 87, 290–297, 2018.

Angelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B., Frey,
H., Phan, T., Sibeck, D. G., Glassmeier, K.-H., Auster, U., et al.: Tail reconnection
triggering substorm onset, Science, 321, 931–935, 2008.

Antiochos, S., Mikić, Z., Titov, V., Lionello, R., and Linker, J.: A model for the sources
of the slow solar wind, The Astrophysical Journal, 731, 112, 2011.

Ashrafi, M., Kosch, M., and Kaila, K.: Height triangulation of artificial optical emis-
sions in the F-layer, in: Proceedings of the 31st Annual European Meeting on
Atmospheric Studies by Optical Methods and 1st International Riometer Work-
shop, pp. 8–16, 2005.

Aso, T., Ejiri, M., Urashima, A., Miyaoka, H., Steen, Å., Brändström, U., and Gus-
tavsson, B.: First results of auroral tomography from ALIS-Japan multi-station
observations in March, 1995, Earth, planets and space, 50, 81–86, 1998.

Aster, R. C., Borchers, B., and Thurber, C. H.: Chapter Nine - Nonlinear
Regression, in: Parameter Estimation and Inverse Problems (Second Edi-
tion), edited by Aster, R. C., Borchers, B., and Thurber, C. H., pp. 217–238,
Academic Press, Boston, second edition edn., doi: https://doi.org/10.1016/

85



86 REFERENCES

B978-0-12-385048-5.00009-4, URL https://www.sciencedirect.com/science/
article/pii/B9780123850485000094, 2013a.

Aster, R. C., Borchers, B., and Thurber, C. H.: Appendix B - Review of Proba-
bility and Statistics, in: Parameter Estimation and Inverse Problems (Second
Edition), edited by Aster, R. C., Borchers, B., and Thurber, C. H., pp. 315–
337, Academic Press, Boston, second edition edn., doi: https://doi.org/10.1016/
B978-0-12-385048-5.00014-8, URL https://www.sciencedirect.com/science/
article/pii/B9780123850485000148, 2013b.

Baker, D. e., Fritz, T., McPherron, R., Fairfield, D., Kamide, Y., and Baumjohann, W.:
Magnetotail energy storage and release during the CDAW 6 substorm analysis
intervals, Journal of Geophysical Research: Space Physics, 90, 1205–1216, 1985.

Balaban, S.: Deep learning and face recognition: the state of the art, in: Biometric
and Surveillance Technology for Human and Activity Identification XII, vol. 9457,
p. 94570B, International Society for Optics and Photonics, 2015.

Baumjohann, W. and Treumann, R.: Basic Space Plasma Physics (Revised Edition),
World Scientific Publishing Company, 2012.

Bazilchuk, Z. S.: Angular dependence of wide altitude ion line enhancements
(WAILEs) during ionospheric heating at the EISCAT Tromsø Facility, Master’s the-
sis, UiT Norges arktiske universitet, 2019.

Bernhardt, P. A., Siefring, C. L., Briczinski, S. J., McCarrick, M., and Michell, R. G.:
Large ionospheric disturbances produced by the HAARP HF facility, Radio Sci-
ence, 51, 1081–1093, 2016.

Biondi, A., Sipler, D., and Hake, R.: Optical (λ6300) detection of radio frequency
heating of electrons in the F region, Journal of Geophysical Research, 75, 6421–
6424, 1970.

Bissacco, A., Cummins, M., Netzer, Y., and Neven, H.: PhotoOCR: Reading Text in
Uncontrolled Conditions, in: Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2013.

Blagoveshchenskaya, N.: Perturbing the high-latitude upper ionosphere (F region)
with powerful HF radio waves: A 25-year collaboration with EISCAT, URSI Radio
Science Bulletin, 2020, 40–55, 2020.

Brändström, B., Leyser, T., Steen, Å., Rietveld, M., Gustavsson, B., Aso, T., and Ejiri,
M.: Unambiguous evidence of HF pump-enhanced airglow at auroral latitudes,
Geophysical research letters, 26, 3561–3564, 1999.

Brändström, U.: The auroral large imaging system: design, operation and scientific
results, IRF Institutet för rymdfysik, 2003.

Brekke, A.: Physics of the upper polar atmosphere, Springer Science & Business
Media, 2012.



REFERENCES 87

Buetti-Dinh, A., Galli, V., Bellenberg, S., Ilie, O., Herold, M., Christel, S., Boretska,
M., Pivkin, I. V., Wilmes, P., Sand, W., et al.: Deep neural networks outperform
human expert’s capacity in characterizing bioleaching bacterial biofilm composi-
tion, Biotechnology Reports, 22, e00321, 2019.

Carlson, H. C., Gordon, W. E., and Showen, R. L.: High frequency induced enhance-
ments of the incoherent scatter spectrum at Arecibo, Journal of Geophysical Re-
search, 77, 1242–1250, 1972.

Chen, F. F. et al.: Introduction to plasma physics and controlled fusion, vol. 1,
Springer, 1984.

Clausen, L. B. and Nickisch, H.: Automatic classification of auroral images from the
Oslo Auroral THEMIS (OATH) data set using machine learning, Journal of Geo-
physical Research: Space Physics, 123, 5640–5647, 2018.

Colpitts, C. A., Hakimi, S., Cattell, C. A., Dombeck, J., and Maas, M.: Simultaneous
ground and satellite observations of discrete auroral arcs, substorm aurora, and
Alfvénic aurora with FAST and THEMIS GBO, Journal of Geophysical Research:
Space Physics, 118, 6998–7010, 2013.

Cortes, C. and Vapnik, V.: Support-vector networks, Machine learning, 20, 273–297,
1995.

Coster, A., Djuth, F., Jost, R., and Gordon, W.: The temporal evolution of 3-m
striations in the modified ionosphere, Journal of Geophysical Research: Space
Physics, 90, 2807–2818, 1985.

Dahlgren, H., Ivchenko, N., Sullivan, J., Lanchester, B. S., Marklund, G., and
Whiter, D.: Morphology and dynamics of aurora at fine scale: first results
from the ASK instrument, Annales Geophysicae, 26, 1041–1048, doi: 10.
5194/angeo-26-1041-2008, URL https://angeo.copernicus.org/articles/26/
1041/2008/, 2008.

Dalal, N. and Triggs, B.: Histograms of oriented gradients for human detection, in:
2005 IEEE computer society conference on computer vision and pattern recog-
nition (CVPR’05), vol. 1, pp. 886–893, Ieee, 2005.

Davis, T. N.: Observed characteristics of auroral forms, Space Science Reviews, 22,
77–113, 1978.

D’Errico, J.: Interpolate NaN elements, URL https://se.mathworks.com/
matlabcentral/fileexchange/4551-inpaint_nans, 2012.

Deweerdt, S.: Deep connections, Nature, 571, S6–S8, 2019.

Djuth, F., Isham, B., Rietveld, M., Hagfors, T., and LaHoz, C.: First 100ms of HFmodi-
fication at Tromsø, Norway, Journal of Geophysical Research: Space Physics, 109,
2004.



88 REFERENCES

Donovan, E., Liu, W., Liang, J., Spanswick, E., Voronkov, I., Connors, M., Syrjäsuo, M.,
Baker, G., Jackel, B., Trondsen, T., et al.: Simultaneous THEMIS in situ and auroral
observations of a small substorm, Geophysical research letters, 35, 2008.

Dungey, J. W.: Interplanetary magnetic field and the auroral zones, Physical Review
Letters, 6, 47, 1961.

Ebrahimzadeh, R. and Jampour, M.: Efficient handwritten digit recognition based
on histogram of oriented gradients and SVM, International Journal of Computer
Applications, 104, 2014.

Elphinstone, R., Murphree, J., and Cogger, L.: What is a global auroral substorm?,
Reviews of Geophysics, 34, 169–232, 1996.

Fang, X., Randall, C. E., Lummerzheim, D., Solomon, S. C., Mills, M. J., Marsh, D. R.,
Jackman, C. H., Wang, W., and Lu, G.: Electron impact ionization: A new parame-
terization for 100 eV to 1 MeV electrons, Journal of Geophysical Research: Space
Physics, 113, 2008.

Farley Jr, D.: Artificial heating of the electrons in the F region of the ionosphere,
Journal of Geophysical Research, 68, 401–413, 1963.

Feldstein, Y.: A quarter of a century with the auroral oval, Eos, Transactions Amer-
ican Geophysical Union, 67, 761–767, 1986.

Feldstein, Y., Vorobjev, V., Zverev, V., and Förster, M.: Investigations of the auroral
luminosity distribution and the dynamics of discrete auroral forms in a historical
retrospective, History of geo-and space sciences, 5, 81–134, 2014.

Frey, H., Frey, S., Lanchester, B., and Kosch, M.: Optical tomography of the aurora
and EISCAT, Annales Geophysicae, 16, 1332–1342, 1998.

Frey, H. U., Han, D., Kataoka, R., Lessard, M. R., Milan, S. E., Nishimura, Y., Strange-
way, R. J., and Zou, Y.: Dayside aurora, Space Science Reviews, 215, 1–32, 2019.

Frey, S., Frey, H., Carr, D., Bauer, O. H., and Haerendel, G.: Auroral emission profiles
extracted from three-dimensionally reconstructed arcs, Journal of Geophysical
Research: Space Physics, 101, 21 731–21741, 1996.

Gallardo-Lacourt, B., Liang, J., Nishimura, Y., and Donovan, E.: On the origin of
STEVE: Particle precipitation or ionospheric skyglow?, Geophysical Research Let-
ters, 45, 7968–7973, 2018.

Gallardo-Lacourt, B., Frey, H., and Martinis, C.: Proton Aurora and Optical Emis-
sions in the Subauroral Region, Space Science Reviews, 217, 1–36, 2021.

Ganushkina, N. Y., Liemohn, M., and Dubyagin, S.: Current systems in the Earth’s
magnetosphere, Reviews of Geophysics, 56, 309–332, 2018.



REFERENCES 89

Gilmore, F. R., Laher, R. R., and Espy, P. J.: Franck–Condon factors, r-centroids, elec-
tronic transition moments, and Einstein coefficients for many nitrogen and oxy-
gen band systems, Journal of physical and chemical reference data, 21, 1005–
1107, 1992.

Goenka, C., Semeter, J., Noto, J., Baumgardner, J., Riccobono, J., Migliozzi, M.,
Dahlgren, H., Marshall, R., Kapali, S., Hirsch, M., et al.: LiCHI–Liquid Crystal Hy-
perspectral Imager for simultaneous multispectral imaging in aeronomy, Optics
express, 23, 17 772–17782, 2015.

Gondarenko, N., Ossakow, S., and Milikh, G.: Generation and evolution of density
irregularities due to self-focusing in ionospheric modifications, Journal of Geo-
physical Research: Space Physics, 110, 2005.

Gordon, R.: A tutorial on ART (algebraic reconstruction techniques), IEEE Transac-
tions on Nuclear Science, 21, 78–93, 1974.

Gordon, R., Bender, R., and Herman, G. T.: Algebraic reconstruction techniques
(ART) for three-dimensional electronmicroscopy and X-ray photography, Journal
of theoretical Biology, 29, 471–481, 1970.

Gosling, J. T.: The solar wind, in: Encyclopedia of the solar system, pp. 261–279,
Elsevier, 2014.

Grach, S. M., Kosch, M. J., Yashnov, V. A., Sergeev, E. N., Atroshenko, M. A.,
and Kotov, P. V.: On the location and structure of the artificial 630-nm
airglow patch over Sura facility, Annales Geophysicae, 25, 689–700, doi:
10.5194/angeo-25-689-2007, URL https://angeo.copernicus.org/articles/25/
689/2007/, 2007.

Gurevich, A. V.: Nonlinear effects in the ionosphere, Physics-Uspekhi, 50, 1091,
2007.

Gustavsson, B.: Three dimensional imaging of aurora and airglow, 2000.

Gustavsson, B.: AIDA-tools, URL https://github.com/space-physics/AIDA-tools,
2015.

Gustavsson, B. and Eliasson, B.: HF radio wave acceleration of ionospheric elec-
trons: Analysis of HF-induced optical enhancements, Journal of Geophysical Re-
search: Space Physics, 113, 2008.

Gustavsson, B., Sergienko, T., Rietveld, M., Honary, F., Steen, A., Brändström, B.,
Leyser, T., Aruliah, A., Aso, T., Ejiri, M., et al.: First tomographic estimate of vol-
ume distribution of HF-pump enhanced airglow emission, Journal of Geophysical
Research: Space Physics, 106, 29 105–29123, 2001.

Gustavsson, B., Sergienko, T., Kosch, M. J., Rietveld, M. T., Brändström, B. U. E.,
Leyser, T. B., Isham, B., Gallop, P., Aso, T., Ejiri, M., Grydeland, T., Steen, Å., La-
Hoz, C., Kaila, K., Jussila, J., andHolma, H.: The electron energy distribution during



90 REFERENCES

HF pumping, a picture painted with all colors, Annales Geophysicae, 23, 1747–
1754, doi: 10.5194/angeo-23-1747-2005, URL https://angeo.copernicus.org/
articles/23/1747/2005/, 2005.

Gustavsson, B., Leyser, T., Kosch, M., Rietveld, M., Steen, Å., Brändström, B. U. E.,
and Aso, T.: Electron gyroharmonic effects in ionization and electron acceleration
during high-frequency pumping in the ionosphere, Physical review letters, 97,
195002, 2006.

Gustavsson, B., Kosch, M., Wong, A., Pedersen, T., Heinselman, C., Mutiso, C.,
Bristow, B., Hughes, J., and Wang, W.: First estimates of volume distribu-
tion of HF-pump enhanced emissions at 6300 and 5577 Å: a comparison be-
tween observations and theory, Annales Geophysicae, 26, 3999–4012, doi: 10.
5194/angeo-26-3999-2008, URL https://angeo.copernicus.org/articles/26/
3999/2008/, 2008a.

Gustavsson, B., Kosch, M. J., Senior, A., Kavanagh, A. J., Brändström, B., and Blixt, E.:
Combined EISCAT radar and optical multispectral and tomographic observations
of black aurora, Journal of Geophysical Research: Space Physics, 113, 2008b.

Han, B., Chu, F., Gao, X., and Yan, Y.: A multi-size kernels CNN with eye movement
guided task-specific initialization for aurora image classification, in: CCF Chinese
Conference on Computer Vision, pp. 533–544, Springer, 2017.

He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition,
in: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 770–778, 2016.

Hoffleit, D. and Jaschek, C.: The Bright star catalogue, New Haven, 1991.

Isham, B., Rietveld, M., Hagfors, T., La Hoz, C., Mishin, E., Kofman, W., Leyser, T., and
Van Eyken, A.: Aspect angle dependence of HF enhanced incoherent backscatter,
Advances in Space Research, 24, 1003–1006, 1999.

Jackman, C. M., Arridge, C. S., André, N., Bagenal, F., Birn, J., Freeman, M. P., Jia, X.,
Kidder, A., Milan, S. E., Radioti, A., et al.: Large-scale structure and dynamics of
the magnetotails of Mercury, Earth, Jupiter and Saturn, Space Science Reviews,
182, 85–154, 2014.

Karlsson, T., Andersson, L., Gillies, D., Lynch, K., Marghitu, O., Partamies, N.,
Sivadas, N., and Wu, J.: Quiet, discrete auroral arcs—Observations, Space Sci-
ence Reviews, 216, 1–50, 2020.

Kelley, M. C., Vickrey, J. F., Carlson, C., and Torbert, R.: On the origin and spatial
extent of high-latitude F region irregularities, Journal of Geophysical Research:
Space Physics, 87, 4469–4475, 1982.

Kendall, E., Marshall, R., Parris, R. T., Bhatt, A., Coster, A., Pedersen, T., Bernhardt,
P., and Selcher, C.: Decameter structure in heater-induced airglow at the High
frequency Active Auroral Research Program facility, Journal of Geophysical Re-
search: Space Physics, 115, 2010.



REFERENCES 91

Kero, J., Kastinen, D., Vierinen, J., Grydeland, T., Heinselman, C. J., Markkanen, J.,
and Tjulin, A.: EISCAT 3D: the next generation international atmosphere and
geospace research radar, Tech. rep., European Space Agency, 2019.

Kingma, D. P. and Ba, J.: Adam: Amethod for stochastic optimization, arXiv preprint
arXiv:1412.6980, 2014.

Kozelov, B., Pilgaev, S., Borovkov, L., and Yurov, V.: Multi-scale auroral observations
in Apatity: winter 2010–2011, Geoscientific Instrumentation, Methods and Data
Systems, 1, 1–6, 2012.

Kozelov, B., Roldugin, A., Pilgaev, S., and Grigoriev, V.: Triangulation of auroral
structures in Barentsburg, the first data of the season 2018-2019, Physics of Au-
roral Phenomena, 42, 152–155, 2019.

Krizhevsky, A., Sutskever, I., and Hinton, G. E.: Imagenet classification with deep
convolutional neural networks, Advances in neural information processing sys-
tems, 25, 1097–1105, 2012.

Kudeki, E. and Milla, M. A.: Incoherent scatter spectral theories—Part I: A general
framework and results for small magnetic aspect angles, IEEE Transactions on
Geoscience and Remote Sensing, 49, 315–328, 2010.

Kvammen, A., Gustavsson, B., Sergienko, T., Brändström, U., Rietveld, M., Rexer,
T., and Vierinen, J.: The 3-D Distribution of Artificial Aurora Induced by HF Radio
Waves in the Ionosphere, Journal of Geophysical Research: Space Physics, 124,
2992–3006, doi: https://doi.org/10.1029/2018JA025988, 2019.

Kvammen, A., Wickstrøm, K., McKay, D., and Partamies, N.: Auroral image classifica-
tion with deep neural networks, Journal of Geophysical Research: Space Physics,
125, e2020JA027808, doi: https://doi.org/10.1029/2020JA027808, 2020.

Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E.: Convergence properties
of the Nelder–Mead simplex method in low dimensions, SIAM Journal on opti-
mization, 9, 112–147, 1998.

Laundal, K. M. and Richmond, A. D.: Magnetic coordinate systems, Space Science
Reviews, 206, 27–59, 2017.

LeLevier, R.: Modification of the Ionosphere by Radiowaves, Tech. rep., RANDCORP
SANTA MONICA CA, 1969.

Lessard, M.: A review of pulsating aurora, Auroral phenomenology and magneto-
spheric processes: Earth and other planets, 197, 55–68, 2012.

Leyser, T.: Stimulated electromagnetic emissions by high-frequency electromag-
netic pumping of the ionospheric plasma, Space Science Reviews, 98, 223–328,
2001.

Li, W., Thorne, R., Bortnik, J., Nishimura, Y., and Angelopoulos, V.: Modulation of
whistler mode chorus waves: 1. Role of compressional Pc4–5 pulsations, Journal
of Geophysical Research: Space Physics, 116, 2011.



92 REFERENCES

Libbrecht, K. G.: Physical dynamics of ice crystal growth, Annual ReviewofMaterials
Research, 47, 271–295, 2017.

Luhmann, J. and Solomon, S.: The Sun-Earth Connection, Encyclopedia of the Solar
System„ pp. 213–226, 2007.

Lui, A.: A synthesis of magnetospheric substorm models, Journal of Geophysical
Research: Space Physics, 96, 1849–1856, 1991.

Lui, A.: Reduction of the cross-tail current during near-Earth dipolarization with
multisatellite observations, Journal of Geophysical Research: Space Physics, 116,
2011.

Lyons, L., Nishimura, Y., Kim, H.-J., Donovan, E., Angelopoulos, V., Sofko, G., Nicolls,
M., Heinselman, C., Ruohoniemi, J., and Nishitani, N.: Possible connection of po-
lar cap flows to pre-and post-substormonset PBIs and streamers, Journal of Geo-
physical Research: Space Physics, 116, 2011.

MacDonald, E. A., Donovan, E., Nishimura, Y., Case, N. A., Gillies, D. M., Gallardo-
Lacourt, B., Archer, W. E., Spanswick, E. L., Bourassa, N., Connors, M., et al.: New
science in plain sight: Citizen scientists lead to the discovery of optical structure
in the upper atmosphere, Science advances, 4, eaaq0030, 2018.

Mao, L., Xie, M., Huang, Y., and Zhang, Y.: Preceding vehicle detection using His-
tograms of Oriented Gradients, in: 2010 International Conference on Communi-
cations, Circuits and Systems (ICCCAS), pp. 354–358, IEEE, 2010.

Mauer, C. and Wueller, D.: Measuring the spectral response with a set of interfer-
ence filters, in: Digital Photography V, vol. 7250, p. 72500S, International Society
for Optics and Photonics, 2009.

McCrea, I., Aikio, A., Alfonsi, L., Belova, E., Buchert, S., Clilverd, M., Engler, N., Gus-
tavsson, B., Heinselman, C., Kero, J., et al.: The science case for the EISCAT_3D
radar, Progress in Earth and Planetary Science, 2, 1–63, 2015.

McKay, D. andKvammen, A.: Auroral classification ergonomics and the implications
formachine learning, Geoscientific Instrumentation, Methods andData Systems,
9, 267–273, doi: 10.5194/gi-9-267-2020, 2020.

McKay, D., Paavilainen, T., Gustavsson, B., Kvammen, A., and Partamies, N.:
Lumikot: Fast auroral transients during the growth phase of substorms,
Geophysical Research Letters, 46, 7214–7221, doi: https://doi.org/10.1029/
2019GL082985, 2019.

McPherron, R. L.: Growth phase of magnetospheric substorms, Journal of Geo-
physical Research, 75, 5592–5599, 1970.

Mende, S., Frey, H., Angelopoulos, V., and Nishimura, Y.: Substorm triggering by
poleward boundary intensification and related equatorward propagation, Jour-
nal of Geophysical Research: Space Physics, 116, 2011.



REFERENCES 93

Mendillo, M., Baumgardner, J., and Wroten, J.: SAR arcs we have seen: Evidence
for variability in stable auroral red arcs, Journal of Geophysical Research: Space
Physics, 121, 245–262, 2016.

Milan, S. E., Clausen, L. B. N., Coxon, J. C., Carter, J. A., Walach, M.-T., Laundal, K.,
Østgaard, N., Tenfjord, P., Reistad, J., Snekvik, K., et al.: Overview of solar wind–
magnetosphere–ionosphere–atmosphere coupling and the generation of mag-
netospheric currents, Space Science Reviews, 206, 547–573, 2017.

Milikh, G., Gurevich, A., Zybin, K., and Secan, J.: Perturbations of GPS signals by
the ionospheric irregularities generated due to HF-heating at triple of electron
gyrofrequency, Geophysical research letters, 35, 2008.

Moss, K. and Stauning, P.: Sophus Peter Tromholt: an outstanding pioneer in au-
roral research, History of Geo-and Space Sciences, 3, 53–72, 2012.

Najmi, A., Eliasson, B., Shao, X., Milikh, G., and Papadopoulos, K.: Simulations of
ionospheric turbulence produced by HF heating near the upper hybrid layer, Ra-
dio Science, 51, 704–717, 2016.

Najmi, A., Eliasson, B., Shao, X., Milikh, G., Sharma, A., and Papadopoulos, K.: Vlasov
simulations of electron acceleration by radio frequency heating near the upper
hybrid layer, Physics of Plasmas, 24, 102904, 2017.

Nelder, J. A. and Mead, R.: A simplex method for function minimization, The com-
puter journal, 7, 308–313, 1965.

Nishimura, Y., Lyons, L., Zou, S., Angelopoulos, V., and Mende, S.: Substorm trig-
gering by new plasma intrusion: THEMIS all-sky imager observations, Journal of
Geophysical Research: Space Physics, 115, 2010.

Niu, C., Zhang, J., Wang, Q., and Liang, J.: Weakly supervised semantic segmentation
for joint key local structure localization and classification of aurora image, IEEE
Transactions on Geoscience and Remote Sensing, 56, 7133–7146, 2018.

Partamies, N., Sangalli, L., Donovan, E., Connors, M., andCharrois, D.: Tomography-
like Approach for Analysing Colour Auroral Images, Geophysica, 48, 81–90, 2012.

Partamies, N., Juusola, L., Whiter, D., and Kauristie, K.: Substorm evolution of auro-
ral structures, Journal of Geophysical Research: Space Physics, 120, 5958–5972,
2015.

Partamies, N., Whiter, D., Kadokura, A., Kauristie, K., Nesse Tyssøy, H., Massetti, S.,
Stauning, P., and Raita, T.: Occurrence and average behavior of pulsating aurora,
Journal of Geophysical Research: Space Physics, 122, 5606–5618, 2017.

Partamies, N., Bolmgren, K., Heino, E., Ivchenko, N., Borovsky, J. E., and Sund-
berg, H.: Patch size evolution during pulsating aurora, Journal of Geophysical
Research: Space Physics, 124, 4725–4738, 2019.



94 REFERENCES

Pedersen, T., Gustavsson, B., Mishin, E., MacKenzie, E., Carlson, H., Starks, M., and
Mills, T.: Optical ring formation and ionization production in high-power HF heat-
ing experiments at HAARP, Geophysical research letters, 36, 2009.

Pedersen, T., Gustavsson, B., Mishin, E., Kendall, E., Mills, T., Carlson, H., and Snyder,
A.: Creation of artificial ionospheric layers using high-power HF waves, Geophys-
ical Research Letters, 37, 2010.

Perreault, P. and Akasofu, S.: A study of geomagnetic storms, Geophysical Journal
International, 54, 547–573, 1978.

Phan, T., Kistler, L., Klecker, B., Haerendel, G., Paschmann, G., Sonnerup, B. Ö.,
Baumjohann, W., Bavassano-Cattaneo, M., Carlson, C., DiLellis, A., et al.: Ex-
tended magnetic reconnection at the Earth’s magnetopause from detection of
bi-directional jets, Nature, 404, 848–850, 2000.

Picone, J., Hedin, A., Drob, D. P., and Aikin, A.: NRLMSISE-00 empirical model of the
atmosphere: Statistical comparisons and scientific issues, Journal of Geophysical
Research: Space Physics, 107, SIA–15, 2002.

Radon, J.: On thedetermination of functions from their integral values along certain
manifolds, IEEE transactions on medical imaging, 5, 170–176, 1986.

Rao, J., Partamies, N., Amariutei, O., Syrjäsuo, M., and van de Sande, K. E.: Auto-
matic auroral detection in color all-sky camera images, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 7, 4717–4725, 2014.

Reidy, J. A., Fear, R., Whiter, D., Lanchester, B., Kavanagh, A. J., Milan, S., Carter, J.,
Paxton, L., and Zhang, Y.: Interhemispheric survey of polar cap aurora, Journal
of Geophysical Research: Space Physics, 123, 7283–7306, 2018.

Rexer, T.: Current systems associated with Non-Conjugate Aurora, Master’s thesis,
The University of Bergen, 2015.

Rexer, T., Gustavsson, B., Leyser, T., Rietveld, M., Yeoman, T., and Grydeland,
T.: First Observations of Recurring HF-Enhanced Topside Ion Line Spectra Near
the Fourth Gyroharmonic, Journal of Geophysical Research: Space Physics, 123,
8649–8663, 2018.

Rexer, T., Leyser, T., Gustavsson, B., and Rietveld, M.: Conditions for topside
ion line enhancements, Journal of Geophysical Research: Space Physics, p.
e2021JA029379, 2021.

Rhodes, B.: Skyfield v1.10, doi: http://rhodesmill.org/skyfield/, URL http://
rhodesmill.org/skyfield/, 2019.

Rietveld, M., Isham, B., Kohl, H., La Hoz, C., and Hagfors, T.: Measurements of HF-
enhanced plasma and ion lines at EISCAT with high-altitude resolution, Journal
of Geophysical Research: Space Physics, 105, 7429–7439, 2000.



REFERENCES 95

Rietveld, M. T., Senior, A., Markkanen, J., and Westman, A.: New capabilities of the
upgraded EISCAT high-power HF facility, Radio Science, 51, 1533–1546, 2016.

Rostoker, G., Akasofu, S., Baumjohann, W., Kamide, Y., and McPherron, R.: The
roles of direct input of energy from the solar wind and unloading of stored mag-
netotail energy in driving magnetospheric substorms, Space science reviews, 46,
93–111, 1988.

Rydesäter, P. and Gustavsson, B.: Investigation of smooth basis functions and an
approximated projection algorithm for faster tomography, International journal
of imaging systems and technology, 11, 347–354, 2000.

Rydesäter, P., Gustavsson, B., Brändström, U., and Steen, Å.: Lossy compression of
scientific images of aurora, in: Proc. of 28th Annual European Meeting on Atmo-
spheric Studies by Optical Methods, Sodankylä Geophysical Observatory, 2001.

Sangalli, L., Gustavsson, B., Partamies, N., and Kauristie, K.: Estimating the peak
auroral emission altitude from all-sky images, Opt. Pura Apl., 44, 593–598, 2011a.

Sangalli, L., Partamies, N., Syrjäsuo, M., Enell, C.-F., Kauristie, K., and Mäkinen, S.:
Performance study of the newEMCCD-based all-sky cameras for auroral imaging,
International Journal of Remote Sensing, 32, 2987–3003, 2011b.

Senior, A., Rietveld, M., Yeoman, T., and Kosch, M.: The dependence of F-region
electron heating on HF radio pump power: Measurements at EISCAT Tromsø,
Journal of Geophysical Research: Space Physics, 117, 2012.

Senior, A., Rietveld, M., Häggström, I., and Kosch, M.: Radio-induced incoherent
scatter ion line enhancements with wide altitude extents in the high-latitude
ionosphere, Geophysical research letters, 40, 1669–1674, 2013.

Sergeev, V., Angelopoulos, V., Kubyshkina, M., Donovan, E., Zhou, X.-Z., Runov, A.,
Singer, H., McFadden, J., and Nakamura, R.: Substorm growth and expansion on-
set as observed with ideal ground-spacecraft THEMIS coverage, Journal of Geo-
physical Research: Space Physics, 116, 2011.

Shaffer, K., Haughton, V., and Wilson, C. R.: High resolution computed tomography
of the temporal bone., Radiology, 134, 409–414, 1980.

Shiokawa, K., Otsuka, Y., and Connors, M.: Statistical study of auroral/resonant-
scattering 427.8-nm emission observed at subauroral latitudes over 14 years,
Journal of Geophysical Research: Space Physics, 124, 9293–9301, 2019.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanc-
tot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi
by self-play with a general reinforcement learning algorithm, arXiv preprint
arXiv:1712.01815, 2017.

Simon Wedlund, C., Lamy, H., Gustavsson, B., Sergienko, T., and Brändström,
U.: Estimating energy spectra of electron precipitation above auroral arcs from
ground-based observations with radar and optics, Journal of Geophysical Re-
search: Space Physics, 118, 3672–3691, 2013.



96 REFERENCES

Stamm, J., Vierinen, J., Urco, J. M., Gustavsson, B., and Chau, J. L.: Radar imagingwith
EISCAT 3D, Annales Geophysicae, 39, 119–134, doi: 10.5194/angeo-39-119-2021,
URL https://angeo.copernicus.org/articles/39/119/2021/, 2021.

Størmer, C.: Altitudes of aurorae, Nature, 97, 5–5, 1916.

Størmer, C.: The distribution in space of the sunlit aurora rays, Nature, 123, 82–83,
1929.

Streltsov, A., Berthelier, J.-J., Chernyshov, A., Frolov, V., Honary, F., Kosch,M., McCoy,
R., Mishin, E., and Rietveld, M.: Past, present and future of active radio frequency
experiments in space, Space Science Reviews, 214, 1–122, 2018.

Syrjäsuo, M. and Donovan, E.: Diurnal auroral occurrence statistics obtained via
machine vision, in: Annales Geophysicae, vol. 22, pp. 1103–1113, Copernicus
GmbH, 2004.

Syrjasuo, M. and Partamies, N.: Numeric image features for detection of aurora,
IEEE Geoscience and Remote Sensing Letters, 9, 176–179, 2011.

Tanaka, Y.-M., Aso, T., Gustavsson, B., Tanabe, K., Ogawa, Y., Kadokura, A.,
Miyaoka, H., Sergienko, T., Brändström, U., and Sandahl, I.: Feasibility study on
generalized-aurora computed tomography, in: Annales Geophysicae, vol. 29, pp.
551–562, Copernicus GmbH, 2011.

Tenfjord, P. and Østgaard, N.: Energy transfer and flow in the solar wind-
magnetosphere-ionosphere system: A new coupling function, Journal of Geo-
physical Research: Space Physics, 118, 5659–5672, 2013.

Tenfjord, P., Østgaard, N., Snekvik, K., Laundal, K. M., Reistad, J. P., Haaland, S.,
and Milan, S.: How the IMF By induces a By component in the closed magneto-
sphere and how it leads to asymmetric currents and convection patterns in the
two hemispheres, Journal of Geophysical Research: Space Physics, 120, 9368–
9384, 2015.

Theodoridis, S. and Koutroumbas, K.: Chapter 1 - Introduction, in: Pattern
Recognition (Fourth Edition), edited by Theodoridis, S. and Koutroumbas,
K., pp. 1 – 12, Academic Press, Boston, fourth edition edn., doi: https://
doi.org/10.1016/B978-1-59749-272-0.50004-9, URL http://www.sciencedirect.
com/science/article/pii/B9781597492720500049, 2009a.

Theodoridis, S. and Koutroumbas, K.: Chapter 2 - Classifiers Based on Bayes
Decision Theory, in: Pattern Recognition (Fourth Edition), edited by Theodor-
idis, S. and Koutroumbas, K., pp. 13 – 89, Academic Press, Boston, fourth edi-
tion edn., doi: https://doi.org/10.1016/B978-1-59749-272-0.50004-9, URL http:
//www.sciencedirect.com/science/article/pii/B9781597492720500049, 2009b.

Theodoridis, S. and Koutroumbas, K.: Chapter 3 - Linear Classifiers, in: Pat-
tern Recognition (Fourth Edition), edited by Theodoridis, S. and Koutroumbas,
K., pp. 91 – 150, Academic Press, Boston, fourth edition edn., doi: https://



REFERENCES 97

doi.org/10.1016/B978-1-59749-272-0.50004-9, URL http://www.sciencedirect.
com/science/article/pii/B9781597492720500049, 2009c.

Theodoridis, S. and Koutroumbas, K.: Chapter 4 - Nonlinear Classifiers, in: Pat-
tern Recognition (Fourth Edition), edited by Theodoridis, S. and Koutroumbas,
K., pp. 151 – 260, Academic Press, Boston, fourth edition edn., doi: https://
doi.org/10.1016/B978-1-59749-272-0.50004-9, URL http://www.sciencedirect.
com/science/article/pii/B9781597492720500049, 2009d.

Utlaut, W.: An ionospheric modification experiment using very high power, high
frequency transmission, Journal of Geophysical Research, 75, 6402–6405, 1970.

Van derMaaten, L. and Hinton, G.: Visualizing data using t-SNE., Journal of machine
learning research, 9, 2008.

Vegard, L. and Krogness, O. A.: The Position in Space of the Aurora Polaris: From
ObservationsMade at theHaldde-observatory, 1913-14, vol. 1, AWBrøggers bok-
trykkeri, 1920.

Wang, Q., Liang, J., Hu, Z.-J., Hu, H.-H., Zhao, H., Hu, H.-Q., Gao, X., and Yang, H.:
Spatial texture based automatic classification of dayside aurora in all-sky images,
Journal of Atmospheric and Solar-Terrestrial Physics, 72, 498–508, 2010.

Whiter, D., Lanchester, B., Gustavsson, B., Ivchenko, N., and Dahlgren, H.: Using
multispectral optical observations to identify the acceleration mechanism re-
sponsible for flickering aurora, Journal of Geophysical Research: Space Physics,
115, 2010.

Whiter, D., Gustavsson, B., Partamies, N., and Sangalli, L.: A new automatic method
for estimating the peak auroral emission height fromall-sky camera images, Geo-
scientific Instrumentation, Methods and Data Systems, 2, 131–144, 2013.

Wu, M. and Chen, L.: Image recognition based on deep learning, in: 2015 Chinese
Automation Congress (CAC), pp. 542–546, IEEE, 2015.

Yang, Q. and Zhou, P.: Representation and Classification of Auroral Images Based
on Convolutional Neural Networks, IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 13, 523–534, 2020.

Yen, C.-K., Yano, Y., Budinger, T., Friedland, R., Derenzo, S., Huesman, R., and
O’Brien, H.: Brain tumor evaluation using Rb-82 and positron emission tomog-
raphy., Journal of Nuclear Medicine: Official Publication, Society of Nuclear
Medicine, 23, 532–537, 1982.

Zhang, Q.-H., Lockwood, M., Foster, J., Zhang, S.-R., Zhang, B.-C., McCrea, I., Moen, J.,
Lester, M., and Ruohoniemi, J. M.: Direct observations of the full Dungey convec-
tion cycle in the polar ionosphere for southward interplanetary magnetic field
conditions, Journal of Geophysical Research: Space Physics, 120, 4519–4530,
2015.



98 REFERENCES

Zou, S., Moldwin, M., Lyons, L., Nishimura, Y., Hirahara, M., Sakanoi, T., Asamura,
K., Nicolls, M., Miyashita, Y., Mende, S., et al.: Identification of substorm onset
location and preonset sequence using Reimei, THEMIS GBO, PFISR, and Geotail,
Journal of Geophysical Research: Space Physics, 115, 2010.



PAPER I:
Auroral Image Classification With
Deep Neural Networks

Kvammen, A., Wickstrøm, K., McKay, D., and Partamies, N.: Auroral image classifi-
cation with deep neural networks, Journal of Geophysical Research: Space Physics,
125, e2020JA027808, doi: https://doi.org/10.1029/2020JA027808, 2020

©2020. The Authors
This is an open access article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in anymedium, provided
the original work is properly cited.

99





Auroral Image Classification With Deep Neural Networks

Andreas Kvammen1 , Kristoffer Wickstrøm1 , Derek McKay2,3 , and Noora Partamies4,5

1Department of Physics and Technology, UiT-The Arctic University of Norway, Tromsø, Norway, 2NORCE Norwegian
Research Centre AS, Tromsø, Norway, 3Finnish Centre for Astronomy with ESO, FINCA, University of Turku, Turku,
Finland, 4Department of Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway, 5Birkeland
Centre for Space Science, Bergen, Norway

Abstract Results from a study of automatic aurora classification using machine learning techniques
are presented. The aurora is the manifestation of physical phenomena in the ionosphere-magnetosphere
environment. Automatic classification of millions of auroral images from the Arctic and Antarctic is
therefore an attractive tool for developing auroral statistics and for supporting scientists to study auroral
images in an objective, organized, and repeatable manner. Although previous studies have presented
tools for detecting aurora, there has been a lack of tools for classifying aurora into subclasses with a
high precision (>90%). This work considers seven auroral subclasses: breakup, colored, arcs, discrete,
patchy, edge, and faint. Six different deep neural network architectures have been tested along with the
well-known classification algorithms: k-nearest neighbor (KNN) and a support vector machine (SVM).
A set of clean nighttime color auroral images, without clearly ambiguous auroral forms, moonlight,
twilight, clouds, and so forth, were used for training and testing the classifiers. The deep neural networks
generally outperformed the KNN and SVM methods, and the ResNet-50 architecture achieved the highest
performance with an average classification precision of 92%.

1. Introduction
Spectacular auroral displays can be seen on the night sky at high latitudes if the solar wind, magnetospheric,
and ionospheric conditions are opportune. The auroral excitation processes are activated by energetic
electrons and protons from the magnetosphere. The charged particles follow the magnetic field from the
plasma sheet down to their magnetic footprint in the ionosphere where the energy is dissipated by ioniza-
tion, excitation, and heating of thermospheric particles. The auroral displays, with typical emission intensity
peaks at altitudes between 100 and 130 km, are therefore an indicator of dynamical processes that occur
much further out into the Earth's magnetotail. Understanding how different ionospheric and magneto-
spheric conditions are manifested in the shape, color, intensity, and time evolution of the aurora is not
well understood, even over 100 years after the first big auroral imaging campaigns in Bossekop, Norway
(Störmer, 1913).

Since the first auroral imaging campaigns, millions of auroral images have been taken in the Arctic and
Antarctic regions, and auroral scientists now have access to more data than what is possible to search and
analyze by visual inspections. During recent decades, it has been demonstrated that machine learning meth-
ods are a valuable and highly applicable tool for automatically classifying large image data sets, for instance,
by letter, brain tumor, and facial recognition. Machine learning techniques are, however, not widely used
within the auroral research community. Automatic classification of millions of images captured every year
will make it easier for scientists to study the images that are of interest in an organized, objective, and
repeatable manner. This will further make statistical studies easier to conduct. For example, probability
distributions of different auroral structures will facilitate studies of the temporal evolution of the aurora
under different geomagnetic condition. In addition, statistical studies of the ionosphere-magnetosphere
environment can be conducted by investigating the occurrence of auroral classes which are related to
physical processes in the magnetosphere, such as the occurrence and evolution of patchy aurora that can
be statistically studied in relation to the pitch angle scattering due to wave-particle interactions in the
ionosphere-magnetosphere system.

Machine classification of aurora is a difficult task due to the transparent nature of the emission and thus
the soft boundaries of the observed forms. Manual classification of auroral images is also a challenging task
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since no two auroral events are alike and the aurora is a very dynamic phenomena which changes rapidly
and manifests differently depending on geomagnetic conditions. An additional complication is that there
is no clear consensus about how many nighttime auroral classes exist and what they are. Nevertheless,
some automatic classification and feature extraction techniques have been developed and tested over the
last two decades, for instance, using k-nearest neighbor (KNN) (Syrjäsuo & Donovan, 2002, 2004), Fourier
descriptors (Syrjäsuo et al., 2007), support vector machines (SVMs) (Rao et al., 2014), and polynomial fitting
(Partamies et al., 2015). However, none of the developed tools have achieved broader usage, possibly due to
the techniques not being general enough, low classification accuracy, or few and/or unwanted auroral labels.
It should also be noted that machine learning techniques have been extensively used for dayside aurora
classification in the cusp region using hidden Marcov models (Yang et al., 2012) and to find key features
detected by the cycle-consistent generative adversarial network (CycleGAN) (Yang et al., 2019). However,
the developed dayside tools cannot be used on nightside aurora images without additional training due to
the differences in auroral morphology. In a recent study, Clausen and Nickisch (2018) presented automatic
nighttime auroral classification results by employing a pretrained deep neural network (DNN) and 5,824
labeled images. Clausen and Nickisch (2018) achieved 81.7 ± 0.1% classification accuracy, distributed into
six labels: arc, discrete, diffuse, cloudy, moon, and clear/no aurora. Furthermore, when clustering together
the auroral classes (arc, discrete, and diffuse) and the nonauroral classes (cloudy, moon, and clear/no aurora),
an accuracy of 95.60 ± 0.03% was achieved for detecting aurora versus no aurora conditions.

Following the previous work, the main purpose of this study was to classify color (RGB) nighttime auroral
images (manually preselected to contain clear skies) with higher precision and into more labels than those
in the previous studies. Classification error rates of <10% are considered sufficient for operational purposes
(Syrjasuo & Partamies, 2011); this study therefore aimed at an average classification precision of >90%. An
additional objective was to define auroral labels which represent an exclusive production mechanism or
characterize a physical property of the aurora when possible. Finally, several neural networks and machine
learning techniques were tested and compared in this study. The pretrained DNN considered in Clausen
and Nickisch (2018) is among the evaluated classifiers. In total, 14,030 auroral images were labeled. Out of
these, 3,854 auroral images did not contain clearly ambiguous auroral forms and were therefore selected for
network training and testing. The methodology is described in section 2. A comparison of the performance
of the different algorithms and an analysis of misidentified images is presented in section 3, with a more
general discussion in section 4.

2. Methodology
A description of the data processing, the auroral labels, and the applied machine learning techniques are
presented in this section. A detailed description of auroral classification ergonomics and potential biases in
the data set is presented in McKay and Kvammen (2020).

2.1. Data Acquisition and Preprocessing

The images used in this study were acquired by the all-sky camera located near Kiruna, Sweden, at 425 m
above mean sea level with geographic (latitude and longitude) location: 67.84◦N, 20.42◦E and CGM loca-
tion: 64.69◦, 102.64◦, and operated by the Swedish Institute for Space Physics. The camera is a Nikon D700
equipped with a Nikon Nikkor 8 mm 1:2.8 lens giving almost 180◦ field of view. The color sensitivity of the
detector, from Mauer (2009), is depicted in Figure 1 along with the characteristic 427.8, 557.7, and 630.0 nm
auroral lines. The camera was installed in 2009 with the available data set used in this project extending from
2010 to 2019. The exposure time is 6 s, with images taken automatically on each minute. To ease data transfer
rates and processing, JPEG images (720 × 479 pixels) were used, rather than the full-resolution images.

Images containing clouds and moon where excluded, since earlier studies by Rao et al. (2014) and Clausen
and Nickisch (2018) showed high accuracy for labeling clouds and moon while being less successful in
labeling auroral subclasses. A preprocessing stage was carried out where keograms were manually inspected
and areas of potential auroral emission were selected, thus rejecting the bulk of overcast sky conditions.
Celestial positions were calculated using the Skyfield software (Rhodes, 2019) and images where the Sun was
at an apparent elevation greater than −15◦, or where the moon was above the horizon, were automatically
rejected.
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Figure 1. The figure shows the color sensitivity of the blue, green, and red channels of the detector. It is clear that the
camera sensitivity is not uniform with respect to the wavelength. The relative response is approximately 0.65 for the
blue auroral line at 427.8 nm, 0.90 for the green line at 557.7 nm, and 0.45 for the red line at 630.0 nm.

To prepare the images for labeling and network training, a four-step image processing procedure (see
Figure 2) was performed on each image:

1. Rotate the images clockwise 90◦ to direct the geomagnetic pole toward the top of the image and flip the
image along the east-west axis.

2. Filter each image with a 3 × 3 median filter to avoid bias effects from the location of stars, remove bad
pixels, and reduce noise.

3. Bin the pixels by using a 2 × 2 averaging window to reduce the size of the images and thus speed up the
training process.

4. Crop the images to the central 128 × 128 pixels of the binned image, corresponding to the size of the red
frame in the left panel of Figure 2. Apart from further speeding-up the training process, there are three
reasons for cropping the images. First, pixels that contain considerably distorted features from the fish-eye
lens projection and atmospheric conditions are removed. Second, aurorae look similar toward the horizon
and classification of aurorae at small elevation angles is not useful. Lastly, selecting a smaller field of view
reduced the number of frames which included several aurora classes; this increased the accuracy of the
network and made it easier to both label the images and to choose representative aurora labels.

Figure 2. The image to the left depicts a raw (720 × 479 pixels) auroral image. The image to the right shows the same
image after the four-step processing procedure. The processed image is rotated, filtered, binned, and cropped. The
resolution of the processed image is 128 × 128 pixels. The red frame (left panel) indicates the size of the cropped area.
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2.2. Aurora Classification

The processed images were labeled manually. The set of labels used in this study is described below and
illustrated in Figure 3. The visual class definition, used for labeling the auroral images, is written in italic,
followed by a short physical description and/or explanation. The proposed set of auroral labels was easy to
identify under different geomagnetic conditions and applicable to most of the auroral images. In addition,
most labels represent an exclusive production mechanisms or characterize a physical property of the aurora.
Finally, the labels represent auroral forms which are recognizable at different viewing/elevation angles.
Thus, the distribution of the classes is not dependent on the location of the auroral form in the image. This
makes statistical interpretations of the results easier. The edge aurora class is an exception to the location
independence by its definition.

Auroral breakup. Auroral breakup is characterized by bright and large auroral forms which cover most of the
frame. Sample images labeled as auroral breakup are shown in Row 1 in Figure 3. Auroral breakup is an
expansion of bright aurora that includes a variety of different large-scale features (e.g., Nishimura et al.,
2010). It is characteristic to the substorm expansion phase, which is caused by dynamic processes in the
magnetotail (e.g., Xing et al., 2010), leading to enhanced particle precipitation to the ionosphere.

Colored aurora. An image is classified as colored aurora if the aurora, of any shape and form, is clearly not
monochromatic green but has a prominent red, blue or purple emission. Images classified as colored aurora
are presented in Row 2 in Figure 3. The typical precipitation energy and the atmospheric composition in
the altitude range of 90–130 km result in green (557.7 nm) being the dominant color in most aurorae. Dis-
tinct colored aurora occurs when the electron energy distribution has a pronounced low- or high-energy
tail, changing the electron penetration depth into the Earth's ionosphere. Blue and purple auroral displays
are usually seen when electrons penetrate deeper into the Earth's ionosphere, as compared to electrons
causing the green aurora. Red aurora, however, is produced at higher altitudes and characterizes lower
energy electron precipitation.

Auroral arcs. Aurorae with the emission distributed in a single or multiple east-west aligned structure/structures
spanning across the image are labeled as auroral arcs. Row 3 in Figure 3 illustrates samples of arcs. Auroral
arcs run parallel to the auroral oval and the magnetic latitudes (Karlsson et al., 2020). They result from
quasi-static particle acceleration in a region close to the ionosphere (Lysak et al., 2020), and they magnet-
ically map to the plasma sheet. Arcs are typically considered as quiet time auroral forms but exist at all
magnetic activity levels as a basic element of the auroral displays.

Discrete-irregular. Auroral emission appears in broken arcs, north-south aligned arcs, vortical structures, or a
combination of several discrete shapes. Discrete-irregular auroral forms are not as bright and not as large as
auroral breakup forms. Sample images labeled as Discrete-irregular are presented in Row 4 in Figure 3.
The Discrete-irregular class contains a mixture of different physical generation processes which are not
easy to untangle.

Patchy aurora. Patchy aurora is characterized by diffuse aurora consisting of irregular shapes which cover
large portions of the image. The intensity of the auroral emission in this class is weak. Patchy aurora images
are shown in Row 5 in Figure 3. Patchy aurora mainly consists of different pulsating aurora structures
(Nishimura et al., 2020). Diffuse patches are caused by pitch angle scattering of energetic electrons to the
ionosphere. Different plasma waves play a key role in the scattering processes.

Edge aurora. Images with auroral emission occurring only at the edge of the image are labeled as edge aurora.
Sample images are seen in Row 6 in Figure 3. Edge aurora can be any of the auroral classes above but
information about the class is limited by an insufficient number of bright pixels and uncertainty of the
form of the aurora outside the image frame. Thus, not attempting to classify these images as, for instance,
breakup, arcs, or discrete, makes the classifier more robust. The edge aurora label was included as an
additional subclass since the location of the aurora in a set of images is often valuable information for
determining if aurora is drifting northward, southward, eastward, or westward.

Faint clear. Images which are dark without clearly visible aurora are labeled as faint clear. Images labeled as
faint clear are presented in the bottom row of Figure 3. Faint-clear images indicate very weak electron
precipitation and a quiet ionosphere-magnetosphere environment along the field lines overhead.

Images where a mixture of classes existed were labeled by the most dominant feature with priority given
from top (highest priority) to bottom (lowest priority), in the auroral class description. Furthermore, two
additional labels were used for classifying the entire data set: unknown-complicated and rejected. Images
classified as unknown-complicated or rejected were not used for training the networks and are therefore not
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Figure 3. The figure depicts four sample images from each aurora class used for training and testing of the classifiers.
The images are processed according to the four-step processing procedure described in section 2.1. The direction with
respect to the magnetic pole is indicated by the arrows in the bottom right.

presented in Figure 3. The unknown-complicated class was used to exclude images with ambiguous auroral
forms which fitted none or several of the auroral labels without a clearly dominant feature. The rejected
class was used to exclude images with unwanted features, such as clouds and light pollution, which were
not detected in the initial preprocessing stage; see section 2.1.

Two of the authors classified the entire data set, one of the authors labeled the images in consecutive order
and the other in random order. Only the images with agreeing labels were used for training the network.
This was done in order to reduce labeling bias and noise. Thus, a clean training and testing data set was
produced by only using the images with agreeing auroral labels and excluding the images with ambiguous
auroral forms (labeled as unknown-complicated), unwanted features (labeled as rejected), and disagreeing
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Table 1
The Table Summarizes the Image Data Sets Used in This Study

Year Number of images Label Training Test Number of images
2010 479 Breakup 113 33 146 (1.04%)
2011 1,506 Colored 97 36 133 (0.95%)
2012 2,498 Arcs 636 195 831 (5.92%)
2013 0 Discrete 150 44 194 (1.38%)
2014 1,684 Patchy 1,691 459 2,150 (15.32%)
2015 2,835 Edge 167 50 217 (1.55%)
2016 2,037 Faint 146 29 175 (1.25%)
2017 1,733 Unknown-complicated — — 2,630 (18.75%)
2018 996 Rejected — — 1,078 (7.68%)
2019 262 Disagreement — — 6,476 (46.16%)
Total 14,030 Total 3,000 846 14,030 (100.00%)

Note. To the left, the number of auroral images each year that satisfies the initial conditions described in section 2.1
(no clouds, moon below the horizon, and the Sun below −15◦). To the right, the number of training, testing, and
total images per class. Note that images labeled as Unknown-complicated, Rejected, or with disagreeing labels were
not used for training and testing the classifiers.

labels. The clean data set contained 3,846 (27%) of the 14,030 images in the initial data set, spanning over
the Years 2010 to 2019. Finally, the clean data were split into a training and test data set. The training set
contains 3,000 images and was used for training the classifiers, while the testing set contains 846 images
and was used as an independent test set to evaluate the performance of the classifier. The number of images
each year and in each label is presented in Table 1 along with number of images in the training and test sets.
Note that although 46% of the images had disagreeing labels, the most disagreement was whether or not an
image was suitable for training/testing. The experts agreed on 95% of the labels on images that both experts
considered suitable for training/testing (i.e., both experts labeled as breakup, colored, arcs, discrete, patchy,
edge, or faint), as illustrated in Figure 3.

The motivation for constructing a clean data set is to avoid “confusing” the network by using ambiguous
images during training and testing. Note that labels defined in auroral observers classification guides, such
as the labels proposed in the International Auroral Atlas (IAA, C.D.W., 1964), were not applicable for train-
ing and testing of our data set. The studied data set is not large enough to reliably train and test networks
with numerous (>10) and very specific auroral subclasses while still maintaining an acceptable number
(∼100) of training images. In addition, labels defined by the temporal characteristics of the aurora cannot
be implemented in our study since all considered classifiers are time invariant.

The labels containing less than ∼100 training images is at the lower limit for network training. Note that
an insufficient number of training images might cause nonconvergence during training of the classifier. In
the early stages of the study, some readjustment of the classes was necessary to ensure there were enough
representative samples for the anticipated classes. There were also some false starts, where preselection (i.e.,
removal of images based on other criteria, such as the presence of the moon) caused some classes to be too
few in number.

2.3. DNNs

In machine learning, an object is commonly described by a set of values referred to as features. For images,
these features are the raw pixel values of the image. Machine learning algorithms seek to find patterns in
the given set of features such that some task can be solved in an optimal way. Determining what features to
present the algorithm is crucial in designing a good algorithm. Historically, the main approach has been to
design methods that extract features from raw data that are assumed to provide good discriminative power
(Guyon & Elisseeff, 2003). However, the design of such features can be challenging and might require a sig-
nificant amount of domain knowledge. In contrast, DNNs automatically learn which features in the training
data are important to solve the desired task (LeCun et al., 2015). The DNNs achieve this automatic extraction
by transforming the data through a cascade of nonlinear transformations, which results in a representation
that is suited for the problem at hand. Each transformation is commonly referred to as a hidden layer, which
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contains parameters that must be optimized. These parameters are optimized using gradient descent, where
the gradients are obtained through the back propagation algorithm (Theodoridis & Koutroumbas, 2009b).

Currently, there exists a vast amount of different DNN architectures. This study focuses on some widely
used and well-known architectures, as the goal was to demonstrate that DNNs can be effective in auroral
classification. The following DNNs were used for classifying the aurora images:

• VGG: A widely used family of convolutional neural networks (CNNs) that have demonstrated a high
performance on a number of tasks (Simonyan & Zisserman, 2014). Dropout (Srivastava et al., 2014) was
included to regularize the model. Later versions also included batch normalization (Ioffe & Szegedy,
2015). Different versions of the VGG can be created by adding more layers to the network. In this work,
we evaluated two versions of the VGG. First, the 16-layer version titled the VGG-16, then the 19-layer
version named VGG-19.

• AlexNet: Often considered the breakthrough of deep learning, AlexNet is a CNN consisting of five con-
volutional layers and three fully connected layers (Krizhevsky et al., 2012). Each layers is followed by a
Rectified Linear Unit (ReLU) activation function. Similarly with VGG, Dropout was included to regularize
the model.

• ResNet: Residual networks (ResNets) (He et al., 2016) include skip connections between the hidden lay-
ers of the networks. Such skip connections ease the flow of gradients in the network (Balduzzi et al., 2017)
such that more hidden layers can be included in the network, a process that has shown to increase per-
formance. As with the VGG, adding more layers results in different version of the ResNet. In this study,
we evaluated two versions of the ResNet. First, the 18-layer version titled ResNet-18, then the 50-layer
version named ResNet-50.

• Clausen and Nickisch (2018) approach: Additionally, we evaluated the performance of the approach used
by Clausen and Nickisch (2018). Clausen and Nickisch (2018) used a pretrained deep learning model, an
inception model (Szegedy et al., 2017), as a feature extractor that was combined with a linear classifier.

All models were trained using a cross-entropy loss and the Adam optimizer (Kingma & Ba, 2015). The
models were developed using the deep learning framework Pytorch (Paszke et al., 2017) on a Tesla K80 GPU.

3. Results
This section presents the classification scores for the KNN method, the SVM method, and six different deep
learning-based models on the aurora data set. Further, the confusion matrix and the presoftmax represen-
tation obtained by the highest performing model is visualized. Examples of images that were incorrectly
classified by the highest performing model are shown and discussed. Lastly, a comparison between the class
wise accuracy of a deep learning-based approach to a traditional machine learning approach is presented.

This study evaluates all classifiers by calculating the precision, recall, and F1 score. Precision is defined as
follows:

Precision =
true positive

true positive + false positive
, (1)

and measures the classifiers ability for not labeling positive samples as negative. A true positive is when
the model correctly predicts the positive class. A false positive is when the model incorrectly predicts the
positive class. Recall is defined as follows:

Recall =
true positive

true positive + false negative
, (2)

and measures the classifiers ability to find positive samples. A false negative is when the model incorrectly
predicts the negative class. F1 score is defined as follows:

F1 = 2 ·
precision · recall
precision + recall

(3)

and acts as a weighted average of precision and recall.
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Table 2
The Table Summarizes the Precision, Recall, and F1 Score for Different Classifiers on the Aurora Data Set

Algorithm Precision Recall F1 score # of parameters (M)
3NN 0.84 ± 0.0 0.56 ± 0.0 0.58 ± 0.0 0
5NN 0.66 ± 0.0 0.54 ± 0.0 0.53 ± 0.0 0
Linear SVM 0.78 ± 0.0 0.70 ± 0.0 0.72 ± 0.0 ≈0
Clausen and Nickisch (2018) 0.88 ± 0.01 0.87 ± 0.01 0.88 ± 0.01 43
VGG-16 0.84 ± 0.02 0.80 ± 0.03 0.81 ± 0.02 138
VGG-19 0.82 ± 0.04 0.78 ± 0.03 0.79 ± 0.03 143
AlexNet 0.88 ± 0.03 0.88 ± 0.03 0.87 ± 0.03 60
ResNet-18 0.92 ± 0.02 0.87 ± 0.05 0.89 ± 0.04 11
ResNet-50 0.92 ± 0.03 0.89 ± 0.04 0.90 ± 0.03 25

Note. The reported scores are the average over 10 runs with different random initialization. The last col-
umn lists the number of parameters, in millions, for each classifier, rounded to the nearest whole million.
The bold entries mark the highest performance.

3.1. Comparison of the Classification Performances

The performance results of the six deep learning-based models described in section 2.3 are displayed in
Table 2. Additionally, a baseline using two well-known machine learning classifiers is provided, namely, a
KNN classifier (Theodoridis & Koutroumbas, 2009a) and a SVM classifier (Cortes & Vapnik, 1995). For both
classifiers, the histogram of oriented gradients method (Dalal & Triggs, 2005) is used for extracting features
from the images. For the KNN classifier, the results when considering the three and five nearest neighbors
are reported. For the SVM, the results are for where a linear kernel is utilized. All deep learning-based models
outperform the KNN and SVM baseline. The ResNet-50 achieved the highest score across all metrics.

Figure 4. The figure shows the confusion matrix for the ResNet-50 network on the test data. The diagonal displays the
percentage of correctly classified images for each class, that is, images where the network automatically classified an
auroral image similarly to the manually labeled test data. The off-diagonal elements show the percentage of images
from a given class erroneously classified as another class. The results show that the model achieves a high accuracy on
most classes, but has some difficulties with separating colored aurora and discrete-irregular aurora.
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Figure 5. The figure presents the presoftmax representation of the aurora test data produced by the ResNet-50 network
and projected down to two dimensions using T-SNE. Images from some of the classes are also displayed in the plot.
The figure shows that the model has found a suitable representation where the classes are clustered together and are
easily separable.

Figure 4 shows the confusion matrix for the ResNet-50 on the test set of the aurora data. From this figure,
it is evident that some classes are well understood by the network. Specifically, almost all samples from the
auroral arcs, patchy aurora, edge aurora, and faint-clear classes in the test set are classified correctly. On the

Figure 6. This figure depicts test images that were incorrectly classified by
the ResNet-50 network. (top left) Auroral breakup classified as arcs. (top
right) Colored aurora classified as discrete-irregular. (bottom left) Edge
aurora classified as arcs. (bottom right) Patchy aurora classified as
discrete-irregular. All images are processed according to the four-step
processing procedure described in section 2.1.

other hand, the colored aurora is more challenging and is partly
classified as discrete-irregular aurora. Also, both auroral breakup and
discrete-irregular are partly classified as auroral arcs.

3.2. Details of the Highest Performing Model (ResNet-50)

Figure 5 displays a two-dimensional presoftmax representation of the test
data of the aurora data set, produced by the ResNet-50. The representation
was projected down to two dimensions using the t-distributed stochastic
neighbor embedding (T-SNE) dimensionality reduction technique
(van der Maaten & Hinton, 2008). The figure also contains some examples
of the actual images that are represented by the two-dimensional points.
It is from this representation that the network determines what class to
assign a sample image to. From this figure, it is clear that some classes
are well separated from the other classes. For instance, the cluster of
edge aurora and the cluster of faint-clear samples toward the rightmost
part of the figure are compactly represented and well separated from the
other classes. However, some classes are more mixed together, which
corroborates the findings in Figure 4.

Figure 6 shows four examples of incorrectly classified images from the
auroral test data. The incorrect classifications are generally sensible, and
it can be seen how the algorithm may have opted for the incorrect classi-
fication. Possible interpretations are as follows: Figure 6 (top left) shows
auroral breakup classified as arcs; although the breakup is imminent, the
image is still dominated by the bright arc. Figure 6 (top right) shows col-
ored aurora classified as discrete-irregular aurora; the distinction of color
is subtle compared to other colored aurorae in the training set. Addi-
tionally, the strong non-east-west feature in the top right is found in
discrete-irregular aurora cases. Figure 6 (bottom left) shows edge aurora
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Figure 7. The figure shows the class wise accuracy comparison between a 3NN-classifier and the ResNet-50 network.
The figure illustrates how the deep learning-based model outperform the traditional machine learning method in
locating all classes. The ResNet-50 classifier handles particularly the breakup, colored, and discrete aurora classes
much better than the KNN-classifiers.

classified as arcs; in fact, this is an arc, but it is on the edge of the field of view. The intensity of the arc is not
high, so the brightness in the corners is not sufficient for the algorithm to opt for that class. Figure 6 (bottom
right) shows patchy aurora classified as discrete-irregular; there is a sharp edge feature in the center-top of
the image, which is generally not present in patchy aurora cases.

To examine what type of images the deep learning-based models are capable of recognizing compared to the
traditional machine learning approach, we compare the class wise accuracy of the 3NN-classifier and the
ResNet-50. Figure 7 displays the class-wise accuracy on the test images of the aurora data set. The accuracy
of some classes is comparable between the two methods, but particularly for the auroral breakup, colored
aurora, and discrete-irregular auroral classes it is clear that the deep learning approach is superior. These
classes are typically more challenging to recognize, which seems to suggest that the deep learning-based
approach is capable of identifying more complicated structures in auroral images.

4. Discussion
In this study, the DNNs generally outperformed the KNN and SVM techniques. Overall, from the presented
results in Table 2 where several architectures, namely, the Clausen and Nickisch (2018) method, AlexNet,
ResNet-18, and ResNet-50, achieved close to 90% average precision, infer that aurora classification is a suit-
able task for DNNs. It has been demonstrated that it is possible to classify specific auroral forms such as
auroral arcs, edge aurora, patchy aurora, and faint clear with a high precision (>90%), as seen in Figure 4. The
networks were in general less successful in classifying auroral breakup, colored aurora, and discrete-irregular
aurora, likely reasons are too few and/or too ambiguous training images. In addition, from Figure 5 it is
clear that colored aurora has an overlap with discrete-irregular aurora. This overlap occurs when the aurora
does not have a clearly pronounced colored emission. Note that it might be possible to achieve a higher
label separability using unsupervised clustering methods. However, an additional goal of this study was to
define auroral labels that represents exclusive production mechanisms or characterize physical properties
of the aurora when possible. The resulting clusters attained by an unsupervised clustering method will most
likely not satisfy this goal. An unsupervised classifier might therefore not be applicable for most scientific
purposes where the aim is to study the physics of the aurora and its production mechanisms.

The DNN architectures VGG-16 and VGG-19 had the worst performance. These models have a significantly
higher amount of parameters, as presented in Table 2, and it might be that the data set is not large enough
for training models of such a size. Also, the ResNet models are generally known to outperform AlexNet and
the VGG-based models (He et al., 2016), often attributed to their ability to propagate gradients effectively
even for very deep networks (Balduzzi et al., 2017).

Clausen and Nickisch (2018) used a pretrained DNN to extract features and then trained a linear classifier
using these features. This means that the parameters of the pretrained DNN are not optimized for handling
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auroral images but for other types of images. In contrast, the models used in this study, VGG, AlexNet,
and ResNet, are only trained using auroral images. From Table 2 it is evident that the pretrained approach
gives better performance than the traditional machine learning algorithms but does slightly worse than the
best DNNs trained on only auroral images. This suggests that training the models specifically for classifying
images of aurora might improve their capability to detect different types of aurora. However, a larger data
set is needed to validate this proposition.

An analysis of the network performance on data from other cameras still remains to be done. Note that the
color sensitivity of the detector, presented in Figure 1, is a camera-specific feature. Thus, the RGB images
acquired by other cameras should be adjusted to account for the differences in the wavelength-dependent
light response before being used by the classifier. In addition, the training and testing was done using images
without clearly ambiguous images, as described in section 2. Hence, a proper analysis of how ambiguous
images is classified also needs to be investigated. The network will ideally classify the most dominant auroral
feature. However, an evaluation of the performance on ambiguous images will itself be subject to biases and
subjective interpretations, as described by McKay and Kvammen (2020). It is irrational to expect a DNN to
classify ambiguous images correctly if not even auroral experts can agree on what the correct label is. Thus,
a common consensus about the auroral morphology and the criteria for each class needs to be introduced
before progress can be made on classifying ambiguous images. Alternatively, one could interpret ambiguous
auroral images as a mixture of more common classes (e.g., auroral breakup, arcs, and patchy aurora) and
label ambiguous images with multiple classes.

Future endeavors in aurora classification with DNNs should investigate the dimension space using different
cameras and auroral events, for instance, by T-SNE maps. Further improvements to the classifier can likely
be achieved by including the time dimension. The time dimension information can be included by combin-
ing the CNNs with recurrent neural networks (RNNs) or by using the CNNs directly on a data set consisting
of labeled stacks of consecutive images with, for example, ∼10 images in each stack, the appropriate number
of images in each stack depends on the imaging frequency, the exposure time, and the field of view. The
inclusion of the time dimension also allows for classifying labels with a distinctive temporal behavior
(e.g., pulsating aurora). From the data set used in this study, it can be concluded that images labeled as
colored aurora and discrete-irregular are not well separated by the classifiers. Other labeling sets should
therefore be considered. It should be noted that classifying colored aurora is of particular interest for detect-
ing exciting phenomena such as sunlit aurora (Shiokawa et al., 2019; Størmer, 1929), stable auroral red
(SAR) arcs (Mendillo et al., 2016; Rees & Roble, 1975), and Strong Thermal Emission Velocity Enhancement
(STEVE) (Gallardo-Lacourt et al., 2018; MacDonald et al., 2018), which are characterized by pronounced
colored emissions. In addition, both auroral arcs and patchy aurora achieved a high precision and are
common auroral forms. Subdividing these classes, for instance, arcs into single arc and multiple arcs, might
therefore be advantageous. Furthermore, auroral omega bands are quite common and distinctive auroral
forms (Partamies et al., 2017) which might be possible to classify with a high precision.

5. Conclusion
This paper presents the results of an extensive study of automatic aurora classification using different
machine learning techniques. Seven auroral classes were considered: auroral breakup, colored aurora, auro-
ral arcs, discrete-irregular, patchy aurora, edge aurora, and faint-clear. The classifiers were both trained and
tested on clean colored (RGB) auroral images, without clearly ambiguous auroral forms and unwanted fea-
tures, such as clouds and light pollution. Six DNN architectures were tested along with the well-known
machine learning classifiers KNN and SVM. The ResNet-50 DNN architecture achieved the highest perfor-
mance with an average classification precision of 92%.

Overall, the conclusion is that automatic auroral image classification is a suitable task for DNNs. The DNNs
generally outperformed the KNN and SVM techniques. However, progress in this field of study is con-
strained by biases and subjective interpretations (McKay & Kvammen, 2020). It is irrational to expect the
DNNs to classify an auroral image correctly if auroral researchers cannot agree on what the correct aurora
label is. High precision (>90%) classification of clearly ambiguous auroral images can therefore not be read-
ily achieved before a common consensus about the auroral morphology and the criteria for each class is
established. The use of data without clearly ambiguous auroral forms for automatic aurora classification,
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mainly labeled into physically meaningful definitions, might be the first step in sorting auroral structures
in a morphological space.

Data Availability Statement
The image data archive are freely accessible at https://www2.irf.se/allsky/data.html, and the processed
image data set and code used in this paper are available online (at https://dataverse.no/dataset.xhtml?
persistentId=doi:10.18710/SSA38J).
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Abstract. The machine-learning research community has fo-
cused greatly on bias in algorithms and have identified differ-
ent manifestations of it. Bias in training samples is recog-
nised as a potential source of prejudice in machine learn-
ing. It can be introduced by the human experts who define
the training sets. As machine-learning techniques are being
applied to auroral classification, it is important to identify
and address potential sources of expert-injected bias. In an
ongoing study, 13 947 auroral images were manually classi-
fied with significant differences between classifications. This
large dataset allowed for the identification of some of these
biases, especially those originating as a result of the er-
gonomics of the classification process. These findings are
presented in this paper to serve as a checklist for improving
training data integrity, not just for expert classifications, but
also for crowd-sourced, citizen science projects. As the ap-
plication of machine-learning techniques to auroral research
is relatively new, it is important that biases are identified and
addressed before they become endemic in the corpus of train-
ing data.

1 Introduction

Each year, the all-sky cameras in the Arctic and Antarc-
tic regions collect several million images of the sky. These
contain a plethora of atmospheric and astronomical phenom-
ena including, of particular interest to the authors, manifes-
tations of the aurorae. Auroral emissions are excited when
charged particles from the magnetosphere enter the iono-
sphere and collide with atoms, molecules and ions in the
ionosphere. The flux of energetic charged particles entering

the ionosphere is dependent on solar wind as well as mag-
netospheric and ionospheric conditions. Different conditions
will result in different auroral features; thus, the auroral sky
acts as a window into the otherwise obscure solar wind–
magnetosphere–ionosphere environment. Having computer
algorithms to pick out interesting features, or features that
have potential for scientifically interesting phenomena, is
helpful for scientists in auroral research.

Examination of what can be done using machine learn-
ing for such interests has been pursued, and there are other
groups doing the same. Ideally, autonomous software would
take a set of images and identify those which contain aurorae
and, in these cases, which morphological types are present
(break-up, arcs, discrete, patchy etc.).

Yet, although algorithms for the identification of visual
features have made remarkable progress, these tend to be
“exceptionally data-hungry”. It is well-established that it is
expensive and tedious to produce large, labelled training
datasets, especially in cases in which expert knowledge is
required (e.g. Yu et al., 2015).

Although initial attempts have been made to undertake au-
tomatic auroral classification, these have not been particu-
larly successful (low prediction rates) or useful (high accu-
racy, but the categories are so broad as to not really be of
significant benefit). Those programmes which have demon-
strated success have focused on very specific subgroups (e.g.
Yang et al., 2019).

Part of the problem with low success rates for prediction is
the presence of prediction bias (e.g. Domingos, 2000). This
can be attributed to various causes, such as the following.
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– Noisy training data

– An incomplete feature set

– Strong regularisation

– Algorithmic errors

– Biased training samples

In order to address these issues, a programme was undertaken
to improve the reliability of machine-learning results (Kvam-
men et al., 2020a). In addition to using more up-to-date
machine-learning methods, attention was paid to the provi-
sion of a comprehensive dataset for training the algorithms.
As a part of this process, it was deemed important to remove
sources of bias in the classification of the training dataset.
Following some preliminary work with small samples of
both greyscale and colour images, a main classification run
was undertaken.

As the differences between the classifications of informed
researchers were significant, the findings are presented here.
It is intended that they will serve as a reference point for other
endeavours in the development of machine-learning training
and test sets for auroral research, but also for any other field
in which machine-learning image recognition is developed
from specialised sets categorised by subject experts. The pa-
per concludes with a discussion, including references to sim-
ilar work from other disciplines and suggestions for future
work.

2 Methodology

Images from the Kiruna all-sky camera (location: 67.84◦ N,
20.41◦ E; 425 m above mean sea level; operated by the
Swedish Institute for Space Physics) were used. The cam-
era is a Nikon D700 with a Nikon Nikkor 8 mm 1 : 2.8 lens
giving an almost 180◦ field of view. The exposure time is
6 s taken automatically on each minute. To ease data trans-
fer rates and processing the “quick-look summary” JPEG
images (720 × 479 pixels) were used, rather than the full-
resolution images. Approximately 300 000 of these images
from nine winter seasons were filtered down to a set of 13 947
for human classification (by removing cloudy, moonlit and
twilight images). A 3 × 3 median filter was applied to fil-
ter out points (stars, defective pixels, etc.), then the data
were binned using a 2 × 2 averaging window to reduce the
size of the images for neural network training. The central
128 × 128 pixels were then selected. This removes the hori-
zon, where distortion is more pronounced and where light
pollution and atmospheric effects are typically found. Ad-
ditional information about the pre-processing and machine
learning is reported in Kvammen et al. (2020a).

Two auroral physicists each classified these 13 947 pro-
cessed images by hand using different software implemen-
tations (one using Python, the other using MATLAB). The

motivation to do this was based on knowledge of the differ-
ent systems (thus making self-maintenance of the code possi-
ble) and as a way of working independently to ensure robust
results.

The classification was done according to nine possible
classes. The labels are listed in Table 1 along with a brief
description of each label; a more thorough description of the
labels and the labelling procedure is available in Kvammen
et al. (2020a). These classes were the result of several iter-
ations of planning, whereby the two experts, together with
a machine-learning researcher, identified categories which
would be scientifically useful, possible to discern with a rea-
sonable algorithmic network and suitable for the sample size
available. Sample images (after pre-processing) illustrating
each auroral label are presented in Fig. 1.

After comparison of results, it was found that the experts
only agreed on 54 % of the images, with the most disagree-
ment being on which images were suitable for training and
which had an aurora with an unknown and/or complicated
form. When it was agreed that the image was suitable for al-
gorithm training, the experts agreed on 95 % of the labels.
By only using the images with agreeing auroral labels (i.e.
bother experts independently reached the same classification)
and by excluding the images with ambiguous auroral forms,
unwanted features and disagreeing labels, a clean training
dataset was produced at the price of excluding approximately
73 % of the 13 947 images in the initial dataset. The exper-
imental results of the labelled dataset, as derived from the
machine-learning study, are not considered in this paper but
are presented in Kvammen et al. (2020a).

3 Ergonomic categories

The comparison of the classifications for both the trials and
the main classification run allowed for the identification of
emerging biases based on the approach each researcher took
to identify the aurorae in the images. These biases are a result
of the levels of comfort (physical and cognitive) that exist
during a classification process, leading to the term “classifi-
cation ergonomics”. Those identified as part of this study are
shown in Table 2 and are discussed in the subsequent sec-
tions.

3.1 Physical comfort bias

The classification of the aurorae in the main study was a nine-
class system. Given the designations, the number keys were
the obvious choice, and the classification software used these
either on the main keyboard (0–8) or the numeric keypad
(KP0–KP8). In the case of a mistake, it was possible to go
back to the previous image, and the backspace key was used
to accomplish this. This key configuration is shown in Fig. 2.

The first bias that was noted was the inconvenience of the
backspace for making corrections. This required moving the
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Table 1. The set of aurora labels used for the classification run.

Label no. Label Description

0 Auroral break-up Bright auroral forms that cover most of the image
1 Coloured aurora The auroral emission is clearly not monochromatic green
2 Auroral arcs Auroral structures with clear east–west-aligned form
3 Discrete–irregular A combination of broken arcs, north–south-aligned arcs and vortical structures
4 Patchy aurora Aurora appears as irregular blobs or stripes on a diffuse background
5 Edge aurora Auroral emission only at the edge of the framed image
6 Faint–clear Auroral emission is not clearly visible
7 Unknown or ambiguous Aurora does not fit any of the labels above or is a mixture of several labels
8 Rejected The image is not suitable for training due to e.g. light pollution, clouds, noise

Figure 1. Sample images of each label. The direction with respect to the magnetic pole is indicated by the arrows at the bottom right. The
rejected images at the bottom left are rejected due to, from left to right, a person in the bottom left corner, lidar emission and passing aircraft.
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Table 2. A set of biases that may affect user classification.

Physical comfort bias
Data contrast bias
Environment contrast bias
Repetition bias
Learning bias
Feature bias
Ambiguity bias
Expert knowledge bias

Figure 2. The original right-hand key set for classification. The
grey-shaded keys were used for the classification.

right hand completely away from the rest position where the
fingers hover over the KP4, KP5 and KP6 keys on the key-
pad. As this was awkward, there was a perceptible reluctance
to make corrections. Thus, the KP-DECIMAL (to the right of
the KP0 key) was used as an alias.

After several hundred classifications, discomfort was ex-
perienced, even with the keyboard rotated 10–20◦ anticlock-
wise to make the keys suit the angle of the right hand. As a re-
sult, some testing was also done with more comfortable key
arrangements. This resulted in a basic WASD configuration
being used. WASD refers to the directional (move forward,
backward, left and right) keys as used in FPS (first-person
shooter) computer games.

This configuration is shown in Fig. 3, where the coloured
circles show the at-rest position of the fingers (keys A, S and
D), with the arrows showing easy-reach positions. The left
thumb rests on the space bar. The little finger typically can
reach the shift and control keys (as a modifier; in FPS games
this might be e.g. run and crouch) but were not used here. The
actual keys that were used for the classification are shaded in
grey.

Additionally, the keyboard was rotated 10–15◦ clockwise
to match the natural angle of the left wrist and hand, as shown
in Fig. 4. This was used for most of the classification work,
and no discomfort was experienced.

Figure 3. A left-hand key set for classification. The coloured cir-
cles show the at-rest position of the fingers, with the arrows show-
ing easy-reach positions. The grey-shaded keys were used for the
classification. See also Fig. 4.

Figure 4. Hand position for the left-hand key set, with the keyboard
at an angle of 10–15◦ to minimise finger reach strain.

3.2 Data contrast bias

If the classifier has just seen a faint, patchy aurora, then a fol-
lowing faint, patchy aurora is likely to be classified the same.
If the preceding image was a bright break-up, then it is more
likely for the faint, patchy aurora to be classified as blank.
In the initial parts of the study, attempts were made to miti-
gate this by normalising the image scale of all images. This
was not readily achieved with colour images and thus not
pursued. In the study, the classifications were done both ran-
domly and chronologically by the two experts. Repeated,
random classification would be best but was not possible
within the time limitation of the project. The chronological
classification allows knowledge of the substorm process to
be applied to obtain a more reliable result, although this in-
troduces anticipation of the phenomenon rather than an ob-
jective evaluation of each image on its own characteristics
(Sect. 3.8).
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Figure 5. Example of environment contrast. The central bar may
seem to be a gradient, but it is uniform in shade. Cover the surround-
ing (real) gradient with paper of uniform colour to demonstrate this.

3.3 Environment contrast bias

Humans naturally retain perceptual constancy. This allows
visual features to be discerned against a noisy or changing
background: a trait that is useful to all animals in a hunter–
prey scenario, for instance. However, this human trait of
retaining perceptual constancy results in optical illusions.
Colour constancy and brightness constancy will cause an il-
lusion of colour or contrast difference when the luminosity
or colour of the area surrounding an object is changed. The
eye partly does this as a result of compensating for the over-
all lighting (change in the iris aperture), but the brain also
compensates for subtle changes within the field of view. An
example of this is shown in Fig. 5.

Originally, the software presented the image with a white
border (the default for the plotting software). However, the
contrast made it difficult to discern the difference between
features which were faint but still recognisable and those
which were sub-threshold for visual identification. Hence,
the figure background was changed to black. This made it
easier to discern the borderline cases.

The environmental conditions beyond the computer screen
were also significant, with differences in the ambient light-
ing and room brightness being an issue. This was noted, and
consistency in the arrangements for the process is likewise
recommended for future studies.

3.4 Repetition bias

It is more comfortable to press the same button twice than
to press two different buttons. Additionally, if a mistake is
made, it is extra effort to go back and correct it. This “lazi-
ness” accumulates during the classification process, making
long sessions problematic.

For example, if there are 10 similar images in a row, the
chance of classifying number 11 in the same way is higher
than if there were 10 random images first. In the study
single-repetition bias was 27 %, rising to 40 % for double-
repetition bias. It can be mitigated with randomisation (but
see Sect. 3.2), whereby different experts are presented with
a different random sequence of images. Discrepancy between
classifications can then be investigated or the images dis-
carded.

3.5 Learning bias

If there are lots of categories, the classifier may not nec-
essarily hold all of them in mind. Thus, some “sectors” of
the classification may have a higher activation energy than
others. For example, when classifying hundreds of arcs and
patchy aurorae and then getting a discrete case, the classifier
may subconsciously think “it is not patchy, so it must be an
arc”, thereby inadvertently omitting the thought of a different
class. This is a recency effect (whereby a new classification
is biased toward the set of most recently used labels) which
has been reported in the biological sciences (Culverhouse,
2007). Randomisation can be used, but re-classification can
also be employed to test for variation due to learning.

3.6 Feature bias

The classifier is more likely to get the classification of
a prominent feature correct than faint or diffuse features. This
leads to a form of confusion bias; e.g. what to do with a bright
discrete aurora (Class 3) on a background of diffuse patchy
aurora (Class 4).

There is also positivity bias, whereby identification is bi-
ased by prior expectations (Culverhouse, 2007). In auroral
classification, the substorm progression (development of the
auroral display) makes it possible to anticipate the next im-
age. This is partially mitigated by randomising the samples,
but this can lead to contrast bias (Sect. 3.2).

3.7 Ambiguity bias

Ambiguity bias occurs when there is confusion as to what
a particular image may be. This is exacerbated by feature
bias (Sect. 3.6). However, even in cases in which there is no
dominant feature, the classifier will tend to subconsciously
identify some feature and latch onto it to the exclusion of
other features in the image. For the main study, it was de-
cided that ambiguous images should be rejected to make the
learning environment clearer for the machine-learning algo-
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rithms – thus, such ambiguities were undesirable. What was
noted was that, especially early in the study, the users would
tend to try to classify the auroral image rather than reject it.
When it was clear that there was no shortage of data, this
tendency was reduced.

Nevertheless, it is recommended that there is a clarification
of classification rules, making it clear what the user should
do in a case of mixed features. If there is a precedence or
priority of forms, then that should also be made very clear.
Even so, ambiguities and borderline cases will remain. When
data volume allows, these could be discarded.

3.8 Expert knowledge bias

Differences in “expert knowledge” that affect the results have
also been seen. For example, although the two expert re-
searchers involved are knowledgeable in auroral physics and
its optical manifestation in general, one had done research
on auroral arcs, whereas the other had not. The specialist was
more picky on the arc classification (classifying 15 % fewer),
partially as a result of having a deeper understanding of the
underlying physics but also partly in terms of having seen
many more images prior to approaching the classification
task. This led to a higher level of discernment on that par-
ticular category. This can be mitigated by establishing clear
guidelines and “recognition cards” to assist the classification
process. In cases in which there is ambiguity or disagree-
ment, revision of the characteristics being used to do the clas-
sification can be carried out and re-classification done where
necessary.

4 Discussion

The application of machine learning to auroral classification
is an area in which only a few studies have been carried out.
However, development is now progressing rapidly and it is
likely that it will be applied much more and become an im-
portant part of auroral research in the future. Therefore, it is
vitally important to properly address the ergonomics and bi-
ases sooner rather than later in order to avoid inadvertently
introducing errors and biases early in the establishment of
this new area of science.

Discrepancy between expert classifiers has been reported
before. A previous auroral study had two experts that agreed
on the class in about 70 % of the images, and the experts
chose the unknown class in almost 50 % of all images (Syr-
jäsuo et al., 2007). However, an analysis of potential reasons
for the discrepancy was not included. Similarly, a biologi-
cal study found that trained personnel achieve 67 % to 83 %
self-consistency and 43 % consensus in expert taxonomic la-
belling tasks, with those routinely engaged in particular dis-
criminations returning accuracies in the range of 84 % to
95 % (Culverhouse et al., 2003).

It is surmised that, in addition to ambiguity over the con-
tent, there is an ergonomic factor that contributes to classifi-
cation bias. In any general image classifications (e.g. car vs.
house or tree vs. dog), common knowledge, massive samples
of people doing the training, and clear-cut distinctions be-
tween the objects make it easier (although not completely) to
avoid subjective bias or even prejudice. But when the clas-
sification is being done by a small number of experts with
built-in knowledge and subject background, then the training
set can readily become subject to inadvertent bias. However,
as a specialist field, there may be no choice. The general pub-
lic may not be able to know the difference between auroral
types (at least not without some training, itself subject to in-
terpretation).

Four key human traits that affect classification perfor-
mance are (a) a short-term memory limit of five to nine items,
(b) boredom and fatigue, (c) recency effects whereby a new
classification is biased toward the set of most recently used
labels, and (d) positivity bias, wherein identification is biased
by prior expectations (Culverhouse, 2007). Ambient noise,
high ambient temperature, difficulty of discerning auroral
features, and lack of sleep decrease performance. Addition-
ally, attention should be paid to error analysis and associ-
ated quality metrics to weight not just algorithms, but also
human-based classification according to performance (Zhu
et al., 2014).

As a recommendation for future studies, classifying im-
ages in random and chronological order could be supple-
mented by a classification in reverse chronological order,
with an examination of the results for potential hysteresis
in the category selected. Specifically designed experiments
could also be devised to test different biases in isolation.
Ideally, these would be more generic, applying to machine-
vision training more generally rather than the specific aurora
case presented here.

5 Conclusions

Ergonomics refers to the design factors intended to improve
productivity by reducing the fatigue and discomfort of the
user. As part of the ongoing study, the trade-off between
user fatigue and scientific bias is considered. When consid-
ering the training of a classification scheme, it is important
to reconcile the aspects of the task which cause scientific
bias but which improve overall efficiency. Given the nature of
large classification programmes, removing sources of repeti-
tive and cognitive strain not only serve to improve the work-
ing condition of the user, but also assist in ensuring that no
work environment bias is injected into training datasets that
are later used for classification. The items presented in Ta-
ble 2 serve as a checklist for researchers who are working in
machine learning.

This is of particular use for specialist fields (such as auro-
ral research), in which it is necessary to use a small number
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of experts to train algorithms. Consensus on any given clas-
sification is important in reducing errors in the training set,
yet it is typical for experts to operate in very small teams or
even alone. Addressing these issues will help future studies
find a balance between the statistical effectiveness of large
samples and the potential for scientific bias which may result
from inappropriate ergonomic design that facilitates large
sample classifications. This is particularly important for au-
roral research, in which the application of machine learning
is relatively new, and there is much potential for misguided
research on the grounds of biased input data.
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Lumikot: Fast Auroral Transients During the Growth
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Abstract The development of a magnetospheric substormmay be classified into three phases: growth,
expansion, and recovery. The growth phase is important as it includes processes that lead to the expansion.
In a recent growth-phase study, a type of fast discrete auroral transient phenomena—referred to as
Lumikot—were observed. The Lumikot are several kilometers across and move in the high-energy
precipitation region, parallel to the main growth-phase arc, with both east-west and west-east directions of
travel during the same event. Their apparent transverse movement and quasi-stable intensity make them
distinct from cooccurring optical pulsating aurorae. Comparison to other studies show that they occur in
the cosmic noise absorption region and it is likely that the Lumikot are colocated with high-energy particle
populations on the boundary between the outer radiation belt and the plasmasheet.

1. Introduction

An auroral substorm takes place in a se quence of three phases: the growth, expansion, and recovery phase.
The initial stage of the substorm is the growth phase, lasting 1–2 hr (McPherron, 1970). During this time, a
narrow, east-west aligned growth-phase arc drifts equatorward and brightens prior to the poleward expan-
sion at the substorm onset. The expansion phase is accompanied by an increase in high-energy particle
precipitation (Wing et al., 2013), which originates from the plasma sheet (Wing et al., 2013). Lower-energy
electrons (<10 keV) cause the optical emission, while higher-energy electrons penetrate deeper in the
atmosphere and can be detected via cosmic (radio) noise absorption (CNA).

The main growth-phase arc is discrete aurora. However, a broad region of diffuse emission often exists on
the equatorward side of this arc, shown to be proton aurora (Ono et al., 1987). The relationship between the
discrete and diffuse emission was studied by McKay et al. (2018). They found an arc of CNA equatorward of
the optical emission and containedwithin diffuse aurora. The offset between the growth phase and the CNA
arc is nearly uniform during the equatorward progression of the growth-phase arc. McKay et al. (2018) also
observed optical pulsating aurora between the diffuse emission and the main growth-phase arc, colocated
with CNA. In the same study, fast-moving auroral patches were seen to traverse the sky, in the same region
where the optical pulsations later appeared. These patches are referred to as Lumikot (singular: Lumikko,
from the Finnish word for weasel).

This paper characterizes the Lumikot precipitation and their appearance. In particular, the particle pre-
cipitation source region is inferred by estimating the altitude and position of the Lumikot with respect to
the growth phase and CNA arc. Furthermore, the plasmasheet projection of the Lumikot is approximated
by employing the Tsyganenko T96 magnetospheric model. The association between the Lumikot and the
optical aurora pulsations is discussed as well.

2. Instrumentation

For this study, two instruments of the Finnish Meteorological Institute's All-Sky Camera (FMI-ASC) net-
work were used, located at Kilpisjärvi (20.78◦E, 69.05◦N, elevation 480 m) and Abisko (18.82◦E, 68.36◦N,
elevation 370 m). The FMI-ASCs (Sangalli et al., 2011) use electron multiplication CCDs and filter wheels
for themain auroral emission lines at 427.8, 557.7, and 630.0 nm. A standard imagingmode of 20 images per
minute also includes images using background filters, dark frames, and panchromatic images. The cadence
of any single wavelength is irregular. Exposure times for 427.8- and 557.7-nm images are 1.2 and 0.8 s,
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Figure 1. Keogram from the Kilpisjärvi all-sky camera showing the
features of the substorm and the location of the Lumikot and Lumikot
candidates therein.

respectively. Displayed grayscale levels for all images are in arbitrary
analog-to-digital units (ADU) but are linear to the received luminance.
The cameras use fish-eye optics to generate all-sky images with 512 ×

512 pixels. At auroral altitudes of 110 km, this results in a near-zenith
resolution of less than 1 km per pixel. The alignment of the FMI-ASCs at
Kilpisjärvi and Abisko, respectively, is 7.53◦ and 6.50◦ east of geographic
north. Magnetic north is ≈9.5◦ east of north for the observations in this
paper. The camera lens' projection is an equidistant one (linear to pixels),
and after geometric calibration the pointing error is less than 0.25◦ for all
pixels.

3. Observations and Results

Details about the geomagnetic conditions of the substorm from 20
December 2016 (commencing at 20 UT, and continuing to 21 Decem-
ber 2016 03 UT) can be found in McKay et al. (2018). This isolated event
was preceded by a quiet-time period of 20 hr. The planetary K index was
Kp = 1 and the solar wind speed from 18:00–21:00 UT was slow (v =

367 ± 5 km/s). The interplanetary magnetic field was steadily negative
with Bz = −3.2 ± 0.6 nT during the entire growth phase. Although these
parameters describe the overall activity level, themagnetic fieldmeasure-
ments (even the local ones) do not capture the disturbances related to the
small-scale transient auroral signatures.

A broad diffuse arc formed over Kilpisjärvi at 19:22 UT with a bright growth-phase arc appearing at 20:58
UT on the northern edge of the diffuse emission. The arc system drifted equatorward at the speed of 71±7
m/s. During the evolution of the growth phase, small patches of aurora (Lumikot) were seen just south of
the growth-phase arc, rapidly translating parallel to the arc across the field of view. The classification criteria
is that the patch must be 3𝜎, finite in extent, moving laterally, and seen in three consecutive frames (in
order to confirm this movement). This region of the Lumikot corresponds to high-energy precipitation, as
indicated by CNAmeasured by the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA; Figures 2 and
3 in McKay et al., 2018).

Multiple Lumikotwere observed between 19:25UT (when the cloud cover first cleared) and 22:10UT (onset)
within the CNA region, shown in Figure 1.

Both east-to-west and west-to-east directions of travel were observed. Two examples, #1 and #2, are shown
in Figures 2 and 3, respectively. In each figure a sample all-sky frame is shown at the top. A region around
each Lumikko, marked with a red box, has been extracted from each individual frame. These are presented
below in chronological order, with the time, filter wavelength, and exposure time included. Because of the
imaging sequence, the time between slices is nonuniform.

In addition to the 20 December 2016 event, six other substorms used in the previous study were investigated
and Lumikot were found in two of them: 8 February 2015 and 18 February 2017. A total of 20 E→WLumikot
and 17 W→E Lumikot were detected, which represents a lower limit of the occurrence rate. Lumikot-like
features were seen in many single frames, but it was not possible to discern if they travel too fast for the
cadence time or if they appear and disappear without positional movement. These cases were discarded.

3.1. Altitude Determination

The simultaneous imaging and the overlapping fields of view of the two cameras permitted altitude determi-
nation of the Lumikot. A background subtraction was needed to isolate the Lumikko emission. To estimate
the background for each Lumikko, a four-step procedure was used: (1) filtering the image using a 3 × 3
median filter; (2) manually defining an area that encloses the Lumikko; (3) cutting out the enclosed area;
(4) performing a 2-D interpolation of the empty area. The resulting image is essentially identical to the orig-
inal image but with the Lumikko emission removed. The Lumikko was thereafter isolated by subtracting
the interpolated background image from the original image. This procedure is only effective if the Lumikko
is positioned on a smooth background, such as the diffuse aurora is in this case (Figures 2 and 3).
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Figure 2. Example Lumikko #1, for the (left) Kilpisjärvi and (right) Abisko all-sky cameras, with apparent east-to-west
motion. The top panel in each column is an all-sky image. Individual, time-ordered slices at green and blue
wavelengths are shown below.

The coordinates of each Lumikko were determined by searching for an altitude, z, for which the Lumikko
projections from Abisko and Kilpisjärvi were overlapping and thus minimizing the least squares error
function, E(z).

E(z) = argmin
z

(

1
𝛼(z)

∑

i,𝑗

[PA(z, (i, 𝑗)) − PK(z, (i, 𝑗))]
2

)

(1)

where PA(z, (i, j)) and PK(z, (i, j)) are the normalized Lumikko projections to altitude z from the
background-subtracted images at Abisko and Kilpisjärvi; (i, j) are the image pixel coordinates in longitude
and latitude; 𝛼(z) is an altitude-dependent normalization factor, proportional to the total intensity of the
projected Lumikko.

The projection of the images to the longitude-latitude shell at the altitude z relies on precise geometric
calibration of the camera fields of view. This is achieved by identifying stars in the image and fitting camera
parameters (Gustavsson et al., 2008). Typically, detection of 200 stars results in 1𝜎 errors of approximately
±0.2 pixels.

The geographic coordinates of the Lumikot midpoints were similar in the Abisko and Kilpisjärvi projections
when E(z) was near the minimum. However, the shapes of the Lumikot projections were not identical,
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Figure 3. Example Lumikko #2, with apparent west-to-east motion.

as each Lumikko is not a horizontal emission layer, but a 3-D volume. The layer approximation results
in a latitude difference between the projections. Nevertheless, the shell projection method is preferred as
it utilizes information from the entire Lumikko, rather than one triangulation point. The disadvantage of
the method is that the error function (E(z)) does not provide direct estimates of the coordinate deviation
around the best-fit altitude. The projections corresponding to the altitudes with errors above 20% of the
best-fit value show clear discrepancy, both below and above the best-fit altitude. A conservative confidence
interval of altitudes within 20% of the best-fit error value was therefore used. The Lumikot image pairs in

Table 1
The Best-Fit Coordinate Values for the Sample Lumikot With Error Ranges

Event #1a #1b #2

time (UTC) 21:16:48 21:16:51 21:30:28

x [km] -170 [−166, −176] −201 [−194, −207] −132 [−133, -137]

y [km] 31 [28, 35] 30 [27, 33] −9 [−11, −8]

z [km] 118 [114, 124] 120 [115, 125] 115 [110, 121]

Note. The xy coordinate ranges correspond to the z coordinate ranges and are therefore
not necessarily ordered from the lowest to highest value.
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Figure 4. (a–h) The Kilpisjärvi images (projected to the plasmasheet) place the Lumikot at x ≈ −8Re, y ≈ 2.2Re. The
growth-phase arc maps to the distance of approximately 10Re from the Earth. The dark structure at y < 1Re is not an
auroral feature but a structure at the Kilpisjärvi site.

Figure 2 at 21:16:48 UTC (#1a) and at 21:16:51 UTC (#1b) and in Figure 3 at 21:30:28 UTC were used in
the altitude determination. The altitude and horizontal coordinate results are summarized in Table 1. The
Lumikot xy coordinates in Table 1 are transferred from degrees in longitude and latitude to kilometers north
and east of Kilpisjärvi so that the velocity of Lumikko #1 can then be estimated in appropriate units. The
Lumikko xy midpoint is defined as the mean center of two fitted asymmetrical 2-D Gaussians, where one
2-D Gaussian is fitted to the Abisko projection and the other is fitted to the Kilpisjärvi projection.

Lumikot take approximately 30–45 s to cross the sky. The apparent velocity of example #1 based on the
coordinates of #1a and #1b becomes v̄(x,𝑦,z) ≈[−12, 0, 1] km/s ± [3, 2, 2] km/s; that is, westward, with no
appreciable change in the latitudes or heights (Table 1).

3.2. Projection of Lumikot Onto the Plasmasheet

The example Lumikko from Figure 2 was projected to the location along the magnetic field lines, which is
the farthest distance from Earth, which should be the estimated location of the cross-tail current sheet, or
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Figure 5. The magnetospheric X and Y coordinates of Lumikot at 21:16–21:17 UT are shown in the upper panels. The
X and Y velocity components are plotted in the bottom left while the speed is shown in the bottom right panel.

plasmasheet, by first projecting the images to an initial altitude of 112 km.Magnetic coordinates were calcu-
lated using aacgmv2 (Shepherd, 2014) Python libraries for the epoch 20 December 2016, giving Kilpisjärvi
= 102.39◦E, 66.06◦N and Abisko = 100.35◦E, 65.42◦N. The magnetic field lines were then traced from these
locations into the magnetosphere using the Tsyganenko T96 magnetospheric model (Tsyganenko & Stern,
1996) with the solar wind magnetic field GSM components, By and Bz of 7.96 and −1.84 nT, solar wind den-
sity of 12.05 cm−3, and solar wind velocity of 368.5 km/s. As fluctuations in the solar windwereminor in this
case, and it was still in the early stage of the growth phase, Tsyganenko produces representative mapping to
the inner magnetosphere.

The mapped position of the example Lumikko is just tailward of XGSM 8 Re moving from YGSM 1.1 to 2.2 Re
over a ≈ 10-s period as illustrated in Figure 4. This gives speeds ranging from 1.8 to 4.8 × 105 m/s with an
average of 3.4 × 105 m/s (Figure 5). This is comparable to a typical Alfvén speed in the inner plasmasheet
(vA ≈ 5.5 × 105 m/s).

4. Discussion

To the best of our knowledge, this is the first report of randomly bidirectional and convection-independent
auroral transients in the substorm growth phase. Lumikot associate with quasi-stable growth-phase arcs
with a low occurrence rate; probably overlooked in the less extensive growth-phase studies since the work
of Lessard et al. (2007). However, the event in this paper was not unique as other examples were also found.
Presumably, as faster cadence times have been implemented for auroral imaging, the prevalence of Lumikot
becomes more apparent. One observational limitation may be the narrow latitude band.

The sizes of individual Lumikot are in the range of a few kilometers in the north-south and 10–50 km in
the east-west direction, that is, meridionally thinner than beads and azimuthally of the order of bead size
(Motoba et al., 2012). The z coordinate estimates of 115–120 km agree with the pulsating aurora heights
reported by Partamies et al. (2017), where 557.7-nmmedian height was≈118 kmbefore the pulsating started
and dropped to ≈108 km during the pulsating aurora. This places the enhancement of Lumikot precipita-
tion energy between those of average recovery-phase aurora and pulsating aurora, embedded in the region
of CNA.
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The Lumikot includes enhanced emission embedded in a region of high-energy precipitation, as indicated
by CNA of ≈0.3 dB measured by KAIRA. No variation in CNA (to a limit of ±0.05 dB) was measured when
the Lumikot passed, which may be due to the limited spatial resolution of KAIRA (15◦ full width at half
maximum at 38.1 MHz).

As the magnetotail stretches during the growth phase, the auroral arc moves equatorward until the buildup
of energy is released at the substorm onset (Lessard et al., 2007). The equatorward arcmaps to the inner edge
of the plasmasheet where significant gradients in plasma properties may exist (Fukunishi, 1975). However,
an innermagnetospheric instability is unlikely to be responsible for bidirectional propagation. Choruswaves
have been shown to be responsible for the precipitation during pulsating aurora (Kasahara et al., 2018).
While some pulsating patches have been observed to follow the convection (Yang et al., 2017), others, such
as the amorphous pulsating aurora (Grono et al., 2017) do not. Lumikot neither follow the convection speed
nor the consistency in the direction.

The propagation speed of our sample Lumikot (Example #1) was found to be ≈12 km/s. This structure was
visible in three consecutive images. A majority of other Lumikot were also observed in 3–4 consecutive
images, suggesting that our sample speed estimate is representative for the studied cases. The data do not
allow the assertion of a preferred direction ofmotion. So, unlike other previously reported auroral structures,
such as streaming auroral pulsating patches (Yamamoto&Oguti, 1982), azimuthally propagating extensions
of north-south aligned arcs (Nishimura et al., 2010), azimuthally moving auroral enhancements (Lyons
et al., 2015) or auroral brightening called auroral horn (Koskinen et al., 1990), Lumikot do not show an
observable preference in their propagation direction.

The Lumikot phenomenon defies theoretical models which would generate bidirectional propagation of
small-scale aurora.

Although the projection of the Lumikot from the ASC images to the E region is quantitatively accurate,
the mapping to the plasmasheet should only be seen as qualitatively representative since the Tsyganenko
T96model does not take the dynamics of themagnetosphere andmagnetosphere-solar-wind interaction into
account. For substorm conditions, this can mean discrepancies between the Tsyganenko model and reality.

According to Nishimura et al. (2016), auroral beads propagate both eastward and westward. Their appear-
ance is fundamentally different from Lumikot as they grow periodically within the growth-phase arc during
the minutes prior to the substorm onset and initiate the brightening before the breakup. The relation of
Lumikot to the substorm onset instability is much less obvious. However, the beading shows that there are
mechanisms producing both propagation directions for small-scale aurora during the growth phase.

Optical pulsating aurora are seen during the growth phase of the substormboth before and after the Lumikot
(McKay et al., 2018), suggesting that Lumikot are not “prototype” pulsating aurora. It is not clear whether
Lumikot exist in the recovery phase of the substorm, as the complexity of the postbreakup aurora pre-
clude their reliable detection. More detailed relationship between pulsating aurora and Lumikot should be
investigated in the future. With the advances in camera sensitivity and sampling rate it has become possi-
ble to conduct more comprehensive surveys of transient auroral phenomena. Additionally, new techniques
being developed for recovery-phase pulsating aurora (Grono et al., 2017) could be applied to growth-phase
research.

5. Conclusion

Fast auroral transients, referred to as Lumikot, have been observed during the substorm growth phases. They
appear in the region between diffuse aurora and the optically bright growth-phase arc, with pulsating aurora
and high-energy particle precipitation leading to CNA. The Lumikot are too small spatially and temporally
to greatly modify CNA regardless whether the Lumikot precipitation is energetic enough or not. This region
corresponds toCNAandpulsating aurora and, thus, high-energy particle precipitation. Tracing themagnetic
field lines maps this band to the border between the outer radiation belt and the plasmasheet.

The Lumikot are several kilometers across and travel east-west parallel to the main growth-phase arc. Both
directions of travel have been observed during the same event. They are significant because such bidirec-
tional transients prior to the expansive onset of the auroral breakup challenges the current understanding
of substorm instabilities. Themagnetospheric dynamics causing the Lumikot are a novel hitherto unknown
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phenomena that can now be used to help understand preonset magnetospheric processes. Lumikot are
significant because such bidirectional transients prior to the onset of the auroral breakup may provide
important insights to the processes leading to the onset.
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Abstract We present 3-D excitation rate estimates of artificial aurora in the ionospheric F layer,
induced by high-frequency radio waves from the European Incoherent Scatter heating facility.
Simultaneous imaging of the artificial aurora was done with four separate Auroral Large Imaging System
stations, permitting tomography-like 3-D auroral reconstruction of the enhanced atomic oxygen emissions
at 6,300, 5,577, and 8,446 Å. Inspection of the 3-D reconstructions suggests that the distribution of
energized electrons is less extended in altitude than predicted by transport calculations of electrons
accelerated to 2–100 eV. A possible reason for this discrepancy is that high-frequency pumping might
induce an anisotropic distribution of energized electrons.

Plain Language Summary Auroral lights can be artificially generated by transmitting
high-frequency radio waves with high power into the upper atmosphere. In this article, we use multiple
viewpoint imaging of artificially produced aurora to estimate the 3-D distribution of the auroral lights by
employing tomography-like techniques. The 3-D distribution is estimated in the red, green, and infrared
auroral emission lines with wavelengths of 630.0, 557.7, and 844.6 nm, respectively. These emissions are
excited by energetic electrons, which have been accelerated through interaction processes between the
transmitted radio waves and plasma in the upper atmosphere, at an altitude of about 220–250 km. We
observe that the estimated 3-D auroral distributions are less extended in altitude than indicated by previous
theoretical work. A possible reason for this disagreement is that the radio wave-plasma interaction
processes might lead to a direction dependent electron acceleration.

1. Introduction

When powerful high-frequency (HF) radio waves reach the ionosphere, several wave-plasma interactions
are excited andmost of theHFwave energy is dissipated by the plasma (Senior et al., 2012), inducing observ-
able phenomena, such as electron temperature enhancements (Honary et al., 1995; Rietveld et al., 2003;
Robinson, 1989), production of electron density striations (Milikh et al., 2008), artificial ionization
(Bernhardt et al., 2016; Pedersen et al., 2009), stimulated electromagnetic emissions (Leyser, 2001), and
enhancement of optical emissions (Brändström et al., 1999; Gustavsson et al., 2005). At auroral latitudes,
it is postulated that incident ordinary mode HF radio waves excite upper-hybrid (Kosch et al., 2002),
lower-hybrid (Djuth et al., 2005), and Langmuir turbulences (Djuth et al., 2004) as well as electron Bernstein
waves (Stubbe et al., 1994) within magnetic field-aligned plasma striations in the ionosphere. The strong
wave-plasma interaction region will have an upper border at the reflection altitude and a rough lower bor-
der at the altitude where the pump frequency is in resonance with the upper-hybrid frequency (Eliasson
& Papadopoulos, 2015), typically a few kilometers below the reflection altitude for F region heating
(Gustavsson et al., 2005).

The net result of these plasma processes is energization of electrons and increased plasma pressure within
plasma striations (Gurevich & Zybin, 2006). This triggers an instability, known as the resonance instability
(Gurevich, 2007), where the striations continue to expand as the plasma pressure increases, which causes
self-focusing and increased HF radiation flux into the striations (Eliasson & Papadopoulos, 2015; Istomin &
Leyser, 2003; Gondarenko et al., 2005). The striations will expand from a few meters to hundreds of meters
during the first 10–30 s after heating onset before stabilizing, the expansion is primarily in the plane perpen-
dicular to the magnetic field (Coster et al., 1985; Milikh et al., 2008). After that point, close to 100% of the
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HF wave energy is dissipated by the plasma within the interaction region, provided that the pump power
flux exceeds 30 𝜇W/m2 (Senior et al., 2012).

Observations of both enhanced plasma lines (Carlson et al., 1982) and enhanced optical emissions
(Brändström et al., 1999) during heating can only be explained by high-energy electrons. Understanding
how the electron energy distribution is modified during HF pumping is one of the central questions in
ionospheric heating research. Mantas (1994) and Mantas and Carlson (1996) attempted to explain obser-
vations of enhanced emission intensities at 6,300 Å, denoted I6300, during HF heating by O(

1D) excitation
(threshold 1.96 eV) from a purely thermal electron energy distribution. However, a thermal electron energy
distribution cannot explain observations of enhanced emissions from states with higher excitation energies,
such as I5577 from O(1S) (threshold 4.17 eV; Haslett & Megill, 1974), I8446 from O(3p3P) (threshold 10.99 eV;
Gustavsson et al., 2005), and I4278 from N+

2 (1NG) (threshold 18.75 eV; Holma et al., 2006). There are not
enough high-energy electrons in a thermal population to induce observable enhancements at these wave-
lengths (Gustavsson et al., 2002). The observations are therefore in line with an accelerated, suprathermal,
electron energy distribution (Bernhardt et al., 1989).

Gustavsson et al. (2005) andGustavsson andEliasson (2008) combined optical images of I6300, I5577, I8446, and
I4278 and IS radar observations to estimate the energy and altitude distribution of electrons accelerated to
2–100 eV during heating. Gustavsson and Eliasson (2008) achieved this by employing a two-stream electron
transport model with isotropic electron acceleration by upper- and lower-hybrid waves within a narrow alti-
tude range, taking electron-ion and electron-neutral collisions into account. Hysell et al. (2012) and Hysell
et al. (2014) obtained similar results of the suprathermal electron energy distribution versus energy and
altitude using spectrographic measurements and electron transport from the multistream SAMI2-PEmodel
(Varney et al., 2012). These results provide amethod for calculating the altitude distribution ofHF-enhanced
optical emissions by employing the appropriate excitation cross sections and transition probabilities. So
far, there have been no attempts at comparing the resulting electron energy distributions and the corre-
sponding excitation rates to volumetric emission rate estimates. The 3-D emission rate estimates of heating
induced I6300 were for the first time estimated by Gustavsson et al. (2001) using the European Incoherent
Scatter (EISCAT) heating facility and simultaneous multistation imaging at three Auroral Large Imaging
System (ALIS) imaging stations. Gustavsson et al. (2001) achieved 3-D emission rate reconstruction by using
tomography-like inversionmethods. The samemethodwas later employed byGustavsson et al. (2008) to esti-
mate the volume emission rates in both I6300 and in I5577 using the High-Frequency Active Auroral Research
Program facility and two imaging stations. Shindin et al. (2018) estimated the 3-D emission rates of I6300 at
midlatitudes, induced by the Sura heating facility, using two imaging stations.

In this paper, we use multistation optical observations of I6300, I5577, and I8446 to test predicted
excitation-altitude profiles, calculated using the method described in Gustavsson and Eliasson (2008). This
is achieved by comparing the projections of reconstructed 3-D aurora models to simultaneous multistation
images. The first results of 3-D artificial auroral reconstruction from as many as four imaging stations in
I6300 and in I5577 are presented along with the first published estimates of the I8446 volume distribution.

2. Experiment and Observations

The EISCAT Scientific Association heating facility (Rietveld et al., 2016), the EISCAT ultrahigh frequency
(UHF) incoherent scatter radar (Rishbeth & Van Eyken, 1993), and ALIS (Brändström, 2003) were oper-
ating simultaneously on 16 February 2015. Heating array 3 was employed to transmit right-hand circular
polarized HF waves, that is, ordinary mode waves in the ionospheric plasma, antiparallel to the magnetic
field. A frequency of 6.200 MHz was used from 16:00 to 16:50 UT, that is, heating not close to a gyrohar-
monic resonance, and a frequency of 5.423 MHz from 16:51 UT and onward, that is, heating in proximity to
the fourth gyroharmonic frequency. The HF pumping was operating in a 150-s heating on and 85-s heating
off cycle modulation, making it possible to measure the sky background between the heating pulses and to
estimate the decay time of the 6,300-Å emission. The growth and decay of the enhanced intensities in the
6,300-Å emission line, I6300, are shown in Figure 1 for one heating cycle. The growth and decay time of I6300
are dependent on the effective O(1D) lifetime. The observed O(1D) lifetimes are presented in Figure 5 and
are more thoroughly discussed in section 3.
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The frequency-dependent effective radiated power was approximately 138.2 MW at 6.200 MHz and 115.9
MW at 5.423 MHz, corresponding to effective power fluxes of 143 and 120 𝜇W/m2 at the heating altitude
(Rietveld et al., 1993). The modeled beam patterns are shown in Figure 2.

The EISCAT UHF incoherent scatter radar was operated with a meridional scan pattern throughout the
experiment, providing plasma parameter measurements of the heated volume with approximately 3-km
altitude resolution and 5-s time resolution. The electron temperature was enhanced to approximately 3300
K at the resonance height during 6.200-MHz heating and to about 2500 K when pumping at 5.423 MHz.
The electron density and ion drift velocity remained stable throughout the time interval of interest, that is,
no natural auroral activity and no ion upflow. The Beata pulse-coding scheme was employed, and plasma
parameterswere extracted from the backscattered power spectrumusing theGuisdap analysis tool (Lehtinen
& Huuskonen, 1996), version 8.8.

Optical imaging of the artificial aurora was made with ALIS in the emission lines at 6,300, 5,577, 8,446,
and 4,278 Å; however, significant enhancements were only observed in 6,300, 5,577, and 8446 Å. The UHF
electron temperature measurements and the enhanced emission intensities are presented in Figure 3. The
electron temperature panel clearly shows a decrease in the pump enhanced temperatures when going from
6.200- to 5.423-MHz pumping, that is, from heating away from a gyroharmonic to heating near the fourth
gyroharmonic. The scatter points in the optical intensity plots represent the mean intensity of a (11 × 11)
pixel grid around the peak enhancement in the images. I6300 was strongest during 6.200-MHz heating; the
enhancement was reduced by a factor 3 when changing pump frequency to 5.423 MHz. I5577 remained
quite similar at 6.200- and at 5.423-MHz pumping, whereas significant I8446, above a noisy background,
was only detected during 5.423-MHz heating. Imaging was done at four ALIS stations, in Abisko, Kiruna,
Silkimuotka, and Tjautjas. An exposure time of 6 s was chosen at all stations and for all filters, providing
images approximately every 10 s. Clouds before 16.37 UT and clouds and interference after 17.00 obstructed
optical observations. Tomographic reconstruction was therefore done between 16.37 and 17.00 UT. No
images were taken in the 8,446-Å filter at Kiruna; hence, tomographic reconstruction of I8446 was done using
only three imaging stations. In addition, note that the periodic electron temperaturemodulation, seen in the
top panel of Figure 3 during heating on, is due to the scanning of the UHF radar beam through the heated
volume. The UHF radar scanned over positions between 7.8◦S and 15.5◦S of zenith. The electron tempera-
ture enhancement peaked when the UHF beam was antiparallel to the magnetic field, although there is an
asymmetry in the temperature enhancement between the bottom and the top of the meridional scan. It is
not clear if there is a physical reason for the asymmetry or if it is solely a geometric effect.

The optical data acquired on 16 February 2015 were particularly suitable for 3-D reconstruction of artifi-
cial aurora for two reasons: (1) Enhanced emissions were observed from as many as four separate imaging
stations, making the tomography-like inversion more reliable than in previous reconstruction attempts. (2)
The artificial aurora was observed to have a simple continuous shape at all imaging stations and in all emis-
sion lines; see, for example, the 6,300-Å emission in Abisko in Figure 1. This enabled us to approximate the
emission distribution by using simple Gaussian distribution functions. In contrast, a more structured artifi-
cial aurora with many small-scale striations, as seen during some High-Frequency Active Auroral Research
Program experiments (e.g., Bernhardt et al., 2016; Kendall et al., 2010), or a drifting emission pattern, as
seen by, for example, Grach et al. (2017), would cause the reconstruction problem to bemuchmore complex
and ambiguous.

3. AuroraModeling

The 3-D artificial aurora reconstruction was achieved by adjusting a 3-D parameterized aurora model so
that the model projections fitted the observed images. The 3-D aurora models were constructed with a
two-dimensional Gaussian in the horizontal plane combined with three different profiles along the mag-
netic field: (1)Gaussian distribution, (2)Gustavsson-Eliasson profiles, and (3)modifiedGustavsson-Eliasson
profiles. The 3-D Gaussian distribution gave us an empirical model with search parameters for the peak
excitation rate, I0, the center coordinates, (x0, y0, z0), and the horizontal and vertical widths (𝜎xy, 𝜎z), in total
of six model parameters. The Gustavsson-Eliasson profiles model, denoted the G-E model, and the mod-
ified Gustavsson-Eliasson profiles model, denoted the modified G-E model, used excitation rate profiles,
calculated for a range of electron acceleration altitudes by employing the method described in Gustavsson
and Eliasson (2008). This gave us a set of five model parameters: I0, x0, y0, z0, and 𝜎xy, for the physical G-E
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Figure 1. Images of the 6,300-Å emission in Rayleigh units [R] from one heating cycle as observed in Abisko. Images during heating are shown in the top row,
and images after heating offset are in the bottom row. Note that the images are background reduced and flat field corrected, and the bright speckles are stars.

Figure 2. The figure shows the modeled beam patterns during 6.200-MHz heating to the left and during 5.423-MHz
heating to the right. At the top, the 2-D radiation pattern where the white rings encircle zenith. At the bottom, the
beam pattern in the meridional plane. The heating beam was pointed 12◦S of zenith, approximately antiparallel to the
magnetic field. RHCP = right-hand circular polarized; ERP = effective radiated power; O = ordinary mode.
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Figure 3. The European Incoherent Scatter ultrahigh frequency electron temperature observations and the enhanced emission intensities. The light gray boxes
represent heating on during 6.200-MHz pumping and the dark gray boxes heating on at 5.423-MHz pumping. I6300 is not synchronized to the pump periods due
to the long O(1D) lifetime. The scanning of the ultrahigh frequency radar beam through the heated volume is represented by the red line in the electron
temperature panel.

model. An additional fitting parameter, 𝛾 , was used for adjusting the excitation rate profiles in the mod-
ified G-E model. Thus, six model parameters were used in the modified G-E model; I0, x0, y0, z0, 𝜎xy, and
𝛾 . Notice that the modified G-E model can be considered as a hybrid model, using the excitation rate
profiles as the physical G-E model but is allowed for adjustment using the empirical 𝛾 parameter. The vol-
ume excitation rate model functions and the corresponding fitting parameters are described in more detail
in Appendix A. It should be noted that increasing the number of fitting parameters, for example, allow-
ing the excitation rates to be asymmetrical in the horizontal plane and adding more shape parameters
along the magnetic field, would improve the fit to the observed data. However, we aimed at parame-
ter fitting of unambiguous 3-D models with low parameter correlation and therefore employed few 3-D
modeling parameters.

3.1. Parameter Fitting

A regularized version of the least squares error function, equation (1), was used in an iterative fitting process
to determine the best fit 3-D aurora model parameters. The best fit parameters constructed 3-D emission
models, which minimized the difference between the observed and the modeled images. The model images
were produced by projecting the 3-D emission distribution down to the location of the imaging stations. An
example of a best fit 3-D aurora model is presented in Figure 4 along with the comparison of the observed
and modeled images for each of the four imaging stations: Abisko, Kiruna, Silkimuotka, and Tjautjas. The
coordinates of the image station inKirunawas chosen as origin. The coordinates of the 3-Dmodel in Figure 4
are therefore given with respect to the Kiruna imaging station. The dot-projection algorithm, described in
Rydesäter and Gustavsson (2000), was employed to calculate the projections of the 3-D aurora models. Sev-
eral start guesses were used in the fitting process to avoid parameter searching in local minima. The model
parameters at each iteration step was determined by the Nelder-Mead simplex search algorithm (Lagarias
et al., 1998).

E(Vt) = argmin
Vt

(
1
Ns

(
∑

s

∑

i,𝑗

[ps(i, 𝑗) − p̃s(i, 𝑗, I(Vt))]
2 +W

∑

s

|ms − m̃s|2
))

(1)

E(Vt) is the error function of the fitted parameter vector Vt at time t. Ns is the number of imaging
stations, s is the station index, and (i, j) is the pixel index. ps(i, j) is the observed image in station s after
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Figure 4. At the top, the best fit 3-D model of the 6,300-Å emission distribution at 16.52.30 UT. The 3-D distribution was constructed with the modified G-E
model. At the bottom, the comparison between the observed and the modeled images. The first column shows the observed images for each of the four Auroral
Large Imaging System stations. The second column shows the matching projections of the 3-D model. The third column shows the residual, that is, the pixel
values in the observed images subtracted from the pixel values in the modeled images. The fourth column also shows the residual, but with the pixel values
normalized with the standard deviation (STD) of the observations.
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Figure 5. The figure depicts a comparison between the observed O(1D)
lifetime and the theoretical O(1D) effective lifetime. Theoretical O(1D)
effective lifetime estimates using ±30% of the MSIS-2000 neutral densities
are included in the plot. The spread in observed O(1D) lifetime is large but
agrees reasonably well with the theoretical O(1D) effective lifetime within
the ±30 % neutral density confidence.

background reduction, and p̃s(i, 𝑗, I(Vt)) is the corresponding modeled
image, the projection of the parametrized 3-D emission model, I(Vt),
down to imaging station s. [ms − m̃s] is the image distance between
the pixel value maxima in the observed and modeled images, marked
with a black and a white dot in the observed images in Figure 4. W is
a weight factor controlling the significance of the maxima coordinate
difference.

To obtain accurate projections, both the field of view and the sensitivity of
the cameras need to be known to high accuracy. Line-of-sight calibration
was achieved by identifying stars in the image with the corresponding
stars in the Yale Bright Star Catalog (Hoffleit & Jaschek, ), the applied
calibration method is described further in Gustavsson et al. (2008). Abso-
lute intensity calibration factors from Wang (2011) were used to convert
the Charge-Coupled Device counts to Rayleighs for images in 5,577 and
in 6,300 Å. The Charge-Coupled Device sensitivity factors in the 8,446-Å
emission line were determined by the irradiance spectra of the iden-
tified stars as given in the Pulkovo spectrometric catalog (Alekseeva
et al., 1996).

3.2. EmissionModel

The excitation-emission process was implemented in the aurora model-
ing in order to make the 3-D emission distributions comparable to the
Gustavsson and Eliasson (2008) excitation profiles. The 5,577- and the
8,446-Å emission distributions were considered to be directly propor-
tional to the excitation rate distributions. This is justified by the short
radiative lifetime (0.7 s) of the O(1S) state and the spontaneous emission
from the O(3p3P) state (Gustavsson et al., 2008). The effects of collisional
de-excitation, quenching, can therefore be ignored. The effects of drift

and diffusion are insignificant for O(1S) and negligible for O(3p3P), taking into account the short radiative
lifetimes and that the size of the heated blob is about 20 km with drift speeds only up to a few hundred
meters per second (Bernhardt et al., 2000; Gustavsson et al., 2001).

The O(1D) state has a radiative lifetime of 107 s. The O(1D)-neutral collision frequency is higher than the
O(1D) radiation frequency at lower F region altitudes. Most of the excited O(1D) states will therefore never
emit 6,300-Å radiation before relaxation. Thus, the quenching needs to be accounted for in the I6300 3-D
auroramodeling. The quenching rate is predominantly dependent on the neutral density. The effectiveO(1D)
lifetime can therefore be considered as a function of altitude. The O(1D) continuity model from Gustavsson
and Eliasson (2008) was employed to calculate the altitude-dependent effective O(1D) lifetimes. Neutral
temperatures and densities from the MSIS-2000 model (Picone et al., 2002) and electron temperatures and
densities from the IRI model (Bilitza et al., 2014) were used in the effective O(1D) calculation. The resulting
theoretical O(1D) lifetimes are presented in Figure 5 along with the observed O(1D) lifetimes from Abisko
and Silkimuotka. The observed O(1D) lifetime is estimated from the 6,300-Å emission decay after heating
offset.

Although the quenching considerably shortens theO(1D) lifetime, it is still relatively long, 30 s according to
the theoretical estimate at a typical peak emission altitude of 245 km. Thus, the model function described
in Gustavsson et al. (2001) was employed to account for the effects of the horizontal drift, diffusion, and
the altitude-dependent intensity reduction from the quenching; see equations 3 and 7 in Gustavsson et al.
(2001). The values of the O(1D) horizontal drift and diffusion are unknown; hence, the I6300 3-D modeling
requires three additional fitting parameters for all modeling methods: wind along the west-east direction,
ux, wind along the south-north direction, uy, and diffusion, D. The vertical drift was neglected in the
modeling, and it was assumed that the horizontal wind and the O(1D) diffusion were uniform within the
heated volume.

4. Results

The best fit projections of the I6300 3-D aurora models at 16.48.45 UT are presented in Figure 6 along with
the comparison to the observed images at the matching time step. Note that an additional I6300 modified
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Figure 6. Rows 1-4 are the best fit Gaussian model projections, rows 5–8 are the best fit Gustavsson-Eliasson (G-E) model projections, and rows 9–12 are the
best fit modified G-E model projections. The projections of the the Gaussian model and the modified G-E model are similar and in better agreement with the
observed images than the projections of the G-E model. The pixel grids are similar to the pixel grids in Figure 4.

G-E model comparison, during 5.423-MHz heating, is presented in Figure 4. The remaining successful 3-D
reconstruction results, 41 red auroramodels, 15 green auroramodels, and 2 infrared auroramodels, for each
of the three modeling methods, will not be presented in this article due to limited space.

Figure 6 clearly depicts a trend that is seen for all I6300 3-D modeling results; the best fit projections of the
the Gaussian and the modified G-E models are similar and in better agreement to the observed images
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Figure 7. The Gustavsson-Eliasson (G-E) modeling produce I6300 projections with higher error values, EGE, than both
the Gaussian, EGauss, and the modified G-E, EmodGE, modeling methods, as seen by the error value ratios EGE∕EGauss
and EmodGE∕EGauss. The same trend is seen in the I5577 projections during 6.200-MHz pumping. As before, the light
gray boxes represent heating on during 6.200-MHz pumping and the dark gray boxes heating on at 5.423-MHz
pumping.

than the best fit G-E model projections. The same trend is also seen in the I5577 model projections during
6.200-MHz heating. There are, however, no significant deviation in the projections of the best fit models
during 5.423-MHz pumping in I5577 and I8446. The error values, from the error function in equation (1), of
the best fit models were used to underline this result. Figure 7 presents the error value ratio between the
G-E models and the Gaussian models, EGE∕EGauss, and the ratio between the modified G-E models and the
GaussianmodelsEmodGE∕EGauss at different time steps, t, and for all enhanced emissions. Figure 7 shows that
theG-Emodelingmethod producedmodel projectionswith less of an agreement to the observed images than
the Gaussian model projections. On average, the G-E modeling produce I6300 projections with ∼40% higher
error values during 6.200- and 5.423-MHzheating and I5577 projectionswith∼10%higher error values during
6.200-MHz heating. The modified G-E modeling produce similar error values to the Gaussian modeling for
all emission lines. It should be noted that the signal-to-noise ratio is much higher for I6300 than for I5577 and
I8446; see Rayleigh enhancement values in Figure 3. The discrepancy between themodels might only be seen
when the signal-to-noise ratio is high, which could explain why there are no clear deviations between the
I5577 and I8446 model projections during 5.423-MHz pumping.

Mean excitation-altitude profiles were calculated to study the discrepancy between the physical G-E model
and the empirical 3-D Gaussian and semiempirical modified G-E models. The resulting O(1D), O(1S), and
O(3p3P) excitation-altitude profiles, for all modeling methods, are presented in Figure 8. Notice in Figure 8
that theGaussian excitation rate profiles are in good agreementwith themodifiedG-E excitation rate profiles
for all excitation states and for both pump frequencies. Also note that Figure 8 only depicts the excitation rate
distributions as a function of altitude. The deviations of the resulting 3-D aurora models will predominantly
be along the altitude axis since all aurora models are created similarly in the horizontal plane, using a 2-D
Gaussian distribution, but have different distribution functions along the magnetic field line. Normalized
mean excitation-altitude profiles were used to produce the curves in Figure 8 in order to make the shape
of excitation-altitude profiles comparable between all heating pulses. The normalized mean O(1D), O(1S),
andO(3p3P) excitation rates in Figure 8 were calculated using 3-D reconstruction results during near steady
state conditions in I6300, I5577, and I8446, respectively. The 3-D reconstruction results from 16 I6300models and
7 I5577 models during 6.200-MHz pumping and 7 I6300 models and 6 I5577 models during 5.423-MHz heating
were used to produce the O(1D) and O(1S) excitation rate curves. Tomographic reconstruction in I8446 was
successfully done at only two time steps. O(3p3P) excitation rate curves were therefore produced using two
reconstruction results, both during 5.423-MHz pumping. The width of the curves in Figure 8 equals the ±𝜎
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Figure 8. The figure depicts the resulting normalized mean excitation rates as a function of altitude for the three
different 3-D aurora models; the empirical 3-D Gaussian model, the physical G-E model and hybrid modified G-E
model. The best fit models from the the Gaussian and modified G-E methods have a smaller altitude range than
predicted by the physical G-E model in O(1D) and O(1S) during 6.200-MHz pumping and in O(1D) during 5.423-MHz
heating.

width for the O(1D) and O(1S) excitation rates. The edges of the O(3p3P) excitation rate curves are defined
by the two resulting excitation profiles.

In addition, the best fit Gaussian model parameter values in altitude, z0, horizontal width, 𝜎xy, and
field-aligned width, 𝜎z, are presented in Figure 9 to depict the evolution of the O(

1D), O(1S), and O(3p3P)
volume excitation rates. The altitude of the excitation center drops from about 240 to 220 kmwhen changing
pump frequency from6.200 to 5.423MHz. This is a consequence of the electron density gradient in the lower
F region. HF radio waves at a lower frequency will interact with a lower density plasma; the wave-plasma
resonance altitude will therefore drop. The horizontal excitation width is about 12 km at 6.200-MHz heat-
ing and increases to around 16 km at 5.423-MHz heating. This increase is larger than the inferred ∼1-km
increase in the horizontal excitation width from the modeled beam patterns, as seen before in Figure 2.
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Figure 9. Gaussian best fit parameters, from top to bottom: Excitation center altitude, horizontal width, and width along the magnetic field. The light gray
boxes represent heating on during 6.200-MHz pumping and the dark gray boxes heating on at 5.423-MHz pumping.

Additionally, in Figure 9, there is an apparent small increase in width along the magnetic field line when
changing pumping frequency from 6.200 to 5.423 MHz, although the spread is somewhat large. There are
no clear deviations in excitation center altitudes and widths between the different species.

5. Discussion

The main result in this article is that there are deviations between the physical G-E reconstructions and the
empirical Gaussian and semiempirical modified G-E reconstructions. In particular, Figure 8 suggests that
O(1D) andO(1S) excitation during 6.200-MHz heating andO(1D) excitation during 5.423-MHz pumping are
inducedwithin a smaller altitude range than predicted byGustavsson andEliasson (2008). This conclusion is
based on three observations: (1) Themodel fits, an example is seen in Figure 6, are adequate to bemeaningful
fits. (2) The Gaussian and the modified G-E methods produce aurora models, which are significantly better
than the best fit G-E model projections, as seen in Figure 7. (3) The excitation-altitude distributions of the
G-Emodels are statistically inconsistentwith the distributions of theGaussian and themodifiedG-Emodels;
see Figure 8.

An additional result is seen in Figure 3; I6300 and the electron temperature enhancement decreased when
going from 6.200- to 5.423-MHz pumping, while the high threshold energy I8446 enhancement increased.
Only a ∼30% I6300 reduction can be explained by increased quenching at lower heating altitudes and about
15% electron temperature and I6300 reduction is caused by reduced power flux during 5.423-MHz pumping.
A similar trend was reported in Gustavsson et al. (2006) by observing electron temperature enhancements,
I6300, I5577, and the high threshold energy I4278 during a heating experiment with frequency stepping around
the fourth gyroharmonic. Gustavsson et al. (2006) observed that I4278 was insignificant during heating far
above or below the gyroharmonic and increased when heating a few tens of kilohertz above the fourth dou-
ble resonance. This indicates, by comparison to Gustavsson et al. (2006), that heating occurred away from
a gyroharmonic during 6.200-MHz pumping and just above the fourth gyroharmonic during 5.423-MHz
pumping, although not close enough to the fourth double resonance to induce significant I4278. The obser-
vations in Figure 3 and in Gustavsson et al. (2006) are in agreement with the Vlasov simulation results of
accelerated electrons presented in Najmi et al. (2017). Najmi et al. (2017) argued that the electron energy
distribution during heating just above the fourth gyroharmonic will have a more pronounced high-energy
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tail than heating away from the gyroharmonic. The reason for this is that HF pumping just above the gyro-
harmonic will energize fewer electrons, but to higher energies through resonance acceleration by excited
upper-hybrid waves. On the contrary, HF heating away from the gyroharmonic mainly enhances electron
energization through bulk heating from electron Bernstein waves.

Three possible explanations to the confined excitation region, both during heating away and close to the
fourth gyroharmonic, will be discussed: (1) anisotropic electron acceleration, (2) underestimated neutral
densities, and (3) shortcomings in the Gustavsson and Eliasson (2008) electron transport model. Of these
three, anisotropic electron acceleration appears to be the only viable explanation.

5.1. Anisotropic Electron Acceleration

The Gustavsson and Eliasson (2008) model assumes an isotropic electron acceleration, as assumed in other
attempts to find the electron energy-altitude distribution during ionospheric F region heating at high lati-
tudes (e.g., Gustavsson et al., 2005; Hysell et al., 2012, 2014). This assumption may, however, not be valid.
Grach (1999) predicted that an anisotropic electron acceleration, with an enhanced population of energized
electrons perpendicular to the magnetic field, would be induced when pumping in resonance with both the
upper-hybrid frequency and an harmonic of the electron gyrofrequency; that is, (fh ≃ fu ≃ nfe) where n is an
integer. Hence, the narrow excitation rate profiles during 5.423-MHz pumping could possibly be explained
by double resonance heating in proximity to the fourth gyroharmonic frequency; that is, (fh ≃ fu ≃ 4fe). The
deviation between the resulting excitation rate profiles at 6.200-MHz heating can, however, not be explained
by proximity to the fourth double resonance point. Grach (1999) argued that the anisotropic component of
the electron velocity distribution could be neglected during heating away from the double resonance due to
isotropization of the accelerated electrons by scattering in the acceleration region.

The discrepancy between excitation rate profiles from the isotropic G-Emodelingmethod and the excitation
rate profiles from the empirical Gaussian and semiempirical modified G-E modeling can therefore only
partly be related to the predictions of Grach (1999). Either the anisotropic component is more prominent
than predicted during heating away from the double resonance or other mechanisms are responsible for the
deviations between the predicted and empirically reconstructed excitation rate profiles.

5.2. Underestimated Neutral Density

The neutral densities from the MSIS-2000 model were used to calculate the Gustavsson and Eliasson (2008)
profiles. An underestimation of the neutral densities would cause the Gustavsson and Eliasson (2008)
profiles tomiscalculate the electron-neutral collision frequency and favor a larger altitude range for the exci-
tation. However, a crude underestimation of the neutral density would also cause a systematic difference
between the theoretical and observed O(1D) lifetimes. No such difference is observed in Figure 5, and we
therefore consider an underestimation of the neutral densities to be an unlikely cause for the discrepancy
between the predicted and empirically reconstructed excitation rate profiles.

5.3. Shortcomings in the Gustavsson and Eliasson (2008) Transport Model

We cannot ignore the possibility of shortcomings in the two-stream electron transport model to be the cause
of the deviations. However, none of the parameters in the Gustavsson and Eliasson (2008) transport model,
apart from the neutral density, can cause significant altitude confinement of the excitation rates. In addi-
tion, the resulting electron energy distributions as a function of energy and altitude from Gustavsson and
Eliasson (2008) are in apparent agreement with the results from Hysell et al. (2012, 2014), which employed
a different electron transport model, the SAMI2-PEmodel (Varney et al., 2012). This indicates that the devi-
ations between the predicted and empirically reconstructed excitation rate profiles do not likely originate
from shortcomings or errors in the applied electron transport model.

6. Summary and Conclusions

In this paper, we have presented a method for comparing electron energy-altitude distributions to multi-
view point images by employing tomography-like inversion methods and excitation rate profiles, calculated
using the method described in Gustavsson and Eliasson (2008). Modeling of the artificial aurora was done
in the enhanced 6,300-, 5,577-, and 8,446-Å emission lines, providing estimates of the O(1D), O(1S), and
O(3p3P) volume excitation rates. The resulting excitation rates, see Figure 8, indicate that the excitation rate
distributions are less extended in altitude than predicted by the excitation rate profiles fromGustavsson and
Eliasson (2008). The Gustavsson and Eliasson (2008) transport model assumes an isotropic electron accel-
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eration. A possible explanation for this discrepancy might therefore be that HF heating both away from and
just above the fourth double resonance induces an anisotropic distribution of energized electrons. Grach
(1999) analytically predicted an anisotropic electron distribution, with an enhanced population perpendic-
ular to the magnetic field, during HF heating near a double resonance point, but argued for isotropization
of the accelerated electrons during HF pumping away from a double resonance point. A remaining open
question is whether an anisotropic electron acceleration can lead to excitation rate profiles which are con-
sistent with our observations. This conjecture could be investigated using a multistream electron transport
model where all elastic and inelastic collisions are taken into account in addition to an anisotropic elec-
tron energization term. Additionally, the electron temperature enhancements and the emission enhance-
ments during heating away and just above the fourth double resonance point are in agreement with the
electron energy distributions obtained by Vlasov simulations of accelerated electrons, as presented in
Najmi et al. (2017).

Appendix A: Aurora Models
A1. The GaussianModel

The 3-D Gaussian aurora models are constructed using Gaussian distributions along all axes,
G(x, y, z, 𝜎xy, 𝜎z):

𝑓 (x, 𝑦, z) = I0 · exp

(
−

(
X2

2𝜎2
x𝑦

+
((Y + Z sin(𝜃))2

2𝜎2
x𝑦

+
Z2

2𝜎2
z

))
(A1)

where

X ,Y ,Z = x − x0, 𝑦 − 𝑦0, z − z0 (A2)

I0 is the maximum excitation rate, located at the center of the excitation volume (x0, y0, z0). The excitation
distributionwas assumed to have a symmetrical Gaussian shape in the horizontal plane; 𝜎xy is the horizontal
(1∕e) width radius. 𝜃 is themagnetic field angle from zenith, 12◦S at EISCAT Ramfjordmoen. 𝜎z is the width
in altitude. The constructed excitation blob is allowed to be asymmetric (𝜎z ≠ 𝜎xy).

A2. The G-E and TheModified G-EModels

TheG-E and themodified G-Emodeling used excitation rate profiles, calculated using themethod described
in Gustavsson and Eliasson (2008), to construct the excitation-altitude distributions. Iz0(z) is the normalized
excitation rate profile as a function of altitude, z, with an excitation center at altitude z0. A shape parameter,
𝛾 , was used to modify the shape of the normalized excitation-altitude profiles, I𝛾z0(z). This yields the volume
excitation function, f(x, y, z):

𝑓 (x, 𝑦, z) = I0 · I
𝛾

z0(Z) · exp

(
−

(
X2

2𝜎2
x𝑦

+
(Y + Z sin(𝜃))2

2𝜎2
x𝑦

))
(A3)

TheG-Emodeling is defined by 𝛾 = 1; that is, the G-E excitation rate profiles were used directly. In themod-
ified G-Emodeling, the excitation rates were allowed to bemodified by adjusting the 𝛾 value. A high gamma
value (𝛾 > 1) will sharpen the excitation rate profiles around the peak excitation altitude, z0, whereas a low
gamma value (𝛾 < 1) will make the profiles more blunt.

A3. TheModeling Search Parameters

The required auroral modeling parameters, depending on the modeling method, are summarized in
Table A1. The horizontal neutral wind and diffusion parameters are only necessary for the 6,300-Å

Table A1
The Search Parameters

Search parameter Gaussian G-E Modified G-E

Maximum excitation I0 I0 I0

Excitation midpoint x0, y0, z0 x0, y0, z0 x0, y0, z0

Excitation radius/size 𝜎xy, 𝜎z 𝜎xy 𝜎xy

Shape parameter 𝛾

(Neutral wind) (ux ,uy) (ux ,uy) (ux ,uy)

(Diffusion) (D) (D) (D)

Number of parameters 6 (9) 5 (8) 6 (9)
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emission modeling; these parameters are therefore within parenthesis. The vertical wind was assumed to
be negligible.
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