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Abstract

Several studies and techniques exist in automatically detecting objects and
layers in ground penetrating radar (GPR) data and its closely related field of
seismic data. However, a technique that specifically can detect the primary
interfaces in GPR data collected from an airborne drone over snow-covered
terrain remains to be accomplished. Finding a suitable automatic technique
could be faster and more accurate than manual interpretation and could save
money and manpower. This thesis tries to detect the top and bottom layer of
the snow-pack by using Canny edge detection and morphological operators
on filtered GPR data. As a result, a root-mean-square-error deviation within
the range resolution of the radar system was achieved on the top layer, tested
on representative subsection, excluding outliers and signal dropouts. On the
other hand, the bottom layer struggles to be close to the ground truth but
has a cross-correlation value above 0.9, with outliers in complex weak bottom
environments. With Canny edge detection and morphological operators, we
could reliably detect the top layer in data with a distinct return signal. However,
the method struggled with the bottom layer but consistently followed the layer
with a varying degree of separation.
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Introduction

The concept of radar is familiar for most people, where it is used to detect the
location and the range of, e.g., a plane or ship. However, electromagnetic waves
can also penetrate certain materials, allowing imaging of the substructure. This
process of utilising the returning signal from an underlying structure is called
ground penetrating radar (GPR). The name reflects the first geological usage
for the method, but applications now range from sand and concrete to ice and
SNOW.

Like radar, GPR works by transmitting electromagnetic waves and recording
the reflected waves. However, the difference is that the signal of interest is not
primarily the first reflection of a layer but the reflection within the medium of
interest. A representation of the subsurface structure can be evaluated from this
returning signal from the recorded wave. In our case, the medium of interest
is snow; this primarily influences the signal’s range where the transmitted
signal encounters a more extensive diversity of mediums than in air. Factors
that influence the returning signal are the electromagnetic properties of the
mediums, the shape of the interfaces, the distance the wave has travelled, and
more. The technique is non-invasive, so there is no need to displace material for
a survey to be undertaken. This property is advantageous in instances where
a mass removal would lead to excess work, like locating pipes in an urban
environment or measuring the thickness of a glacier by drilling. GPR could
also be used in earth science, where it is used to detect and study bedrock,
aquifers, and subsurface layers. It is also used in archaeology to detect patterns
that could indicate the presence of earlier human activity like settlements or
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artefacts without damaging them.

The process of gathering GPR data can be done in multiple ways, depending
on the goal and need for accuracy. It can be gathered by having the antenna
coupled to the medium of interest or with an air gap from the medium. The
antenna could be fixed on a rolling platform with separation in order of tens of
cm or even with tens of meters of separation on a drone [1, 2] or plane [3, 4].
Both methods have their advantages and disadvantages where the most suitable
method must be chosen depending on the goal of the survey space. In short,
having the antenna directly coupled to the medium increases the penetration
depth and accuracy but limits the total surveying area compared to airborne
surveys. Conversely, if there is a gap between the antenna and the medium, the
opposite is true regarding coupling to the medium. It is characterised by having
a lower resolution and penetration depth but does benefit from observing
patterns and trends from a higher perspective. Additionally, the penetration
and resolution of the returning signal depend on the wave’s frequency. The
waves have an inverse relationship, where a low-frequency wave has high
penetration but lower resolution, and vice versa.

With the great utility of GPR, there exist some difficulties which stall use
and implementation of it in other fields. Amidst its problems, there is the
complexity of interpretation of the wave and the interplay between the GPR
wave and the electromagnetic (EM) properties of the medium of interest. For
example, materials with considerable conductivity increase attenuation, which
decrease signal strength. Water content presents the same problem with a high
permittivity, which further increases the attenuation and severely limits the
range of the signal. A medium with these elements and sediments of different
sizes could render the GPR data challenging to interpret. Under favourable
circumstances, the ideal GPR environment would be one at which the mediums
are dry and are separated with mediums of homogeneous sediment sizes.

In addition to the problem of heterogeneous layers of different EM properties,
GPR images are also heavily corrupted with noise of various sorts. First, noise
poses a challenge because it corrupts the desired image and makes it harder
to interpret. It blurs the distinction between the area of interest and the
background, making the interpretation harder for humans and other detection
methods.

GPR images, like regular images, have a presence of white noise across the
dataset, which introduces distortions of various intensity. In addition to white
noise, GPR data can also contain noise from other radio frequency (RF) sources
nearby, as well as clutter from multipath waves and crosstalk (direct wave).
This direct wave clutter expresses itself horizontally in the data and is usually
bright compared to the other signals, but it decreases with distance. Another
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kind of noise is narrowband noise, which is an artefact from other RF sources,
such as telemetry links, and is often manifested as vertical lines in the radar
image. Even though all noise poses challenges, filter parameter optimisation
can minimise its impact. Therefore, optimisation will be an essential part of
the study’s data analysis.

Depending on the data, a trained person can detect buried objects or sparse
layer boundaries because of humans’ pattern recognition and interpolation
ability if signals are weak or missing. However, due to the noise mentioned in
the previous paragraph and variation in mediums, it has been challenging to
automate the interpretation of the GPR data to any form of image processing
technique. This problem is because of a lack of processing techniques that are
targeted towards the task of detecting lines in GPR data and the accuracy of
preexisting methods. As a result of a lack of interpretation tools, analysing the
data has previously been done manually. Due to an increasing amount of GPR
data, the problem has boiled down to the lack of manpower and the time it
takes a person to analyse and interpret the incoming data. Therefore, it would
be of great interest in speeding up the process of interpreting the image by au-
tomating or partly automating the process with the help of computers. Finding
a suitable method for detection of layers in GPR data could be faster, cheaper,
more consistent, and potentially more accurate than humans. Depending on
the implementation of the method, it could also enable real-time processing
and interpretation.

1.1 Background

The complex abilities of human vision and how we perceive the world around
us became evident when replicating these abilities with computers. When this
was first attempted in the 1970s and 8os, the pioneering techniques that tried
to map the world through computers settled on the idea that detecting edges
was an excellent way to start perceiving the world. The decision was based on
the edges often marking the boundary from one object to the next. In addition,
edges could be marked with a change in various image characteristics like
colour, intensity, and texture.

The first pioneering method was the Sobel edge detector [5] which works
by finding the gradient in an image by convolving the image with the Sobel
operator, which worked as the first derivative. Areas with a significant intensity
gradient, usually an edge, will be marked with a new corresponding value
depending on the change in intensity. However, basing our edge detection on
the first derivative can result in some edges being small and some thick in size,
depending on the nature of the edge. Irregular edge thickness and using the
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first derivative can make it more challenging to interpret the image, and it is
also sensitive to noise. One way to solve the problem of noise and thick edges
is to use the Marr-Hildreth or also known as the zero-crossing edge detection
method [6] which is one of the other pioneering methods. The method works
by smoothing the image with a Gaussian kernel and then convolving it with
the Laplacian operator, where the Laplacian works as a second derivative.
Following from the Laplacian, areas that show a change in intensity will be
noted with a zero-crossing in the second derivative, hence the name. This
zero-crossing in the second derivative will be marked as an edge. The method
makes edges that gradually increase in intensity over multiple pixels marked
as only a single-pixel wide compared to the Sobel edge detector.

Even with smoothing from the Gaussian kernel, the zero-crossing method is
still sensitive to noise due to the effect of deriving a second time. Therefore it
has been suggested to filter the image with the Gaussian and keep it to the first
derivative using the Sobel operator. The edges’ strength and direction are also
noted with the Sobel operator. This is the start of the Canny edge detection
[7] method, where a non-maximum suppression is applied to trim the edges,
and a directional aware hysteresis is applied to isolate the most robust edges.
Canny is one of the edge detection systems with the most extended longevity
and is still in use today.

As a result of the lower computational capability of the age computers, these
early techniques followed what is called a model-based edge detection system.
This approach uses mathematical, physical, or biological models to derive an
edge detector applied to the whole image [8]. However, this can lead to
problems because of the variety, complexity of colour, intensity and texture in
an image.

In helping with the interpretation and the processing of the resulting image,
analysing the image using mathematical morphology could be applied. Mathe-
matical morphology follows a practical approach where it processes objects in
an input binary image based on their shape. The objects or pixels of interest are
the ones and zeroes, defined as foreground and background. Operations that
can be applied to the objects are growth or shrinking of an image region, called
dilation and erosion, respectively. The number of pixels added or removed from
an image depends on the size and shape of the structuring element (SE) used.
The SE is an operator of a chosen shape based on the task and intention of the
given morphological operator. Other frequent morphological operations are
opening, which removes sharp edges, and closing, which smooths edges.

In the decades to follow and an increase in computing power in tandem with
Moore’s law, a new method that uses information theory to detect edges under
previous difficult conditions was introduced. This new method utilises the
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availability of a vast amount of data and the techniques introduced by machine
learning. Because of the use of a large amount of data, the new method is said
to be data-driven [8].

Under this new approach, we find statistical edge detection [9] which uses pre-
segmented images to learn the probability distributions on and off the edges.
This technique only looks at the intensity value in the image to determine
the location of edges. Building on the idea of statistical edge detection, there
is also the possibility to combine it with the change including both colour
and texture [10] to increase the detection of edges further. The relationship
between the intensity, colour and texture in the image is essential to get the
most accurate interpretation of the image. In [11] these three parameters were
put into a globalised framework which was based on spectral clustering to
achieve state-of-the-art performance in the ability to detect edges.

As a subcategory under data-driven design on edge detection, learning-based
systems are introduced, including machine learning. These learning-based
systems outperform model-based approaches in their accuracy, but they need
a large amount of annotated data for training. Moreover, the selection of
training data makes it prone to error if presented with an imaging scenario
in which it has not been trained [8]. Under learning-based systems, we have,
amongst others, holistically-nested edge detection [12] which performs an
image to image prediction based on the training from a convolutional neural
network (CNN). In Cunha, et al., 2020, [13] a CNN that has been trained
on a synthetic dataset, is used to detect seismic faults in real-life data using
transfer learning. The transfer learning method uses knowledge acquired from
a previously trained model and adapts it to a similar learning task by tuning a
few hyper-parameters [14].

There are already some GPR methods that automatically detect features in
GPR images. For example, there is the model-based method from [15] which
successfully detected layers in the pavement automatically. However, that was
on an experimental pavement site under favourable conditions. Nevertheless,
newer detection tools usually gravitate towards a learning-based method with
a focus on CNNs because of its accuracy. This shift can be seen amongst others
in [16] which have found a way to detect moisture damages in asphalt, and
multiple papers on automatically detecting rebars [17, 18] both by using a
CNN.

In the methods stated above, all are specified towards image processing of
the given data, but none are about the collection of data in the first place.
However, data collection is essential since insufficient raw data could make
cascading effects down the processing line, resulting in a poorer result. One
way to improve the resulting data could be to use the constant false alarm
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rate adaptive algorithm, which could improve the base data used for detection
based on statistical properties in the data [19]. It does it by increasing and
lowering a threshold value on a local level to maintain a constant probability
of false alarm during the acquisition of the data [20]. Changing the threshold
on a local level bypasses the problem where a low threshold will increase the
probability of noise, but a high threshold will reduce the wanted signal.

It is essential to point out that in the methods presented thus far, there has
been a lack of papers that have as the main focus of detecting inconsistent
and interfaces in noisy GPR data and the problems they entail. Therefore,
problems that revolve around exactly this problem will be further examined in
this thesis.

1.2 Motivation

In this paper, our task would be to find an edge detection technique that can
detect the primary interfaces in a GPR image. The GPR dataset used in this
thesis has been collected and provided by Norwegian Research Centre (Norce)
and shows the data from an airborne drone flying over snow-covered terrain.
The primary interfaces are the top layer which shows the transition between air
and snow, and the bottom layer, which marks the transition between snow and
ground. There are also interval layers between these two primary layers that
represent the snow stratigraphy. Finding a suitable edge detection technique
will be done by implementing the techniques and concepts mentioned in the
previous section. A focus will be on the early model-based methods. However,
expanding into more complex edge detection models will be needed if the
former method is not sufficiently feasible and accurate. As alluded to earlier,
if a suitable technique is developed, it will help Norce and others to handle
a more considerable amount of GPR data without being limited by manual
interpretation.

In finding a suitable layer detection method, the overall objective will be
divided into three sub-goals: detecting the top layer, detecting the bottom
layer, and quality check of the results. Separating the task of detecting the
top and bottom layer is needed not only because they are two distinct layers
but because they have significantly different characteristics from an image
processing perspective. The approach for each layer would be to test out
different methods on a small but representative subset of the dataset of interest.
Each method tested will be argued for, why it was tested and the logical reason
why it was considered a suitable fit for the task at hand. Once the method
is deemed sufficiently accurate against a reliable ground truth, the subset
analysed will be gradually increased until it includes the whole dataset. After
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detecting both the layers, an attempt will be made to quality check and control
the detection’s reliability. For each step, notes will be made of what shows an
improvement and what does not for further discussion.

It is important to emphasise that finding the top and bottom layer in GPR
datasets is the first step in finding the snow depth. Since the material properties
of the snow, such as the density and liquid water content, is unknown, it is only
possible to approximate the depth from the results of this thesis. Ideally, all
parameters, including the two mentioned, would be known to precisely know
the propagation velocity, hence the thickness.

1.3 Objective

The overall objective of this master thesis is to develop a layer detection method
that can accurately detect air-snow and snow-ground interfaces in a GPR image.
With a precise prediction of the position of the layers found through this thesis,
knowledge of the density and water content of the snow, in-situ or estimated,
an estimate of snow depth and SWE can be given. Being robust, this could be
a valuable tool for mapping the snow depth over a large area. Mapping the
snow depth from an airborne drone would be faster, more accurate and more
consistent than manual measurements. The mapping could be beneficial in,
for example, predicting meltwater throughout spring and summer for water
reservoirs used for both drinking and hydropower. Forecasting the amount of
water would be especially useful for the future. It is predicted that the effects of
climate change will increase both the periods of rainfall and drought of specific
areas, making it more critical to forecast and plan ahead of time.

The overall objective of the thesis will be accomplished by:

* Acquiring a suitable dataset and creating ground truth for later quanti-
tative evaluation.

* Preparing the dataset by reducing noise and enhancing the areas of
interest.

* Finding a method that can accurately and robustly detect the uppermost
layer. Start with a subset and then increase the area to the whole dataset.

* Do the equivalent procedure for the bottom layer as for the top layer.

* Finding a method to quality check the estimates.
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1.4 Structure of Thesis

This thesis is divided into parts: some introductory chapters, Part I Finding
the top layer, Part II Finding the bottom layer, and a final overall concluding
chapter. In the introductory chapters we have a Introduction provided in
chapter 1, with the theoretical background needed in chapter 2 under Theory.
A description of the data gathering and the different datasets are given in
chapter 3, Datasets. Since the two methods of finding the top and bottom
layers have been found to be different, they have been separated and contain
the same chapter headings but for each layer. Part I of the thesis addresses
the detection of the top layer, where chapter 4, Method Development, presents
the preparation of the data and the layer detection. Because of the nature
of the thesis the Method Development chapter is written in a way that tries
to intertwine the Method and the Result chapters of a regular paper. This is
to give the paper a better flow and give the reader a better insight into the
thought process of the thesis. Chapter 5, Results, will apply this method to
some selected areas from each dataset with their corresponding accuracy and
quality. Arguments for improvements and weak points in the method will be
presented in chapter 6, Discussion. Part II has the same chapters as part I just
for the bottom layer. Lastly, a overall conclusion for the two detection methods
is given in chapter 10.



Theory

2.1 Canny Edge Detection

Most of this section is based on the description of the Canny edge detection
algorithm described in Digital image processing [21]

As mentioned in the introduction, the Canny edge detector has been one of the
most popular edge detectors throughout the ages, with lengthy longevity and
consistently good accuracy for specific tasks. The algorithm is based around
three objectives which try to combine the best things from preexisting methods
but also learn from their weaknesses [21]. The objectives are low error rate,
single edge point response and accurate edge point localisation. These points
are difficult to all be satisfied at the same time, but through the different
kinds of mathematical formulations, an attempt is made to maximise each of
them.

The first step in the edge detector is to smooth the image by convolving the
original image by the first derivative of a Gaussian, see equation 2.1. Smoothing
is done to lower the impact of noise, but it also has the drawback of blurring out
weak edges. Therefore, smoothing is done by adjusting the standard deviation
(o) value in the Gaussian to find the best balance between the desired reduction
of noise and the distortion weak edges. Padding is also implemented to counter
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image size reduction due to convolution.

fs(xy) = G(xy) * f(xy) (2.1)

Table 2.1: Parameters in equation 2.1, smoothing by convolution

Parameter Description
fs(x,y) Smoothed image
_ x2+y2
G(x,y) = e 20>  First derivative of a Gaussian
* Convolution
f(x,y) Original image

The magnitude and direction of the smoothed image are calculated using a
given kernel. In this thesis, the Sobel kernel is used and is given below in both
x- and y-direction. The Sobel operator finds the derivative in both directions
by looking at the change in pixel value, emphasising the value closest to the
centre pixel, given the value 2. So, if there is a drop or an increase in pixel
value in the x- or y-direction, it will be marked with either a high positive or
low negative value. On the other hand, if there is an area with relative constant
intensity values, the divergent value will be close to zero.

-1 0 +1 -1 -2 -1
Gy=|2 o +2|,Gy=|0 o o0
-1 0 +1 +1 +2 +1

The divergent is later used to find the magnitude and the direction of the edges.
This is done by using equation 2.3 and 2.2, and is used to find the angle and
the strength respectively, of the edge. The strength will later be used when
reducing the chance of false edges by hysteresis thresholding.

Mi(x,y) = /(1) + 82(x.v) (22)
a(x,y) = tan”" [M] (2.3)
9x(x,y)

In the new gradient magnitude image given by finding the gradient magnitude
of every pixel edges are typically displayed by wide ridges. This is a result of
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some edges do not have a clear edge, but a linear increase in pixel values. To
reduce the width of these edges a nonmaxima suppression is used to lower
the width to one pixel. In short the normal of the edges is found using the
direction found earlier and divided in to one out of four directions. E.g. if the
edge normal is found in between angel -22.5° and 22.5° or -157.5° and 157.5° it
will be marked as a horizontal edge. In the same example of a horizontal edge,
if the magnitude is less then one or both of its neighbours in the edge normal
direction (up or down), it will be given the new value of zero (suppression).
If it is higher than both, the value is kept. The same thing is also true for a
vertical and diagonal edges in each direction.

In the Marr-Hildreth (zero crossing) edge detector a global threshold is used
to filter out false edges by setting all values below the threshold to zero. If the
threshold is set to low the risk of false edges (false positive) is high, but if the
threshold is set to high the risk of removing true edges (false negative) is also
high. Canny edge detection is trying to solve this by introducing a hysteresis
thresholding, which works by using two thresholds, one higher and one lower.
All edges above the higher threshold is said to be strong edges whereas the
ones above the lower threshold (weak edges) is to be decided through the
hysteresis.

The hysteresis works by starting from a strong edge and marking all weak
edges which are connected through a e.g. 8-connectivity, as a strong edge. This
process is continued to the point where there are no more any connectable
weak edges and they are then put to zero.

2.2 Image Morphology

The word morphology comes from Greek and means "study of shape", where it
commonly denotes the branch of biology which looks at the shape and structure
of plants and animals. In image processing, morphology refers to the broad
set of operations that processes images based on their shape. These operations
include but are not limited to removing/adding or reducing/amplifying pixels
values, closing or opening gaps in areas with none or weak connectivity and
filling in closed areas. Such operations could be helpful in the interpretation
and analysis of the shapes in our data. Morphological operators can be used
on grayscale and binary images, 2D and 3D, but we will only look at the 2D
binary case in the following text and examples.

In image processing, morphological operators can be seen as the operation
between two sets of operators: Object and structuring element (SE). The object
is the binary input image, where ones are defined as foreground and zeroes as
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background. The SE can have any selected shape and can be specified as both
foreground and background depending on the operation. The most common
operations are dilation, erosion, opening and closing.

2.2.1 Dilation and Erosion

With both the erosion and the dilation, it can be helpful to look at it as a
convolution between A, the original binary image and B, the SE. The formula
for both erosion and dilation can be found in Equation 2.5 and Equation 2.4,
respectively. The difference between the operators is the value the neighbour-
ing pixels are switched into and the activated binary value. In erosion, the
convolution condition is satisfied when the centre of the SE is at a o value in
the original binary image A. Being on a o turns all elements in the shape of
the SE into o as well, leaving the new image trimmed from the original image
A. In dilation, the opposite is true, where the result is a thicker image than
the original. The dilation is done by the convoluted condition being satisfied
when the centre of the SE is 1, turning neighbouring pixels to 1 in the new
image.

To test out and show dilation and erosion, Figure 2.1 is used, which contain
three areas that are going to showcase key takeaways from the operations.
These include a single pixel at the top, a broad line and a set of single columns
with missing pixels in the middle two columns.

A®B= U Ay (2.4)
beB

ASB=()AL (2.5)
beB

Table 2.2: Parameters in equation 2.5 and 2.4

Parameter Description

Binary image
structuring element (SE)
Erosion

Dilation

Intersection

Union

COe0Ow»
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Figure 2.1: Base image for morphological testing.

In Figure 2.2a and 2.2b it is possible to see the result of using both dilation and
erosion on a original image in Figure 2.1 respectfully, using a SE of size 1x3.
Note from Figure 2.2a that the single pixel at the top has taken the form of the
SE used and that the line has expanded with one pixel in each direction. The
stripy area has connected into the shape of a doughnut because the stripes were
only separated with a distance of one pixel. The opposite is true for erosion
in Figure 2.2b where only the thick line survives the erosion due to it being
thicker than at least 3 pixels wide.
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(a) Dilation. (b) Erosion.

Figure 2.2: Result of (a) dilation and (b) erosion on the original Figure 2.1 with a SE
of size 1x3.

2.2.2 Opening and Closing

Morphological opening and closing are built on the same principles as erosion
and dilation in the previous subsection, differing in that they are a combination
of both, depending on which one is applied first. Looking at the formulas given
in Equation 2.6 and 2.7, we can see that opening works by first eroding the
original image then dilating it. In contrast, closing works by eroding a dilated
image. For both opening and closing, the SE stays the same. The result of
opening and closing can be seen in Figure 2.3 where all of the original pixels
in Figure 2.1 which were thinner than 3 pixels in the horizontal direction
disappeared. The thick line remains unchanged from the original image because
it did not disappear in the erosion step. Closing, on the other hand, starts with
dilation, which connects the columns in the bottom, creating a doughnut shape
witch remains after the subsequent erosion, Figure 2.3b. Both the single pixel
and the horizontal line is left unchanged.

AoB=(AOB)®B (2.6)

AeB=(A®B)OB (2.7)
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Table 2.3: Parameters in equation 2.6 and 2.7

Parameter Description
o Opening
o Closing

(a) Opening. (b) Closing.

Figure 2.3: Result of (a) opening and (b) closing on the original Figure 2.1. with a SE
of size 1x3.

2.3 Noise and Noise Removal

Noise is unwanted and semi-unpredictable data values in the dataset, which
distort the underlying data and can make it challenging to interpret. For
example, in the case of GPR images, depending on the severity, noise could
make it harder to detect layers and distinguish them from each other. For
some images, it is possible to differentiate the noise from the signal of relevant
information, but this could pose a problem when using computer methods
such as edge detection to identify boundaries. Edge detectors, particularly
early ones, utilize a change in intensity values. This change in intensity values
makes them vulnerable to false positives and false negatives depending on the
noise level.

The noise can come in multiple forms where data values can be evenly dis-
tributed across the dataset, occur at regular intervals, or show a predilection
towards specific intensity values. Noise predominantly results from the process
of acquisition and transmission [21]. During these transitions and between,
recording or transmission tools are vulnerable to, e.g. environmental distortions
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like background noise, interference in the transmission channel and sensor
temperature. Therefore, it is desired to reduce the significance of noise in the
image and promote the signals of interest. The removal or mitigation of the
noise depends on what kind of noise is present.

2.3.1 Filters

A simple form of reducing noise in the dataset is by running filters over the data
depending on the characteristics of the noise present. The simplest filter is the
arithmetic mean filter. A set kernel is convoluted over the given dataset where
all values within the kernel are added and divided by the number of elements
contained in the kernel. This filter blurs the data points with its neighbours,
where it helps blur out outliers and smooth areas for further filtering. Note that
the size needs to be chosen carefully since this filtering also blurs edges.

For data that has been corrupted by salt and pepper noise, a median filter could
be the best approach to reduce the noise where extreme values within a kernel
are downplayed. The benefit of the median filter is that it perseveres edges
better than the mean filter.

2.3.2 Wiener Filter

The Wiener filter is a powerful noise removal filter that approximates the unde-
graded image by minimising the mean square error between the reconstruction
and the original signal. The filtering technique is initially complicated and does
utilise the frequency domain [22]. However, for using the Wiener filter in this
thesis, an approximation will be used employing the mean and variance around
each pixel in the original image. Equation 2.8-2.10 shows the step of this ap-
proximation where y is the mean value in the area NxM, o2 is the variance in
this area, and b is the Wiener approximation for the centre pixel. v denotes the
noise variance, given by the average of all the local estimated variances.

H=— a(ny, ny) (2.8)
NM m%@q
o = L Z a*(ny, ng) — p? (2.9)
NM ni,no€m
o2 — 2
b(ni,nz) = p+ —=—(a(n1, n2) — p) (2.10)
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Table 2.4: Parameters in equation 2.6 and 2.7

Parameter Description

Mean

Variance

Summation

N-by-M local neighbourhood of each pixel in the image
Wiener approximation

Noise variance

< =3 |Q =

2.3.3 Singular Value Decomposition Filtering

In linear algebra, the method of singular value decomposition (SVD) is factor-
izing a matrix into three matrices which consists of some beneficial algebraic
properties. For example, with SVD the matrix M can be factorized into three
matrices: U, ¥ and VH see Equation 2.11, where H stands for the transpose-
conjugate indicating complex coefficients, transpose if real coefficients. Com-
monly SVD can be used as the basis for the principal component analysis, which
is one of the most used techniques in statistics for taking high dimensional data
to understand it in terms of its most dominant patterns of correlations.

In a matrix M of size (m,n), U and V are two singular vectors forming two
orthogonal matrices of size (m,m) and (n,n), respectively. Where X. is a diagonal
matrix of the same size as M, see Figure 2.4a. This ¥ matrix is known as the
singular value of M. The non zero elements in > displays singular components
in descending order. The value of these singular components can be interpreted
as the magnitude of a semiaxis in an ellipsoid of n-dimensions. The magnitude
of each axis can be understood as the standard deviation or spread of data
along that particular dimension.

Singular values are related to the more commonly known eigenvalue and are
related in that the singular values in our matrix M of size (m,n) would be the
square roots of the eigenvalues in the matrix MM of size (n,n). However, they
differ in finding the eigenvalues through eigenvalue decomposition where the
input matrix must be square, whereas the corresponding matrix in SVD does
not.

M = Uzv (2.11)
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(@) SVD equation visualized.

; u x v

mxn mxr rxXr rxn

(b) SVD reduction operation visualized.

Figure 2.4: Visualization of (a) the SVD equation and (b) how SVD reduction influ-
ences the data.

Using the equation in reverse, multiplying all the singular vectors with each
singular component creates the original matrix. However, it is possible to
remove some of the singular values and their corresponding U and V¥ values
to alter the image without altering its shape. In Figure 2.4b we can see the
result of removing low-value components of the X and its impact on the rest of
the expression. Areas marked in turquoise do contain variables that contribute
to matrix M,, where index r indicates that the matrix has been reduced. By
removing specific singular values, we can disproportionally remove some of
the noise, leaving the areas of interest relatively untouched [23]. Removing
singular components works because some components contribute more to the
noise than others.

2.3.4 Thresholding and Trimming

Thresholding and trimming could be valuable tools in removing points or areas
that are not in use or contain a large amount of noise. This method is a practical
solution in lowering the amount of filtering needed in the image and reducing
the tedious process of tuning the parameters for each dataset. Therefore, to
implement this practical approach, finding a method that can adapt to the
layers and the given dataset would be helpful.

Basic global thresholding could help separate the image into two classes, objects
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and background. The thresholding technique is done automatically for data
where the separation between classes are distinct, but this is not always the
case. Therefore, it could be helpful to use optimum global thresholding using
Otsu’s method. Otsu’s method works by using the PDF of the intensity values,
or an approximation of the PDF like the histogram, in the data to increase the
intra-class intensity variance [24]. Increasing the intra-class intensity variance
could be a problem in datasets with a large amount of noise. However, it can
be improved by reducing the noise through noise reduction techniques, like
mentioned above.

Trimming can also be implemented where values in certain areas that are not
of interest can be removed entirely, reducing the amount of filtering required
and leaving the areas of interest more intact.






Datasets

The GPR datasets used in this thesis was collected by Norce researcher and
co-supervisor of this thesis Dr. Rolf-Ole R. Jenssen, on a field excursion during
the period from 14-19 of April 2021. The excursion was conducted in the context
of testing the performance of a radar system made and developed by Jenssen
& Jacobsen [25], mounted to an airborne drone. During the excursion, the
surveys were conducted at different locations with varying degrees of snow
depth, internal layers, wind conditions, drone altitude and velocity, surface
topography, altitude and more—all these parameters contributed to making
different looking datasets. Furthermore, the data was handed over from Jenssen
preprocessed, where the option to change the preprocessing was available but
not addressed in this paper.

Figure 3.1 shows a representative subset of a GPR dataset, displayed with
some noise reduction already applied. For reference, the axis of this image is
given in terms of its real-life distance. The x-axis is in meters and is calculated
from the GPs data, and the y-axis represent the distance of radar waves in air,
given in cm. The bottom and internal layers in the figure will appear deeper
in the dataset (in air cm) than in real in situ measurements since the radar
wave travels slower in snow than air, and how much deeper depends on the
density.. The forthcoming GPR figures in the thesis will be depicted in terms
of the sample points instead of distance. As in Figure 3.1, all figures will also
be shown with their colour map inverted to better fit with the surrounding

page.
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Figure 3.1: Subset a GPR image with filtering applied. Real-life distances are dis-
played.

3.1 Data Gathering

The drone used for conducting the surveys and carrying the antenna system
was a Norce-developed octocopter called Cryocopter FOX. The choice of the
drone was made due to payload capacity and weather resilience compared to
other airborne drones [1]. The data gathered from this drone got collected
with two Vivaldi antenna arrays containing two antennas each, in a bistatic
configuration. The advantage of using a Vivaldi antenna is that they have
relatively high bandwidth and medium directivity compared to other antennas
of similar size. With these antennas, the total system bandwidth results in
a range resolution of approximately 5cm. The range resolution comes from
the total system bandwidth of the radar. L.e. the bandwidth of the antennas
and the bandwidth of the waveform transmitted to the antennas. Including
in the antenna choice and setup, some modifications have been made to the
traditional Vivaldi design to improve its characteristics, [1].

In addition to the antenna, a laser altimeter was mounted on the platform to
locate the first layer. However, due to significant amounts of noise, possibly due
to random specular reflections on snow crystals, this data is not adequately
consistent to determine the first layer. In Figure 3.2 we can see another section
of the filtered GPR data where the laser altimeter measurements are displayed.
Notice how it manages to follow close to the top layer but is not accurate,
and sometimes it dives down into the layers. Note that when using the laser

160
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altimeter, the mounting position offset on the platform was noted and corrected
for, since it affects the final detected range of the ground.

Fast time (samples)
T

T
: Laser altimeter

., -
/AN

L
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800

Slow time (samples)

1000 1200 1400 1600 1800 2000

Figure 3.2: GPR data with the laser altimeter measurements displayed.

During the data collection, the corresponding UNIX timestamp is recorded, in
addition to the global positioning system (GPS) location of each sample, see
Figure 3.3. This data is used to georeference the data. Each gathered mea-
surement is based on the transmission interval of the signal and is susceptible
to a variation in the drone’s speed. Therefore, with data of the location and
time, an interpolation of the image can be made to adjust for the variation in

speed.

To summarise, in the data that was provided, we have a 2D intensity image,
plus the corresponding altitude collected from a laser altimeter and the GPS
positions. All this data will be utilised to find a method to find the main layers
and comprehensively present the results.
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Figure 3.3: Flight pattern and GPS location for the different datasets.

3.2 Description of Data

The data collected depends on various components, some already alluded to
in the previous section. These are things that a person with some or even no
insight into GPR would be able to point out. In addition, some easily overlooked
problems become evident when using GPR from a drone, but also some familiar
artefacts are seen in data handling of electromagnetic waves.

If we look close enough in all radar data, we can observe convex hyperbolas in
the image. The hyperbolas are imaging artefacts arising from radar detecting
the subsurface on a moving platform. The main principle of the hyperbolas is
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a result of the directivity of the antenna, where the GPR can detect an object,
e.g. a rock, before and after it is straight above the object. If we use an antenna
with a hypothetical directivity equal to a laser beam, we would only get a
response when we are strait above the object. On the other hand, if we use
an antenna with a lower directivity, we would pick up on the object before
the antenna is above the object. Running the antenna with low directivity will
record a hyperbola shape. The tail end of the hyperbolas is when the distance
is further apart. The hyperbolas are primarily expressed in the bottom layer in
our datasets, making them appear thick, but also in other places though less
pronounced.

In short, these components include: aliasing of the returned wave outside the
unambiguous range [26], which are out of bound, hyperbolas which makes up
the bottom layer, noise associated with the drone RF telemetry, ringing along
boundary lines and other kinds of noise.

3.2.1 Aliasing

In the circumstance of when a target moves out of the unambiguous range of
the radar, a sampling artefact called aliasing will occur. The artefact expresses
itself in that data points, which we would expect below the sampling range to
wrap itself around and display at the image’s top, see Figure 3.4. This aliasing
gives the impression that, e.g. layers goes through the bottom and appear at the
top. For most instances, it is easy to see the connection between the layer going
from the bottom to the top, but it adds an extra challenge to automatically
finding the layers. In the datasets looked on in this thesis, aliasing is not a
big problem and mainly shows in the initial and end phase where the drone
approaches its target altitude or landing. However, these areas are prone to
other noise and errors due to the adjustment of the drone altitude. Therefore,
these areas are not of interest in the survey and will not be looked at when
evaluating the feasibility of the detection method. The origin of this artefact is
two folded and comes from the periodicity of the transmitted signal and the
cyclic nature of the match filter processing [26].
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Figure 3.4: Aliasing, example of how it moves out of the unambiguous range of the
radar. Here we can see how the bottom layer goes below the range and
wraps itself to the top of the data.

3.2.2 Difference in Datasets

In this thesis, we will look at three different datasets taken at three different
days, locations, variations in conditions, and flight patterns. These differences
will contribute to testing the robustness of the edge detection technique under
different scenarios. A subset from each dataset can be seen in Figure 3.5 where
a representative subset has been chosen to illustrate the key features of the
subset. Each dataset will be referred to as dataset 1, 2 and 3.

The drone had an altitude of about 8 meters above the snow during the survey
in the provided datasets. For dataset 1, we have a grid-like survey which we
can see in Figure 3.3a where a total of 1.8km distance was covered. The survey
area was characterised by having a shallow snow level and flat topography with
some local increases in-depth, see Figure 3.5a. These local sudden drops and
increases in depth can come from wind-packed snow variations in terrain or
around other local objects, like a rock. The depth variability is more prevalent in
the other datasets than dataset 1. Dataset 2 depicts a new area where the drone
has a higher speed and has changed to a sawtooth survey pattern, see Figure
3.3b. Because of the higher speed and less turning in the flight pattern, the
drone traverses a distance of 7km. A shallow snow level characterises the data
collected from dataset 2 as in dataset 1. However, it does have more variation
in topography where we can have a sudden drop or increase in altitude. One
of the sudden altitude changes can be seen in Figure 3.5b where there is a

2500
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drop in elevation of the terrain.

In the last provided dataset, we have a sawtooth survey pattern as in the
second dataset, see Figure 3.3c and a distance travelled of 5.5km. However,
the dataset is different compared to the two other ones in that it depicts a
survey area with a higher snow depth. It also has a more varied topography
change, see Figure 3.5¢, where some places we do have occurrences of aliasing.
It should be noted that changes to the elevation in the data could also be
because of a readjustment of the drone height. The ambiguity of the source of
an elevation change in the data is important to recognise as we go forwards in
the thesis.
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Figure 3.5: Subsets of the three different datasets used for testing.
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In contrast to the traditional structure of a thesis with a clear distinction be-
tween method and results, in this thesis, we have chosen to blur the distinction.
The decision to blur the chapters comes from the nature of the thesis and
how the method was developed. The method in the following chapter will,
step by step, show the partial result as the method develops towards finding
a technique that can detect the top layer. Showing the partial result as the
method develops will give the text a better flow and invite the reader into
the thought process of the choices. The chapter with the final results will be
reduced in size, but it will be showing the result from a couple of subsections
from each dataset. These will be shown with ground truth and the estimate
from the method, the given accuracy in root mean square error (RMSE) in
air equivalent cm and data samples, and cross-correlation. A quality value
will be depicted at the bottom of each image to show the estimate’s reliability.
In helping with the explanation in the discussion, an image will depict each
dataset’s flight pattern in the result, with each subset marked.

The method development for the top and bottom layer has been chosen to be
conducted on a subset from dataset 1. Along with the development, we will
adjust and introduce solutions to problems that arises from other parts of the
dataset and datasets 2 and 3. This decision in using dataset 1 was made based
on the observation where the dataset had a brighter top layer and that it was
a middle ground between the snow depth between dataset 2 and 3.

All programming in this thesis was done in MATLAB, where most functions
used were from MATLAB toolboxes. If the author or others make some custom
functions, a note will be given.






Method Development

4.1 Preparation of Data

The preprocessing stage mentioned in the previous section outputs a relatively
"raw" dataset. This dataset is challenging to read and interpret but can be
processed by filtering out the noise to enhance the signal of interest. Figure
4.1 shows a subset of the radar image with no filtering. Notice the distinct
horizontal lines at the top of the image and the layers, which can be seen in
samples 150-200 in fast time. It should be noted that the colour map has been
inverted and will be inverted on the following images in the thesis to better
fit with the page. The choice of inverting the colour map will be better visible
after some filtering steps.

33



34 CHAPTER 4 / METHOD DEVELOPMENT

Fast time (samples)

800 1000 1200

Slow time (samples)

Figure 4.1: Raw radar image with direct wave at top.

This horizontal noise originates from the direct wave between the transmit-
ting and receiving antenna and poses a challenge for interpreting the image.
Therefore, it would be beneficial to remove it without disturbing the signal of
interest.

Since the direct waves are relatively stationary horizontally, a row-wise mean
subtraction would effectively remove a large part of its contribution while
leaving other dynamic areas with little change. In Figure 4.2 we can see the
plot of the row-wise mean value of Figure 4.1, with the signal of interest
marked with a red circle. The figure shows a strong oscillating signal at the
start, where the horizontal noise is the most prevalent. This oscillation does
not stop throughout the plot, but it dampens when moved away from the
initial rows. Therefore, removing the mean value from each row will heavily
impact the noisy areas and minimally impact the rest of the image. Filtering in
the frequency domain was also attempted but did not remove the horizontal
lines.

In Figure 4.3 the image can be seen with the mean value removed from each
row. With the mean value removed and the horizontal noise reduced, it has
brought forward both the layers of interest and other underlying noise in the
image. With the layers of interest more visible than beforehand, we would like
to make them more visible by further filtering.
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Figure 4.2: Mean value for each row in Figure 4.1 with the signal of interest marked
with a red circle.
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Figure 4.3: Mean value for each row removed from Figure 4.1.

To enhance the layers and remove noise, we will use singular value decomposi-
tion (SVD) to remove singular components which contribute disproportionately
to part of the noise. We do this by first contrast stretching the top and bottom
5% of the intensity values for better detection. Subsequently, we use SVD to
remove the ten first singular components in the image. The result of the reduc-

600



36 CHAPTER 4 / METHOD DEVELOPMENT

tion of the image with a further contrast stretching the top and bottom 1% can
be seen in Figure 4.4a, where the removed values can be seen in Figure 4.4b.
This image has a substantial amount of less horizontal noise across the image.
However, the contrast stretching has brought forward other noise, including
vertical lines coming from a narrowband (telemetry) RF link. We further re-
duce this noise by running both a 3x 3 median and Wiener filter over the image
in that order. Figure 4.5 shows the result of the filtering. The median filter is
chosen to reduce the amount of small-scale salt and pepper noise, whereas the
Wiener filter is chosen because it filters noise but preserves the main structure
(i.e. snow layers) in the image.

]
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(a) Filtering by removing singular components.
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mSIow timemzsamples)
(b) Removed components from SvD filtering.

Figure 4.4: (a) Result of filtering by removing singular components on Figure 4.3. (b)
Removed values from the svD filtering. .
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Figure 4.5: Result of additional filtering on Figure 2.11 by a median and Wiener filter
of size 3x3.

This image has been sufficiently prepared where the layers have been enhanced
and the noise reduced. The next step is to have a method to detect the top
layer with a minimum amount of disturbance from the remaining noise.

4.2 Layer Detection

As seen in previous pictures of the provided datasets, the two layers of interest,
the top and bottom layers are different in their characteristics. Typically, the
bottom layer appears thicker due to the hyperbolas’ tail extent and complexity
of the snow-ground interface. Therefore, two different approaches are needed
to find a method with acceptable accuracy. In Figure 4.6 we can see the subset
with the ground truth for the top layer displayed. The ground truth was drawn

manually with guidance from an experienced GPR researcher, Dr. Rolf-Ole R.

Jenssen. Notice how the top layer is marked with an explicit edge boundary
from the transition between air and snow. However, the top layer is not as
explicit in some areas outside the subset and other datasets. In addition to
varying degrees of noise, the weak layers could pose challenges in finding a
consistent layer detector.
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Figure 4.6: Prepared image with ground truth (blue) of top layer.

The first step in finding the top layer is trimming the image using the laser
altimeter data to cut away noise which could be a problem later. We do this by
taking the index of the laser altimeter, moving it up by x-amount of samples to
give it a buffer zone. In this subset and in the rest of dataset 1, which we are
using, it has been found through testing that a shift of 20 pixels is adequate in
removing noise and avoiding cutting into the top layer. For the other datasets,
the shift is different because of variations in the laser altimeter performance.
All values above this shift in the original image are set to zero. Doing these
steps reduces the chance of the method picking up on noise, reducing the
amount of filtering needed and preserving the wanted data. Trimming using
the altimeter partly overweight with the mean removal from earlier where the
trimming would remove the strong horizontal lines at the top of the images.
However, the altimeter cannot reduce the amount of horizontal clutter from
the area with relevant info, i.e. snow layers, which leaves us with a reason to
keep both steps.

These intensity values of the trimmed image are inserted into a histogram where
Otsu’s method finds a threshold that will be used in Canny edge detection.
We use Otsu’s method mainly because it is adaptive to the given histogram
and maximises the variance between the two separated regions. Furthermore,
using Otsu’s method removes the need to set a threshold and adjust it for
each dataset, which could be inaccurate and time-consuming. When using
the threshold from Otsu’s method in Canny edge detection, testing found that
lowering the threshold to 70% increases the probability, including weaker

layers. However, the lowering comes with the expenditure of some added noise.
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In Figure 4.7 we can see the result of using the Canny edge detection algorithm
with a threshold of 70% of Otsu’s method and a standard deviation of 1. Canny
is chosen because of its robustness and the possibility of setting a threshold.
We have also added the trimming boundary where we, from the previous step,
removed all values above the altimeter plus a shift.

Laser altimeter with shift\

Fast time (samples)

o .
Slow time (samples)

Figure 4.7: Canny edge applied to Figure 4.5 with a threshold of 70% of Otsu’s method
and a standard deviation of 1. The laser altimeter with a shift (green) is
added to illustrate the boundary of trimming.

By the looks of Figure 4.7, it would be tempting to remove small areas in
this binary image to remove the last bit of noise which are above the top
layer. However, this is not necessarily a good idea since some tiny and weakly
connected layers are also in the top layer. Therefore, we would connect these
areas using morphological operations, starting with dilation.
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Figure 4.8: Comparing a subset of the result of (a) Canny with result of (b) dilation
with a SE 1x31.

In Figure 4.8 we can see the same area from Figure 4.7 with and without
dilation applied. The dilation applied in Figure 4.8b is using a SE of size 1x31.
The SE is given a horizontal bias because of the horizontal orientation of the
snow layer. Notice how the weakly connected layers at point 1250 and 1690 in
Figure 4.8a is now connected after the dilation in Figure 4.8b. This is a good
thing as we can now remove objects below a certain size without running the
risk of removing points on the top layer. In Figure 4.9a we can see that we
were able to remove most of the noise above the top layer with a noticeable
exception of a point at 1150, which connected with the slope. Erosion with the
same SE is applied to the image to reduce the excess pixels from the dilation,
see Figure 4.9b.
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Figure 4.9: Reducing noise by (a) removing areas below a certain size and (b) eroding
the image to balance the image from dilation.

The exact process of dilation and erosion is again done on the image where the
SE is replaced with a disk of the same size. The choice of using a disk-shaped SE
is made to connect areas that are still separated vertically and to smooth some
of the boundaries, see Figure 4.10. The last operation that alters the image is
removing objects less than 5’000 pixels in size with 8-pixel connectivity. The
removal is done to reduce noise clusters that could have formed above the
top layer. The last process is essential for datasets where the laser altimeter is
unreliable.
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Figure 4.10: Result of using morphological closing on Figure 4.9b.

With the results from the morphological operations and area removers in Figure
4.10, we find our estimate of the top layer by marking the first transition from
white to black as a top point. The resulting vector is now our top estimate, and
it is smoothed with a local regression algorithm regressive locally estimated
scatterplot smoothing (LOESS) with a sample of 50 points. This algorithm
combines the moving average and polynomial regression, assigning lower
values to anomalies. Regressive LOESS is also used to interpolate if there are
missing values in the vector. A figure with the plot of the ground truth and the
estimate can be found in Figure 4.11.

An attempt was made to correct the top estimate by updating its altitude by
snapping it to the closest substantial value in the y-direction. The correction
was meant to address instances where the estimate was incorrect because
of dilation errors or the smoothing. It performed well on estimates which
already did well by making them better but did worse in estimates where
it was struggling. It was decided to abandon this idea because of a lack of
significant increase in accuracy values like RMSE and cross-correlation.
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Figure 4.11: Estimate of our method (red) plotted together with top ground truth
(blue).

The estimated layer has a varying degree of accuracy, where some places have
a high degree of precision and others do not. Therefore, a quality check will
be implemented to point out areas in the estimate with a high and low degree
of certainty. In this thesis, the quality check is implemented by a self-made
code that normalises the average value in a 5x5 area around the index of
each estimated point. The estimate is taken from the finished image from the
Preparation of Data section. The thought process of implementing the quality
check is that it will give a high average value if it is close to the top layer and a
low value if not, or if the signal has dropped out in this region. In Figure 4.12 it
is possible to see the quality check at the bottom of the figure with its y-axis at
the right side of the image. It has been judged that the cut between good and
bad estimated values is approximately 0.3 through inspection. Depending on
the dataset, a normalised mean value of 0.3 usually translates to the turquoise
colour. Note that the area around sample point 830 in slow time for the quality
check; here, we can see a drop in quality. This drop is because the estimate
is hovering above the ground truth and the top layer, resulting in a low mean

value. In sample points 350-400, we also see an area with a low-quality score.

This time, it results locally from the top layer in the area having a lower intensity
value. Since we use a normalised value, the quality measure can sometimes be
slightly off in datasets with an especially good or bad estimate. Since the values
in the quality check have been normalised, the values are unitless.

2000
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Figure 4.12: Quality check of the top layer estimate from Figure 4.11. Yellow areas
translate to good quality, and blue is low.

On the other hand, the quality measure has the inherent problem arising from
the simplicity of its design. It can not detect the difference between the layer of
interest, internal layers and noise. To counteract the noise and internal layers,
we use the same smoothing filter on the quality measure used on the top
layer’s estimate. After the smoothing, the quality measure works well for the
vast number of cases, even when the estimate goes above and below the top
layer. In Figure 4.13 we can see the result of smoothing the quality estimate in
Figure 4.12
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Figure 5.1: Top results from dataset 1 with their given ground truth and estimate from
the method.
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Figure 5.2: Flight pattern for Dataset 1 with the different subsets marked.

As stated in the method development, the applied result of dataset 1 was
gattered by shifting the laser altimeter up by 20 samples and reducing the
threshold from Otsu’s method to 70%.

Table 5.1: Top RMSE in air equivalent cm and samples, and Cross correlation for
dataset 1.

Subset RMSE (cm) RMSE (samples) Cross correlation

Subset1 1.0951 0.8531 0.9967
Subset2 0.8772 0.6751 0.9930
Subset 3 2.8336 2.4701 0.9940

Subset 4 1.0581 0.8332 0.9940
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Figure 5.4: Flight pattern for Dataset 2 with the different subsets marked.

The applied result of dataset 2 was gattered by shifting the laser altimeter up
by 9o samples and reducing the threshold from Otsu’s method to 70%. This
extent shifted by the altimeter amounted to 9o samples due to the unreliability
of its measurements in this dataset.

Table 5.2: Top RMSE in air equivalent cm and samples, and Cross correlation for
dataset 2.

Subset RMSE (cm) RMSE (samples) Cross correlation

Subset1  2.4096 2.1029 0.9876
Subset 2  4.7532 4.2003 0.9883
Subset 3 9.1458 8.0997 0.9539

Subset 4 3.8271 3.3482 0.9891
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Figure 5.5: Top results from dataset 3 with their given ground truth and estimate
from the method.
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Figure 5.6: Flight pattern for Dataset 3 with the different subsets marked.

The applied result of dataset 3 was gattered by shifting the laser altimeter up
by 50 samples and reducing the threshold from Otsu’s method to 40% of its
original value. The Otsu’s method was further reduced from 70 to 40% due to
areas in the dataset with weak values of the top layer.

Table 5.3: Top RMSE in air equivalent cm and samples, and Cross correlation for

dataset 3.
Subset RMSE (cm) RMSE (samples) Cross correlation
Subset1 8.5729 7.5902 0.9459
Subset 2 3.7860 3.3321 0.9949
Subset 3 4.1420 3.6350 0.9700
Subset 4 5.0928 4.4970 0.9941







Discussion

Since we in this thesis has presented a novel solution to the problem of
automatically detecting the primary interfaces in GPR data collected from
an airborne drone, we do not have any other research to compare results.
Furthermore, because these results stand on their own, it can be challenging
to know the performance of the method other than looking at the accuracy in
RMSE and cross-correlation. Therefore, without comparing it to other papers,
we will in this chapter discuss the data provided, results and have a look at the
strengths and limitations of the method.

6.1 Data Provided

The data was, as mentioned before, provided pre-processed with a 2D intensity
image, plus the corresponding altitude collected from a laser altimeter and
the GPS positions. These data varied in quality where e.g. the prominence of
the top layer and the laser altimeter accuracy could vary. A varied accuracy of
the laser altimeter had consciences in that the shift used when trimming the
data needed to be adjusted for each dataset. The adjustment of each dataset
introduces one of few variable changes which need to be changed for each
dataset and limits the usefulness of using trimming in the first place. The other
variable which needed to be changed from the datasets was the percentage of
the thresholding found from Otsu’s method and used for Canny edge detection.
The top layer prominence varied most likely due to different characteristics of
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the snow, like air and water content or compression due to wind. Overall the
need for parameter adjustment reduces the method’s robustness.

Another aspect of the provided data that can present a problem for the detection
and interpretation is the variation in altitude of the drone. The variation can
create false tops and valleys due to abrupt changes in the altitude, creating
difficult areas for the method. In addition, these altitude variations create a
false sense of topography in the image. The topography we see in the provided
GPR data is not the same as real-life topography, where it is often an artefact
due to losing or gaining altitude. It is possible to correct for the variation of
the altitude by flattening the estimated layer, see Figure 6.1. This flattening
also, to some degree, removes variations in the topography, but it is ambiguous
because the top snow layer is not an exact representation of the underlying
ground. If there is a need to associate the radar data to the real-life topography;,
digital elevation models (DEM) can be used.

T
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Figure 6.1: Flattening the top layer to see the underlying quasi-topography and layer
thickness better.

6.2 Method Strengths and Limitations

Like any other method, the method presented in this thesis has its strengths
and limitations. The method’s strength in finding the top layer is that it is fast,
accurate for the datasets shown and has a decent quality measure that marks
the top layer estimate’s chance of being correct based on the mean value of
the surrounding pixels. Unfortunately, we had some unintended consequences
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because normalisation was thought to be a reasonable choice for the quality
estimate. Using normalisation individually for each subset resulted in some
subsets with a generally high or low-quality value being repressed. Figure 5.1b,
which is the subset with the highest accuracy in the whole dataset, shows that
most of the left areas are questionable even though the top estimate is correct.
This is a result of the normalisation where other places are affected but to a
lesser degree. one way to fix this is to put all the quality values in a global
vector before normalisation.

It should be noted that the speed of the code is based on pre-processed data
where the bulk part of the computational load is skipped.

Early on, the decision fell on using dataset 1 as the base dataset when developing
the method. Compared to the two other datasets, this dataset generally has
a brighter top layer, possibly due to a higher snow density (wind packed) in
the top layer. In addition, using dataset 1 could make detecting the first layer
in the other datasets more challenging because the layer could blend into the
ambient noise. The difference in the datasets was a challenge, but a middle
ground was found by first developing the method for dataset 1 and then making
adjustments by visiting datasets 2 and 3.

In how the method was developed, each step is essential for the subsequent step,
except for some steps that do have an overlap, like the mean removal and laser
altimeter trimming. Even though each step has its purpose and benefit, it also
has its drawbacks. For example, the mean removal of each row in preparation
of the datasets removes most of the noise. However, it also removes values from
the layer of interest, especially generally flat intervals. Therefore, it would be
beneficial to have another technique that removes the noise without influencing
the layer of interest or removing the direct waves in the first place.

Another flawed step that could benefit from an improvement is the horizontal
line dilation which tries to connect the layers. The limitation of this step is that
it assumes that the next point in the top layer is horizontal to the other point.
Assuming horizontality is a valid assumption of most places. It also introduces
the problem where noise close to the top layer connects with the layer and that
valleys that are shorter than the dilation distance are being cut prematurely.
However, the main limitation of the method is that each step chosen and tuned
was done by the developer’s judgment and not by numerical measurements.
The tuning has made the method work particularly well for these datasets but
would probably need some adjustments for other datasets.

In dataset 2 subset 3 we can see that the top detection method has the highest
RMSE of all datasets tested. We can see from Figure 5.3c that the problem
which gives the dataset a lower accuracy value is the failure of the method
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to follow the top layer down the drop in the data. This decrease in ground
elevation could result from the drone adjusting its altitude, but as we can see
from the GPS Figure 8.6 and Figure 5.3b and 5.3b from subsets 2 and 4, the
drone is going over this feature multiple times. The failure to follow the layer
is unexpected since it could detect the layer to a higher degree in the other
datasets. If we assume that the feature, which could be a small stream of water,
is approximately the same for the different drone crossings, it is concerning
that we do get different results. That is because the number of times crossing
an area should not matter, as long as the conditions are the same. When we
take a closer look at the area in the subset, we can see where the problem
arises. In Figure 6.2 we can see the two steps which result in the detection
failure in the top layer. Here we can see that the layers fail to connect after
dilation due to the descending layer, Figure 6.2a, leaving it small enough to be
removed with area removal, see Figure 6.2b. As expected, removing parts of the
top layer raises downstream problems, leaving us with a suboptimal estimate
of the top layer.
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Figure 6.2: Reason for detection failure in top estimate in Figure 5.3c. Dilation fails
to connect the descent layer, leaving it small enough for area removal.
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Method Development

As mentioned in the Data Preparation for the top layer, finding the top and
bottom layers differs because they have different characteristics. The top layer
has a clear boundary between the transition from air to snow, excluding weak
layers and noise. Contrarily, the bottom layer does not, and the transition
from snow to the ground is not necessarily as abrupt. The reason is that the
bottom layer appears thicker due to the hyperbolas’ tail extent and the snow-
ground interface’s complexity. These variables make the bottom layer more
complicated and the approach different from the top layer.

7.1 Preparation of Data

The steps needed to prepare the datasets are the same as the top layer. The
only difference is in the tuning of the variables in the filtering. In the SVD
filtering, the singular values removed is increased to 20, and the contrast stretch
after filtering is decreased from 0.04 to o0.01. In Figure 7.1a the product of the
resulting SVD filtering can be seen with the sum of the removed components
displayed in Figure 7.1b.
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Figure 7.1: (a) Result of filtering by removing singular components on Figure 4.3. (b)
Removed values from the svD filtering.

The second change in the preparation of the dataset is that the median and
wiener filter has been increased. The median filter has been increased from
3x3 to 4% 4, and the wiener filter has been increased from 3x3 to 5x5. The
result of the filtering can be seen in Figure 7.2 where the ground truth of the
bottom layer is marked in blue.
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Figure 7.2: Prepared image for detection of the bottom layer. Ground truth shown in
blue.

7.2 Layer Detection

The presumption in the last part where we found a method to find and detect the
top layer was that it was bright and could distinguish itself from the foreground.
However, the method presented in this section uses two presumptions. First,
the hyperbolas tail extent of the bottom layer follows the top of the hyperbolas
and could therefore be used to detect the layer. By looking at Figure 7.2, which
displays the ground truth, we can see that the layers, even though it is coarse,
correlate to each other. We will therefore play on this presumption in detecting
the bottom layer. The second presumption is that the top layer is known, where
the top layer’s estimate from the last part will be used. From this point onwards
in the thesis, the top and tail extent will refer to the top and bottom part of
the hyperbolas, where the bottom layer would be used for the top extent of
the hyperbola.

Our task would be to reduce the noise as much as possible in the area underneath
the bottom layer to find the tail extent accurately. The noise has already been
heavily reduced in the preparation of the data by the Wiener filter, but a mean
filter of size 50x50 is also used to flatten isolated intensity values and to
blur the tail extent, Figure 7.3a. The blurring is done to smooth the transition
between intensity value changes in the tail extent and make thresholding more
consistent. Mean filters of different shapes and sizes were tested, e.g. with a
horizontal bias, but a square with size 5o was judged best. Since edges are
unnecessary for this approach, binary thresholding is conducted instead of one
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through Canny edge. The threshold value is calculated from Otsu’s method,
with no reduction of its value needed. The result of the thresholding with the
subsets ground truth of the bottom layer can be seen in Figure 7.3b, notice
how the tail extent correlates with the ground truth.

A closing morphological operator is then run over the image with a SE in the
shape of a disk the size of 5o pixels. The closing operator is used to close the
distance between layer regions separated because of the thresholding. The
result of thresholding and closing on the subset can be seen in Figure 7.3b.
With this image, a vector can be created of the tail extent estimate where points
are smoothed with the regressive LOESS function.
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Figure 7.3: Result of (a) filtering 7.3a by a mean filter of size 50 x50 and (b) threshold-
ing image with value chosen by Otsu’s method. Ground truth is displayed
in blue and the tail extent estimate is in pink.

With a vector representing the tail extent estimate, we can shift this vector up in
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the image and cut out all values above it. We find the amount of shifting needed
by empirically finding the mean separation between the bottom bottom-layer
and the ground truth of the bottom layer. Through testing, these values became
around 55 for multiple subsets, which is used to shift the vector value upwards.
In addition to shifting the vector by the mean difference, the vector is also
shifted one standard deviation of the tail extent estimate upwards. The extra
shift makes it so that the vector is not directly on top of the bottom ground
truth, but it finds itself a bit above. The extra shift is done because we do want
to remove values above this vector value in the original image in Figure 7.2 in
the hopes of arriving at an approximation of the bottom value from "above".
To eliminate the chance that the bottom estimate is above our top estimate,
values that are above the top estimate and 20 pixels down are removed by
setting them to zero. The trimming of the top layer also removes the relatively
strong signal from the top layer, leaving us with signals from internal layers.

Figure 7.4 shows the result of the trimming.

450 —

1 1 1 ¥ 1 1 1
200 400 600 800 1000 1200 1400 1600

Slow time (samples)

R —

- = Top Estimate
50 - - = ‘Bottom Ground Truth
— — 'Tail Extent Estimate

1800

2000

Figure 7.4: Figure 7.2 trimmed by moving tail extent estimate (pink) up by its standard
deviation and the mean value between it and bottom ground truth (blue).

20 samples down from top estimate (red) are also removed.

An estimation of the bottom layer could be approximated with the given
trimming, but an attempt at filtering out weak internal layers will be made.
Using the trimmed image, we apply the mean filter as used before, with a filter
size of 15x15. The filtered image is then put through Canny edge with the
threshold from Otsu’s method and a standard deviation of 15 to connect and

smooth edges. Results can be seen in 7.5.
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Figure 7.5: Filtering image 7.4 with a (a) mean filter of size 5x5 and then using (b)
Canny edge on the result.

Like has been done before in the process of extracting the estimated vector,
the bottom estimate is gathered from the top of the Canny edge image and
smoothed with regressive LOESS function. The result of the bottom estimate,
and this method, is shown in Figure 7.6 with the ground truth of the section.
A quality estimate like the one in the top layer was tried implemented but was
removed because it was considered too inaccurate
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Figure 7.6: Result of the bottom estimate method (red) shown with the ground truth
(blue).
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Figure 8.1: Bottom results from dataset 1 with their given ground truth and estimate
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Figure 8.2: Flight pattern for Dataset 1 with the different subsets marked.

Table 8.1: Bottom RMSE in air equivalent cm and samples, and Cross correlation for
dataset 1.

Subset RMSE (cm) RMSE (samples) Cross correlation

Subset1 12.3504 10.9425 0.9514
Subset 2  14.5877 12.9160 0.9848
Subset 3  45.0193 39.9044 0.8020

Subset 4 9.9372 8.7880 0.9396
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Figure 8.3: Bottom results from dataset 2 with their given ground truth and estimate
from the method.
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Figure 8.4: Flight pattern for Dataset 2 with the different subsets marked.

Table 8.2: Bottom RMSE in air equivalent cm and samples, and Cross correlation for

dataset 2.
Subset RMSE (cm) RMSE (samples) Cross correlation
Subset1  28.7721 25.4965 0.9297
Subset 2 17.9384 15.8762 0.8655
Subset 3  12.9376 11.4329 0.9736
Subset 4 16.1574 14.2994 0.9484




74

CHAPTER 8 / APPLIED RESULTS

Fast time (samples)

Slow time >(samples)

(a) Subset 1, 7600-9600.

Fast time (samples)

Slow time (samples)

(b) Subset 2, 17600-19’600.

Fast time (samples)

Fast time (samples)

Slow time (samples)

(c) Subset 3, 23’°400-25'400.

Slow time (samples)

(d) Subset 4, 26’200-28-200.

Figure 8.5: Bottom results from dataset 3 with their given ground truth and estimate

from the method.
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Figure 8.6: Flight pattern for Dataset 3 with the different subsets marked.

Table 8.3: Bottom RMSE in air equivalent cm and samples, and Cross correlation for

dataset 3.
Subset RMSE (cm) RMSE (samples) Cross correlation
Subset1 81.3504 72.0804 0.0445
Subset 2 17.2242 15.2628 0.9916
Subset 3 21.6267 19.1556 0.7188
Subset 4 34.2525 30.3408 0.9389







Discussion

In the detection method used to detect the bottom layer, no other new tech-
niques were introduced compared to the top layer. However, the techniques
were implemented in different ways, order and values, because of the different
nature of the layers. The problematic elements of the detection of the bottom
layer, which were the same for the top detection, were the tuning of parameters
made by human judgement and the mean removal. Mean removal, which could
remove intensity values of the layers in an attempt to reduce the noise, also
reduced portion of the bottom layer, as could be seen from the histogram in
Figure 4.2. However, the mean removal did not impact the method equally
because the bottom method heavily blurred the layer before use.

9.1 Method Strengths and Limitations

The method’s main advantage is that it can follow the bottom layer and detect
variation in the ground, although not that accurately. On the other hand, the
results from the method were able to follow the bottom layers with a high
cross-correlation, which could be useful where the accuracy of up to 20 cm
(air equivalent) is tolerated. It should also be noted that there are some areas
in most of the datasets which show a high RMSE and cross-correlation where
the error rate disproportionately arise from single events in the subsets. For
example, we can see this in dataset 1 subset 3, dataset 2 subset 1 and dataset
3 subset 1 and 4. Looking at one of them, dataset 3 subset 1, we can try to
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understand where in the method it goes wrong and what could be done about
it.

By running through the method step by step, we can see what causes such
a wrong estimate of the bottom layer. In the first step, after the dataset’s
preparation, we find the problem. Here we do extensive mean smoothing
to find the tail end of the hyperbolas for the bottom layer. Unfortunately,
because of the size of the smoothing, the considerable amount of noise, and
the complexity of the subset, the smoothing fails to do its intended purpose. In
Figure ?? we can see the images of the smoothing and where the thresholding
includes a lot of the noise. For reference, both the images are depicted with
the ground truth. In Figure 9.2 we do correct the step by lowering the mean
smoothing, resulting in a reasonable bottom estimate in Figure 9.2a. Making
this correction the new standard in the method would be tempting, but using
a low mean smoothing on the other subsections results in worse outcomes. By
looking at the other subsection from the last paragraph, it was observed that
the low estimate accuracy resulted from the thresholding and the standard
deviation shift in the trimming. Therefore, tuning both these parameters would
be necessary for achieving the best result using this method.
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Figure 9.2: Fixing the bottom estimate by lowering the mean smoothing at the start.

The main problems unique to the bottom layer detection lie in both its assump-
tions: the top estimate is accurate, and the hyperbolas’ tail extent follows the
top of the hyperbolas. Both of these assumptions are used when trimming the
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data. The thought of using trimming based on the top estimate was due to it
being reasonably accurate, preventing the situation where the bottom layer
could be above the top layer and the removal of the strong intensity values
coming from the top layer. This assumption worked well in the datasets tested
in this thesis, with some exemptions. If there were some areas of deviation, it
was usually because the top estimate vent above the top layer, resulting in a less
trimmed top layer for the bottom estimate. The other assumption was that the
tail extent of the returning waves hyperbola followed the top of the hyperbolas.
This assumption worked well for most places but struggled in sections where
the bottom layer had a more complex snow-ground boundary. Even though it
is not confirmed or certain, the boundaries it did well were probably where
the transmitted waves had a strong reflection boundary, e.g. snow to ground
or bedrock.

In the top estimate, the choice of using dataset 1 in the method development
could be one of the reasons why it did poorer in the two other datasets because
it had a stronger intensity in the top layer. On the other hand, in detecting
the bottom layer, the choice of dataset did not matter on the grounds of
intensity value. However, it did have a difference because of altitude changes
between the datasets and the complexity of the layers. The bottom layer is
more susceptible to sharp altitude changes when it comes to the topography
variation. In contrast, the top layer gets a smoothed representation of the
topography because of the snow. Therefore, an increased bottom layer altitude
variation which we could see in dataset 3, could be one of the reasons why the
bottom method did poorer in the dataset contra dataset 1.
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Final Conclusion

In this thesis, an automatic layer detection method was developed to detect the
top and bottom layers in snow-packed terrain. The method developed used,
amongst others, Canny edge detection and morphological operators as its main
elements in detecting the layers. The two layers were developed separately
from each other because they had different characteristics, but they did follow
the same primary principles.

The detection method of the top layer was accomplished by reducing the
noise in the image and then utilising the distinct intensity increase from air
to the snow layer. Using this method accomplished a RMSE accuracy below
the range resolution of the radar system of about scm. It was achieved by
representative testing subsections, excluding outliers and signal dropouts. A
quality estimate was also given to the top layer, but it did have limitations due
to the implementation of the normalisation. Therefore, it should only be used
as a quick assessment of the quality and not a concluding estimate. For future
improvement, one way to fix this is to put all the quality values in a global
vector before normalisation.

The detection method of the bottom layer was performed by going after two
assumptions: the top estimate is accurate, and the hyperbolas’ tail extent
follows the bottom layer. The top estimate is necessary because it is used in
trimming the data, and tracking is the primary method used in combination
with heavy smoothing. This resulted in a high RMSE value of about 20 samples
but a high cross-correlation value of 0.9 in most subsets. For that reason, a
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quality estimate was not given to the bottom estimate since it was considered
inaccurate.

The overarching goal of the thesis was to find a method that could detect the
primary interfaces from GPR data collected from an airborne drone over a snow-
pack. This thesis automatically accomplished the detection, with predictable
minor variable adjustments needed for the best result. Furthermore, the method
presented could now be applied routinely to estimate the primary interfaces
in other GPR data, where previous no method existed.

10.1 Future Improvements

As stated before, the goal of this thesis was to find an automatic layer detection
method that could detect the primary interfaces in a snow-packed terrain. Fur-
thermore, as a subgoal, we wanted to find a solution to the main problem where
a focus would be held on the early model-based method, and an expansion into
a more complex method would be explored if needed. This thesis showed that
detecting the primary interfaces was possible to a varying degree of success
using simple hands-on and model-based methods. The main problem with the
solution was that certain variables needed to be changed to get a good result.
The changing of variables goes against the complete automatisation of the
interpretation of GPR data, but the method could be a prototype were to build
upon its concepts.

To further increase the accuracy in future improvements, an automatisation
process of the known variables which need change could be implemented.
For example, it could look into where the problem originates, from the snow
density, drone speed or other parameters in the original data, and take them into
account. On the other hand, an expansion into a more complex method could
be conducted. As discussed in the introduction, areas worth exploring are, e.g.,
machine learning, which has been shown in other areas to be fast and accurate.
In addition, it could also be possible to use the CFAR adaptive algorithm, which
could improve the base data used for detection based on statistical properties
in the data. Using CFAR could potentially make the method presented in this
thesis more viable since the noise was a significant factor in the result of the
outcome.
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