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The front page shows an optical image of the lunar nearside. I acknowledge the
use of imagery from Lunar QuickMap, a collaboration between NASA, Arizona
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Abstract
Observing the Moon by a monostatic synthetic-aperture radar system has
the inherent problem that any given combination of range and Doppler shift
in a measurement will map to two different regions on the lunar surface.
This ambiguity has previously been avoided using an interferometric radar
configuration or selective illumination. The objective of this thesis was to
write and validate a method for disambiguating monostatic inverse synthetic-
aperture radar measurements of the Moon. The method implemented in this
thesis was conducted by simulating multiple range-Doppler radar maps with
differing apparent rotation axes, based on data from NASA’s Horizon ephemeris
[13] and optical reflectivity measurements from the Lunar Reconnaissance
Orbiter Camera [6]. Included in the simulation were the Hagfors scattering
law to allow scaling the amount of backscattered power based on the incidence
angle of the electromagnetic wave, range dependent power reduction and noise
due to random surface and subsurface undulations. The disambiguation, thus
estimation of the true normalized scattering cross-sections, was conducted by
solving an overdetermined linear least square system of the simulated maps.
The disambiguation based on three range-Doppler maps resulted in an error
standard deviation of 18.56% of the average reflectivity value, which decreased
by including additional maps in the procedure. The method described in this
thesis was found to be unbiased and can be used with EISCAT3D when it
becomes operational in the future, and existing Arecibo measurements of
Venus [3].
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1
Introduction
The first instrumental observations of the Moon were performed using a tele-
scope by Thomas Harriot on the 26th of July 1609, closely followed by Galileo
Galilei four months later. Their observations resulted in sketches of the lunar
surface variations and calculations describing the lunar orbit [23]. Since then,
we have gained more information about the Moon than any other planetary
objects besides the Earth [16]. However, there still remains numerous mysteries
regarding the evolution of the Moon.

One of these mysteries includes the lunar farside-nearside asymmetry, even
visible to the naked eye. The asymmetry has been hypothesized to be the
result of an ancient global redistribution of subsurface igneous rocks, but a
recently published article by Jones et al. (2022) [11] provided an extended
hypothesis. Their study revealed a potential correlation between the impact
event creating the south pole-Aitken basin, and the global redistribution causing
the asymmetry. By simulations, they demonstrated that the creation of this vast
impact crater, about 4.3 billion years ago, caused sufficient heat to trigger a
flow of igneous rocks, rich of Titanium and Thorium, to the lunar nearside. The
large presence of Titanium and Thorium cause the low albedo in the nearside
mare region, which results in the asymmetry [11].

Exploration of the lunar structure and composition is a key source in revealing
information about the history of our solar system. The moon has been exposed
to 4.5 billion years of environmental changes and its internal structure may
reveal the initial stages of terrestrial planetary evolution [16]. Thus, being able

1



2 chapter 1 introduction

to examine the different lunar layers has significant scientific value.

Remote sensing is a broad concept covering the numerous techniques of mea-
suring and determining a target’s physical properties from a distance. The
common idea between the various techniques is measuring energy either emit-
ted from, or reflected off, a target. Remote sensing techniques has developed
through time from visually observing a target to technologically advanced
sensors today. Remote sensing gained momentum as the photography was
invented in the late 1830’s. The French journalist Félix Nadar was the first
to take pictures from the air when he photographed the city of Paris from a
balloon in 1858 [8]. Some of the first actively used radars were developed prior
to, and during, the second world war [20]. These devices were used in aircraft
and marine vessels enabling mapping and monitoring of the surrounding ter-
rain [9]. Radar technology has greatly improved since the 1930’s and is today
applied for numerous diverse purposes including atmospheric, environmental,
and meteorological surveillance, space and planetary studies, and aircraft and
marine traffic control to name a few [20].

Remote sensing may be divided into two categories, passive and active. Pas-
sive remote sensing involves measuring existing energy either emitted by or
reflected off a target, while active remote sensing involves generating and
transmitting energy before subsequently measuring the reflected energy. The
energy used in remote sensing can originate from either mechanical waves,
as used in sound navigation and ranging (SONAR) and seismology, or elec-
tromagnetic waves, used in radio detection and ranging (RADAR) and light
detection and ranging (LIDAR). The wavelengths used in LIDAR systems lies in
the ultraviolet, visible and near infrared part of the electromagnetic spectrum
[12], while active RADAR systems most commonly utilize the microwave to
radio wave part of the spectrum [2].

The long wavelengths obtainable by an active radar system have the property
of ground penetration. This property is essential in order to investigate the
different layers of planetary objects, such as the Moon [2]. The longer the
wavelength, the deeper the penetration depth, thus ancient structures further
back in evolutionary history can be detected. Such ground penetrating radars
have been used to discover intact lunar lava tubes. [21] Due to these tubes being
shielded from external impacts, like meteors and cosmic radiation, they are
considered, from a scientific perspective, as potential locations for lunar based
instrumental constructions and even human habitats in the future [21].
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(a) Illustration of a monostatic radar configuration. The transmitting and receiving
antennas are co-located.

(b) Illustration of a multistatic radar configuration. The transmitting and receiving
antennas are separated in distance.

(c) Illustration of an interferometric radar configuration. One antenna is both a trans-
mitting and a receiving antenna, while one or more are separated receiving anten-
nas. Vector ®𝑘𝑠 is the wave vector of the scattered plane waves from the target. The
relative phase, Δ𝜑 , of the receiving echoes, due to the separation, 𝛿 , is measured.

Figure 1.1: Illustration of a monostatic, multistatic and an interferometric radar con-
figuration.
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An active radar system consists of a transmitting antenna and one or more
receiving antennas. The antennas may be co-located as shown in Figure 1.1a,
termed a monostatic configuration, or separate as shown in Figure 1.1b, termed
a multistatic configuration. In addition, there is an interferometric radar con-
figuration consisting of one transmitter and two or more receiving antennas
as shown in Figure 1.1c. In this configuration the relative phase, Δ𝜑 , of the
received echoes is measured [2]. These radar configurations may be ground
based, satellite based or a combination of both.

As a spherical target, like the Moon, is observed by a radar system it is essential
to separate the measurements according to their origin on the target surface.
A monostatic synthetic-aperture radar (SAR) measures the time delay of each
signal, making it possible to separate the measurements in range-direction. In
addition, SAR takes advantage of the relative motion between the radar and
target by measuring the Doppler shift of the signal. SAR defines the relative
motion as the motion of the emitter, while an inverse SAR (ISAR) defines the
relative motion as the target motion. Due to the motion of the Moon relative to
an Earth based antenna, as well as the Moon’s rotation about its own axis, the
Doppler shift of each measurement by a monostatic ISAR enables azimuthal
separation.

Figure 1.2: Illustration of the range-Doppler geometry during a Moon measurement
by a monostatic ISAR system, as well as the Doppler north/south mapping
ambiguity. The figure is adapted from Bruce Campbell et al. (2007) [4].

The geometry involved with a monostatic ISAR measurement of the Moon is
illustrated in Figure 1.2. Due to relative motion at the time of the observation an
apparent coordinate system is used. The apparent 𝑧 ′′-axis corresponds to the
apparent rotation axis, thus does not necessary points towards selenographic
north. The apparent 𝑦 ′′-axis is oriented parallel to the apparent Doppler equa-
tor, perpendicular to the apparent rotation axis. The apparent 𝑥 ′′-axis points
towards the radar, and the sub-radar point (SRP) is the intersection between
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the target surface and the vector between the radar and the target center
[19]. Positive Doppler shift corresponds to a surface region moving towards
the radar, while negative Doppler shift corresponds to a region moving away
from the radar. The magnitude of the Doppler shift indicates how far along the
Doppler equator a surface region deviates from the sub-radar point.

As a result of measuring a spherical target by a monostatic ISAR system, there
will be rings of equal range centered about the sub-radar point, as illustrated
in Figure 1.2. All lunar regions within an iso-range ring have the exact same
delay, thus the same range value. Because the Doppler shift enables separation
in azimuthal direction, along the Doppler equator, all points located at the
same apparent 𝑦 ′′-coordinate have the same measured Doppler shift. Due to
separation of resolution cells in range and Doppler coordinates, measurements
retrieved by a monostatic ISAR configuration have the inherent problem that
any given combination of range and Doppler shift in a measurement will map
to two different points on the Moon [4]. This ambiguity is shown in Figure
1.2 causing symmetry about the Doppler equator as the range-Doppler map is
converted to a selenographic coordinate system.

The north-south mapping ambiguity has previously been avoided by the use
of an interferometric SAR (InSAR) [17] or selective illumination [4]. An InSAR
system measuring a target object by two antennas, separated along the targets
rotation axis, results in a phase difference between signals scattered from
the two Doppler hemispheres. The phase difference enables separation along
the rotation axis, but requires a multi-static radar configuration. Selective
illumination involves narrowing the antenna beamwidth such that only one
of the two Doppler hemispheres is illuminated at a time. For ground based
lunar measurements, this technique is challenging. The lunar surface covers
only half a degree on the sky. Illuminating one hemisphere at a time, covering
only quarter a degree, would require a very large antenna. To my knowledge,
there are no radar antennas capable of serving this purpose after the collapse
of the Arecibo telescope in 2020 [1].

This thesis seeks to develop a program able to rectify the ambiguity associ-
ated with monostatic ISAR measurements of the Moon. The concept behind
this method involves simulating multiple range-Doppler maps with different
rotation axes in such a way that the true scattering cross-sections can be esti-
mated by solving an overdetermined linear least square system of the different
maps.





2
Background
The essential background theory will be presented in this chapter. The theory
includes the range-Doppler geometry of a rotating sphere, which is essential
in order to derive the resolution obtained by a monostatic ISAR configuration.
In addition, the incidence angle dependent backscattering, range dependent
power reduction and a selection of types of noise, and common geometric
effects in radar mapping, are discussed.

2.1 Inverse synthetic aperture radar resolution

The resolution obtained by a monostatic inverse synthetic aperture radar
(ISAR) system can be divided into two categories. Range resolution determines
the resolution extending along the radar look direction, while the azimuthal
resolution determines the resolution along the apparent Doppler equator.

Prior to the development of the ISAR system technique, a real-aperture radar
(RAR) system limited the azimuth resolution, Δ𝑤 , by the physical antenna’s
angular beamwidth,𝜓 , and range, 𝑅, as follows [2]:

Δ𝑤 = 𝑅𝜓 ,𝜓 ∝ 𝜆radar

𝐿eff
(2.1)

In equation 2.1, 𝑅 is the range between the radar and the target, 𝜆radar is
the radar wavelength and 𝐿eff is the effective antenna length. The azimuthal
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8 chapter 2 background

resolution would improve by reducing the distance, 𝑅, or by increasing the
effective antenna length.

The frequency resolution associated with an ISAR system is neither limited
by the range nor the angular beamwidth of the radar antenna, but by the
observation period, and can be expressed as follows [2]:

𝑓res =
1
𝑇𝑐

(2.2)

In equation 2.2, 𝑇𝑐 is the observation time. Longer observation time will result
in higher frequency resolution. For a rotating target, the frequency shift at some
radial distance Δ𝑦, from the Doppler axis can, for a monostatic configuration,
be derived from the round-trip Doppler shift as follows:

Δ𝑓 =
2Δ𝑉
𝑐

𝑓0 =
2Δ𝑉
𝑐

𝑐

𝜆radar
=

2Δ𝑉
𝜆radar

(2.3)

In equation 2.3 Δ𝑓 is the Doppler frequency shift, Δ𝑉 is the relative velocity
between the radar and target, 𝑓0 is the radar frequency, 𝑐 is the speed of light
and 𝜆radar is the radar wavelength. The relative velocity can be expressed as
how rapidly a point on the spherical surface rotates over an azimuthal distance
Δ𝑦 as follows:

Δ𝑉 =
2𝜋Δ𝑦
𝑇𝑝

= 2𝜋 𝑓𝑝Δ𝑦 (2.4)

In equation 2.4, 𝑓𝑝 is the apparent rotation rate in hertz and 𝑇𝑝 is the rotation
period. By inserting equation 2.4 into equation 2.3, an expression for the
Doppler shift at some radial distance, Δ𝑦 = 0 − 𝑦 ′′, is obtain as follows [2]:

Δ𝑓 =
4𝜋 𝑓𝑝Δ𝑦
𝜆radar

(2.5)

The rotation rate of planetary objects varies over time. Higher rotation rate will
result in improved resolution due to a larger Doppler spread. The Doppler shift
is zero at the sub-radar point where Δ𝑦 is zero and will increase in magnitude
for increasing deviation from the sub-radar point.

Range resolution may be divided into slant range resolution, 𝑅′, and ground
range resolution,Δ𝑅.The slant range ,𝑅′, extends along the radar look direction
and is defined as the distance the electromagnetic wave travels over half an
effective pulse length, 𝜏𝑝 , as follows [2]:

𝑅′ =
𝑐𝜏𝑝

2
(2.6)

Shorter effective pulse lengths will improve the slant range resolution.
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(a) Ground range resolution. (b) Range resolution geometry.

Figure 2.1: Illustration of the range resolution geometry. The radar points along the
negative𝑥 ′′-axis, into the paper, and the slant range extends along the radar
look direction, thus along negative 𝑥 ′′-axis. The ground range resolution,
Δ𝑅, is the projected slant range onto the surface radially outwards from
the iso-range rings. The 𝑦 ′′−𝑧 ′′ -plane may be rotated about the apparent
𝑥 ′′-axis depending upon at which arbitrary point along the iso-range ring
the ground range resolution is calculated. The angle 𝜙 is the incidence
angle, 𝛼 is 𝜋/2 − 𝜙 and 𝜗 is the longitude of that arbitrary point. For
the case of a non-tilted 𝑦 ′′ − 𝑧 ′′ -plane, the incidence angle becomes the
apparent latitude.

The ground range resolution, Δ𝑅, is a projection of the slant range, 𝑅′, onto the
surface, radially outwards from the iso-range rings as illustrated in Figure 2.1.
Since the Moon is assumed to be a spherical target, the ground range resolution
is difficult to calculate exactly. An estimate for Δ𝑅 is therefore derived from
Figure 2.1b as a straight line along the surface as follows:

cos 𝛼 =
𝑅′

Δ𝑅
(2.7)

Since 𝛼 = 𝜋/2 − 𝜙 , equation 2.7 can be redefined as follows:

cos
(𝜋

2
− 𝜙

)
= sin |𝜙 | = 𝑅′

Δ𝑅
(2.8)

Inserting the equation for slant range, 𝑅′ into equation 2.8 an expression for
ground range, Δ𝑅, can be obtained as a function of incidence angle 𝜙 [2]:

Δ𝑅 =
𝑐𝜏𝑝

2sin|𝜙 | (2.9)

Because range resolution is equal for both positive and negative incidence
angles, thus equal both above and below the apparent Doppler equator, equation
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2.9 considers the absolute value of the incidence angle. For incidence angles
equal to zero, at the sub-radar point, Δ𝑅 becomes infinitely large, causing
significantly low resolution. The ground range resolution will increase for
increasing incidence angles.

The area of each range-Doppler resolution cell can be calculated as the product
of the range resolution along the apparent 𝑥 ′′-axis and the Doppler shift along
the apparent 𝑦 ′′-axis as follows [2]:

Δ𝐴 = Δ𝑥Δ𝑦 (2.10)

Δ𝑦 can be found from equation 2.5 as follows:

Δ𝑦 =
𝜆radar

4𝜋𝑇𝑐 𝑓𝑝
(2.11)

Figure 2.2: Δ𝑥 is the projected ground range along the apparent 𝑥 ′′-axis. The 𝑦 ′′-and
𝑧 ′′-axes are invariable, unlike in Figure 2.1, but the radial distance between
the lunar center and the surface point can slide along the apparent𝑦 ′′-axis
depending upon the longitude, 𝜗 , as shown in the rightmost part of the
figure. The angle 𝜑 is the latitude and 𝛽 is 𝜋/2 − 𝜑 .

Δ𝑥 can be found as the ground range projected along the apparent 𝑥 ′′-axis as
illustrated in Figure 2.2, and can be derived as follows:

cos𝛽 = cos
(𝜋

2
− 𝜑

)
= sin|𝜑 | = 𝑅′

Δ𝑥

⇒ Δ𝑥 =
𝑅′

sin|𝜑 |
⇒ Δ𝑥 =

𝑐𝜏𝑝

2sin|𝜑 |

(2.12)
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Since Δ𝑥 is equal both above and below the apparent Doppler equator the
equation 2.12 considers the absolute sign of the latitude.

The area of a resolution cell is found by inserting Δ𝑦 and Δ𝑥 from equation
2.11 and 2.12 into equation 2.10 as follows [2]:

Δ𝐴 = Δ𝑥Δ𝑦

⇒ Δ𝐴 =
𝑐𝜏𝑝

2sin|𝜑 |
𝜆radar

4𝜋𝑇𝑐 𝑓𝑝

⇒ Δ𝐴 =
𝑐𝜏𝑝𝜆radar

8𝜋𝑇𝑐sin|𝜑 |𝑓𝑝

(2.13)

For apparent latitude equal to zero, the area of a resolution cell becomes
infinitely large causing low resolution along the apparent Doppler equator. The
resolution will increase for increasing apparent latitudes.

2.2 Effects in radar mapping

As a target is observed by a radar, the ratio of transmitted power relative to
received power will depend upon numerous effects, including the distance
between the radar and target, local incidence angle, roughness, and surface
properties. The surface properties are usually divided into two groups, di-
electric, and conductive properties. Highly dielectric materials, like terrestrial
seawater with an average real dielectric constant of 80 [2], have the feature of
causing strong power returns. This feature is due to a low loss tangent for such
materials and thereby low signal attenuation. Conductive materials have the
opposite property, causing low power returns due to a high loss tangent and
thereby high signal attenuation. In this section, a selection of effects in radar
mapping will be discussed.

2.2.1 Incidence angle dependent backscattering

As the electromagnetic wave interacts with the surface, the orientation of the
main lobe of the angular scattering pattern depends upon the angle between
the incidence wave and the local surface slope. Assuming that the target is a
perfect sphere, the angle between the incoming wave and the surface is the
incidence angle.
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Figure 2.3: Illustration of how the backscattered signal is dependent upon the inci-
dence angle. The arrows pointing inwards represents the incoming wave
and the arrows pointing outwards represent the scattered wave pointing in
the direction according to the main lobe of the angular scattering pattern.
The red cross labeled SRP corresponds to the sub-radar point.

Assuming a gently undulating surface, where the horizontal scales are much
longer than the radar wavelength, a model for the power reduction has been
developed. Hagfors scattering law defines the reduction in backscattered power
as a function of incidence angle, 𝜙 , as follows [2]:

𝜎0(𝜙) = 𝐶𝜌0

2

(
cos4(𝜙) +𝐶 sin2(𝜙)

)−3/2
(2.14)

In equation 2.14, 𝜎0 is the backscatter coefficient, 𝜙 is the incidence angle,
𝐶 is the inverse square of the root mean square slope, and 𝜌0 is the Fresnel
normal reflectivity. Because the scattering law contains both 𝜌0 and 𝐶, it also
considers some material properties of the surface in addition to the incidence
angle [2].

2.2.2 Range dependent power reduction

As an electromagnetic wave is transmitted by an isotropic antenna, the wave
propagates radially outwards as a sphere with radius, 𝑅, equivalent to the
distance of propagation. The signal power will be distributed over the sphere,
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thus be reduced proportional to the spherical area as follows [14]:

𝑃at target ∝
𝑃transmitted

4𝜋𝑅2 (2.15)

This reduction in power as a function of distance will occur during the backscat-
tering as well. Assuming a monostatic radar configuration, where the distance
between the transmitting antenna and target equals the distance between the
target and the receiving antenna, the round-trip signal power reduction can
be expressed as follows [14]:

𝑃received ∝
𝑃transmitted

16𝜋2𝑅4 (2.16)

The case of an isotropic antenna is not feasible. The signal power is, in reality,
not equally radiated in all directions. Despite the fact that an antenna is always
somewhat directed, the reduction of signal power is still proportional to the area
of a sphere as described in equation 2.15, but a gain factor, 𝐺 , is introduced to
scale the power in the main radiation direction. Antenna gain,𝐺 , is a measure
of how much power an antenna transmits in the direction of most radiation
relative to an isotropic antenna [15].

2.2.3 Noise

Random surface undulations

As a target is observed by an ISAR system, each range-Doppler measurement
of a resolution cell is the sum of numerous individual scatters, 𝜉 , from within
that surface region [2]. These scatters are a result of random undulations on
the target surface and subsurface. The measurements of these scatters can be
modeled as proper complex normal random variables [18] as follows:

𝜉 ∼ 𝑁C
(
0, 𝜎2

Moon
)

(2.17)

By assuming a sinusoidal signal, the mean voltage is zero. The variance equals
the variance of the lunar surface, 𝜎2

Moon. The received signal from a range-
Doppler cell is in fact the absolute value squared of a proper complex normal
random variable, 〈

𝜉𝜉∗
〉
= 𝜎2

Moon (2.18)

A way of estimating 𝜎2
Moon can therefore be done by calculating the product

of a complex normal random variable 𝜉 = 𝑥 + 𝑖𝑦 and its complex conjugate
𝜉∗ = 𝑥 − 𝑖𝑦, where 𝑥 , 𝑦 are both real normal random variables as follows:

𝑥,𝑦 ∼ 𝑁
(
0, 𝜎2), 〈

𝑥2〉 = 𝜎2,
〈
𝑦2〉 = 𝜎2 (2.19)
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The mean of these two distributions is zero and the variance, 𝜎2, can be found
as follows: 〈

𝜉𝜉∗
〉
=

〈
𝑥2 + 2𝑖𝑥𝑦 + 𝑦2〉 = 〈

𝑥2〉 + 〈
2𝑖𝑥𝑦

〉
+

〈
𝑦2〉〈

2𝑖𝑥𝑦
〉
= 0 , Since

〈
Re(𝜉) Im(𝜉)

〉
= 0

𝜎2
Moon =

〈
𝑥2〉 + 〈

𝑦2〉 = 2𝜎2

⇒ 𝜎2 =
𝜎2

Moon

2

(2.20)

Thermal noise

Due to the electrical system in an antenna, heat is generated. This heat cause
particle motion in the circuits. Electrically charged particles in motion induce
currents and additional voltage in the signal resulting in noise. The noise
power associated with thermal motion is given by Johnson-Nyquist as follows
[7]:

𝑁 = 𝑘𝐵𝑇𝐵 (2.21)

In equation 2.21, 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature in Kelvin
and 𝐵 is the frequency bandwidth in hertz. The noise temperature present
in an ISAR measurement of the Moon would include the Moon temperature,
radar operating temperature as well as cosmic temperature. Typically, the input
noise will dominate the noise caused by the receiver temperature [20]. Particle
motion is unpredictable in nature and the thermal motion can therefore be
assumed to be a random process. This random process can be modeled as a
random Gaussian distribution with zero mean. The variance of the distribution
can be found in the same way as in equation 2.20.

𝑝 (𝑥) = 1
√

2𝜋𝜎2
𝑒
− 𝑥2

2𝜎2 where 𝜎2 =
(kBTB)2

2
(2.22)

Speckle

As previously stated, each radar measurement is assumed to be the sum of
complex random variables. The probability density function ofmeasured power,
including noise, follows approximately a chi-squared distribution as shown
in the rightmost part of Figure 2.4a. Measurements in the far right of the
distribution cause bright spots, and those in the far left part cause dark spots.
This noise phenomenon is termed speckle and is illustrated in the leftmost
part of Figure 2.4a. Because the chi-squared distribution has a heavy tail, the
presence of bright spots are likely to be dominant in the radar image. In order to
reduce the effect of speckle, several measurements must be averaged together.
The effect of speckle is reduced proportionally to the square root of the number
of independent measurements averaged together as

√
𝑁 [2]. As the number



2.2 effects in radar mapping 15

of measurements, 𝑁 , increases, the variance decreases, and the chi squared
distribution approaches a Gaussian distribution as shown in the rightmost part
of Figure 2.4b. This reduction in variance results in less speckle as shown in
the leftmost part of Figure 2.4b

(a) Illustration of one range-Doppler measurement containing 100× 100 scatters. The variance,
𝜎2, is in this case 1.0407. The presence of speckle can be seen as the bright spots in the
measurement. The density distribution follows approximately a chi-squared distribution.

(b) Illustration of a range-Dopplermeasurement when 100 measurements are averaged together.
The variance 𝜎2 is in this case 0.0099. The density distribution follows approximately a
Gaussian distribution.

Figure 2.4: Illustration of speckle reduction by averaging 100 measurements together.

2.2.4 Geometric mapping effects

The mapping into spatial coordinates usually contains an assumption that the
surface is either flat or spherical. Thus, real surface topography with varying
elevation exceeding beyond the surface assumptions may cause errors in the
radar mapping [2].
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(a) Illustration of radar parallax. The point 𝑥 appears to be more near in
range than its real position.

(b) Illustration of radar shadowing and layover for an assumed to be plane
surface with vertical topography variations [2].

Figure 2.5: Illustration of geometric effects in radar mapping. The figures are adapted
from Bruce A. Campbell [2].

One possible error is radar parallax shown in Figure 4.3a. Since range is
determined by time delay between the target and receiver, the echoes from the
top of the illustrated surface structure appear to be closer to the receiver than
echoes from point 𝑥 . This will cause an error in topography estimation [2].
Another geometric effect is layover shown in Figure 4.3b. If the local incidence
angle is comparable to the slope of the surface topography, the echoes from the
surface slope will be received at approximately the same time. This will cause
overlap of the radar returns, making it impossible to distinguish the different
structures within this region. [2]. These effects are only noticeable if they
affect areas exceeding the spatial resolution in such a way that surface features
relocate into an adjacent resolution cell. Lastly, if a surface slope is oriented 90◦
or more to the incident wave, radar shadowing will occur. This phenomenon
is shown in Figure 4.3b, causing no received echo from the region between
𝑥 and 𝑦 [2]. These effects are especially significant at regions dominated by
craters where the elevation changes substantially for relatively small horizontal
scales.



3
Method
In this chapter, the method of both simulating and disambiguating range-
Doppler radar maps will be discussed. The data used in the simulation were
retrieved from NASA’s Horizon ephemeris [13] and include the selenographic
sub-radar points, elevation, and range to the center of the Moon. The ephemeris
data was generated from the 13th to 15th of February 2022 with a 10-minute
timestep. The observation site was specified at Skibotn, Norway. In the simula-
tion a radarwavelength of 1.6 meters was used. Due to extensive computational
time, the observation period, 𝑇𝑐 , was set to 50-seconds and the effective pulse
length, 𝜏𝑝 , was set to 10-microseconds. Reflectivity measurements of the lunar
surface at optical wavelengths, retrieved from the Lunar Reconnaissance Or-
biter Camera [6], were used as a model for surface scattering cross-sections,
and is shown in Figure 3.1. The method of simulating range-Doppler radarmaps
involved creating a range-Doppler grid based on the observation time and ef-
fective pulse length. This grid was converted to apparent Cartesian coordinates,
and rotated and mapped to selenographic coordinates. The selenographic co-
ordinate grid was used to sample reflectivity measurements from the optical
lunar mosaic, symmetrically about the apparent Doppler equator at the time
of the observation. In order to simulate realistic maps, noise due to random
undulations was considered. In addition, effects such as the Hagfors scattering
law, range dependent power reduction and the area of the resolution cells
were taken into account. The importance of including these effects lies in the
functionality of the program removing them. The thermal noise was, in this
case, disregarded for simplicity.

17
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Figure 3.1: The optical lunar mosaic from the Lunar Reconnaissance Orbiter Camera
[6]. The mosaic has been exposed to increased contrast to enlighten the
different surface structures.

The disambiguation procedure was conducted as an overdetermined linear least
squares system of the simulated range-Doppler maps. In order to establish an
overdetermined system, a minimum of three maps at three different rotation
axes had to be simulated.

3.1 Simulation

An essential part of the simulation is the mapping between range-Doppler
coordinates and apparent selenographic coordinates. In order to avoid handling
a continuously changing coordinate system, an assumption was made stating
a constant rotation axis during the observation period. This assumption is
within reason considering that the apparent rotation axis of the Moon change
relatively slowly. As a result of this assumption, the apparent lunar rotation
rate could be estimated from the ephemeris data as follows:

𝑓𝑝 =
𝛿

2𝜋𝑅𝑀𝑜𝑜𝑛𝑇
(3.1)

I equation 3.1, 𝑓𝑝 is the rotation rate in hertz, 𝛿 is the distance between two
adjacent sub-radar points and 𝑇 is the time between the measurements. The
chosen sub-radar point intervals used in this simulation are shown in Figure
3.2 and their associated rotation rates, found by this approach, are given in
table 3.1.
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Figure 3.2: Plot of the selenographic sub-radar points from the ephemeris data. The
blue dots correspond to all sub-radar points in the ephemeris data. The
green plus-signs correspond to the sub-radar points when the lunar ele-
vation exceeded 30 degrees, thus in this case assumed to be visible to an
Earth based radar. The red crosses labeled 1,2, and 3 are the three chosen
sub-radar point intervals used in the simulation.

Table 3.1: The rotation rates associated with the three sub-radar point intervals in
Figure 3.2.

Interval 1 2.43 · 10−6 [Hz]
Interval 2 3.04 · 10−6 [Hz]
Interval 3 3.17 · 10−6 [Hz]

The transformation of range-Doppler coordinates to apparent Cartesian coor-
dinates shown in Figure 1.2, was calculated as follows:

𝑥 ′′ =
𝑅𝑀𝑜𝑜𝑛 − 𝑟

𝑅𝑀𝑜𝑜𝑛

(3.2)

𝑦 ′′ = − 𝑑𝜆radar

4𝜋𝑅𝑀𝑜𝑜𝑛 𝑓𝑝
(3.3)

𝑧 ′′ =
√︃
|𝑅2

𝑀𝑜𝑜𝑛
− 𝑥 ′′2 − 𝑦 ′′2 | (3.4)

In equation 3.2 and 3.3, 𝑟 is the range value from the sub-radar point and 𝑑 is
the Doppler value.
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The apparent selenographic coordinates were found as follows:

𝜗 = sin−1
[ 𝑦 ′′

𝑅𝑀𝑜𝑜𝑛

]
(3.5)

𝜑 = sin−1
[ 𝑧 ′′

𝑅𝑀𝑜𝑜𝑛

]
(3.6)

In equation 3.5 and 3.6, 𝜗 and 𝜑 are the selenographic longitude and latitude
respectively.

Figure 3.3: Illustration of the simulated range-Doppler coordinate grid. The distance
between each vertical dashed line, corresponds to the frequency resolution
step, 𝑓𝑟𝑒𝑠 . The distance between each iso-range ring corresponds to the
slant range resolution 𝑅′. The red dots correspond to the range-Doppler
coordinates.

The range coordinates of the iso-range rings were estimated as equally spaced
values between zero range at the sub-radar point, and the lunar radius at the
limbs as shown in Figure 3.3. The spacing between each range coordinate
corresponds to the slant range resolution given in equation 2.6 as follows:

𝑟 = 0, 𝑅′, 2𝑅′, . . . , 𝑅𝑀𝑜𝑜𝑛 (3.7)

The maximum Doppler frequency shift, Δ𝑓𝑚𝑎𝑥 , is found at the limb and cal-
culated from equation 2.5 with Δ𝑦 = 𝑅𝑀𝑜𝑜𝑛. The Doppler frequencies will be
evenly distributed along the Doppler equator from zero Doppler shift at the
sub-radar point to ±Δ𝑓𝑚𝑎𝑥 at the limbs as shown in Figure 3.3. The frequency
step equals the frequency resolution, 𝑓res, given in equation 2.2. The maximum
Doppler shift at a given iso-range ring, 𝑟 , was found as follows:

𝑑max(𝑟 ) = Δ𝑓max𝑦
′′(𝑟 ) where 𝑦 ′′(𝑟 ) =

√︃
𝑅2

Moon − 𝑥 ′′(𝑟 )2 (3.8)
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Each iso-range ring, 𝑟 , is symmetric around the sub-radar point such that all
Doppler values for an iso-range ring, 𝑟 , could be found as follows:

𝑑 (𝑟 ) = −𝑑𝑚𝑎𝑥 (𝑟 ), . . . ,−2𝑓𝑟𝑒𝑠,−𝑓𝑟𝑒𝑠, 0, 𝑓𝑟𝑒𝑠, 2𝑓𝑟𝑒𝑠, . . . , 𝑑𝑚𝑎𝑥 (𝑟 ) (3.9)

As the range-Doppler coordinate grid was found, the sampling of reflectivity
measurements from the optical lunarmosaic could be performed. To account for
the noise due to random surface undulations, each range-Doppler coordinate
was sampled as a 𝑁 × 𝑁 sub-grid shown in Figure 3.4.

Figure 3.4: The generated sub-grid for each simulated range-Doppler coordinate. The
sub-grid ranged from 𝑟 − 𝑁−1

2 𝑅′ to 𝑟 + 𝑁−1
2 𝑅′ in range and 𝑑 − 𝑁−1

2 𝑓res to
𝑑 + 𝑁−1

2 𝑓res in Doppler.

The sub-grid was generated with range values from 𝑟 − 𝑁−1
2 𝑅′ to 𝑟 + 𝑁−1

2 𝑅′ and
Doppler values from𝑑− 𝑁−1

2 𝑓res to𝑑+ 𝑁−1
2 𝑓res for each simulated range-Doppler

coordinate (𝑟, 𝑑).

In order to sample the optical mosaic, the coordinates within these grids
were converted to selenographic coordinates. This conversion was done by
three-dimensional rotation matrices with rotation angles corresponding to the
opposite rotation of what is required to rotate the sub-radar point to zero
selenographic longitude and latitude and the apparent rotation axis to the
selenographic 𝑧-axis. The rotation matrices are given as follows:

𝑹𝑥 (𝜃 ) =

1 0 0
0 cos(𝜃 ) −sin(𝜃 )
0 sin(𝜃 ) cos(𝜃 )

 (3.10)
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𝑹𝑦 (𝜃 ) =


cos(𝜃 ) 0 sin(𝜃 )
0 1 0

−sin(𝜃 ) 0 cos(𝜃 )

 (3.11)

𝑹𝑧 (𝜃 ) =

cos(𝜃 ) −sin(𝜃 ) 0
sin(𝜃 ) cos(𝜃 ) 0

0 0 1

 (3.12)

Figure 3.5: Rotation of the coordinates to true Cartesian coordinates. The rotation
about the apparent 𝑥 ′′-axis is shown in the leftmost part of the figure
where the apparent 𝑥 ′′-axis point out of the paper. The rotation about
the apparent 𝑦 ′′-axis is shown in the middle part of the figure where the
apparent 𝑦 ′′-axis point out of the paper. Lastly, the rotation about the
apparent 𝑧 ′′-axis is shown in the rightmost part of the figure where the
apparent 𝑧 ′′-axis point out of the paper. Positive rotation for all coordinate
systems occurs counterclockwise.

In order to find the required rotation about the apparent 𝑥 ′′-axis, the apparent
rotation axis, ®𝑣 ′′rot, was found as the cross product between the first sub-radar
point and the normalized distance to an adjacent sub-radar point in the sub-
radar point interval as follows:

®𝑣rot = ®𝑣SRP1 ×
®𝑣SRP1 − ®𝑣SRP2

| |®𝑣SRP1 − ®𝑣SRP2 | |
(3.13)

The rotation angle about the apparent 𝑥 ′′-axis was then found as the angle
between the rotation axis, found by equation 3.13, and the selenographic 𝑧-axis
in the 𝑦 − 𝑧-plane as follows:

𝜃𝑥 = sign(y′′®𝑣rot
)cos−1

(
[0, 1] · [y′′®𝑣rot

, z′′®𝑣rot
]

| | [0, 1] | | | | [y′′®𝑣rot
, z′′®𝑣rot

] | |

)
(3.14)

Multiplication with the sign of the 𝑦-coordinate of the apparent rotation axis
results in positive rotation about the apparent 𝑥 ′′-axis if the 𝑦-coordinate is
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positive, and negative rotation if the 𝑦-coordinate is negative as shown in
leftmost part of Figure 3.5. The rotation angle about the apparent 𝑦 ′′-axis was
found as the angle between the sub-radar point vector and the selenographic
𝑥 -axis in the 𝑥 − 𝑧 plane as follows:

𝜃𝑦 = sign(z′′®𝑣SRP1
)cos−1

(
[1, 0] · [x′′®𝑣SRP1

, z′′®𝑣SRP1
]

| | [1, 0] | | | | [x′′®𝑣SRP1
, z′′®𝑣SRP1

] | |

)
(3.15)

Multiplication with the sign of the 𝑧-coordinate of the sub-radar point cause
positive rotation about the apparent 𝑦 ′′-axis if the 𝑧-coordinate is positive, and
negative rotation if the 𝑧-coordinate is negative as shown in middle part of
figure 3.5. The rotation angle about the apparent 𝑧 ′′-axis was found as the
angle between the sub-radar point vector and the selenographic 𝑥 -axis in the
𝑥 − 𝑦 plane as follows:

𝜃𝑧 = −sign(y′′®𝑣SRP1
)cos−1

(
[1, 0] · [x′′®𝑣SRP1

, y′′®𝑣SRP1
]

| | [1, 0] | | | | [x′′®𝑣SRP1
, y′′®𝑣SRP1

] | |

)
(3.16)

Multiplication with the negative sign of the 𝑦-coordinate of the sub-radar
point cause positive rotation about the apparent 𝑧 ′′-axis if the 𝑦-coordinate
is negative, and negative rotation if the 𝑦-coordinate is positive as shown in
rightmost part of Figure 3.5. As the rotation angles required to rotate the
sub-radar point and the apparent rotation axis to true Cartesian coordinates
were found, the coordinates, ®𝑣 ′′ from the sub-grid in Figure 3.4, were rotated
by the rotation matrices with the opposite angles as follows:

®𝑣 = 𝑹𝑥 (−𝜃𝑥 )𝑹𝑦 (−𝜃𝑦)𝑹𝑧 (−𝜃𝑧)®𝑣 ′′ (3.17)

In equation 3.17, ®𝑣 ′′ is a Cartesian coordinate from the sub-grid in Figure 3.4
and ®𝑣 is the true Cartesian coordinate. The selenographic coordinates were
found by converting ®𝑣 to longitude and latitude by equation 3.5 and 3.6.

In order to simulate a realistic range-Doppler map, the radar range equation,
area of each resolution cell, and Hagfors scattering law were considered. To
be able to remove these effects later in the simulation, they first had to be
included. The power reduction due to distance of propagation was included
by dividing the sampled reflectivity by the traveled distance to the power of
four as given in equation 2.16. The inverse scaling of power due to the area of
each resolution cell was included by multiplying the sampled reflectivity with
its associated area given in equation 2.13.

In order to include the incident angle dependent backscattering, the sampled
reflectivity was multiplied with the Hagfors backscattering coefficient as given
in equation 2.14. The parameters 𝐶 and 𝜌0 were estimated to fit real Moon
measurements done by Hagfors and Evans [10] as shown in Figure 3.6.
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(a) Real Moon measurements of power reduction
as a function of time delay retrieved from Hag-
fors and Evans (1968) [10].

(b) Power reduction as a function of time delay
with𝐶 = 70 and 𝜌0 = 0.4 for 𝜆radar = 1.6
meters.

Figure 3.6: Estimation of the parameters𝐶 and 𝜌0 in Hagfors scattering law from real
Moon measurements retrieved by Hagfors and Evans [10]. For a radar
wavelength equal to 1.6 meters, 𝐶 = 70 and 𝜌0 = 0.4 appears to be an
adequate fit compared to real Moon measurements.

Each selenographic coordinate within the sub-grid represents a random surface
or subsurface undulation. A real and imaginary random Gaussian distribution
were therefore created for each coordinate. The variance of these Gaussian
distributions was calculated as given in equation 2.20, where 𝜎2

𝑀𝑜𝑜𝑛
equals the

sampled reflectivity. These real random variables were multiplied with their
associated complex conjugates before averaged together. The resulting average
value was used as the true scattering cross-section for the range-Doppler
coordinate (𝑟, 𝑑) in Figure 3.4.

As the range-Doppler map with noise was simulated, the range, scattering, and
area effects were removed. This was performed by dividing the noisy scattering
cross-sections with their associated Hagfors backscattering coefficient and
resolution cell area, and multiplied by the distance of propagation to the power
of four.
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3.2 Disambiguation

A range-Doppler radar map consists of the combined power from resolution
cells symmetrically located about the apparent Doppler-equator. Since the
Doppler equator is dependent upon the apparent lunar rotation axis at the
time of the observation, the apparent location of resolution cells with equal
range and Doppler value will change over time. The result of this causes the
power from each range-Doppler pixel to differ between range-Doppler maps
with different apparent rotation axes as shown in Figure 3.7. Observing the
Moon at the three apparent rotation axes shown in Figure 3.7, results in the
range-Doppler measurements shown in Figure 3.8.

Figure 3.7: Illustration of how the north-south ambiguity affects the resolution cells
at different rotation axes. A selenographic region P1 is shown together
with its range-Doppler symmetric region P2, P3 and P4 at three different
apparent rotation axes. The longitude and latitude grid at each sphere
corresponds to the selenographic coordinate grid.

Figure 3.8: Range-Doppler maps for the different rotation axes given in Figure 3.7.
The red squares correspond to the combined measurement from region P1
and P2 in the left map, P1+P3 in the middle map and P1+P4 in the right
map, where P1,P2,P3 and P4 correspond to the resolution cells shown in
Figure 3.7
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The measurements from the three apparent rotation axes in Figure 3.8 can be
expressed as follows:

m1 = P1𝜎1 + P2𝜎2 ,
m2 = P1𝜎1 + P3𝜎3 ,
m3 = P1𝜎1 + P4𝜎4

(3.18)

In equation 3.18, m1, m2, m3 are the three measurements marked in red in
Figure 3.8. P1,P2,P3,P4 correspond to the resolution cells in Figure 3.7 and
𝜎1, 𝜎2, 𝜎3 and 𝜎4 correspond to the true scattering cross-sections within the
regions P1,P2,P3 and P4.

Collecting range-Doppler measurements from multiple different maps covering
mainly the same lunar area results in an overdetermined system, thus more
measurements,𝑚, than unknown true scattering cross-sections, 𝜎 . This system
can be organized in a matrix format. An example of such a matrix system
is shown in equation 3.19. The numbering of the pixels in equation 3.19 is
randomly generated for illustration purposes.


m1
m2
m3
...

m𝑀


=



P1 . . . P10 . . . . . .

. . . P5 . . . . . . P𝑁
P1 . . .

. . . P17 . . .
...

...
...

...
...

. . . P5 . . . P17 . . .




𝜎1
𝜎2
𝜎3
...

𝜎𝑁


(3.19)

𝑴: M × 1 𝑨: M × N 𝑿 : N × 1

The first vector, 𝑴 , contains the 𝑀 ambiguous measurements. The matrix, 𝑨,
contains the corresponding resolution cells which the measurements originate
from. By assuming that a measurement is entirely contained in one resolution
cell at each Doppler hemisphere, thus is not distributed over adjacent cells,
𝑃1 to 𝑃𝑁 in the 𝑨 -matrix could be set to 1. Each row does therefore only
contains zeros, except two values of one, representing the north and south
ambiguous resolution cells. The 𝑨 -matrix is organized in such a way that the
column positions of the non-zero values indicate which resolution cells the
measurement originates from, and correspond to the rows of the associated
true scattering cross-sections, 𝜎 , in the 𝑿 -vector.

The purpose of the 𝑨-matrix is to estimate the true normalized scattering
cross-sections, 𝜎1 to 𝜎𝑁 , in the 𝑿 -vector. This estimation can be performed as
an overdetermined linear least squares system follows:

𝑿LS = (𝑨𝑇𝑨)−1𝑨𝑇𝑴 (3.20)
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An issue arises because the inversion of the 𝑨 -matrix is too computational
heavy due to its size. By creating the𝑨 -matrix based on three ambiguous lunar
maps, at the sub-radar point intervals given in Figure 3.2, with an observation
period of 50𝑠 and an effective pulse length of 10𝜇𝑠, the 𝑨 -matrix will be of
size 3.42 · 106 × 2.97 · 105. An approximate function to equation 3.20 was
therefore used to estimate the true scattering cross-sections as follows:

𝑿LS = argmin𝑿 | |𝑨𝑿 −𝑴 | |2 (3.21)

The true normalized scattering cross-sections are estimated by minimizing
equation 3.21 with respect to 𝜎1 to 𝜎𝑁 in the 𝑿 -vector.

An example will be presented to illustrate the procedure of solving the overde-
termined linear least squares system. The image used in this example is shown
in Figure 3.9. This is a 64x64 pixel grid of grayscale values ranging gradually
from black to white.

Figure 3.9: A 64x64 pixel grayscale image. The image values range gradually from
black to white. The black frame surrounding the image was included after
the processing to make the image visible on a white pdf-page.

In order to simulate the ambiguity, the pixel values were averaged about three
different rotation axes as shown in Figure 3.10. In Figure 3.10a the rotation
axis is oriented vertically causing symmetry about the horizontal axis. In Figure
3.10b the rotation axis is orienteddiagonally between the upper right corner and
the lower left corner, resulting in symmetry about the opposite diagonal. Lastly,
in Figure 3.10c the rotation axis is oriented horizontally causing symmetry
about the vertical axis.
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(a) Vertical rotation axis. (b) Oblique axis of rotation.

(c) Horizontal rotation axis. (d) The disambiguated image.

Figure 3.10: Three ambiguous test images for three different rotation axes along with
the resulting disambiguated image. The black frames surrounding the
images were included after the processing to make them visible on a
white pdf-page.

From these three ambiguous images the measurements, in this case the
greyscale values, and pixel indexes,were organized according to the𝑨-matrix il-
lustrated in equation 3.19. As the𝑨-matrix was created, the linear least squares
system in equation 3.21 was solved. The resulting disambiguated image from
this example is shown in Figure 3.10d. The method was found to be unbiased
and the error standard deviation of the disambiguated image relative to the
original image was calculated to be 𝜎 = 6.48 · 10−3, indicating a successful
estimation of pixel values in this case.
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In this simplified example, the measurements were evenly distributed over the
image. This will not be the case for real Moon observations, as the measure-
ments are distributed depending upon the resolution and the apparent rotation
at the time of the observation. In order to perform the linear least squares on
ambiguous lunar measurements, the lunar surface must be divided into a fixed
coordinate grid. This was accomplished by a quadtree algorithm developed
by Christian Hill [5]. The quadtree algorithm divides the lunar surface into
rectangular pixels. The size of each rectangular pixel depends upon the num-
ber of measurements within that pixel region. The algorithm works in such
a way that each rectangle has limited capacity, meaning a limited number of
measurements in each pixel. If the capacity is exceeded as the measurements
are inserted into the quadtree, the pixel is divided into four sub-pixels. This
leads to small pixels, thus higher resolution, at lunar regions containing a large
number of measurements, and large pixels, thus low resolution, at lunar regions
containing few measurements.

Figure 3.11: The rectangular pixel grid generated by the quadtree algorithm [5] for
three selenographic maps at the three sub-radar point intervals shown in
Figure 3.2.

The coordinate grid generated by this algorithm, for three simulated seleno-
graphic maps at the sub-radar point intervals in Figure 3.2, is shown in Figure
3.11. The edges surrounding the densest part of the quadtree contain large
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rectangles, thus suffers from low resolution. This is expected as the three maps
are located about close, but different, sub-radar points, thus do not cover the
exact same lunar region. The edges do only consist of measurements from
a single map, making these pixels larger than the pixel containing measure-
ments from all three maps. The sub-radar points, all a few degrees south
of zero selenographic longitude and latitude, suffers from low resolution as
expected.



4
Results
The results of both the simulation and disambiguation method are presented
in this chapter. The first part of the results include the three simulated range-
Doppler maps as well as their associated ambiguous selenographic maps. The
first set of maps, shown in Figure 4.1, correspond to the rotation axis at sub-
radar point interval 1 in Figure 3.2. The apparent rotation rate at this interval
is given in table 3.1 as 2.43 · 10−6 Hz. The second set of maps, shown in Figure
4.2, correspond to the rotation axis at sub-radar point interval 2 in Figure 3.2.
The apparent rotation rate at this interval is given in table 3.1 as 3.04 · 10−6 Hz.
Lastly, the third set of maps shown in Figure 4.3, correspond to the rotation
axis at sub-radar point interval 3 in Figure 3.2. The apparent rotation rate at
this interval is given in table 3.1 as 3.17 · 10−6 Hz.

Because the sub-radar point intervals of the maps are located slightly south of
zero selenographic longitude and latitude, the maps cover more of the south
pole region than of the north pole. The regions on the maps exceeding ±90◦
longitude for negative latitudes are thus on the dark side of the Moon. The
line of low resolution across the selenographic maps correspond to the Doppler
equator at the time of the observation.
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(a) Simulated range-Doppler map at sub-radar point interval 1 given in Figure 3.2

(b) Ambiguous selenographic radar map at sub-radar point interval 1 given in Figure 3.2. The
area of no pixels across the middle of the map corresponds to the Doppler equator at the
time of the observation.

Figure 4.1: The simulated range-Dopper map and the ambiguous selenographic map
at sub-radar point interval 1 given in Figure 3.2. The area of no pixels
across the middle of the selenographic map corresponds to the Doppler
equator at the time of the observation.
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(a) Simulated range-Doppler map at sub-radar point interval 2 given in Figure 3.2

(b) Ambiguous selenographic map at sub-radar point interval 2 given in Figure 3.2. The area of
no pixels across the middle of the map corresponds to the Doppler equator at the time of
the observation.

Figure 4.2: The simulated range-Dopper map and the ambiguous selenographic map
at sub-radar point interval 2 given in Figure 3.2. The area of no pixels
across the middle of the selenographic map corresponds to the Doppler
equator at the time of the observation
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(a) Simulated range-Doppler map at sub-radar point interval 3 given in Figure 3.2

(b) Ambiguous selenographic map at sub-radar point interval 3 given in Figure 3.2. The area of
no pixels across the middle of the map corresponds to the Doppler equator at the time of
the observation.

Figure 4.3: The simulated range-Dopper map and ambiguous selenographic map at
sub-radar point interval 3 given in Figure 3.2. The area of no pixels across
the middle of the selenographic map corresponds to the Doppler equator
at the time of the observation
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The second andmost essential part of the results is the disambiguatedmap. The
map is shown in Figure 4.4a along with the optical lunar mosaic in Figure 4.4b
in the same quadtree covering the same selenographic range for comparison
reasons. As given by equation 2.13, the pixels yielding the highest resolution is
expected to occur at high apparent latitude. The apparent Doppler equators
at the three ambiguous maps in Figure 4.1, 4.2 and 4.3 are mainly tilted down
towards negative longitudes. The pixels yielding the highest resolution in the
disambiguated image are therefore expected to occur at the upper left part of
the map as well as lower right part of the map. This can be observed to be the
case in Figure 4.4a. The pixels covering the sub-radar point suffers from low
resolution as expected, even though it is difficult to see in print.

Comparing the two images in Figure 4.4 indicate significant similarities. The
majority of the different surface structures in the optical lunar mosaic in Figure
4.4b are visible in the disambiguated image in Figure 4.4a as well, although
slightly grainy. A contributing factor to this grainy effect is the random noise
due to surface and subsurface undulation which was included in the simulation
but not present in the optical mosaic. Comparing the edges surrounding the
two maps demonstrate lower resolution for the disambiguated map compared
to the optical mosaic. This is due to few measurements in these regions causing
poorly estimates for the true scattering cross-sections. It is also worth noting
that the optical lunar mosaic is of higher resolution than what was feasible
to achieve by the simulation considering computation time and memory, such
that the disambiguated map overall will suffer from lower resolution.

The estimated scattering cross-sections obtained by the disambiguation tech-
nique are, in Figure 4.5, plotted with the reflectivity measurements sampled
from the optical lunar mosaic. The relative error distribution is displayed in
Figure 4.6. The error plot in Figure 4.5 shows a linear correlation between the
estimated and real values indicating an unbiased estimate. The error standard
deviation of the disambiguated image relative to the optical reflectivity mea-
surements were calculated to be 𝜎 = 13.39, which corresponds to 18.56% of
the average reflectivity value from the optical mosaic. As can be observed from
the error plot, the optical reflectivity measurements range in value from 0 to
256, while some estimated scattering cross-sections exceed this range. Nega-
tive scattering cross-sections have no physical meaning and are considered as
erroneous estimates, but indicate that these values, in reality, are close to zero.
The same reasoning applies to the estimated scatting cross-sections exceeding
256, which are erroneous estimates as well, but indicate that in reality, these
values are close to 256.
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(a) Disambiguated image based on the three range-Doppler maps in Figure 4.1, 4.2 and 4.3.

(b) The optical lunar mosaic plotted by the quadtree algorithm in the same coordinate grid as
used in Figure 4.4a.

Figure 4.4: The disambiguated map based on three simulated range-Doppler maps
with different apparent rotation axes, along with the optical lunar image
plotted by the equivalent quadtree algorithm for comparison reasons.
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Figure 4.5: The error related to the disambiguated image based on three simulated
range-Doppler maps relative to the optical lunar mosaic. The red line
corresponds to a linear function with a y-intercept equal to zero and a
slope equal to one. The error standard deviation was calculated to be
𝜎 = 13.39, which corresponds to 18.56% of the average reflectivity value.

Figure 4.6: The density distribution of the relative error between the disambiguated
image in Figure 4.4a and the optical mosaic in Figure 4.4b. The error
density follows approximately a Gaussian distribution.
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As previously stated, the disambiguatedmap in Figure 4.4a is based on the three
ambiguous maps is Figure 4.1, 4.2 and 4.3. By increasing the number of maps
included in the disambiguation, thus increase the number of measurements
relative to unknown scattering cross-sections, the accuracy is expected to
increase. In order to validate that assumption, three additional ambiguous
maps were simulated. The sub-radar point intervals corresponding to the
three additional maps are given in Figure 4.7. The intervals labeled 1,2 and
3 correspond to the three sub-radar point intervals from Figure 3.2, while the
intervals labeled 4,5 and 6 correspond to the intervals used in simulation of
the additional maps. The rotation rates associated with the sub-radar point
intervals 4, 5 and 6 are given in 4.1 below. The resulting disambiguated maps
based on the four, five and six range-Doppler maps, along with their associated
error plots, are displayed in Figure 4.8, 4.9 and 4.10.

Figure 4.7: Plot of the selenographic sub-radar point intervals retrieved from the
ephemeris data. The intervals labeled 1,2 and 3 correspond to the intervals
used to simulate the maps in Figure 4.1, 4.2 and 4.3. The intervals labeled
4,5 and 6 correspond to the intervals used to simulate the three additional
maps.

Table 4.1: The rotation rates associated with the three sub-radar point intervals 4, 5
and 6 in Figure 4.7.

Interval 4 2.10 · 10−6 [Hz]
Interval 5 2.71 · 10−6 [Hz]
Interval 6 2.94 · 10−6 [Hz]
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(a) Disambiguated map based on four range-Doppler maps corresponding to the sub-radar point
intervals 1, 2, 3 and 4 given in Figure 4.7.

(b) The error of the disambiguated image, based on four simulated range-Doppler maps, relative
to the optical lunar mosaic. The red line corresponds to a linear function with a y-intercept
equal to zero and a slope equal to one. The error standard deviation was calculated to be
𝜎 = 12.28, which corresponds to 16.39% of the average reflectivity value.

Figure 4.8: Disambiguated map based on four simulated range-Doppler maps with
different apparent rotation axes, and the associated relative error
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(a) Disambiguated map based on five range-Doppler maps corresponding to the sub-radar point
intervals 1, 2, 3, 4 and 5 given in Figure 4.7.

(b) The error of the disambiguated map, based on five simulated range-Doppler maps, relative
to the optical lunar mosaic. The red line corresponds to a linear function with a y-intercept
equal to zero and a slope equal to one. The error standard deviation was calculated to be
𝜎 = 11.21, which corresponds to 14.97% of the average reflectivity value.

Figure 4.9: Disambiguated map based on five ambiguous range-Doppler maps with
different apparent rotation axes, and the associated relative error.
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(a) Disambiguated map based on six range-Doppler maps corresponding to the six sub-radar
point intervals given in Figure 4.7.

(b) Error related to the disambiguated image based on six ambiguous simulated range-Doppler
maps relative to the optical lunar mosaic. The red line corresponds to a linear function
with a y-intercept equal to zero and a slope equal to one. The error standard deviation was
calculated to be 𝜎 = 10.60, which corresponds to 14.39% of the average reflectivity value.

Figure 4.10: Disambiguated map based on six ambiguous range-Doppler maps with
different apparent rotation axes, and the associated relative error.
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By visually observing the changes between all four disambiguated maps, it
appears that the maps become less grainy and more similar to the optical mea-
surements for each additional map included in the disambiguation procedure.
This statement is also supported by the reduction in relative standard deviation
as given in table 4.2 and the error density distributions displayed in Figure
4.11.

Table 4.2: The error standard deviation of four disambiguated maps relative to the
optical lunar image with reflectivity measurements ranging from 0 to 256.

Number of maps Standard deviation 𝜎

3 13.39
4 12.28
5 11.21
6 10.60

Figure 4.11: The relative error density distributions of the disambiguated maps from
Figure 4.4a, 4.8a, 4.9a, and 4.10a.



5
Summary and conclusion
The objective of this thesis was to write and validate a method able to disam-
biguate simulated range-Doppler maps captured by a monostatic ISAR system.
The objective was conducted by firstly simulating three range-Doppler maps
at three different apparent rotations. The data used in the simulation were
retrieved from NASA’s Horizon ephemeris [13]. The simulated maps were
converted to selenographic coordinates and used to sample reflectivity mea-
surements of the lunar surface from the Lunar Reconnaissance Orbiter Camera
[6]. Included in the simulation were the Hagfors scattering law, range depen-
dent power reduction and noise due to surface and subsurface undulations.
The disambiguation, thus estimation of the true normalized scattering cross-
sections, was conducted as an overdetermined linear least square system of the
ambiguous maps. Included in the disambiguation procedure was the use of a
quadtree algorithm developed by Christian Hill [5] to define a fixed rectangular
lunar surface pixel grid.

The program developed in this thesis is clearly a prototype. Due to the main
objective of this thesis being writing and validation of the disambiguation
technique, several effects associated with planetary radar measurements were
disregarded in the simulation. A way of improving the program would be
to include effects such as antenna gain pattern effects, thermal noise, range-
Doppler migration [22], and improved rotation effects. The inclusion of such
effects will provide a realistic simulation to a greater extent than what was
achieved in this thesis.

43



44 chapter 5 summary and conclusion

A disadvantage of this program is that it is computationally heavy both in terms
of time and space complexity. In order to enable simulation and disambiguation
of lunar range-Doppler maps with high range and azimuthal resolution it would
be beneficial to explore the possibility of increasing the computational efficiency
of the program. Further work on this program may also include improving the
algorithm generating the fixed pixel grid. Defining the pixels as rectangles do
not represent a spherical surface accurately. Exploring other algorithms using
different pixel shapes may yield a different and more accurate result.

The resulting disambiguated map, based on three simulated range-Doppler
maps, shared significant visual similarities with the optical lunar mosaic. The
method presented in this thesis was found to be unbiased, and the resulting
error standard deviation was calculated to be 18.56% of the average reflectivity
from the lunar mosaic. The error showed a decreasing tendency by including
additional maps in the disambiguation procedure. A natural next step would
be to use this technique with EISCAT 3D when it becomes operational in the
future. The technique may also be used to disambiguate years of available
Arecibo measurements of Venus [3].



A
Source code
The Python code used in this thesis is listed in this appendix. In section A.1
the code used to read the Horizon ephemeris is listed. The data retrieved
from this script were later imported to the simulation script listed in section
A.2. The simulation script produce "pickle" files containing the simulated data
which were used in the disambiguation algorithm listed in section A.3. The
disambiguation code also includes the application of the QuadTree algorithm
developed by Christian Hill [5].

45



46 appendix a source code

A.1 Read ephemeris - readtxt.py

1 import numpy as np
2 startkey = "$$SOE"
3 endkey = "$$EOE"
4 filename = 'horizons_results.txt'
5 '''
6 Function to read ephemeris data from a given startkey to a given endkey.
7 -------------------------------------------------------------------------------
8 INPUT: - Filename: The downloaded epheremris text file name
9 - Startkey: A keyword that indicates where to start reading the file
10 - Endkey: A keyword that indicates where to end reading the file
11
12 OUTPUT: - A dictionary containing:
13 - Elevation of the target
14 - Selenographic longitude of the sub-radar points
15 - Selenoographic latitude of the sub-radar points
16 - Range between the observer and target center [km]
17 -------------------------------------------------------------------------------
18 '''
19 def ImportData(filename, startkey, endkey):
20 file = open(filename, "rt")
21 content = file.readlines()
22 fulldata = []
23 for lines in content:
24 newline = lines.split(',')[:]
25 fulldata.append(' '.join(newline).split())
26 file.close()
27 startidx = fulldata.index([startkey])
28 endidx = fulldata.index([endkey])
29 rawdata = fulldata[startidx+1:endidx]
30 variables = fulldata[startidx-2:startidx-1][0]
31 var = list(np.copy(variables))
32 var[0] = 'Date'
33 var.insert(1,'HR:MN:SS')
34 cleandata = []
35 for line in rawdata:
36 line = [elem for elem in line if len(elem) != 1]
37 cleandata.append(line)
38 data = np.array(cleandata).T
39 completedata = dict(zip(var, data))
40 return completedata

41 data = ImportData(filename,startkey, endkey)
42 elevation = np.float64(data['Elev_(a-app)'])
43 ObsSubLong = np.float64(data['ObsSub-LON'])
44 ObsSubLat = np.float64(data['ObsSub-LAT'])
45 delta = np.float64(data['delta'])
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A.2 Simulation - Simulation.py

1 import numpy as np
2 from tqdm import tqdm
3 from PIL import Image
4 import pickle
5 import matplotlib.pyplot as plt
6 import importlib
7 import readtxt as read
8 importlib.reload(read)

9 global imfilename
10 global savedata
11 global runsim
12 global plotsim
13 global plotHagfors
14 global plotSRPS
15 global wp

16 '''Programming switches'''
17 #Run simulation
18 runsim = True
19 #Save simulated data in pickle files
20 savedata = True
21 #Plot simulated data
22 plotsim = True
23 #Plot Hagfors backscatter coefficient estimate
24 plotHagfors = True
25 #Plot sub-radar point interval
26 plotSRPS = True

27 '''Importing ephemeris data'''
28 ObsSubLong = read.ObsSubLong
29 ObsSubLat = read.ObsSubLat
30 elev = read.elevation
31 delta = read.delta
32 '''Variables'''

33 radar_wave = 1.6/1000 #[km]
34 R_moon = 1737.4 #[km]
35 c = 2.99792458e5 #[km/s]
36 Tc = 50 #[s]
37 tau_p = 1e-5 #[s]
38 dt = 60*10 #[s]
39 C_const = 70
40 rho = 0.4
41 samplesize = 8
42 cutoff = 30 #[deg]
43 srpinterval = 6
44 srp_start_interval=[0,6,75,60,65,102]
45 srp_end_interval = [5,11,80,65,70,107]
46 #Filename of the optical lunar mosaic
47 imfilename = 'lroc3.jpg'

48 '''
49 Function that cut the data at times where the lunar elevation do not exceed a
50 given cutoff value.
51 -------------------------------------------------------------------------------
52 INPUT: - data: List of data
53 OUTPUT: - New list of data where the elevation indexes below the cutoff value
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54 are removed.
55 -------------------------------------------------------------------------------
56 '''
57 def cutforelevation(data):
58 index = []
59 for idx, elem in list(enumerate(elev)):
60 if elem >= cutoff:
61 index.append(idx)
62 cutlist = [data[i] for i in index]
63 return cutlist
64 '''
65 Function that converts selenographic coordinates to apparent Cartesian
66 coordinates.
67 ---------------------------------------------------------------------------
68 INPUT: - long: Selenographic longitude value (float/int)
69 - lat: Selenographic latitude value (float/int)
70 OUTPUT: - list of apparent Cartesian coordinates (list of floats/ints)
71 ---------------------------------------------------------------------------
72 '''
73 def geotocartesian(long,lat):
74 long_rad = np.deg2rad(long)
75 lat_rad = np.deg2rad(lat)
76 x = np.cos(lat_rad)*np.cos(long_rad)
77 y = np.cos(lat_rad)*np.sin(long_rad)
78 z = np.sin(lat_rad)
79 return [x,y,z]

80 '''Find the sub-radar points in both selenographic and Cartesian coordinates
81 given the sub-radar point interval'''
82 startidx = srp_start_interval[srpinterval-1]
83 endidx = srp_end_interval[srpinterval-1]
84 SubLong = cutforelevation(ObsSubLong)[startidx:endidx]
85 SubLat = cutforelevation(ObsSubLat)[startidx:endidx]
86 srpcarts = [geotocartesian(long, lat) for long,lat in zip(SubLong,SubLat)]
87 '''
88 Function to convert selenographic coordinates to range coordinates.
89 --------------------------------------------------------------------
90 INPUT: - longitude: Selenographic longitude (float/int)
91 - latitude: Selenographic latitude (float/int)
92 OUTPUT: - Range value in km(float/int)
93 --------------------------------------------------------------------
94 '''
95 def Range(longitude,latitude):
96 x,y,z = geotocartesian(longitude,latitude)
97 r = R_moon-R_moon*x
98 return r
99 '''
100 Function that finds the radial distance between two adjacent sub-radar points
101 in a given sub-radar point interval list.
102 -------------------------------------------------------------------------------
103 INPUT : - Sublong: Sub-radar point longitude values (list of floats/ints)
104 - Sublat: Sub-radar point latitude values (list of floats/ints)
105 OUTPUT: - The radial distance between the two middle adjacent sub-radar points
106 in the sub-radar point interval (float)
107 -------------------------------------------------------------------------------
108 '''
109 def FindPointsForWp(SubLong,SubLat):
110 x,y,z = [],[],[]
111 for i,j in list(zip(SubLong,SubLat)):
112 x1,y1,z1=geotocartesian(i,j)
113 x.append(x1)
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114 y.append(y1)
115 z.append(z1)

116 idx1 = int(((len(SubLong)-1)/2)-1)
117 idx2 = int(((len(SubLong)-1)/2))
118 point1 = np.array((x[idx1],y[idx1],z[idx1]))
119 point2 = np.array((x[idx2],y[idx2],z[idx2]))
120 dist = np.linalg.norm(point1-point2)
121 return dist
122 '''
123 Function that calculates the apparent rotation rate [rad/s] between two
124 sub-radar points in a given sub-radar point interval.
125 -------------------------------------------------------------------------------
126 INPUT : - Sublong: Sub-radar point longitude values (list of floats/ints)
127 - Sublat: sub-radar point latitude values (list of floats/ints)
128 OUTPUT: - The rotational rate in rad/s (float)
129 -------------------------------------------------------------------------------
130 '''
131 def RotationalFreq(SubLong,SubLat):
132 dist = FindPointsForWp(SubLong,SubLat)
133 wp = dist/dt
134 return wp

135 wp = RotationalFreq(SubLong,SubLat)
136 '''
137 Function that calculates the Doppler frequency shift [Hz] for a given
138 y-coordinate.
139 -------------------------------------------------------------------------------
140 INPUT : - y: y-coordinate (float/int)
141 OUTPUT: - Doppler frequency shift in Hz (float)
142 -------------------------------------------------------------------------------
143 '''
144 def Doppler(y):
145 D = -(4*np.pi*R_moon*wp*y/radar_wave)
146 return D
147 '''
148 Function that converts selenographic coordinates to range-Doppler coordinates.
149 ------------------------------------------------------------------------------
150 INPUT : - Sublong: Sub-radar point longitude values (list of floats/ints)
151 - Sublat: Sub-radar point latitude values (list of floats/ints)
152 - longitude: Selenographic longitude (float/int)
153 - latitude: Selenographic latitude (float/int)
154 OUTPUT: - Range value in km (float)
155 - Doppler frequency shift in Hz (float)
156 ------------------------------------------------------------------------------
157 '''
158 def RunLLtoRD(SubLong,SubLat,longitude,latitude):
159 x,y,z = geotocartesian(longitude, latitude)
160 r = Range(longitude,latitude)
161 dop = Doppler(y)
162 return r,dop
163 '''
164 Function that calculates the x-coordinate for a given range value [km].
165 -----------------------------------------------------------------------
166 INPUT : - R: Range value in km (float/int)
167 OUTPUT: - x-coordinate (float)
168 -----------------------------------------------------------------------
169 '''
170 def x_coor(R):
171 x = -(R-R_moon)/R_moon
172 if x < 0:
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173 x = 0
174 elif x > 1:
175 x = 1
176 return x
177 '''
178 Function that calculates the y-coordinate for a given Doppler frequency [Hz].
179 -----------------------------------------------------------------------------
180 INPUT : - D: Doppler value in Hz (float/int)
181 OUTPUT: - y-coordinate (float)
182 -----------------------------------------------------------------------------
183 '''
184 def y_coor(D):
185 y = -((D*radar_wave)/(4*np.pi*R_moon*wp))
186 if y > 1:
187 y = 1
188 elif y < -1:
189 y = -1
190 return y
191 '''
192 Function that calculates the z-coordinate for a given x and y coordinate.
193 -------------------------------------------------------------------------
194 INPUT : - x: x-coordinate (float/int)
195 - y: y-coordinate (float/int)
196 OUTPUT: - z-coordinate (float)
197 -------------------------------------------------------------------------
198 '''
199 def z_coor(x,y):
200 z = np.sqrt(np.abs(1-x**2-y**2))
201 if z > 1:
202 z = 1
203 elif z < -1:
204 z = -1
205 return z
206 '''
207 Function that converts Cartesian coordinates to selenographic coordinates.
208 ---------------------------------------------------------------------------
209 INPUT : - x: x-coordinate (float/int)
210 - y: y-coordinate (float/int)
211 - z: z-coordinate (float/int)
212 OUTPUT: - long: Selenographic longitude (float)
213 - lat: Selenographic latitude (float)
214 ---------------------------------------------------------------------------
215 '''
216 def cartesiantogeo(x,y,z):
217 lat = np.rad2deg(np.arcsin(z))
218 if x>0:
219 long = np.rad2deg(np.arctan(y/x))
220 elif y>0:
221 long = np.rad2deg(np.arctan(y/x)) + 180
222 else:
223 long = np.rad2deg(np.arctan(y/x)) - 180
224 return long,lat
225 '''
226 Function that converts a range-Doppler coordinate to Cartesian coordinates.
227 -------------------------------------------------------------------------------
228 INPUT : - r: Range coordinate [km] (float/int)
229 - dop: Doppler coordinate [Hz] (float/int)
230 OUTPUT: - poscart: Cartesian coordinate on the north Doppler hemisphere (float)
231 - negcart: Cartesian coordinate on the south Doppler hemisphere (float)
232 -------------------------------------------------------------------------------
233 '''
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234 def RunRDtoCart(r,d):
235 x = x_coor(r)
236 y = y_coor(d)
237 z = z_coor(x,y)
238 poscarts = [x,y,z]
239 negcarts = [x,y,-z]
240 return poscarts, negcarts
241 '''
242 Function that converts a range-Doppler coordinate to both positive
243 latitude and negative latitude selenographic coordinates.
244 ------------------------------------------------------------------
245 INPUT : - r: Range coordinate [km] (float/int)
246 - dop: Doppler coordinate [Hz] (float/int)
247 OUTPUT: - poslong: Selenographic longitude (float)
248 - poslat: Positive selenographic latitude (float)
249 - neglong: Selenographic longitude (float)
250 - neglat: Negative selenographic latitude (float)
251 ------------------------------------------------------------------
252 '''
253 def RunRDtoLL(r,dop):
254 poscoor,negcoor = RunRDtoCart(r,dop)
255 poslong,poslat = cartesiantogeo(poscoor[0], poscoor[1], poscoor[2])
256 neglong,neglat = cartesiantogeo(negcoor[0],negcoor[1],negcoor[2])
257 return poslong,poslat, neglong,neglat
258 '''
259 Function that calculates the Doppler bandwidth [Hz] of the Moon.
260 ----------------------------------------------------------------
261 OUTPUT: - Bandwidth of the Moon [Hz] (float)
262 ----------------------------------------------------------------
263 '''
264 def FindBW():
265 bw = 8*np.pi*R_moon*wp/radar_wave
266 return bw
267 '''
268 Function that calculates the range values of the iso-range rings.
269 ----------------------------------------------------------------------------
270 OUTPUT: - r_res_array: The iso-range ring range values [km] (list of floats)
271 - dr: Slant range resolution [km] (float)
272 ----------------------------------------------------------------------------
273 '''
274 def RangeRes():
275 dr = (c*tau_p/2)
276 r_res_array = np.arange(0,R_moon+1,dr)
277 return r_res_array, dr
278 '''
279 Function that calculates all Doppler values of a iso-range ring.
280 ----------------------------------------------------------------------------
281 INPUT : - R: Iso-range ring range value [km] (float/int)
282 OUTPUT: - d_list: List of all Doppler values within that iso-range ring [Hz]
283 (list of floats)
284 ----------------------------------------------------------------------------
285 '''
286 def Max_Dopper(R):
287 BW = FindBW()
288 dmax = np.sqrt(1-x_coor(R)**2)*(BW/2)
289 k = 0
290 dlist = []
291 d = 0
292 while d<=dmax:
293 d = k/Tc
294 if d<=dmax:



52 appendix a source code

295 dlist.append(k/Tc)
296 d = k/Tc
297 k += 1
298 for i in range(1,k):
299 dlist.append(-i/Tc)
300 return dlist
301 '''
302 Function that calculates all Doppler values to all iso-range rings in such a
303 way that both lists are equal in length.
304 -------------------------------------------------------------------------------
305 INPUT : - rangelist: Iso-range ring range values [km] (list of floats/ints)
306 OUTPUT: - dopplervalues: List of all Doppler coordinates [Hz] (list of floats)
307 - newrange: List of all range coordinates [km] (list of floats)
308 -------------------------------------------------------------------------------
309 '''
310 def RunMaxDoppler(rangelist):
311 dopplervalues = []
312 for r in rangelist:
313 dopplervalues.append(Max_Dopper(r))
314 newrange = []
315 for i in range(len(dopplervalues)):
316 newrange.append([rangelist[i]]*len(dopplervalues[i]))
317 return dopplervalues, newrange
318 '''
319 Function that finds the rotation matrix for rotations about the x-axis
320 ------------------------------------------------------------------------------
321 INPUT: - x_ang: The angle of rotation about the x-axis in radians (float/int)
322 OUTPUT: - 3x3 Rotation matrix (array of floats)
323 ------------------------------------------------------------------------------
324 '''
325 def xrot(x_ang):
326 return np.array(([1,0,0], [0,np.cos(x_ang),-np.sin(x_ang)],

[0,np.sin(x_ang),np.cos(x_ang)]))↩→
327 '''
328 Function that finds the rotation matrix for rotations about the y-axis
329 ------------------------------------------------------------------------------
330 INPUT: - y_ang: The angle of rotation about the y-axis in radians (float/int)
331 OUTPUT: - 3x3 Rotation matrix (array of floats)
332 ------------------------------------------------------------------------------
333 '''
334 def yrot(y_ang):
335 return np.array(([np.cos(y_ang),0,np.sin(y_ang)], [0,1,0],

[-np.sin(y_ang),0,np.cos(y_ang)]))↩→
336 '''
337 Function that finds the rotation matrix for rotations about the z-axis
338 ------------------------------------------------------------------------------
339 INPUT: - z_ang: The angle of rotation about the z-axis in radians (float/int)
340 OUTPUT: - 3x3 Rotation matrix (array of floats)
341 ------------------------------------------------------------------------------
342 '''
343 def zrot(z_ang):
344 return np.array(([np.cos(z_ang),-np.sin(z_ang),0], \
345 [np.sin(z_ang),np.cos(z_ang),0], [0,0,1]))
346 '''
347 Function that calculates the angle in radians between two vectors
348 ------------------------------------------------------------------
349 INPUT: - vec1: A vector (array of floats/ints)
350 - vec2: A vector (array of floats/ints)
351 OUTPUT: - angle: Angle between the two vectors in radians (float)
352 ------------------------------------------------------------------
353 '''
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354 def vectorangle(vec1, vec2):
355 angle = np.arccos(np.dot(vec2, vec1)/(np.linalg.norm(vec1))*\
356 np.linalg.norm(vec2))
357 return angle
358 '''
359 Function that calculates the y and z angle in radians between a vector and
360 the x axis.
361 --------------------------------------------------------------------------
362 INPUT: - vec: A vector (array of floats/ints)
363 - x_ax: X axis vector [1,0,0] (array of floats/ints)
364 OUTPUT: - y and z rotation angles in radians (list of floats)
365 --------------------------------------------------------------------------
366 '''
367 def find_yz_ang(vec, x_ax):
368 #This should be wrong due to the signs, but results in correct rotation
369 y_ang = -np.sign(vec[2])*(vectorangle([vec[0], vec[2]], \
370 [x_ax[0], x_ax[2]]))
371 z_ang = np.sign(vec[1])*vectorangle([vec[0], vec[1]], [x_ax[0], x_ax[1]])
372 return [y_ang, z_ang]
373 '''
374 Function that rotates a vector about the y and z axes by given angles
375 ---------------------------------------------------------------------
376 INPUT: - vec: Vector to rotate (array of floats/ints)
377 - ang: y and z rotation angles (list of floats/ints)
378 OUTPUT: - full_rot: the rotated vector (array of floats)
379 ---------------------------------------------------------------------
380 '''
381 def rotate_to_SRP(vec,ang):
382 partial_rot = np.dot(vec,yrot(ang[0]))
383 full_rot = np.dot(partial_rot,zrot(ang[1]))
384 return full_rot
385 '''
386 Function that calculates the rotation axis at a given sub-radar point interval
387 ------------------------------------------------------------------------------
388 INPUT: - srp_1: First sub-radar point vector (array of floats/ints)
389 - srp_2: Second sub-radar point vector (array of floats/ints)
390 OUTPUT: - rotax: Rotation axis vector (array of floats)
391 ------------------------------------------------------------------------------
392 '''
393 def findrotax(srp_1,srp_2):
394 srp1,srp2 = np.array(srp_1),np.array(srp_2)
395 diff = srp1-srp2
396 length= np.linalg.norm(diff)
397 rotax = np.cross(srp1,diff/length)
398 return rotax
399 '''
400 Function that rotates Cartesian coordinates in the opposite way a sub-radar
401 point is rotated to [1,0,0].
402 ---------------------------------------------------------------------------
403 INPUT: - carts: Cartesian coordinates (nested list of floats/ints)
404 OUTPUT: - rotlong: Rotated point in selenographic longitude (list of floats)
405 - rotlat: Rotated point in selenographic latitude (list of floats)
406 ---------------------------------------------------------------------------
407 '''
408 def rotatepoint(carts):
409 x_ax,z_ax = [1,0,0],[0,0,1]
410 rot_yz = find_yz_ang(srpcarts[0],x_ax)
411 rot_ax = findrotax(srpcarts[0],srpcarts[2])
412 rot_ax_ang = np.sign(rot_ax[1])*vectorangle(rot_ax[1:],z_ax[1:])
413 roty = np.array(rot_yz[0])*-1
414 rotz = np.array(rot_yz[1])*-1
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415 pointrotyz = [roty,rotz]
416 rotatedbyrotax = [np.dot(xrot(-rot_ax_ang),i) for i in carts]
417 rotatedtoSRP = [rotate_to_SRP(i,pointrotyz) for i in rotatedbyrotax]
418 rotlong,rotlat = list(zip(*[cartesiantogeo(c[0], c[1], c[2]) for c in \
419 rotatedtoSRP]))
420 return rotlong,rotlat
421 '''
422 Function that calculates all Doppler values and all iso-range ring values
423 and convert them to positive and negative Cartesian coordinates.
424 --------------------------------------------------------------------------
425 OUTPUT: - flatd: Doppler coordinates [Hz] (list of floats)
426 - flatr: Range coordinates [km] (list of floats)
427 - poscart: Cartesian coordinate on the north Doppler hemisphere
428 (list of floats)
429 - negcart: Cartesian coordinate on the north Doppler hemisphere
430 (list of floats)
431 --------------------------------------------------------------------------
432 '''
433 def RunResolution():
434 rangelist,dr = RangeRes()
435 dlist,rlist = RunMaxDoppler(rangelist)
436 flatd = [item for sublist in dlist for item in sublist]
437 flatr = [item for sublist in rlist for item in sublist]
438 poscarts,negcarts = list(zip(*[RunRDtoCart(r, d)for r,d in \
439 zip(flatr,flatd)]))
440 return flatd,flatr,poscarts, negcarts
441 '''
442 Function that calculates the Hagfors backscatter coefficient and incidence
443 angle for each iso-range ring.
444 --------------------------------------------------------------------------
445 INPUT: - r: Range value [km] (float/int)
446 OUTPUT: - sigma_H: Hagfors backscatter coefficient (float)
447 - phi: Incidence angle (float)
448 --------------------------------------------------------------------------
449 '''
450 def HagforsRange(r):
451 srp = np.array([1,0,0])
452 xyz = np.array([1-(r/R_moon), 0, np.sqrt(1**2-(1-(r/R_moon))**2)])
453 phi = np.arccos(np.dot(xyz,srp))
454 sigma_H = (C_const*rho/2)*((np.cos(phi))**4+C_const*\
455 (np.sin(phi))**2)**(-3/2)
456 return sigma_H,np.rad2deg(phi)
457 '''
458 Function that calculates the pixel area for each positive latitude coordinate.
459 ------------------------------------------------------------------------------
460 INPUT: - latitude: Positice selenographic latitude (float/int)
461 OUTPUT: - A: The pixel area [1/km^2] (float)
462 ------------------------------------------------------------------------------
463 '''
464 def DeltaA(latitude):
465 if np.sin(np.deg2rad(latitude)) == 0:
466 A = ((c*radar_wave*tau_p)/(4*Tc*wp*np.abs(np.sin(np.deg2rad(0.01)))))\
467 /(R_moon**2)
468 else:
469 A = ((c*radar_wave*tau_p)/(4*Tc*wp*np.abs(np.sin(np.deg2rad(latitude))\
470 )))/(R_moon**2)
471 return A
472 '''
473 Function that calculates the area of each iso-range ring. This is used to plot
474 the Hagfors scattering law for estimation of C and rho.
475 ------------------------------------------------------------------------------
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476 INPUT: - rlist: Range coordinates [km] (list of floats/ints)
477 - dr: Slant range resolution [km] (float)
478 OUTPUT: - A: The iso-range ring area [1/km^2] (float)
479 ------------------------------------------------------------------------------
480 '''
481 def RingArea(rlist,dr):
482 A = []
483 for r in range(len(rlist)):
484 if r == 0:
485 H = np.sqrt(1**2-(1-(dr/R_moon))**2)
486 A.append(np.pi*H**2)
487 else:
488 H = np.sqrt(1**2-(1-(rlist[r]/R_moon))**2)
489 H_prev = np.sqrt(1**2-(1-(rlist[r-1]/R_moon))**2)
490 A.append(np.pi*(H**2-H_prev**2))
491 return np.array(A)
492 '''
493 Function that finds the pixel coordinates of the optical image from
494 selenographic coordinates.
495 ----------------------------------------------------------------------
496 INPUT: - long: Selenographic longitude value (float/int)
497 - lat: Selenographic latitude value (float/int)
498 - imarray: The optical lunar image (2D-array of floats/ints)
499 OUTPUT: - alpha: The horizontal/longitude image coordinate (int)
500 - beta: The vertical/latitude image coordinate (int)
501 ----------------------------------------------------------------------
502 '''
503 def ImageCoordinates(long,lat,imarray):
504 height,length = imarray.shape
505 alpha = int(np.round((1/2)*length*(1+long/180)))
506 beta = int(np.round((1/2)*height*(1-lat/90)))
507 if alpha >= length:
508 alpha = length-1
509 if beta >= height:
510 beta = height-1
511 return alpha, beta
512 '''
513 Function that finds the brightness value of the optical image from
514 selenographic coordinates.
515 -----------------------------------------------------------------------
516 INPUT: - long: Selenographic longitude value (float/int)
517 - lat: Selenographic latitude value (float/int)
518 - imarray: The optical lunar image (2D-array of floats/ints)
519 OUTPUT: - brightness: Brightness value (float)
520 -----------------------------------------------------------------------
521 '''
522 def RUNImageBrightness(long,lat,imarray):
523 long_idx,lat_idx = ImageCoordinates(long, lat,imarray)
524 brightness = float(imarray[lat_idx,long_idx])
525 return brightness
526 '''
527 Function that estimates the noise due to random surface and subsurface
528 undulations by creating a random normal distribution for the sampled brightness
529 values from the range-Dopper grid. Isserlis therorem is then applied on the
530 random variables which results in the estimated brightness value for the main
531 range-Doppler coordinate in the sampling grid.
532 -------------------------------------------------------------------------------
533 INPUT: - var1: Positive latitude brightness values (list of floats/ints)
534 - var2: Negative latitude brightness values (list of floats/ints)
535 OUTPUT: - varP: The estimated lunar surface variance (float)
536 -------------------------------------------------------------------------------
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537 '''
538 def AddRandomNoise(var1,var2):
539 P_real_1 = np.array([np.random.normal(0, np.sqrt(v/2)) for v in var1])
540 P_im_1 = 1j*np.array([np.random.normal(0,np.sqrt(v/2)) for v in var1])
541 P_real_2 = np.array([np.random.normal(0, np.sqrt(v/2)) for v in var2])
542 P_im_2 = 1j*np.array([np.random.normal(0,np.sqrt(v/2)) for v in var2])
543 P_real = P_real_1+P_real_2
544 P_im = P_im_1+P_im_2
545 varP = np.mean((P_real + P_im)*(P_real-P_im)).real
546 return varP
547 '''
548 Function that reduces the signal power by the distance traveled.
549 --------------------------------------------------------------------------
550 INPUT: - r: range value [km] (float/int)
551 OUTPUT: - reduction_coeff: The power reduction coefficient [1/km^2](float)
552 --------------------------------------------------------------------------
553 '''
554 def AddRangeEffect(r):
555 d = delta[0]+r
556 reduction_coeff = 1/(((4*np.pi)**2)*d**4)
557 return reduction_coeff
558 '''
559 Function that increase the signal power by the area traveled.
560 --------------------------------------------------------------------------
561 INPUT: - r: range value [km] (float/int)
562 OUTPUT: - increasing_coeff: The increasing power coefficient [km^2](float)
563 --------------------------------------------------------------------------
564 '''
565 def RemoveRangeEffect(r):
566 d = delta[0]+r
567 increasing_coeff = ((4*np.pi)**2)*d**4
568 return increasing_coeff
569 '''
570 Function that rotates the coordinate to true selenographic coordinate and
571 samples the optical image for a range-Doppler coordinate including noise, area,
572 range and scattering effects.
573 -------------------------------------------------------------------------------
574 INPUT: - r: range value [km] (float/int)
575 - d: Doppler value [Hz] (float/int)
576 - imarray: The optical lunar image (2D-array of floats/ints)
577 - N: Samplegrid size (N+1 x N+1)
578 OUTPUT: - posrotlong: True selenographic longitude value (float)
579 - posrotlat: True positive selenographic latitude value (float)
580 - negrotlong: True selenographic longitude value (float)
581 - negrotlat: True negative selenographic latitude value (float)
582 - scaledbright: Brightness value with noise and removed range,
583 scattering and area effects.
584 -------------------------------------------------------------------------------
585 '''
586 def SuperSampling(r,d,imarray,N=samplesize):
587 rpix = np.linspace(r-(int(N/2)*(tau_p*c/2))/N,r+(int(N/2)*\
588 (tau_p*c/2))/N,N+1)
589 dpix = np.linspace(d-(int(N/2)*(1/Tc))/N,d+(int(N/2)*(1/Tc))/N,N+1)
590 poscart,negcart = [],[]
591 for r in rpix:
592 for d in dpix:
593 pcart,ncart = RunRDtoCart(r,d)
594 poscart.append(pcart)
595 negcart.append(ncart)
596 posrotlong,posrotlat = rotatepoint(poscart)
597 negrotlong,negrotlat = rotatepoint(negcart)
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598 sigma = HagforsRange(r)[0]
599 dA = DeltaA(posrotlat[int(N/2)])
600 pb = [RUNImageBrightness(lo, la, imarray) for lo,la in zip(posrotlong,\
601 posrotlat)]
602 nb = [RUNImageBrightness(lo, la, imarray) for lo,la in zip(negrotlong,\
603 negrotlat)]
604 rawposbright = sigma*np.array(pb)*dA*AddRangeEffect(r)
605 rawnegbright = sigma*np.array(nb)*dA*AddRangeEffect(r)
606 add_noise = AddRandomNoise(rawposbright,rawnegbright)
607 scaledbright = (add_noise/(sigma*dA)) * RemoveRangeEffect(r)
608 return posrotlong[int(N/2)],posrotlat[int(N/2)],negrotlong[int(N/2)]\
609 ,negrotlat[int(N/2)],scaledbright
610 '''
611 ---------------------------------------------------------------------------
612 Function that runs the simulation with the ability of saving the simulated
613 data as "pickle" files and plot the simulated data as well as the sub-radar
614 point interval and the Hagfors backscatter coefficients estimation.
615 ---------------------------------------------------------------------------
616 '''
617 def RunSimulation():
618 print('Run simulation')
619 image = Image.open(imfilename)
620 imarray = np.array(image)[:,:,1]
621 height,length = imarray.shape
622 dlist, rlist, poscart,negcart = RunResolution()
623 poslong,poslat,neglong,neglat,bright=list(zip(*[SuperSampling(r,d,imarray)\
624 for r,d in tqdm(zip(rlist,dlist),desc='SuperSampling',total=len(rlist),\
625 position=0, leave=True)]))
626 if savedata == True:
627 print('Saving data')
628 rd = [rlist,dlist]
629 pickle.dump(rd, open(f"RD {startidx}-{endidx}", "wb"))
630 poscoor = [(poslong[i],poslat[i]) for i in range(len(poslong))]
631 negcoor = [(neglong[i],neglat[i]) for i in range(len(neglong))]
632 coor = [None]*(len(poscoor)+len(negcoor))
633 coor[::2] = poscoor
634 coor[1::2] = negcoor
635 pickle.dump(coor,open(f"Coordinates {startidx}-{endidx}", "wb"))
636 pickle.dump(bright,open(f"Brightness-value {startidx}-{endidx}", "wb"))
637 if plotsim == True:
638 plt.figure()
639 plt.title(f'Rotated coordinates. $T_c$ = {Tc} and $\\tau_p$ ={tau_p} \
640 for idx {startidx} to {endidx}')
641 plt.scatter(poslong,poslat,c='r',marker = '+')
642 plt.scatter(neglong,neglat,c='b',marker = '+')
643 plt.scatter(poslong[0],poslat[0],c='g',marker = '+')
644 plt.xlabel('Longitude')
645 plt.ylabel('Latitude')
646 plt.show()
647 plt.figure()
648 plt.title(f'$T_c$ = {Tc} and $\\tau_p$ ={tau_p} for idx \
649 {startidx} to {endidx} ')
650 plt.scatter(poslong,poslat,c = bright,cmap='Greys_r',linewidths=0.001)
651 plt.scatter(neglong,neglat,c = bright,cmap='Greys_r',linewidths=0.001)
652 plt.colorbar()
653 plt.xlabel('Longitude')
654 plt.ylabel('Latitude')
655 plt.show()
656 plt.figure()
657 plt.title(f'$T_c$ = {Tc} and $\\tau_p$ ={tau_p} for idx \
658 {startidx} to {endidx} ')
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659 plt.scatter(rlist,dlist,c = bright,cmap='Greys_r',linewidths=0.001)
660 plt.scatter(rlist,dlist,c = bright,cmap='Greys_r',linewidths=0.001)
661 plt.colorbar()
662 plt.xlabel('Longitude')
663 plt.ylabel('Latitude')
664 plt.show()
665 if __name__=='__main__':
666 print(f'tau_p = {tau_p}[s]\nTc = {Tc}[s]\nfp = {wp*(2*np.pi)}[Hz]\
667 \nC,rho = {C_const},{rho}\nSRP interval = {startidx}-{endidx}\
668 \nRun sim = {runsim}\nSave sim = {savedata}\nPlot sim = {plotsim}\
669 \nPlot Hagfors = {plotHagfors}\nPlot SRPs = {plotSRPS}')
670 if runsim == True:
671 RunSimulation()
672 if plotHagfors == True:
673 ran,dr = RangeRes()
674 deltatime = np.array([(2*r)/c for r in ran])*1e3
675 sigma_H = [HagforsRange(r)[0] for r in ran]
676 area = RingArea(ran,dr)
677 sigma_a_srp = sigma_H[0]*area[0]
678 sigma_a = sigma_H*area
679 plt.figure(figsize=(6,7))
680 plt.plot(deltatime,10*np.log10(sigma_a/sigma_a_srp),c='black', \
681 label = (f'$\\lambda$ = {radar_wave*1000} [m]\n$\\rho_0$ = {rho}\
682 \nC = {C_const}'))
683 plt.legend(fontsize=14,handlelength=0, handletextpad=0)
684 plt.xticks(fontsize = 14)
685 plt.yticks(np.arange(-44,1,4)[::-1],fontsize = 14)
686 plt.ylabel(r'$\sigma^{H}$ [dB]',fontsize=14)
687 plt.xlabel('Delay [ms]',fontsize=14)
688 plt.vlines(0, -43.9, 0, colors='black',linestyle ='--',linewidth = 0.7)
689 plt.ylim(-44,0)
690 plt.xlim(-1.5,12)
691 plt.tight_layout()
692 plt.savefig('HagforsImage')
693 plt.show()
694 if plotSRPS == True:
695 plt.figure()
696 plt.title('Sub-radar point intervals')
697 plt.scatter(ObsSubLong,ObsSubLat,marker ='o',c='b',\
698 label='All sub-radar points',s=10)
699 plt.scatter(cutforelevation(ObsSubLong),cutforelevation(ObsSubLat),\
700 marker = '+',c='g',label='All sub-radar points above cutoff',s=30)
701 plt.scatter(SubLong,SubLat,marker ='x',c='r',\
702 label=f'Sub-radar point interval {startidx}-{endidx}',s=20)
703 plt.xlabel('Longitude')
704 plt.ylabel('Latitude')
705 plt.legend()
706 plt.show()
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A.3 Disambiguation - Disambiguation.py

1 import pickle
2 import importlib
3 import Simulation as func
4 importlib.reload(func)
5 import matplotlib.pyplot as plt
6 import scipy.sparse as sparse
7 import scipy.sparse.linalg as linalg
8 import numpy as np
9 from PIL import Image
10 from tqdm import tqdm
11 from quadtreecurrent import QuadTree, Point, Rect
12 import matplotlib.patches as ptc
13 from matplotlib.collections import PatchCollection

14 """Load all pickle files"""
15 coor0_5 = pickle.load(open("Coordinates 0-5", "rb"))
16 bright0_5 = pickle.load(open("Brightness-value 0-5", "rb"))
17 rd05 = pickle.load(open("RD 0-5","rb"))
18 coor6_11 = pickle.load(open("Coordinates 6-11", "rb"))
19 bright6_11 = pickle.load(open("Brightness-value 6-11", "rb"))
20 rd611 = pickle.load(open("RD 6-11","rb"))
21 coor75_80 = pickle.load(open("Coordinates 75-80", "rb"))
22 bright75_80 = pickle.load(open("Brightness-value 75-80", "rb"))
23 rd7580 = pickle.load(open("RD 75-80","rb"))
24 coor60_65 = pickle.load(open("Coordinates 60-65", "rb"))
25 bright60_65 = pickle.load(open("Brightness-value 60-65", "rb"))
26 rd6065 = pickle.load(open("RD 60-65","rb"))
27 coor65_70 = pickle.load(open("Coordinates 65-70", "rb"))
28 bright65_70 = pickle.load(open("Brightness-value 65-70", "rb"))
29 rd6570 = pickle.load(open("RD 65-70","rb"))
30 coor102_107 = pickle.load(open("Coordinates 102-107", "rb"))
31 bright102_107 = pickle.load(open("Brightness-value 102-107", "rb"))
32 rd102107 = pickle.load(open("RD 102-107","rb"))

33 '''The number of ambiguous maps to include in the disambiguation'''
34 nr = 2

35 '''Programming switches'''
36 #Plot range-Doppler plot
37 plotrd = True
38 #Save range-Dopper plot (can only be saved if it is plotted)
39 saverd = True
40 #Plot selenographic plot
41 plotseleno = True
42 #Save selenographic plot (can only be saved if it is plotted)
43 saveseleno = True
44 #Run disambiguation
45 rundisamb = True
46 #Plot disambiguated image
47 plotdisamb = True
48 #Save disambiguated image (can only be saved if it is plotted)
49 savedisamb = True
50 #Plot the quadtree structure
51 plotquadtree = True
52 #Save quadtree plot (can only be saved if it is plotted)
53 savequadtree = True
54 #Find error variance
55 runerror = True



60 appendix a source code

56 #Plot error
57 ploterror = True
58 #Save error plot (can only be saved if it is plotted)
59 saveerror = True
60 '''
61 Function to plot range-Doppler maps.
62 --------------------------------------------------------------------
63 INPUT: - rd: Range-Doppler coordinates (nested list of floats/ints)
64 - bright: Brightness values (list of floats/ints)
65 - filename: Filename to save the image (str)
66 - save: if save = True the image is saved. if False it is not
67 --------------------------------------------------------------------
68 '''
69 def plotrangedoppler(rd, bright,filename,save):
70 r = rd[0]
71 d = rd[1]
72 plt.figure()
73 plt.scatter(d,r,c=bright,s=1, cmap = 'Greys_r')
74 plt.xlabel("Doppler frequency shift [Hz]")
75 plt.ylabel('Range [km]')
76 if save == True:
77 plt.savefig(filename,dpi=400)
78 '''
79 Function to plot selenographic maps.
80 --------------------------------------------------------------------
81 INPUT: - coor: Selenographic coordinates where every second element
82 is the positive and negative symmetric coordinate.
83 (list of floats/ints)
84 - bright: Brightness values (list of floats/ints)
85 - filename: Filename to save the image (str)
86 - save: if save = True the image is saved. if False it is not
87 --------------------------------------------------------------------
88 '''
89 def plotselenographic(coor, bright, filename, save):
90 poscoor = coor[::2]
91 negcoor = coor[1::2]
92 poslong,poslat = zip(*poscoor)
93 neglong,neglat = zip(*negcoor)
94 plt.figure()
95 plt.scatter(poslong,poslat,s=1,c= bright,cmap = 'Greys_r')
96 plt.scatter(neglong,neglat,s=1,c=bright,cmap = 'Greys_r')
97 plt.yticks(np.arange(-90,91,30)[::-1])
98 plt.xticks(np.arange(-180,181,60))
99 plt.xlabel('Longitude [deg]')
100 plt.ylabel('Latitude [deg]')
101 if save == True:
102 plt.savefig(filename,dpi = 400)
103 if plotrd == True:
104 print('Running range-Doppler plots')
105 plotrangedoppler(rd05,bright0_5,'RD 0-5',saverd)
106 plotrangedoppler(rd611,bright6_11,'RD 6-11',saverd)
107 plotrangedoppler(rd7580,bright75_80,'RD 75-80',saverd)
108 plotrangedoppler(rd6065,bright60_65,'RD 60-65',saverd)
109 plotrangedoppler(rd6570,bright65_70,'RD 65-70',saverd)
110 plotrangedoppler(rd102107,bright102_107,'RD 102-107',saverd)
111 print('Range-Doppler plot finished')
112 if plotseleno == True:
113 print('Running Selenographic plot')
114 plotselenographic(coor0_5,bright0_5,'seleno05',saveseleno)
115 plotselenographic(coor6_11,bright6_11,'seleno611',saveseleno)
116 plotselenographic(coor75_80,bright75_80,'seleno7580',saveseleno)



a.3 disambiguation - disambiguation.py 61

117 plotselenographic(coor60_65,bright60_65,'seleno6065',saveseleno)
118 plotselenographic(coor65_70,bright65_70,'seleno6570',saveseleno)
119 plotselenographic(coor102_107,bright102_107,'seleno102107',saveseleno)
120 print('Selenographic plot finished')
121 """
122 Recursive function that finds all the "children nodes" by looking through the
123 quadtree. If the tree is divisible, it finds the "children" pixels until it is
124 at the "bottom". An empty input bondary list gets filled with "children" pixels
125 through the recursive function.
126 -------------------------------------------------------------------------------
127 INPUT: - tree: QuadTree
128 - boundaries: An empty list
129
130 OUTPUT: A full boundary list
131 -------------------------------------------------------------------------------
132 """
133 def FindLowestBoundaries(tree, boundaries):
134 if tree.divided:
135 FindLowestBoundaries(tree.ne, boundaries)
136 FindLowestBoundaries(tree.nw, boundaries)
137 FindLowestBoundaries(tree.sw, boundaries)
138 FindLowestBoundaries(tree.se, boundaries)
139 else:
140 boundaries.append(tree.boundary)
141 """
142 Function that runs the quadtree algorithm, creates the disambiguation matrix
143 and solve the overdetermined linear least square system.
144 -----------------------------------------------------------------------------
145 INPUT: - coors: List of all the coordinate values on the form with
146 every second element being the positive and negative
147 symmetric coordinate. (Nested list of floats/ints)
148 - measurements: List of all the measurements corresponding to the
149 coordinate list. (list of floats/ints)
150 OUTPUT: - boundaries: List of all the pixel boundaries (list)
151 - sigma_est: Estimated true brightness value for each pixel solved
152 by linear least squares.
153 -----------------------------------------------------------------------------
154 """
155 def DoQtree(coors, measurements, plotqtree, save):
156 # Define the image boundaries
157 grid_domain = Rect(0, 0, 360.1, 180.1)
158 # Inizialize quadtree for the domain defined above where each rectangle can
159 # contain maximum 20 points.
160 quadtree = QuadTree(grid_domain, 20)
161 # Inizialize the points with their index
162 points = [Point(*coors[i], i) for i in range(len(coors))]
163 # Insert these points into the quadtree.
164 for point in points:
165 quadtree.insert(point)
166 # Find all "boundary nodes", thus the "lowest" rectangles by going through
167 # each node in the quadtree
168 boundaries = []
169 FindLowestBoundaries(quadtree, boundaries)
170 print(f'Number of rectangles: {len(boundaries)}')
171 # list of measurement indexes
172 pointsin = []
173 m_idx = []
174 # list of pixel indexes
175 pix_idx = []
176 # Loop through each child rectangle
177 for i, pix in tqdm(
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178 enumerate(boundaries),
179 total=len(boundaries),
180 desc="Find matrix indexes",
181 position=0,
182 leave=True,):
183 # Find the points within each rectangle/pixel
184 points_in_pixel = []
185 quadtree.query(pix, points_in_pixel)
186 pointsin.append(points_in_pixel)
187 # For each point in each pixel: The m index is the every second payload
188 # of each point and the pixel index is the number of the pixel
189 for point in points_in_pixel:
190 m_idx.append(point.payload // 2)
191 pix_idx.append(i)
192 # Create pixel list
193 Pix = [1] * len(pix_idx)
194 # Create matrix
195 Amat = sparse.coo_matrix((Pix, (m_idx, pix_idx)))
196 # Convert matrix to csr to compress the matrix
197 amatcsr = Amat.tocsr()
198 # Solve matrix for the list of measurements
199 sigma_est = sparse.linalg.lsqr(amatcsr, measurements)[0]
200 print(f'Pixels = {len(Pix)}, Measurements = {len(m_idx)}, \
201 sigma = {len(sigma_est)}')
202 # Plot the quadtree grid
203 if plotqtree == True:
204 fig, ax = plt.subplots()
205 for rectangles in boundaries:
206 rectangles.draw(ax)
207 ax.set_xlim(-180,180)
208 ax.set_ylim(-90,90)
209 ax.set_yticks(np.arange(-90,91,30)[::-1])
210 ax.set_xticks(np.arange(-180,181,60))
211 ax.set_xlabel("Longitude [deg]")
212 ax.set_ylabel("Latitude [deg]")
213 plt.show()
214 if save == True:
215 fig.savefig(f"Quadtree{nr}stk", dpi=600)
216 return boundaries, sigma_est, pointsin
217 """
218 Function to plot the true normalized scattering cross section in the quadtree
219 pixel grid.
220 -----------------------------------------------------------------------------
221 INPUT: - boundaries: Pixel boundary list (list)
222 - measurements: List of all the true normalized scattering cross
223 sections (list of floats)
224 - save: if True: save the image, if False: only plot
225 -----------------------------------------------------------------------------
226 """
227 def plot_disambiguous_im(boundaries, sigma, save):
228 fig, ax = plt.subplots()
229 patches = []
230 #define each pixel and insert the estimated sigma value
231 for pixel in tqdm(
232 boundaries,
233 total=len(boundaries),
234 desc="Plot disambiguated image",
235 position=0,
236 leave=True):
237 xy = (pixel.west_edge, pixel.north_edge)
238 width = pixel.east_edge - pixel.west_edge
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239 height = pixel.south_edge - pixel.north_edge
240 patches.append(ptc.Rectangle(xy, width, height))
241 collection = PatchCollection(patches,cmap='Greys_r')
242 collection.set_array(sigma)
243 collection.set_clim([0, 256])
244 ax.add_collection(collection)
245 ax.set_xlim(-180,180)
246 ax.set_ylim(-90,90)
247 ax.set_yticks(np.arange(-90,91,30)[::-1])
248 ax.set_xticks(np.arange(-180,181,60))
249 ax.set_ylabel("Latitude [deg]")
250 ax.set_xlabel("Longitude [deg]")
251 plt.show()
252 if save == True:
253 fig.savefig(f'Disambiguated{nr}stk',dpi = 400)
254 """
255 Function to caluclate the error variance between the disambiguated image and
256 the optical image.
257 -----------------------------------------------------------------------------
258 INPUT: - sigma: estimated values from the disambiguation (list of floats)
259 - points: the coordinates in the quadtree (nested list)
260 - number: number of maps in the disambiguation (int)
261 - saveerror: if True: save the image,if False: do not save (bool)
262 -----------------------------------------------------------------------------
263 """
264 def SampleError(sigma,points,number,saveerror):
265 imfilename = 'lroc3.jpg'
266 image = Image.open(imfilename)
267 imarray = np.array(image)[:,:,1]
268 diff = len(points)-len(sigma)
269 print(f'Number of maps: {number}\nLength of sigma list: {len(sigma)}\
270 \nNumber of points: {len(points)}\nDiff: {diff}')
271 pix = [c for c in points[:-diff]]
272 #Finds the average brightness from the optical image in each quadtree pixel
273 findavbright = []
274 for coor in tqdm(pix,total=len(pix),desc='Loop through pixels',\
275 position = 0,leave=True):
276 bright = []
277 for point in coor:
278 loidx,laidx = func.ImageCoordinates(point.x, point.y, imarray)
279 b = float(imarray[laidx,loidx])
280 bright.append(b)
281 findavbright.append(np.mean(bright))
282 #Calculate the error variance and standard deviation
283 var = np.round(np.nanvar(findavbright-sigma),2)
284 std = np.round(np.nanstd(findavbright-sigma),2)
285 print(f'{number}stk: var: {var}\n std: {std} \nstd in percentage: \
286 {np.round((std/np.nanmean(findavbright))*100),2}% of the average reflectivity

value')↩→
287 #Plot error together with a linear function.
288 if ploterror == True:
289 def linfunc(x,a,b):
290 return a+b*x
291 fit = [linfunc(x,0,1) for x in np.arange(0,256,1)]
292 plt.figure()
293 plt.plot(fit,c='r')
294 plt.scatter(findavbright,sigma,s=0.7,c='black',alpha=0.3)
295 plt.xlabel('Real values')
296 plt.ylabel('Estimated values')
297 if saveerror == True:
298 plt.savefig(f'Errorplot {number}stk',dpi=300)
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299 plt.show()
300 return findavbright,sigma
301 if rundisamb == True:
302 if nr ==2:
303 coors = coor0_5 + coor6_11
304 measurements = bright0_5 + bright6_11
305 if nr == 3:
306 coors = coor0_5 + coor6_11 + coor75_80
307 measurements = bright0_5 + bright6_11 + bright75_80
308 elif nr == 4:
309 coors = coor0_5 + coor6_11 + coor75_80 + coor60_65
310 measurements = bright0_5 + bright6_11 + bright75_80 + bright60_65
311 elif nr == 5:
312 coors = coor0_5 + coor6_11 + coor75_80 + coor60_65 + coor65_70
313 measurements = bright0_5 + bright6_11 + bright75_80 + bright60_65 + \
314 bright65_70
315 elif nr == 6:
316 coors = coor0_5 + coor6_11 + coor75_80 + coor60_65 + coor65_70 + \
317 coor102_107
318 measurements = bright0_5 + bright6_11 + bright75_80 + bright60_65 + \
319 bright65_70 + bright102_107
320 print('start')
321 boundaries, sigma_est,pointsin = DoQtree(coors, measurements, \
322 plotquadtree, savequadtree)
323 if plotdisamb == True:
324 plot_disambiguous_im(boundaries, sigma_est, savedisamb)
325 if savedisamb == True:
326 pickle.dump(boundaries,open(f'boundaries{nr}stk','wb'))
327 pickle.dump(sigma_est,open(f'sigma{nr}stk','wb'))
328 pickle.dump(pointsin, open(f'pointsin{nr}stk', 'wb'))
329 if runerror == True:
330 findavbright,sigmaest = SampleError(sigma_est,pointsin,nr,saveerror)
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