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EXTENSIONS OF GROUPS AND MODULES

CATALINA NICOLE VINTILESCU NERMO

ABSTRACT. The main goal of this thesis is to build up detailed constructions
and give complete proofs for the extension functors of modules and groups,
which we define using cohomology functors. Further, we look at the relations
that appear between these and short exact sequences of modules, respectively
groups. We calculate also several concrete cohomology groups, and build ex-
tensions that are described by those cohomologies.
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0. INTRODUCTION

Most of the results in this thesis are known. Our goal was to put down on paper
some longer technical proofs that are usually just sketched in the existing literature,
and to build up a machinery that is easy to follow. There is a thread through the
topics, which are revealed to be closely related.

In Part 1 we introduce the functors Ext?(—,—), Exty(—,—), defined for any
non-negative integer n, using n-th cohomology functors, projective resolutions, and
respectively, injective coresolutions, over some fixed ring R. One of their most inter-
esting properties is that they are bifunctors (Theorem 3.4 and Theorem 4.4). More-
over, Ext’(—, —) and Exty(—, —) are isomorphic as bifunctors (Theorem 4.10).

We introduce another bifunctor, Er (C, A), the set of equivalence classes of short
exact sequences of R-modules

0—A—F—C—0

with the Baer sum as an abelian group operation. Finally, we prove in Theorem
5.16 that the abelian groups Exth(C, A) and Er(C, A) are naturally (on C and A)
isomorphic.

In Part 2, we define the functors H"(—, —), with first argument any group G
and second argument any G-module A, again using the n-th cohomology functors
but now over the fixed group ring. For any action of G on A, we can establish a set
bijection between H"(G, A) and the set E(G, A), consisting of equivalence classes
of short exact sequences of groups

0—A—F—G—1

where E, G are not necessarily abelian groups. Further, F(G, A) turns out to be a
group, and as a bifunctor from the category PAIRS (as in Definition 6.6) to the
category of abelian groups, it is isomorphic to H"(G, A) (Theorem 7.11).

What about the case when we do not restrict ourselves to an abelian kernel A? As
described in Section 8, if an extension exists, it induces a triple called an abstract
kernel (4,G,0 : G — Aut(A)/In(A)). The other way, given an abstract kernel, it
has an extension if and only if one of its obstructions is equal to 0 (considered as a
3-cochain of Homzg(Z Vil Z(A)), where Z is the trivial G-module, and Z(A) is
the center of A). See Theorem 8.6.

In the last part, we specifically describe extensions of primary and the infinite
cyclic group Z by primary and the infinite cyclic group Z, see Theorem 9.3 and
Theorem 9.4. Therefore, we shall have described all extensions of finitely generated
abelian groups, as all such are a direct product of primary cyclic groups and of some
rank. We have also shown that an abelian extension (an element of Fz(G, A)) may
be embedded in E(G, A), proved in Theorem 10.1. Specifically, when G = Z,,,, m >
2, we have that any extensions of A by Z,, is an abelian extension, as shown in
Theorem 10.2. We will also show that there exists extensions of Z,, by Z, x Z, that
are not abelian, which follows from Theorem 10.14.
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1. PRELIMINARIES

We will now give some definitions and results that will be used frequently in the
rest of the thesis. For any category C, we write Ob(C) for the class of objects in C,
and Home (A, B) the set of morphisms between any two objects A, B € Ob(C).

Remark 1.1. A class is something larger than a set. A category C is called
small if Ob(C) is a set, and large otherwise. Almost all categories in this Thesis
are large.

Definition 1.2. ([3] Chapter IX.1) A pre-additive category C is a large category
such that

(1) For any A, B € Ob(C), Homc(A, B) is an abelian group,

(2) Composition of morphisms is distributive.
Lemma 1.3. ([1] Chapter 5 Proposition 5.2) Fiz any finite family of objects {A;}
of a pre-additive category C. Whenever the coproduct of the {Ai}/s exists, it s
isomorphic to the product of the {Ai}/s, considered as objects of C.

Definition 1.4. ([1] Chapter 5.1) Let C and C" be any two additive categories,
and F:C — C a functor. F is said to be additive if for any pair of morphisms
u,v € Home (A, B), we have

F(u+v)=F(u)+ F(v)
Lemma 1.5. Let C' be any pre-additive category. The covariant and respectively
contravariant functors Home (A, —), and Home(—, B), are additive functors.

Remark 1.6. Follows easily from Definition 1.2.

Lemma 1.7. Chain homotopies are preserved under covariant additive functors.
Under a contravariant additive functor, chain homotopies are transformed to cochain
homotopies.

Definition 1.8. An additive category C is a pre-additive category where there exists
coproducts of any finite family of objects of C.

Definition 1.9. ([1] Chapter 5.4) An additive category C is said to be pre-abelian
if for any morphism u € Homc (A, B), there exists a ker(u) and coker(u).

Definition 1.10. A pre-abelian category C' is called abelian if for any morphism
u € Home (A, B), we have an isomorphism between Coim(u) and Im(u), where

Coim(u) = Coker(ker(u))
Im(u) ker(coker(u))

For the next three definitions, C, D are two arbitrary categories.

Definition 1.11. A covariant functor T on C to D is a pair of functions: an
object function and a mapping function. These assign to each object in A an object
T(A) in D, and respectively, to any morphism v : A — B in C a morphism
T(y) : T(A) — T(B) in D. It preserves identities and composites, i.e.

T(1a) = 174
for all A in C, and

T(By) =TB)T(y)
whenever B is defined.
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Definition 1.12. A contravariant functor T from C to D is a covariant functor
from C°PP to D, where C°PP is the category called the dual category to C, consist-
ing of all objects of C, such that for any objects A, B in C°PP, Homgors» (A, B) =
Home (B, A).

Definition 1.13. By [3], a functor T, covariant in B and contravariant in A, is a
bifunctor if and only if for any o : A — A',B:B— B, the diagram

T, p) LB,

T(A, 5)l
T(A, B

T(A, B)
|7(4.5)

T(a, B') T(A, B)

15 commutative.

Let us denote by R-mod, AB, GR, Sets, Sets,, the frequently used categories
of (left) R-modules, abelian groups, groups, sets, and pointed sets, respectively. We
assume that all rings are associative and have multiplicative unity element. Given
a chain complex of abelian groups (X,,d.), let Z,, = kerd,,_1, By, = dp(Xny1)-
Elements of Z,, are called n-cycles and elements of B,, are called n-boundaries. As
X dny dp-1X, is an epimorphism, and kerd,,_1 = Z,, it follows that X,,/Z,, ~
B,,_1. Given a cochain complex (X*,d*), let Z" = kerd,,, B" = d"T}(X"*1).
Elements of Z™ are called n-cocycles, and elements of B™ are called n-coboundaries.

Definition 1.14. The n-th cohomology group of a cochain complex (X*,d*) of
abelian groups is the factor group H"(X) = Z"™/B".

Definition 1.15. Let (X*,d*) and (Y*,0") be cochain complexes. A cochain trans-
formation f : X — Y is a family of module homomorphisms f* : X™ — Y™,
such that for any n,

fn+1dn _ 6nfn
A cochain homotopy s between two cochain transformations f,g : X — Y is a
family of module homomorphisms s™ : X™ — Y™~ ! such that for any n,

fn _ gn _ Sn+1d71, + 5n718n

We write s : f ~ g. We say that f is a homotopic equivalence if there exists a
cochain transformation g : Y — X and module homomorphisms s : Y — Y, ¢ :
X — X, such that

s:fg~1ly, andt:gf ~1x.

We also have the notion of homology, chain transformation, chain homotopy, but
we will, in this thesis, mostly be using the concept of cochain complex, cohomology,
cochain transformation, cochain homotopy. We will simply write complex, trans-
formation, homotopy, whenever their interpretation is clear from the context. A
complex (X*,d*) is said to be positive when X™ = 0 for n < 0.

Proposition 1.16. H™ becomes a covariant functor from the category of complezes
of abelian groups (respectively R-modules) and transformations between them, to
AB (respectively R-mod).

Proposition 1.17. ([3] Theorem I1.2.1) If s: f ~¢g
H"(f) = H"(9) : H"(X) — H"(Y)
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Theorem 1.18. (Ezact cohomology sequence, [3] Theorem II.4.1) For each short
exact sequence of cochain complexes

0—K—L—M—0
we have a natural long exact sequence of cohomology:
.. — H"(K) — H"(L) — H"(M) — H""Y(K) — H"™Y(L) — ..

Definition 1.19. A free R-module generated by a set X consists of formal finite
sums,

and is denoted by F(X).
Clearly, F(X) ~ @ ex F((2)) ~ ®ex R.

Definition 1.20. ([3] 1.5) An R-module P is projective if for any epimorphism
o: A — B, and any homomorphism v : P — B, there exists a §: P — A such
that v = of. An R-module I is injective if for any monomorphism » : A — B,
and any homomorphism p: A — I, there exists a p: B — I such that p» = p.
An R- module M is divisible if for any m € M, and every r € R, there exists
m € M such that m = rm’.

Definition 1.21. Let C be an R-module. A complex over C is a positive com-
plex (X.,ds) and a transformation €, to the trivial complex (i.e. concentrated in
dimension zero) C. Write (X,,d.) — C. If all X;s are projective we say that
(X.,d,) — C is a projective complex over C. If (X, d.) has trivial homology in
positive dimensions, while the induced mapping € : Ho(X) — C is an epimor-
phism, we say that (X.,d,) — C is a resolution of C. A complex under C is a
transformation € from the trivial complex C to the positive complex (Y*,8%). Write
C -5 (Y*,6%). If all Y, s are injective, we say that C —— (Y*,6") is an injective
complex under C. If (Y*,8") has trivial cohomology in positive dimensions, while
e:C — HO(Y) is an isomorphism, we say that C —— (Y*,5) is a coresolution
of C.

Lemma 1.22. (Comparison Lemma for projective resolutions, [3] Theorem II1.6.1)
Let v € Homp. p04(C, C'). If (X.,d,) — C is a projective complex over C, and

(X;,d/*) =" is a resolution of C', there is a transformation f: X — X' with
€,f = e, and any two such transformations are homotopic. We say that f is a
lifting of ~.

Lemma 1.23. (Comparison Lemma for injective coresolutions, [3] Theorem I11.8.1)

Let a € HomR_m(,d(A,A/). If A = (X*,6%) is a coresolution of A, and A =
(Y*,8%) is an injective complex under A, then there is a transformation f : X —
Y withe' a = fe, and any two such transformations are homotopic. We say that f
is a lifting of a.

Definition 1.24. Let G be a group and R a ring. Define the group ring RG as the

free R-module generated by the symbols {(g) ,g € G, where multiplication is defined
on the generators as (g) (h) := {(gh), for any g,h € G. So elements of RG are

formal (finite) sums 3_ on(g)(g), n(g) € R.
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Definition 1.25. A G-R-module is an R-module A together with a group homo-
morphism G — Autg (A). If R = Z, we simply say that A is a G-module.

Proposition 1.26. A is a G-R-module if and only if A is an RG-module.

Proof. Take a ¢ € Homgr(G, Autr(A)). Then A becomes a RG-module through
a function ¥ : RG x A — A defined as

(Y nlg) (g)a) = n(g)e(g)(a),n(g) € R.

g€G
Suppose we have a function ¥ that makes A a RG-module. Define the function

e(9)(a) = ¥({g),a)
It can be shown that ¢ € Homgr(G, Autr(A)). O

Definition 1.27. ([1] Chapter 2.1 ) Let A be an object of the category C' and I an
arbitrary set of indices. We shall say that A together with the family of morphisms
u; + A — A; is the direct product of {A;}icr if for any object B in C' and any
family of morphisms v; : B — A;, there exists a unique morphism v : B — A
such that the diagrams

B— A

DT

A;
are commutative.

Definition 1.28. ([1] Chapter I1.6) A kernel of a morphism o : K — L in an
abelian category is a p: J — K such that oy = 0 and for any other T such that
o1 = 0, there exists a unique 7o such that the diagram is commutative:

J- Mk 2o

W A

M
Definition 1.29. ([2] I1.(6.2) )A pullback of two morphisms ¢ : A — X and
Y : B — X is a pair of morphisms o« :' Y — A and 8 :' Y — B such that
pa =1
y 2.4

Bl l@
B-Y x
and for any other pair v : Z — A and § : Z — B such that @y = ¥d there exists

a unique € 1 Z —> Y such that o = and S€ = 0.

Definition 1.30. ([1] Chapter 3.1) Let C be any category and D be a small cat-
egory, and let F' be a covariant functor F : D — C. An inverse limit of F' is an
object A in C together with morphisms ux : A — F(X), one for each X € Ob(C),
such that
(1) Poralla: X —Y in D, F(a)ux = uy;
(2) For any other family vx : Z — F(X) such that F(a)vx = vy, there exists
a unique v : Z — A such that uxv = vx, for all X € Ob(D).
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Proposition 1.31. Whenever they exist, kernels ([1] Chapter 3.1 Example 1),
direct products ([1] Chapter 3.1 Ezxample 2), and pullbacks ([2] II. Prop.6.1) are
inverse limits.

Corollary 1.32. Inverse limits in general, as well as direct products, kernels and
pullbacks in particular, are unique (up to an isomorphism).

Proposition 1.33. ([1] Prop. 3.6) Let C be any category and A an object of C.
The covariant functor Homgc (A, —) preserves inverse limits of functors from any
small category.

Corollary 1.34. In an abelian category C, for any short exact sequence
0—B —B-—B" —0
and any A € Ob(C), we get the exact sequence
0 — Home(A,B') — Home(A, B) — Home (A, B').

Remark 1.35. [t follows from the Corollary above that the functor Home (A, —)
is left exact.

Proposition 1.36. In GR and R-mod, the pullback is Y = {(a,b) € AxB | ¢(a) =
Y(b),a € A,b € B}, with the natural projections « = w4, =7p.

Definition 1.37. ([1] Chapter 2.1) Let A be an object of the category C and I an
arbitrary set of indices. We shall say that A together with the family of morphisms
u; : Ay — A is the direct sum of {A;}ier (also called coproduct), if for any object
B in C and any family of morphisms v; : A; — B, there exists a unique morphism
v: A — B such that the diagram

Usg

A A

>\ v
4

B
commutes.

Definition 1.38. ([2] Chapter 1.2) The cokernel of a morphism ¢ : K — L
in an abelian category is a p : L — M such that po = 0 and for any other
71 L — M such that 7o = 0, there exists a unique Tg such that the diagram is
commutative:

K-2or - P m

N

Ml
Definition 1.39. A pushout of two morphisms o : X — A, §: X — B, is a
pair of morphisms f :A—Y, g: B—Y with fa = gf3,

X—a>A

s) s

By

satisfying the universal property: for any v : A — Z, v : B — Z such that
ua = v, there exists a unique £ :' Y — Z such that u=&f and v = &g.
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Proposition 1.40. In R-mod, the pushout of (X, , 8) isY = A®B/ {(a(zx),—B(x)) : x € X),
where f =14 and g = ip are the canonical injections.

Definition 1.41. Let C be any category and D be a small category, and let F :
D — C be a covariant functor. A direct limit of F' is defined dually to the inverse
limit of F' (as in Definition 1.30).

Proposition 1.42. Whenever they exist, direct sums, cokernels and pushouts are
direct limits.

Proposition 1.43. Direct limits in general, as well as direct sums, cokernels and
pushouts in particular, are unique (up to an isomorphism).

Proposition 1.44. Let C be any category, and B an object in C. The contravariant
functor Home(—, B) carries direct limits of functors from any category into inverse
limats.

Corollary 1.45. In an abelian category C, for any short exact sequence
0—A —A—4" —0
and any B € Ob(C), we get the exact sequence
0 — Home(A", B) — Home(A, B) — Home (A, B)

Remark 1.46. [t follows from the Corollary above that the functor Homea(—, B)
is left exact.

Lemma 1.47. (Short Five Lemma, [3] Lemma 1.3.1) Given any commutative di-
agram in GR

l1—A——B—(C—1

o ol b

1— A —B —(C —1
where the rows are short exact sequences. If a, 8 are pairwise injective, surjective
or isomorphisms, so is 7.

Lemma 1.48. (The 3 x 3 Lemma, [3] Lemma I1.5.1) Suppose that in the following
commutative diagram
0 0 0

Lo

04>A34>A24>A14>0

Lo

0 — B3 — By — B; — 0

b

0—C3 —Cy — Cy — 0

Lo

0 0 0

all three columns and the first (or last) two rows are exact. Then the third row is
exact.
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Lemma 1.49. (Ker-Coker sequence, [3] Lemma I1.5.2) Given two short exact se-
quences in a commutative diagram

g

0—A—B—(C—0

of sl b
0—a Zap T g
the sequence is exact
0 — ker @« — ker 8 — kery — coker(a) — coker(8) — coker(y) — 0
Proposition 1.50. Let A, B,C € Ob(R-mod). For any short exact sequence
0—A—B—C—0

the sequences

0 — Hompg(P,A) — Hompg(P,B) — Hompg(P,C) — 0

0 — Hompg(C,I) — Homp(B,I) — Hompg(A,I) — 0
are exact, for any projective module P and injective module I.

Let R be any ring. Consider R as the right R-module. Homgz(R, A) becomes a
left R-module through

(rf)(s) = f(sr),s € R,r € R, f € Homz(R, A)

Definition 1.51. An R-module C' is called cofree if C ~[]..; Homz(R,Q/Z), for
some indezed set J.

JjeJ
The R-module structure is given by

lrﬂ'j < 11 Homz(R, Q/Z))

jeJ

(s)=(rg)(s), € R,j € Jgec Homz(R,Q/Z),s € R

Lemma 1.52. For any ring R, and any injective (divisible) abelian group I, Homz (R, I)
is an injective R-module.

Proof. Let & € Homp(A, B), be amonomorphism. For any v € Hompg(A, Homz(R, 1)),
we must show that

Hompg(B, Homz(R, 1)) o, Hompg(A,Homy(R,I)),a"(9) = ga
is an epimorphism. By ([2] Theorem III.7.2) we have the natural group homomor-
phism
Hompg(N,Homz(M,I)) ~ Homz(M ®r N, I)
When we take M = R, we get the isomorphism
Hompg(N,Homgz(R,I)) ~ Homg(N,I)
After letting N = A and N = B, the problem translates into proving that
Homgz(B,I) — Homgz(A,I)
is an epimorphism, which is true, by the definition of the injective group I. [

Corollary 1.53. For any ring R, Homz(R,Q/Z) is an injective R-module.

Lemma 1.54. Any product of injective R-modules in an injective R-module, where
R is an arbitrary ring.
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Proof. For any short exact sequence in R-mod
0—N —N-—N —0
Apply Homp(—, [ Ix), k in some indexed set (finite or infinite), where each I is
an injective R-module, and get the left exact sequence:
0 — Homp(N" ,[[1x) — Homp(N, ][ 1) — Homr(N', [ Ix)
0 — [[HomrWN", 1) — [[ Homp(N, 1) — [ [ Homp(N', I)

Now, for each k, for any element of || HomR(N/, I;,), by the Axiom of Choice, it is
possible to pick in [[ Homg (N, I};) exactly that g such that g, € 71 (][ Homg(N, Ii))
and

, o
0— N — N

A

I
commutes. The sequence becomes exact, or equivalently, [] I is an injective R-
module. (]

Corollary 1.55. Any cofree module over any ring is injective.

Proposition 1.56. ([2] 1.(7.1)) Let R be a PID. An R-module is injective if and
only if it is divisible.

Proposition 1.57. ([2] 1.(7.2)) Let R be a PID. A factor module of a divisible
module is divisible.

Corollary 1.58. ([2] 1.(7.4)) Any abelian group may be embedded in a divisible
abelian group.
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Part 1. Extensions of modules
3. THE FUNCTORS Ext}

Proposition 3.1. For any R-module C, there exists a projective resolution of C.

Proof. Any R-module C is a quotient of a free, hence projective module. Build
the free R-module F{y on the generators of C' and take the canonical epimorphism
7o : Fy — C. Build the free R-module F; on the generators of ker 7, and we get
the canonical projection 7y : F; — ker mg, and continue in this manner. Then we
get a long exact sequence

PR oL N AL LIy g p—
0

Definition 3.2. Ext}(C, A) := H"(Hompg(Px, A)), where (Py,d,) — C is any
projective resolution of C.

The definition of Ext}, is correct (it is independent of the choice of projective
resolution):

Lemma 3.3. Given any two projective resolutions of C, (Py,d.) — C, (Qx, 0,) ——
C, and an R-module A, the following cohomology groups are naturally isomorphic:
H"(Hompg(Px, A)) ~ H"(Homp(Q., A)).

Proof. Since (P,,d,) —— C is also a projective complex over C' and (Qs,d,) — C
is a resolution of C, Lemma 1.22 gives that there exists a lifting f : P — @ of
1¢. Since (Q.,d.) — C'is also a projective complex over C, and (P,,d,) — C a
resolution of C| so the same lemma gives that there exists a lifting g : Q@ — P of
1¢. Since the composition of two chain transformations is a chain transformation,
we obtain two chain transformations (gf) : P. — Ps and (fg) : Q« — Q. that
satisfy

e(gf) = ef=¢

e(fg) = eg=e
so they are homotopic to 1p, and 1¢,, respectively. For any R-module A, applying
the functor Hompg(—, A) gives the commutative diagram of cochain complexes

0 —— Hompg(C, A) £, Hompg(Qo, A) 20, Hompg(Q1,A) !

*

1 Homg(C,A) fo'| |90 [Y] | o

00— HO?TLR(C, A) i HO’I’TLR(P[),A) —0> HO’ITLR(PhA) 14>

where

ff(u) = uf, uwe Homg(P., A)
gv = wvg, vE Homp(Q., A)
(f'g)w) = [f(vg)=v(gf) =(9f)"(v)

= d'(uf) =u(fd) = (ud) [ = [*(5u) = f*6"u

)

u) = (¢ (uf)=ufg=(f9)"(u)
)

e = (efo) =¢€"
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By Lemma 1.7, Hompg(—, A) preserves homotopies, so
(9f) ~ 1p, = f'g" = (9f)" = Homgr(g9f, A) ~ Homr(1p,, A) = Lgompu(p,,A)
(fg) = 1Q* = g*f* = (fg)* = HomR(fgvA) = HomR(lQmA) = 1H07nR(Q*,A)
Taking the covariant functor H™(—) we get

H™(g" ") = H"(1aomp(Q.,4)) = Lan(Homn(q.,4) = H"(g")H" (f7)
So H™(f*) : H"(Homp(Q«, A)) — H"(Homp(Py, A)) is an isomorphism, with
inverse H™(g"*). O

Proposition 3.4. Ext(—,—) is a bifunctor from R-modx R-mod to AB, for any
n e Zzo.

Proof. Step 1. We will show that Ext,(C, —) is a covariant functor. Ext}(C, A) :=
H"(Hompg(P,, A)), where (P,,d,) — C is a projective resolution of C. Let a €
Homp o4 (A, B). It induces

e* on o

0 — Homg(C,A) — Homg(Py, A) =+ Hompg(P, A) - ...
o] o) w|
0 — Hompg(C, B) i*» Hompg(Py, B) & Hompg(Py, B) il»
where
el = le, le Homg(C,A)
0*h = hd, h€ Hompg(P., A)

al = al
The diagram is commutative:
ae™ (1) = au(le) =ale =" (al) = ¥ (l)
a,0r(s) = au(s0y) =asd, =08, (as) =&y a.(s)

So a, becomes a transformation between the two complexes. Since H™ is a covariant
functor, we have

H" (o) : H"(Hompg(Py, A)) — H"(Homp(Ps, B))

H" (o) : Exth(C,A) — Ext}(C, B)
If @ = 14, we simply get identity transformation on Hompg(Px, A), and by functo-
riality of H™, we get

H"(1gomp(pP..A)) = LHn (Homp (P, A))

A composition of morphisms A — B 2. gives three complexes and two inter-
twining transformations (since composition of two transformations is a transforma-
tion:
e* 5 01

00— HomR(C A) — HomR PQ,A) —> HomR(Pl,A) —

] ] |
e* 50

0 — Homp(C,B) <. Hompg(P,, B) =%+ Homg(
I
( (

8
0 — Hompg(C, D) £, Hompg(Py, D) % Homp P,D) — ...
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As

Beax(s) = P.las)=(Ba)s = (Ba).(s)
H"(B,a.) = H"((Ba).)=H"(B,)H"(ax): Exty(C,A) — Extk(C, D),
so Ba gives composition H™(3,)H™ ().
Step 2. We will show that Ext}(—, A) is a contravariant functor. Given a

f € Homp.moa (K, C), fix a projective resolution of K, (K,,(,) — K. By Lemma
1.22; there exists a lifting ¢ : K, — P.. Applying Homp(—, A) for any R-module
A, we get the commutative diagram of cochains and cochain transformations ¢,
e* on oy
00— HomR(C’, A) — HomR(PQ,A) —OP HO’I?’LR(P]_7A) —1>
] T

0 — Homp(K,A) < Homp (Ko, A) & Hompg(K, A) &»

t'e*(s) = t(se) = s(et) = s(fe) = €*(sf) = € f7(s)
tn10,(1) t*(1d0) = 1 (Sntni1) = (Itn) ¢ = (o (ltn) = Gty (1), € Zixo
Applying H" gives
H"(t.) : H"(Hompg(P:, A)) — H"(Hompg(K., A))
H"(t.) : Exath(C,A) — Ext’h(K, A)

If f=1c, t« = lHomp(P.,A), and taking H™ gives
Lan(Homp(P.,A)) = LExtn (C,4)

Look at the composition of any two morphisms L —» K 4, C. Fix a projective

resolution of L.

L%, Lo o

9)
S K K S K —0
\
o ) )
—2>P2—1>P1—0>P04>04>0
By Lemma 1.22, there exists a lifting s : L, — K,. Then we get the lifting
: L, — C.. Apply the functor HomR(—7A) (for any fixed R-module A). We
get the commutative diagram of cochain complexes and cochain transformations

0 — Hompg(C,A) £, Hompg(Py, A) —% Homp (P, A) —

rloo o )
0 — Hompg(K, A) <. HomR(KO,A) HomR(Kl,A)
A a4
0 — Hompg(L,A) L HomR(Lo,A) HomR (L1, A) —
Apply H™ and get
H"(s*t") = H"((ts)*) = H"(s")H"(t") : H*(Hompg(Py, A)) — H"(Hompg(L, A))
H"((¢ts)*) = H"(s")H"(t*): Exty(C, A) — Ext’h(L, A)

22, L

Ly

C*

*

’71
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Step 3. We will establish that Ext}(—,—) is a bifunctor. Since the composi-
tion Ext}(C, A) L Eatn n(K,A) == Ext%(K,B) is equal to Ext}(C, A) ==
Ext}(C, B) L Extn % (K, B)

at*(8) = an(st) = (as)t = t"(as) = t*au.(s)
Ext}(—, —) is a bifunctor. O
Proposition 3.5. Ext%(C, A) ~ Hompg(C, A).

Proof. Let (P.,d,) — C be a projective resolution of C. Apply Homp(—, A) and
get the complex

0 — Hompg(C, A) < Homp(Py, A) &, Homp (P, A) A,

which by Corollary 1.45 is exact at Hompg(C, A) and Hompg(Py, A). Since d_; =
0, d*, =0,
ker d

Homp(C, A) ~ kerd, = o = H°(Homp(P., A)) = Ext%(C, A)
—1

Proposition 3.6. Given a short exact sequence of R-modules
0—K-SL-5M—0
For any R-module C, we get a long exact sequence of Ext}, :
0 — Homp(C,K)— Hompg(C,L) — Hompg(C,M) — Exth(C,K) — Extp(C,L) —
—  Exth(C,M) — Ext%(C,K) — Ext%(C, L) — Ext%(C, M) —
— . — BEath(C, M) — Extyt(C,K) — Ext%™(C, L) —
Proof. Fix a projective resolution of C :

1 1 1
2 ‘Pg ! ‘Pl 0 ‘PO c ‘C ‘0

We get a commutative diagram of three complexes and transformations s, and o :
6*
0 — Homp(C,K) ~+ Homp(P, ) —% Homp(P1,K) —»
A el
* 5*
0 — Homp(C,L) ——~ Homp(Po,L) % Homp(P;,L) 2+ ...

T U
(

do
0 —» Homp(C, M) “» Homp(Py, M) 2% Homp(P, M) & ...
We get a short exact sequence of complexes
0 — Homp(P,,K) =% Hompg(P.,L) = Hompg(P., M) — 0

since Hompg(Px,—) converts kernels to kernels, and at each dimension, since P; is

projective, Hompg(Py, L) == Hompg(P,, M) is surjective. By Theorem 1.18, we

get the long exact sequence

0 — H°Hompg(P.,K)) — H°(Homg(P,, L)) — H°(Hompg(P,,M)) — H'(Hompg(P., K))
— HY(Homg(P,,L)) — H'(Homg(P,,M)) — H?*(Hompg(P,,K)) — H?*(Hompg(P,,L)) — ...
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which is isomorphic to

0 — Homp(C,K) — Hompg(C,L) — Homg(C, M) — Exth(C,K) — Extk(C,L) —
—  Eath(C,M) — Ext%(C,K) — FExt%(C,L) — ...

O

Proposition 3.7. Given a short exact sequence of R-modules
0—K-SL-5 M—0

For any R-module A, we get a long exact sequence of Ext}, :

0 — Homp(M,A) — Hompg(L,A) — Homp(K,A) — Extn(M,A) — Exth(L, A) —
—  Exth(K,A) — Eat}(M,A) — Bat%(L, A) — Ext%(K,A) — ... — Ext’y (K, A)
—  Eat’iPN (M, A) — Exth™ (L, A) — ..

Proof. Fix projective resolutions of K, and M.

i P
P — PieQ1 — 1

y u

Py — Py®Qo — Qo

sl le
KL»LJ»M

Start building a projective resolution of L, that makes the diagram commutative.
Since

Hompg(Py @ Qo, L) ~ Homg(Py, L) x Hompg(Qo, L)
any h: Py @& Qo — L can be written as
h(p,q) = f(p) + 9(q), where f: Py — L,g: Qo — L

Such a g exists since Qg is projective. We need that

hi = pd_1ANoh=d_im.

hi(p) = h(p,0) = f(p) +9(0) = f(p).
Define f(p) = pd_1.
oh(p,q) = o(f(p) +9(0) = o f(p) + o9(q) = o(nd—1(p)) + 09(q) = 09(q)

Define g(q) as 0g(q) = d-17(p,q) = d—1(q). Let (K1,ex), (Li,er), (M1, enr) be
the kernels of €, h, and €, respectively. By Lemma 1.49, since coker(e) is 0, we have
a short exact sequence

0—Ky —L — M —0
We have new maps «, (3, which are the (unique) maps satisfying

era =ipex, ey = moer
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(follows from the definition of the kernel, Definition 1.28). We have built the
commutative diagram of short exact sequences

K1O[4>L14>M1

6Kl er, Em
) T

Py —> Py®Qo —> Qo

El h €

Kkt o %% m
0

Since
650 = 0, €d0 =0
there exists unique homomorphisms u : P, — K7 and v : Q1 — My, such that
exu = 0g,epv = dy

Since we have built au : Py — L1, there exists a homomorphism &k : P, & Q7 —
L1. Any such k can be described as

k(p,q) = s(p) +t(q)

We now require that
ki = au,vmy = Bk
Since
kii(p,q) = k(p,0) = s(p) = define s(p) = au
Now,
Bk(p,q) = B(s(p) +t(q)) = Bs(p) + Bt(q) = Bau(p) + Bt(q) = Bt(q)
= define t(q) as Bt(q) = vmi(p,q) = v(q)

The only thing remaining is to check exactness
PoQu et BheQy oL
herk = 0, solm(epk) C ker(h)

To prove the other way, it is enough to show that k is surjective on L;. Using
Lemma 1.47, it is enough to show that u and v are surjective. But this follows,
since

Iméy = Imegu=kere = wu is surjective
Imdy = Imepv=Kkere = v is surjective

So we have developed the commutative diagram
P PeQ
bo| euk] |do
Po o Py&Qo % Qo
S S
P,y O

K——L—>»M
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Continue this procedure, i.e. take (K3, ek, ), (L2,€er,), (Ma, epr,) kernels of g, epk,
and do. We will get a new short exact sequence

0— P, — P3&Qs— Qs —0

which together with a homomorphisms (41,17, d;), make a larger commutative dia-
gram. We then get a projective resolution P, & Q. of L, and we get a short exact
sequence of complexes

0— P 5 P.®Q, ™ Q. — 0
where, for each n > 0, we have a split exact sequence

where i, is the natural inclusion and m, is the natural projection. For any R-
module A, apply Hompg(—, A) to the short exact sequence of complexes. We get a
short exact sequence of cochain complexes

0 — Homp(P.,A) — Homp(P, ® Q«,A) — Homp(Q.,A) — 0

For each n > 0, it is split exact, since Homg(P, ® Qn,A) ~ Hompg(P,,A) x
Homp(Qn, A). Apply H™ to get the long exact sequence of cohomology

0 — H°Hompg(Ps,A)) — H(Hompg(P, @ Q., A)) — H'(Homp(Qx, A)) —
—  HY(Hompg(P,,A)) — H'(Homp(P, ® Q.,A)) — ...

which is isomorphic to

0 — Homp(K,A) — Homg(L,A) — Homgr(M,A) — Exth(K,A) — Exth(L,A) — ...
O

Proposition 3.8. Ext} (P, A) =0, P projective module, n > 1.

Proof.

—0—0—PL P 0

is a projective resolution of our projective module P, where 1p is as isomorphism
of P. By Corollary 1.45, taking Homp(—, A) converts cokernels to kernels, and we
obtain the complex

(1p) 0.

0 — Homp(P,A) —" Homp(P,A) 202502

0=

So Im((1p)«) = ker 0, = Hompg(P, A), so (1p). is an isomorphism, and we have

H'(Hompg(P,, A)) = % ~ 0= H*(Homg(P,,A)) =..= H"(Homg(P,, A)) = ..

for any n > 1, which gives

Exti(P,A) =0, n> 1.

Proposition 3.9. Given the short exact sequence of R-modules
F:0—S—P—C—0
where P is projective (also called a projective presentation of C),

Exth(C, A) ~ coker(Hompg(P, A) — Hompg(S, A))
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Also,
Exty(S,A) ~ Ext'ii1(C,A),i > 1.

Proof. Using Proposition 3.7, we get the long exact sequence where Ext’ (P, A) = 0,
forn>1

0 — Homp(C,A) — Homp(P,A) — Homp(S,A) — Exth(C, A) — 0 —

—  Eath(S,A) — Ext%(C,A) — 0 — Ext%(S, A) — Eat5(C,A) — 0 — ..
Exactness gives surjectivity on Ezt!(C, A), so by the description of cokernel in
R-mod, Ext'(C, A) ~ coker(Hompg(P, A) — Hompg(R, A)). Also, Extt(S, A) ~
Ext'F1(C,A), i > 1. O

Proposition 3.10. H"(Hompg(X,I)) ~ Homgr(H,(X),I), where X is a complez,
I an injective module.
Proof. Fix the complex

dny1 dn dn_1 dn—2
= X1 — X, 5 X, &

Apply Homp(—,I) and get the cochain complex

*

dr_q *
e Homp(Xn_1,1) ™ Homp(Xn, I) 2 Homp(Xpi1,1) — ..
dr(f) = fdn, for any n € Z.

For any f € Z™, we can find a morphism to Homp(H,(X),I)

restriction

fezZ"eHomp(Xn,I) Homp(Hn(X),I)

Define this homomorphism ¢ : Z" — Homp(H,(X),I). Will show that ¢ is an
epimorphism with kernel B,,. Given an g : H,(X) — I, i.e.

g  Zn—1
ker(g9) = dpXni1
gz) | dhp_12=0

Let ¢ : Z,, — X,, be the canonical injection homomorphism.

Zn —» X,

!

Since I is an injective module, there exists an
h:X,—1I|hi=g
h is a m-cocycle since
dph(z) = h(dn(2)) = g(dn(z)) = 0.
Take h € B™, i.e. h = sd,,_1. Take any « € H,(X).
h(z) = sdp—1(z) = s(0) =0 = B" € ker(.
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Take any f € ker (, so
fl@) = 0,VoeH,(z) = flz)=0,Vo € Zy, = 3f : X/ Zp ~ Bp_y — I
f = gdy 1€ By, g: X, — I

ker( : f(z) = gdp—1(x) = g(0) = 0,Vz € H,(x). So B" € ker(.

[y
m

Proposition 3.11. Ext}(C,I) =0, I injective module, n > 1.
Proof. For any resolution of C, .. — P 6—1> Py 5 C — 0 we get using Lemma
3.10 that

H"(Hompg(P.,I)) ~ Homgr(H,(P.),I) = Homg(0,I) =0
for n > 1. O
Proposition 3.12. Ezt}(C,A) =0, C and A abelian groups, n > 2.

Proof. Since any abelian group is isomorphic to a quotient of a free abelian group,
we get the short exact sequence

0—K—F—C—0

which is a resolution of C (since any subgroup of a free abelian group is itself a free
abelian group). For any R-module A, by Propositions 3.5, 3.9 and 3.8, we have:

Exty(C,A) ~ Homg(C,A)
Extl(C,A) =~ coker(Homy(F,A) — Homgz(K, A))
Exti™(C,A) ~ Exth(K,A)=0,i>2

4. THE FUNCTORS Ezt}%
Proposition 4.1. For any R-module A, there exists an injective coresolution of A.

Proof. Will show that any module can be embedded in an injective module. We
have the R-module monomorphism v : A — Homgz(R, A) as

(v(a))(r) = f(r)=ra
ra = 0,VréeR = a=0

By Corollary 1.58, there exists an injective group homomorphism j : A — I,
where I is an injective Z-module. We have the short exact sequence

0—A—1— Ky —0

Apply Homgz(R,—) which by Corollary 1.45 preserves kernels, so we get the left
exact sequence of R-modules

0 — Homgz(R, A) 2= Homz(R,I) — Homz(R,Kar), juf =if

and the composition of R-module monomorphisms j,v: A — Homgz(R,I). Since
Homy(R,I) is an injective R-module,we have found the first step of a coresolu-
tion of A. Let C' = coker(j*vy) ~ Homyz(R,I)/Im(j.v). We have the R-module
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monomorphism « : C — Homg(R, C). There exists an injective group homomor-
phism 8 : C — J, for some divisible abelian group J. Apply Homz(R,—) on the
short exact sequence

0—C—J—Kgyj—0

and get the left exact sequence

0 — Homz(R,C) 2% Homy (R, J) — Homz(R, Kcy), B.f = Bf

and the composition of the two R-module monomorphisms S,« : C — Homgy(R, J),
which gives an R-module homomorphism from Homgz(R,I) — Homgz(R, J) with
kernel the image of j.7, so we have build the left exact sequence

0 — A— Homg(R,I) — Homgz(R,J)

Repeat this step, and we will get a injective coresolution of A. O

Definition 4.2. Eziy(C, A) := H"(Hompg(C,I*)), where A —= (I*,d*) is an
injective coresolution of A.

The definition of Exty, is correct (it is independent of the choice of injective
coresolution):

Lemma 4.3. Given any two injective coresolutions of A,

0— A= (I*,d*), 0 — A = (J*,6%)
and an R-module C, the following cohomology groups are naturally isomorphic:

H"(Hompg(C,I*)) ~ H"(Homg(C, J*)).

Proof. Use Lemma 1.23, with a = 14. We get two liftings f : [* — J* and
g : J* — I*. Since the composition of two liftings is a lifting, (fg) : J* — J*
and (gf) : I* — I* are liftings. Since any two such liftings are homotopic, we
get (fg) =~ 15+ and (gf) ~ 1;«. By Lemma 1.7, the additive covariant functor
Homp(C, —) preserves homotopies. We get

fg = 1J* = f*g* = (fg)* = HOTTLR(C, fg) = HomR(Ca 1J*) = 1H0mR(C7J*)
gf = 11, = gufe = (9f)Homr(C,gf) ~ Homgr(C,1r1,) = Lomp(c,1.)

where

f«(v) = fu, fo: Homg(C,I,) — Hompg(C,J,), v € Homg(C,I"),
g«(u) = gu, g«: Homg(C,J.) — Hompg(C,I.), u € Homg(C,J")
(frg)(u) = fulgu) = (fg)u = (fg):(u)

(gef)(0) = g«(fv) = (9f) v = (9/)+(v)
Using Proposition 1.17,

H" ((f9)«) = H"(f)H"(9:) = H"(1,,,. . c.,) = Lan(Homn(c,7%)
H("(gf)«) = H"(g)H"(fs) = H"(Lromp(c.r+)) = Lan(Homp(C.17))
so H™(fy) : H"(Homg(C,I*)) — H"(Hompg(C,J*)) is an isomorphism (with
inverse H™(g.)). O

Proposition 4.4. Exty is a bifunctor from R-modxR-mod to AB, for any n €
ZL>y.
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Proof. Step 1. We will establish that Extp(—, A) is a contravariant functor from
R-mod to AB. Given a morphism g : D — C. Fix A, and an injective coresolution

of A.

D—C

7

§° 5t 52

00— A— 7" ' — 12— .

We then have commutativity at each level of the two induced left exact complexes:

0 1

0 — Hompg(C, A) o Hompg(C,I°) = Hompg(C,I') =% Homp(C,I?) ...

g*l

g*l

R s

« J, 0,
0 — Homp(D, A) & Homp(D,1°) 2% Homp(D,1') 2% Homp(D,I?)...

where

es,s € HomgC, A)
ug,u € Hompg(C, A

g*(es) =
g*(0v) =

)
dv,v € Homp(C, I)
(

€ (sg) = ex(sg) = €xg"(s)
6 (vg) = 0.(vg) = b.9"(v)

Hence g* is a cochain transformation and applying H" gives:

H"(g%)
H"(g%)

H"(Homp(C,I")) — H"(Hompg(D,I"))
Exty(C,A) — Extr(D, A)

If g = 1¢, then we get the identity 1o, (c,1+), Which gives

H"(LHomp(c.1)) = 1an (Homp(c,1%) = 1Ezin(c,a)

Now, let’s look at the composition E D% 0. We get three complexes and
two intertwining transformations ¢g* and h* :

0 1

0 — Homp(C, A) % Hompg(C,1° i Hompg(C,I") i Homp(C,1?)...

g*l

g*l

Lol

0 — Homp(D, A) &5 Homp(D,1°) 2% Homp(D,1') 2% Homp(D,I?)...

h*l

h |

vl

. 5
0 — Homp(E,A) = Homp(E,1°) 2% Homp(E, 1Y) 2% Homp(E,1?)..

h*g*(u) = B (ug) = u(gh) = (gh)"(u)

H"(h*g") = H"((gh)")

— H?L(h*)H’rl(g

Y HY(Hompg(C,I*)) — H"(Homp(E,I"))

H™(h*g*) : FEuatp(C,A) — Extpn(E, A)

Step 2. We will show that Extp(C,—) is a covariant functor from R-mod to AB.
Fix C. Suppose o € Hompg.mod (A, B). Fix an injective coresolution of A and B,
(I*,6*) = A and (J*,¢*) = B, respectively. By Lemma 1.23, there exists a
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lifting f : I* — J*. Take Hompg(C, —) and get following diagram

0 — Homp(C, A) Sy Hompg(C, 1) ig» Hompg(C,T") ii»
| 7 . 1
0 — Hompg(C, B) L Hompg(C,J°) & Hompg(C,J") é‘»
where
ax(u) = oau,u € Homg(C, A)
f«(v) = fv,v € Homg(C,I")
) = o
C*(s) = s¢s€ Homg(C,J")
ex(u) = eu
e«(t) = et,t € Homg(C, B)

The diagram is commutative (which gives that f, : Homg(C,I*) — Hompg(C, J*)
is a transformation):
feeu(u) = fileu) = (fe)u = e (au) = e.(au) = eva(u)
e w) = I M) = () v =M (M) = (M) = G (v),n € Lo
Apply H" :
H"(f.) : H"“(Homg(C,I") — H"(Hompg(C,J"))
H"(f.) : Ewlp(C,A) — Exlp(C,B)
If « = 14, then we would get the identity transformation on the complex Hompg(C, I*),
and applying H™ gives

H"(gomp(c,1+)) = Lun(omr(c, 1) = YEzr(c,a)

Let’s look at the composition A >+ B 2, D. Let (K™, p*) £, D be a coresolution
of D. Lemma 1.23 gives the existence of a lifting g : J* — K*. Then the composi-
tion gf : I* — K* is a lifting too. Apply Homg(C, —) and get the commutativity
conditions:
(gofo)xex(u) = (g0fo)«(eu) = gofoeu = E(Ba)u = ¢, (Bau) = (,(Ba)s(u)
(9/)«0+(v) = (9/)+(0v) = (9f0)v = p(gf)v = p.(9fv) = p.(9f)«(v)

So (gf)« : Homg(C,I*) — Hompg(C, K*) becomes a transformation. Also,
(9./)«(v) = g (fv) = gu(f+(v) = g« fi(v)
As g, and f, are transformations, applying H™ gives:
H"((9f)+) = H"(g«fs) = H"(g")H"(f") : H"(Homp(C,I")) — H"(Homg(C,K"))
H"((9)+) H"(g")H"(f*) : Ext(C, A) — Eatg(C, D)
Step 3. We must check whether the compositions Extp(C, A) — Exzty(C, B) —

Extn(D, B) and Exty(C, A) — Extrn(D, A) — Extr(D, B), are equal, for any
n € Z>o. Take a k € %};(C’, A). Using the notation of this proof, the first gives

g (fR) = g"(f"k) = ["kg



EXTENSIONS OF GROUPS AND MODULES 25

and the second gives

fig™k) = fi(kg) = f"kg
so Extp(—,—) is a bifunctor. O
Proposition 4.5. Ewt%((l A) ~ Hompg(C, A).
Proof. Eoct(l)%(C’7 A) := H°(Hompg(C,T*)), where A —— (I*,6%), is any injective
coresolution of A. Applying Hompg(C, —) gives the complex

0 1 2
0 — Hompg(C,A) == Homg(C,1°) N Hompg(C,I") R Hompg(C,I?) I

which is exact at Hompg(C, A) and Hompg(C,I°), since Homp(C,—) preserves

kernels. m%(c, A) = k‘zgi?‘ ~Ime, ~ Hompg(C, A). O

Proposition 4.6. Given short exact sequence of R-modules

0—K-SL-ZM—0

For any R-module A, we get a long exact sequence of Extz :

0 — Homp(M,A) — Hompg(L,A) — Hompg(K,A) — Ext;(M, A) — Ea:t}%(L,A) —
Falp(K,A) — Ealy(M,A) — Ealn(L, A) — ... — Balp(K,A) — Bxty (M, A) — ...
Proof. Pick an injective coresolution of A, A —= (I*,d*). It induces the commuta-
tive diagram:

Ex 0 dO* 1 dl*
0 — Hompg(M,A) — Homg(M,I°) — Homp(M,I") — ...

cr*l O'*l a*l

0 — Homp(L, A) = Homp(L,1°) LY Homp(L, 1Y)
%*l | |

0 — Homp(K,A) = Homp(K,I°) LY Homp(K, 1Y)

since o* and »* are transformations such that

1
d’
—
1
d’

0¥y =€,0", i, ="
Then, »*c* = (02%)* =0* : Homg(M,I*) — Hompg(K,I*), so,
Imo* Ckersx™; fe€kers™ < +»*f=fx=0
By the universal property of the cokernel
s M —I"|f=s0) = f=0"s < felmo™
So the sequence
0 — Homp(M,I*) <= Homp(L,I") 2> Homp(K,I*) — 0

is a short exact sequence of cochain complexes. By Theorem 1.18, we get the
induced long exact sequence of cohomology:

0 — H°Homgr(M,I*)) — H°(Hompg(L,I*)) — H°(Homgr(K,I*)) — H'(Homg(M,I*)) —
— HY(Hompg(L,I*) — ...
which is isomorphic to:

0 — Homp(M, A) — Homg(L, A) — Homp(K, A) — Extp(M, A) — Exty(L, A) — ...
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Proposition 4.7. Given a short exact sequence of R-modules
0—A 5454 —o0

For any R-module C, we get a long exact sequence of E:ct% :

0 — Homg(C,A") — Hompg(C, A),— Homp(C,A") — Ezin(C, A — Exlp(C, A) —>

— Ewtp(C,A") — Bty (C,A') — ... — Baln(C, A") — Eatn(C, A —
Proof. Fix injective coresolution of A’ and A”,
A (14, dY)
A" =5 (J*,6%)
We start building a particular injective coresolution of A,
A — (I" @ J*,some homomorphisms)
As
Hom(A,I" & J") ~ Hom(A,I") x Hom(A, J"),¥n € Z,>¢
Since Ij is an injective module and ¢ is monomorphism, we have a
k:A—1°|kxx=¢
so we automatically get an
h:A—I1°®J%| hia) = k(a) + eo(a)

h makes the first step of the diagram commutative:

’ ’

ha(a') = k(s(a)+eo(s(a)) =e(a’) = (£(a),0) = ig(e(a))
moh(a) = mo(k(a) + eo(a)) = eo(a)

Let (C',7 ), (C,ma), (C”, 7 4 ) be the cokernels of ¢, h and ¢, respectively. Since
(maip)e =ma(hx) =0
by the Definition 1.38 of the cokernel,
Ju:C —C | Tato = um 4
Also, since
(mqrmo)h =myn(e0) =0 = v :C — | T 47T = VT A
Lemma 1.48 gives that the coker row sequence is exact. Since
Pe=0 = leg :C — I |egmy =d°
Also, since

e=0 = e :C — J" |egn : C — J!
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Ry 1

d*ll hl 15—1
10 8 g 0 10, jo
WA/l WAl l?TA//

C/L»cgv»cll

ec l lecu

Il 4’1’1» Il@Jl 7-[-41» Jl
dll 5%

Since I' is injective, there exis.ts

3s:1°® J | sip = d°
Trivially, we have

Omg: 1 J — Jt
Define

ko I"sJ —T1'gJ!
kGig) = s(i,5) +00mo(i, 5) = s(i, ) + 6°(j)
This homomorphism makes the whole diagram commutative:
kioli) = K(i,0) = s(i,0) = sio(i) = d°(3) = (d°(3), 0) = ir (d°(3))
mk(ig) = 8°(j) = 0°(m1(i,5))

Continue in this manner: take (Ci,wAll), (C,may), (C’”,WA;/) as the cokernels of

d® k, and 6°, respectively. In this manner we get the specific desired injective
coresolution of A. Then we get a short exact sequence of complexes

0—I" e I —0

where 7, is the natural injection and 7, is the natural projection. It is not split exact
(since the middle map is not d° ® 6°, but some twisted homomorphism k). But
the sequence is split exact for each n > 0. For any R-module C, take Hompg(C, —)
and get a short exact sequence of complexes (since any f : C — J* induces
igof : C— I* @ J*):

0 — Homp(C,I") — Homp(C,I" ® J*) — Homp(C,J*) — 0
By Theorem 1.18, we get a long exact sequence of cohomology:
0 — H°Homg(C,I*)) — H°(Homp(C,I* & J*)) — H°(Hompg(C,J*)) —
—  H'(Homg(C,I*)) — H*(Homg(C,I* ® J*)) — ...
which is isomorphic to
0 — Homg(C,A") — Hompg(C, A) — Homg(C, A") — Exl;(C,A') —>
— Exlp(C,A) — ...
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Proposition 4.8. Enct;;(C’7 I) =0, n > 1, when I is an injective R-module.

Proof. ... — 0 —0—1 A — 0, is an injective coresolution of I, which is
equivalent to the isomorphism 1: I — I. Since Hompg(C, —) is a functor, we get
1Homg(c,1), an isomorphism, which gives the long left exact sequence

0 — Hompg(C,I) — Hompg(C,I) — 0 — 0 — ...
Since all Homp(C,I™) =0, n > 1, we see that we have

FExtp(C,I) = H (Homgp(C,I*)) =0, n > 1.

Proposition 4.9. Let

0—A—I—K—0

be short exact sequence of abelian groups, where the middle module I is injective.
Then,

Eiact;(C’,A) ~ coker(Hompg(C,I) — Hompg(C, K))
Baty(C,K) ~ Eatn (C,A),i>1

Proof. Using Proposition 4.7, the short exact sequence induces a long exact se-
quence of Exty, :

0 — Homg(C,A) — Hompg(C,I) — Hompg(C,K) — Eimtz(c, A) — Eia:t}%(C’, I —

— Batp(C, K) — Baty(C,A) — .. — Extn(C, 1) — Extn(C, K) — Exty' (C, A)

— Eia:t;?l(c, I — ..
By Proposition 4.8, we get
Eixt}%(C, A) ~ coker(Hompg(C,I) — Homg(C, K))
Also,
BEaly(C,K) ~ Exty (C,A),i > 1.
([l

Theorem 4.10. Fzth ~ E:ct;; as bifunctors R-modx R-mod to AB, for each pos-
itive integer n.

Proof. For any R-module C, we have
Ext%(C, A) ~ Homp(C, A) ~ Exty(C, A)
Define a projective presentation of C'
0—S—P—C—0
We will prove the claim by induction. Suppose
@;(5, A) ~ Ext'(S, A), for some i > 1
By Proposition 4.9, we get

Ealy(S, A) ~ Exty  (C, A),
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Then we also have
Ext’h(S, A) ~ Ext'i(C, A)

and so we get EthH(C, A) ~ Extt(C, A). O

5. THE GROUP Eg(C, A)

Definition 5.1. Let C' and A be R-modules. Denote by Er(C, A) the set of equiv-
alence classes of extensions (short exact sequences) of the form

0—A>B-2%C—0

where two such extensions are called equivalent if there exists a homomorphism
(hence an isomorphism) 8 : B — B making the diagram

00— A—B—C—0
uool

00— A —B —C —0

commautative.

‘We see that the direct sum extension
a,c)—>

0— A% gac 30 Lo

is an element of the set. Fix a ring R. Given an element in Fr(C, A) and a homo-
morphism a : C' — C, define the derived extension we get by taking the pullback
PB of (C,«,0) using Lemma 5.2, namely

]
A2 pp T o

| wl

A2 % ¢

Lemma 5.2. If o is surjective, so is mor. Also, kerm ~ kero.
Proof. Take any ¢ € C". Take a(c,) = ¢, for some ¢ € C. Since ¢ is surjective,
B € Blob)=c=al) = (c,b) € PB
—  3(c,b) € PB|7y(c,b)=c, ¥ €C

(b,c) € kermy <= m (b, ¢)=0 < ¢ =0 = ((b,0) € PB) € ker
— o(b)=a(0)=0 = bekeroc=Ims
= kermo = ((»(a),0),a € A) =i(s(a)), where 7 is the canonical injection.
O
Define this element in Er(C’, A) as the image of the map
a* : Br(C,A) — ER(C’, A)
In detail,
a0 — A5 B-5C—0)=0—A-5PB-LC —0
PB = {(bc)|ob)=alc),beB,c €C'}
ia) = (s(a),0), p(bc)=c.
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a* is well-defined. Suppose

/ /

0 — A B C—0el0— A B 50—
— HCIB/—>B|UC:U,/\C%I:%

Will show that o*(0 — A “» B 25 C — 0) € {0—>AL>PBL>C' —>0} :
Define

B+ PB — PBaspBbc)=(Cb).c)
since o(C(b)) = o (b) =a(c)
[ makes the diagram

-/ /
A pp B

Wooo e

A pp- L ¢

commutative:

’

Bi'(a) = B> (a),0) = (¢ (a),0) = (3(a),0) = i(a)
pBb.c) = p(C(b),c)=c =p (bc)

Proposition 5.3. a* makes Er(—, A) into a contravariant functor from R-mod
to Sets.

Proof. Take a = 1¢ : C — C. It induces in Eg(C, A)

0 — A--PB2Cc—0
i(a) = (x(a),0), p(b,o(b)) = o(b)

which is equivalent to our original extension through a homomorphism

8 . PB—B,A(bob)=b
= Bi(a) = B(5(a),0) = x(a)
oB(b,o(d) = o(b)=p(b)

So we get
a*(le) = lgg(c,a)
Now, given two homomorphisms

o " —>C’/,a:C/—>C
The pullback of (o, a) gives an element in E (Cl,A), where the middle module

B = {(bc)lo(b) =ale)}
Tl B — C as e (b, d)=c
Taking the pullback of this (7o, a’) gives an extension in E(C”, A), where the
middle module

B" = {(b.¢)|mer(be)=a(c)}

’ "

1" 1 ’ ’
Ter + B —C aswon(b,c)=c
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We have the commutative diagram:

’]'('C//
B// C/l

ol e

B Y, o

ol e

B—2.C

Since
(ad )mer = ala'mgr) = almemy) = (anp)my = (o7p)Ty = o(mamy)

(B”,ﬂ'BT{'B/,ﬂ'CH) may be the pullback of (U,aa/). For any module R-module Z,
takeany f: Z — B, g: Z — C", such that

of = aoz'g <~ of = oz(oz’g),oz’g 7 —C
Since B’ is the pullback of (0, ), there exists
v:Z — B | Wcl'y:a/g and Ty = f.
Since B” is the pullback of (mers o/), there exists
w:Z — B |Tpu=~vand mru=g
Then we have that there exists
lw:Z — B | Tp(rgu) =nmpy=fand Toru =g,

which is exactly the universal property of the pullback of (o, ao/). This gives, using
our notation, that we may write
(aa')* : B(C, A) — E(C", A), (ad)* = (o )*a*
which makes Er(—, A) into a contravariant functor. O
Given an element in Fr(C, A) and a homomorphism 8 : A — Al7 define the
derived extension we get by taking the pushout of (A, [, ») using Lemma 5.4,
namely:

A 2. % ¢

sl ol e

o
a2 poZs ¢

Lemma 5.4. If > is injective, so is > . Also, coker(%/) ~ coker(x).
Proof.
a € kerx < (a,0)=(B(a),—(a)),ac A
— a=0 = B(0)=0=a.
Define the map ¢ : PO — C as ¢ ((a',b) + L) = o(b). It is correct:
(a',b) ~ (c,d) <= Ja€A|(c,d)=(a,b)+ (Bla),—x(a)) = (a" +p(a),b— x(a))
a/((cl, d)+L) = o(d) =o0(b—x(a)) =0() —ox(a) =0c(b)
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It is an homomorphism with kernel s :
o (@, b)+(c,d)+L) = o ((a+¢,b+d)+L)=cb+d) =ob)+o(d)
(a,b)+L € kero < o(b)=0 < b=3x(a) = (a,(a))+ L € kero
= ((a’ + B(a),0) + L) —i(a + B(a) € kero’
(]

Define this element in Er(C, A/) as the image of the map 3, : Er(C,A) —
Er(C,A"). In detail, we have:

B0 — ASB-LC—0=0—A-5PO-LC—0
PO A @B/ {(B(a),—(a)) :ac Ay = A x B/L
ity = (a,0)+L, p((a,b)+L)=0c(b)

B, is well-defined.

Proposition 5.5. The map B, makes Er(C,—) into a covariant functor from
R-mod to Sets.

Proof. Take 5 =14: A — A. Then

B0 — AZSB-5C—0)=0—A-5P0-LC—0)
PO = AxB/{(a,—x(a)):ac A

Define the homomorphism v : PO — B as

2ab) = s(a) +b
v(a,—x(a)) = x(a)—x(a) =0,Va € A

It makes the diagram

A-%po s

YT R
A2 % ¢

commutative:

1(i(a)) = 7(a,0) = >(a) + 0 = »(a)
o(v((a,b) + L)) = o(x(a)+b) =o(b)

So (14)« = 1g,(c,a)- Given any two homomorphisms 3 : A — A/, ﬂ/ A — A"
Taking pushout (B',i,,ip) of (A, s, ), gives an element in Ex(C, A") where the
middle module is

’

B

A @ B/{(B(a),—x(a)) :ac Ay = A & B/L
iy (a) (a',0)+ L
ig(b) = (0,b)+L
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Taking the pushout (B”,iAu,iy) of (A/,ﬁl,iA/) gives an element in Ex(C,A"),
where the middle module is

A"@ B/ <(ﬂ’(a’), —i;,(a’)) ra € A’> —A"eB /L
ig(@) = (d,0,00+L
ip ((0,b) + L) (0,0,0) + L'

"

B

and we get the commutative diagram

A2 % ¢

o), i

-/
A A B

So (B”, ig'ip,i,47) is a candidate for the pushout of (s, 5,ﬂ). We only have to show
the universal property, i.e. that for any R-module Z, any f: B — Z, g : A" — 2z
such that

fr=g(BB) = Mu:B" — Z |uigip=fanduiy =g
Since B’ is the pushout of(s¢, #),and
fox= (gﬁ/)ﬁ = E”’YIB/ — Z | f=nip andg,é’/ =i,
For this «, and g, since B is the pushout of (14, ﬂ,)
Ju: B” — Z | uiyr =g and v = uig
Then,
vip = f = (uig )ip = u(igip) and ui,w =g,

as desired. We get

’

(8)-B. = (8'B). : Er(C, A) — Er(C,A")
So Er(C,—) is a covariant functor. O

Proposition 5.6. Er(C, A) is a bifunctor from R-modx R-mod to Sets.

Proof. We must show that this diagram is commutative:

E(C, B)

E(C, A) E(C, A"

E(Oz7A) E(Oz,A’)

E(C/, A) E(Clv 5)

E(C, A
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Pick any element in ER(C, A). Compute first E(a, A') o E(C, 3). We get

» o

A - B > C

(Xl B l l 1o
A po OB,
1A’I ' WPOI Iﬁ
A pp T o
where ¢ 4+ and 7 are the canonical injections and projections. Now,
A" @ B/ (((a(a), —(a)) : a € A)

{(W.0).¢) e POBC | B(c) = o), We B, eC’}

PO
PB

The other way, compute E(C', 8) o E(a, A). We get

A2, B C
1AI . WBI Iﬁ
A2 py 9 o

al 1pPB i¥67
i ’ T
A A po LY o

where ¢ and 7 represent the canonical injections and projections. Now

Pb = {(bc)e B&C|a(b)=p(c)}

Po = A @ Pb/{(a(a),x(a),0):ac A)
So Po = PB, they both contain the same elements. Choose the isomorphism 1pp :
Po— PB in

) T
A AL po M o

Las l _ d llcf
1A’ Vivel
A pp =S
Since the diagram is commutative, we have that the extensions are equivalent, and
Er(—,—) is a bifunctor from R-modx R-mod to Sets. O

Definition 5.7. The diagonal homomorphism for a module C is A = N¢ : C —
CaC, Ale) = (cc).

Definition 5.8. The codiagonal homomorphism for a module A isV =V, : A®
A— A, V(ai,a2) = ay + as.

Then, for any two f,g : C — A, we may write f + g = Va(f @ g) ¢, where
a® B(a,b) = (a(a), 5(b)) (when a(a) and S(b) are defined)

Definition 5.9. Given two extensions {Ez c A 2L B I C’i} we define their
i=1,2

direct sum to be the extension

El@EQ:0—>A1@A2%@2B1@BQU@>201@02—>0
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This is indeed a short exact sequence.
010331 @ s2(ar,a2) = 01®02(00a(a1), x(az)) = (01(3a(a1)), 02(522(az)) = (0,0)
— Imo D s Ckeroy @ og
The other way, take
(bl,bg) | (01 @02)(b1,b2):(0,0) - O’1(b1)=0/\0’2(b2):0
<~— b€ Im(}q) Nby € Im(%g) - (bl, b2) € Im(}q ¥ %2).

Definition 5.10. Define a binary operation on Eg(C, A), called the Baer sum of
two extensions Fy and By as By + Es = VA(E1 ® E2)Ac = V(A" (E1 @ E»)).

Lemma 5.11. There exists a well-defined mapping oo 4 : Er(C, A) — Ext'(C, A).

Proof. Let [e] := class of equivalent extensions of (0 — A . BXc— 0).
Choose a projective resolution of C' :

£>P2LP1$P0—>C*>O

Lemma 1.22 gives the existence of a lifting fo : Py — B and f; : P, — A that
satisfies

pfo=a, fodo =ifr, fidi =0 = f, € Ext'(C, A)
Define
YA Er(C,A) —»Eztl(C,A)
@C,A([E]) = N

Since any two lifting homomorphisms are chain homologous, they induce equal
cohomology homomorphisms, so ¢ 4 does not depend on the choice of lifting f..

@ is a well-defined map. Let two elements {EL (A 2L B 2 C’} 0y of Er(C, A)
be equivalent by a homomorphism § : By — Bs. Let F; induce f; e Exth(C, A).

A2 B, 22 ¢

o8 T

1 01

A —_— Bl I C
f1I foI Ilc
do dq do

..—'PQHP1—>PQ—E>C

The same f; is also induced by Es, since we have §fy : Py — Bs, and all squares
are commutative. By Lemma 3.3, ¢ 4 does not depend on the choice of projective
resolution of C. O

Lemma 5.12. There exists a well-defined mapping ¢ 4 : Exth(C,A) — Eg(C, A).
Proof. Fix a projective resolution of C' :
Lp, p o p Lo

Define ¥(f) = [0 — A — pushout(f,dy) — C]. We must first show that this
is indeed a short exact sequence, i.e. that C' is the cokernel follows from the
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isomorphism with coker(do) (by Lemma 5.4). ¢ 4 is well-defined. Let f, f be
two cohomologous cochains, so there exists a g : Py — A such that

f = f=gdo
In the diagram

AL pushout(f,do) P,

C
Ll ;e
A pushout(f',do) I, ¢
we may define map v : pushout(f,dy) — pushout(f ,do) as

v(a;po) = (a—gpo;po), Po € FPo
Y(f(p1), —do(p1)) = (f(p1) —g(—do(p1)), —do(p1)) = (f(p1) + gdo(p1), —do(p1))
= (f' (m), —do(p)), p1 € P

It is a homomorphism A x Py — A X Py :

Y((a,po) + (b,p)) = ~(a+b,po+p) = ((a+0b)— g(po+p),po+ D)
= (a—g(po),po) + (b—g(p),p) = v(a,po) + (b, p)

~ gives that the two extensions are equivalent, as (p; € P):
(@) = A(@,0)+ (F(pr), ~do(p1)) = (@ — 9(0),0) + ( (£ (1), ~do(p))
= (@0 +{(£ (), ~do(p)) :p1 € P} =7 (a)

P v((aypo) + ((f(p1), —do(p1)) :p1 € P1)) = p ((a—g(po),po)) + ((f(p1), —do(p1)) : p1 € P1))
= po=p((a,po) + ((f(p1), —do(p1)) : p1 € P1)
0

Corollary 5.13. ©¢ 4 and ¢ 4 as defined in Lemmas 5.11 and 5.12, respectively,
are inverse mappings.

Proof. Choose a lifting f,. and get the class [0 — A — pushout(f1,dy) — C].
Then the result follows easily, since we can choose any projective resolution of C, and
we can take f; (as we can freely chose any lifting). And we get ¢ 40¢c 4(f1) = f1,
ie. 9o a°%e a4 = lEzt1(c,a)- Now we will show that Yo 4 0pc 4 = 1E,(c,4)- Start
with B:0 — A 2 B -2+ C — 0. Fix a lifting f.. Take pushout of (f,dp). Will
show that the extension we get is equivalent to E, i.e. there exists an isomorphism
h : PO — B that makes the diagram commutative:

d d
2 p Y p S p

fll %fol i\i

A— B—C

W

A4 po S
Define
h(a,po) = »(a) + fo(po) € B
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It is well-defined homomorphism. When (a, pg) ~ (b, qo), there exists p; € P; such
that

a—>b= fi(p1) and po — go = —do(p1)
So
h((a,;po) — (b;q0)) = h(a—0b,po — qo) = »(a—b) + fo(ro — qo)
= xfilp) + fo(=do(p1)) = sf1(p1) — fodo(p1) =0
= h(a,po) = h(b,qo)
So there exists a homomorphism A : PO — B. Need only to check commutativity:
hia(a) = h(a,0)=sx(a)+ fo(0) = »(a)
oh(a,po) = o(sx(a)+ fo(po)) = o fo(po) = (po)
so the pushout extension is equivalent the original one. This gives

Yo Poa=1lErc,A)

Corollary 5.14. ¢c 4 (and V¢ _4) is a natural transformation of bifunctors.

Proof. We must show that for any v: K — C, a : A — B, the following diagram
is commutative
2
Ext'(C, A) PN, pr(c, A)

E:ctl(%a)i ER(’Yva)
Eat' (K, B) 2P gk, B)
Fix a projective resolution of C, (P,,d,) — C. Start with a l-cocycle f; of
Ext'(C, A), so fidy = 0. Take pushout PO¢ of (f1,dp). Then you get the commu-
tative diagram

d d
LY op S, p©
u%l llc

nlo
A4 poc Ty ¢

PO¢ = {(a,po),a € A,po € Po | (fi(p1), —do(p1)) = (0,0)}
Take pullback PBy of (emp,,7) :

C

A PR KL K

1Al ﬁPOcl lv

1A ET P,
A —» POc —

PBg = {(kvaapo) | ’Y(k) = EWPO(GHPO) = 6(]90)7 (aap()) € POC}
Now take pushout POp of («,i4):

POp = {(b,k,a,po) | (k,a,po) € PBkg, (O‘(a)aO,OvO) = (0,0,a,O),Va € A}

Then you get the commutative diagram
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We have found an element of Ex(K, B), and stop here. Now take f; € Ext!(C, A),

and follow the diagram the other way. Fix the projective resolution of (Q.,d.) —

K. By Lemma 1.22, there exists a lifting ¢, : Q. — P, such that
ve = eto, t§ = dt, afit € Ext'(K, B)

since
d1(afit(p1)) = afit(p1) = a(0) =0
Take now pushout PO of (afit1,do),

) 0 €
e Q5% Qy —— K

afltl .iQol llK
B_"B po e g

PO = {(b,q0),Vb € B,qo € Qo | (f1t(q1),0) = (0,00(q1)), Va1 € Q1}

Define h : PO — POgp by

h(b,q0) = b+ €(qo) + to(qo) = (b,€(q0),0,%0(q0))

It is a well-defined homomorphism. Suppose two elements (b, go) ~ (b/, qé) of PO
are equivalent, i.e. their difference is equal to (af1t(q1), —d0(q1)), for some q1 € Q1.
Then

h(afit(qi), —do(q1)) = afit(q) +e(=do(q1)) +to(—do(q1)) =
= afit(q1) —to(do(q1)) = afit(q) — dot1(q1) = afi(p1) — do(p1) =
= (afi(p1),0,0,—do(p1)) = (0,0, fi(p1), —do(p1)) = (0,0,0,0),
h((b.g0) = (0q0) = 0 = h((b,q0)) = h((b',0)).

This is a homomorphism that makes the diagram commutative:

B 1Bpo €mQ
131
B

—— PO —— K

I

ﬂ,p()Bﬂ,K

higy, (5) = h(b,0) =b=ip()
mrch(b, qo) 7 (b+€(q0) +to(q0)) = T (€(q0), 0,t0(q0)) = €(q0) = e(mq (b, q0))

So the two extensions in out previous diagram are equivalent, hence ¢ is a functo-
rial isomorphism of bifunctors Exth(C, A) and Er(C, A), from R-modx R-mod to
Sets.,. O

Lemma 5.15. ¢ 4 : Er(C, A) — Exty(C, A) is group homomorphism.



EXTENSIONS OF GROUPS AND MODULES 39

Proof. Take any two elements of Er(C, A) : {Ez D A; 25 B 2 Z-}
be a lifting for F4, and g, a lifting for Fs. Take it step by step.

d d
2 . Py 1~P1

X
Py Py
REr IR PB T C

i=1

. Let f.
2

ABA
1Al WBlel Acl
Ao 2272 pap, 9% cac
vAl

A—"M L po—"° ¢

By Proposition 1.36,
PB = {(b1,b2,¢) | (¢,c) = (o(b1),0(b2),b1 € By,by € Ba} = {(b1,b2,0(b1)) | o(b1) = o(b2)}
By Proposition 1.40,

PO = {(a,b1,bs,0(b1)),Va € A, Vpg € Py, (b1,b2,0(b1)) € PB |

(a1 + ag, —s1(a1), —2(az),0) = 0,Vay,as € A}
First,
Im fo & go € PB since o(fo(po)) = (go(po)) = ¢
Further,
mc(fo® go(po)) = wc(fo(po)s go(po),e(po)) = €(po)-
m @s(fieglp) = Galfilp)) s2(91(p1)) = (fodo(p1), godo(p1)) = fo & go(do(p1))
(fi®g)di(p2) = (fidi(p2),91di(p2)) = (0,0)

So f. @ g« is a lifting. Claim that

(irB(fo® 90), Valfr ®g1))
is a lifting for Fy + Fs :

mc(ire(fo® go(po))) = 7c(0, fo(po), go(po),e(po)) = €(po)
Valfr @ g1)(p1) Va(fi(p1),91(p1)) = fi(p1) + g1(p1) = (f1 + 91)(P1)
= filp1) +91(p1)
= @(E1+ E2) = o(E1) + (E2).

O

Theorem 5.16. Er(C, A) is an abelian group with operation given by the Baer
sum. Also, Er(C, A) ~ Exth(C, A) as bifunctors

R-mod x R-mod — AB
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Look at the class of the split exact sequence. Since we are free to choose lifting
homomorphisms, we choose

d d
fll fol 1Cl
) s
00— A— AC —C — 0

where fo(po) = (0,£(po)) and f; = 0. We may choose these since 7 fo(po) = €(po)
and fo(do(p1)) =0 =1(0). So p([0 — A — A® C — C — 0]) = 0, thus the
zero element in Fr(C, A) is the class of the split exact sequence.
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Part 2. Extensions of groups
6. COHOMOLOGY OF GROUPS

Definition 6.1. Given a left G-module A, define for n > 0, the n-th cohomology
group

H™(G, A) = Extig(Z!", A)

where Z is the trivial left ZG-module.

We need a projective resolution of Z over ZG. Take Fj to be the free ZG-

module on one generator, the symbol []. Define € : Fy — Z as €([]) = 1, so
e(n(9) (9) 1) = 2on(g) (9 e(l) = 2on(g) {9) - 1 = >-n(g). Define Fy to be the
free ZG-module on [g1], for all g; € G. Define di([¢1]) = (g1) [| — []- Build F; to

be the free ZG-module on all [g1 | g2], for all g1,92 € G. Define da([g1 | 92]) =

(91) [92] = [9192] + [n]-
Build F3 to be the free ZG-module on [¢g1 | g2 | g3], for all g1, g2, g3 € G. Define

ds([g1 [ 92 | g3]) = (91) [92 | 93] — 9192 | 93] + [91 | 9293] — [91 | g2].
Continue in this manner. For any n > 0, F,, is the free ZG-module on [¢1 | g2 |

v | gn], for all g1, g2, ..., gn € G. The differential d,, : F,, — F,,_; is defined as

dn(lg1 1 g2 | | gnl) = (g1) [g2 | - | %Hi(—l)i[m |1 gigit1 |- | gnl+(=1)"[g1 |

Define also the ZG-module homomorphisms s, : F,, — Fy,11 $,({(g) [91 | 92 |
wlagn)) =19 191|- | gn], whenever n > 0. Define s_1(1) = []. Define this long
sequence of free ZG-modules as Bg(Z), the bar resolution of the trivial ZG-module
Z.

Proposition 6.2. Fiz the ring ZG. Bg(Z) is a projective resolution over Z.

Proof. We have

d3 do dy £ .
e R R R 2T — 0
So S1 S0 S—1
It follows:
es—1(1) = &([))=1
(smie+diso)((9) []) = s—1e((9) []) + daso(g]]) = s—1(g- 1) + du([g])
= s+ -0=0+@l-0=@l

. | gn—l]
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Sn—ldn(<g> [91 | g2 | - | gn]
n—1
= su1((9) (g0) [o2 | - T gn] + D (=D'lgr | - | gigisa | | gn] +
i=1
+(=D"g1 | | gn-1])
n—1
= [991|92|-~|9n]+2[9|91|--|gigi+1|--|gn]+
i=1

+(=D"g | g1 1]gn-1]
dnt1sn(glor | g2l |gnl) =dulg| g1 |- | gnl

= @lo |19l +Z(—1)i[h1 | hoo | hihiga || B+ (=1)" g [ g1 | - | gn—1]

Sn—1dn-1+dnsn = 2(9) (01 |1 gnl =991 | g2 [ - [ gl + (=1)"[g [ g1 |- | gn—1] +
(_1)n+1[9 | g1 ]| gn-1]
= lggilg2|-Ignl+(9) o] | gn]l —l991 92| | gn] =(9) 91 ]| gnl
So we have
es_1 = 1g
s_1e+diso = 1p,
Sp—1dp +dpt15, = 1p,,Vn>1.

So if such a sequence exists, it splits as a sequence of abelian groups, hence is
is exact as a sequence of ZG-modules. Now we show that we can build such a
sequence. Given the homomorphisms s,, n > —1 as s_1(1) = [| and s,({g) [g1 |
wlan))=1g]91]- | gn] Let Fy be the free ZG-module on []. We can recursively
construct € and d,,n > 1, and the free modules F;,,n > 0, from the three equations
above. Fj,;1, as a ZG-module, is equal to the submodule s,, F},, for n > 0.

Need es_1(1) = 1 = es_1(1)=¢(]]) =1 = definee([]) =1

Need dyso((9) []) (@] =s-1e((@ ) =(D[—-s1(1)=(9) | =[] = di([9]) =(9)[] -]
Build Fi, the free ZG-module on [g],g € G.

dnt150((9) [91 | -+ | 9n)) = (9) [91 | - | gn] = sn—1dn((g) [91 | .- | gn]sm > 1

From this equation we can recursively build F;, and d,,,n € Z~1, and so far we have
some long sequence of free modules over Z. It turns out to be a complex. We have:

edi([g]) =e({g) [| = 1) = ge(}) —&([) =ell —ell =0

Use now induction on the claim P, : d,d,+1 = 0.

dida(fgr | g2]) = di({g1) [92] — [9192] + [91]) = (91) d1([92]) — di([g192]) + di[g1] =

= (91) {9201 =) = gy [ =D+ (g [ -0=0
So P; is correct. Suppose that for n > 3, P, is correct.
dn(dn—i-lsn) = dn(an - Sn—ldn) =d, — (dnsn—l)dn =d, — (an - 5n—2dn—1)dn

= dn - dn + 5n—2(dn—ldn) =0

When we build F), ;1 as the free ZG-module on Im s,,, we get that we build a chain
complex of free ZG-modules, i.e. a free chain complex of abelian groups with a
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contractive homotopy s : 1p, ~ Op,. Since H,(1p,) = H,(0r,) = 0, we get a free
resolution of the trivial ZG-module Z. (]

Take Homyzg(—, A), for any ZG-module A.

0 — Homze(Z, A) <= Homge(Fo, A) 25 Homya(Fi, A) -2 . — Homga(Fy, A) 22 ..
So we have the codifferential 6"~ = d*, n > 1. As a set, Homzg(F,, A) is equal
to the set of functions f : G X G x ... x G — A, and adding the ZG-module

—_— ——

n
homomorphism structure gives

6" f(g1,92, - 9n> gnv1) = dypif = fdura([g1 1921 | 9n | gnsl)

- glf(g27g3a -~7gn+1) + E (_1)1.]0(91’ -5 9i9i+1, "7g'n+1) +
i=1
(71)n+1f(gl7923"gn) = h(glag%",gn—&-l)

Let’s take a closer look at the lowest cohomology groups. We know H°(G, A) ~
Homyg(Z, A), so it is given by ZG-module homomorphisms f(1) = a for those
a € A such that f(1) = f(g-1) = gf(1) = ga = a, that G acts trivially on. Denote
this group as A%. l-cocycles are given by those functions f : G x G — A such
that

51f(91,92) = 0= f(dz2[g1,92]) = f({91) [92] — [91, 92] + [91])
= 91f(g2) — flg192) + f(g91) = [f(9192) = g1f(g2) + f(g1)

We call these homomorphisms for crossed homomorphisms. They would necessarily
satisfy f(1) = 0. 1-coboundaries are given by

8°f(g) = fdi([g) = Fg) 0 = ) = 9f () = fl = ga — a = ha(g), for any a € A.

We call these homomorphisms for principal homomorphisms. They would neces-
sarily satisfy h(1) = 0. So we have that H!(G, A) is the factor group of the group
of crossed homomorphisms modulo the subgroup of principal homomorphisms. 2-
cocycles are given by those f : G x G — A such that

5°f(91,92.95) = 0= f(dslgr|g2|9gs)
f((g1) [92 | 93] — (9192 | g3] + [91 | 9293] — [91 | g2])
= g1f(92,93) — f(9192,93) + [(91,9293) — f(91,92) = h(g1, 92, 93)
= f(91,92) = 91f(92,93) — f(9192,93) + f(91,9293)

2-coboundaries lie in the image of §*

5" fg1,92) = 91.f(92) — f(g192) + f(91) = h(g1,92)

Remark 6.3. Since Exty. is independent of the choice of projective resolution,
we may also work with the normalized bar resolution. Denote F,, the factor module
of the free module on [g1 | g2 | .. | gn], modulo the submodule generated by [g1 |
g2 | - | gn)s if any of the {g;};—, = 1. The homomorphisms €,d,s_1 still hold, need
only to check that dy[g1 | g2 | .. | gn] = 0 if any one of the g;,i = 1,..,n, are equal
to 1. This is easily seen from the formula of d, : F,, — F,_1. The normalized
bar resolution Bg(Z) obtained in the same manner as for Bg(Z), with the extra
condition, is a free resolution of Z over ZG. Then any of the n-cochains will satisfy
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the normalisation condition, f(g1,92,..,9n) = 0 if any one of the g;,i = 1,..,n, are
equal to 1.

Proposition 6.4. For anyn € N, H"(G, —) is a covariant functor from G-mod to
AB.

Proof. By Proposition 3.4, Ext%,(Z!""i4! —) is a covariant functor. Since H"(G, A) =
Extds(Ztr el A), we have proved the claim. 0

Proposition 6.5. For any n € N, H"(—, A) is a contravariant functor from GR
to AB.

Proof. Suppose v € Homgr(K,G). Let A be any ZG-module. A becomes a K-
module through its G-module structure: ka = y(k)a. Define a projective resolution
of K as in the bar resolution for K, and denote its free modules by {K;}Y,.
By the universal property of free modules, there exists the family of ZK-module
homomorphisms f, : Bx(Z) — Bg(Z) defined as

fo) = H 1([K]) = [v(F)]
Sallkr | ko | T ka]) = [y(k) [ (k) | o [ y(kn)lin € Zz1.

They make each square of

d d d
R N O B T e G

” if 2}2 iz»f 1}1 il»f oFlb iizzi

commutative:
fole(])) = fo(ll) = [ = &([))
fooadn((Br | 2 | [ Ral) = faoa((Ra) [ +Z o | Rikigr |
HED ke | Raa])
= (k1) faa([R2 [ | Rn]) + Z ) froa (e | ] Kikign | - | En))
(=D ok | [ ko)

| n]

(v(k1)) [y(k2) | o | v (Rn)] + 2(—1)i[7(k1) | [ y(Rikigr) |- |y (kn)]

+=D)" (k) | v (Ra1)])
dofo((kr | | knl)
= dn([y(k1) | - [ v(kn)] = (v(k1)) [v(k2) | - | (k)]
+Z(*1)i[7(k1) | I v(Rikipn) | [ v(Ra)] + (1) [v(k1) |- | v(Bn—1)])

= fn—ldn([kl | ]{32 | . ‘ kn]),n S Zzl'
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Hence the family { f,, } ,—o is a lifting. Take Homzg(—, A), and get the commutative
diagram of complexes of abelian groups

0 — Homyg(Z, A) v Homyc(Fo, A) 2> Homya(Fy, A) 2w ...
1H07nzc(Z,A)l fO*l N fl*l

0 — Homzi(Z,A) s, Homzi (K, A) A, Homzi (K1, A) &
(foem () () = fo(se)(l]) = (sefo)(l]) = s(e(]) = s([))
€ s)([) = (se)l]) = s(el]) = s(l)
fn n— 1(t) = f (tdn 1) = (tdn l)fn = t( n—lf'n) = t(fn—ldn—l) = (tfn—l)dn—.l
= dy (([roa (D) =d_1 fr1(t),Vt € Homga(Fn-1,A),n € Z>1.
Hence f* : Homyzg(Fy, A) — Homyk (K., A) is a cochain transformation. Ap-
plying H™ on f* gives:
H"(f") fo : H'(G,A) — H"(K, A)
fe(l+dy, (Homza(Fn-1, A)) fo(l) +dy, (Homz (Kp—1, A))
When v = 1g we get fu([g1 | g2 |- | gnl) = ([91 | 92| .- | gn]) and:

felldy, (Homze(Fu1, A)) (915 92, -, 9n) = (D91 | 92 | -+ [ gn])+d5, (Homza(Fr1, A))

= Ufullgr [ 92 ] - [ 9n]) + &, (Homza(Fn1, A)) = (g1 [ 92 | - | gn]) + d;, (Homzg(Foa, A))

= lgn,a)

Look at the pair of morphisms 5: 5 — K, v: K — G. A becomes an S-module
through its K-module structure: sa = B(s)a. Define a projective resolution of S as
in the bar resolution for S, and denote its free modules by {S;}¥ . By the universal
property of free modules, there exists the family of ZS-module homomorphisms
g« : Bs(Z) — Bg(Z) deﬁned as

go(l) = 1[I, ga(ls]) = [B(s)]
gn(lsr | saf.[sn]) =[B(s1) [ B(s2) | ... [ B(sn)l,n € Zz1.
They make each square of
ds ds dy €

..—>Sg—>814>504>z

gzl gll gol 121
d d d
LBk Bk Nk Sy

commutative. Take Homzx (—, A), and get the commutative diagram of complexes
of abelian groups

* d * d *
00— HomZK(Z,A) i HomZK(KO,A) —1> HomZK(Kl,A) —2>
THomza(2,4) l go* l g1* l
e* dl* dz*
0 — Homyzs(Z,A) — Homzs(So, A) — Homyzs(S1,A) — ...
Take the covariant functor H™, and get the group homomorphism
H"(g*) = g«:H"(K,A) — H"(S,A)
go(u+ &, (Homz (Kn1, A)) = gi(u) + i (Homzs(Su—1, A))
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Then we have the composition homomorphism

g« fx = H"(G,A) — H"(S,A)
(gxf )+ dy (Homzg (Fra—1,4)) (91,92, . 9n) = (U fullgr [ g2 | - [ gn]) + &5, (Homz (Kp—1, A))
g(U[v(g1) | - |(gn)]) +dy (Homzg (Kn-1,A)) = Ugn([v(91) | - | ¥(9n)]) + d}, (Homzs(Sn—1, A))

U[B(v(g1) | - | B(v(gn))]) + dy, (Homzs(Sn-1, A))
U[BY)(g1) |- | (BY)(gn)]) + dry (Homzs(Sn-1,4))
We also have the ZG-module homomorphisms g, f,, = k,, defined as

ko(l) =1
kn(lsi | s2 [ [ sal) = [(B7)(s1) | (BY)(s2) | .- [ (BY)(sn)]in € Z>1.
we get the commutative diagram
ds ds dy €

> S —= 5 — 5 — Z

/le k1l kol 1Zl
d d d
P R S R

Applying Homzg(—, A), we get the commutative diagram of cochain complexes
0 — Homzg(Z,A) s, Homzqg(Fy, A) = Homyg(F1, A) 2.
b b
* * d *
0 — Homys(Z, A) “+ Homys(So, A) e Homys(S1, A) 2 ..
Applying H™ on the cochain transformation k*, we get
H"(kE*) = k.:H"(G,A)— H"(S,A)
k.(l+d,(Homzg(Fn-1,4)) = kX()+d;,(Homzs(Sn—1,4))
= Ukn(lg1 |- [ gn])) + d(Homzs(Sn-1,A))
WIBY)(s1) [ (BY)(s2) |- | (BY)(sn)] + dy,(Homzs (Sn-1, A))
= (g S+ d;, (Homza(Fno1,4)) ([91, 92, - 9n])

So H"(—, A) is a contravariant functor. O

1HOng(Z,A) l

Definition 6.6. Define the pairs (G, A) where G is any group and A is any G-
module. For any ¢ € Homgr(K,G),v € Homap(A,B), define a morphism
(p, ) : (G,A) — (K, B) as ¥(p(k)a) = kw(a). We have described a category
which we will denote PAIRS.

Proposition 6.7. H"(—,—) is a bifunctor from PAIRS to AB.

Remark 6.8. Actually, H™ is not a bifunctor in a proper sense, since the variables
G and A are not independent.

Proof. For any G-module homomorphism « : A — A', and group homomorphism
v:G — @G, the diagram

*

H™Y(G,A) 2 HY(G, A)

vl

v a, A) S g, A



EXTENSIONS OF GROUPS AND MODULES 47

is commutative. Start with the bar resolution for G. We may take Homyzg(Bg(Z), A).
« induces the commutative diagram

* d* d*
0 — Homyza(Z,A) N Homyza(Fy, A) 4 Homyq(F1, A) -2 .

| o o
5* *

d d;
00— Hong(Z,A’) — Hong(Fo,A/) - Hong(Fl,A/) =

ae™(s) a(se) = afse)
efa,(s) = e"(as) = (as)e
axdy(t) = au(tdy) = a(td,) = d; (at) = d; (a.t),n € Z>1.

So a, is a cochain transformation between our two cochain complexes Homyzg(Bg(Z), A)
and Homza(Ba(Z), A'). Apply H"(a,) = a, and get the group homomorphism

a, : H™(G,A) — H"(G,A)
o (I + d(Homza(Fa_1,A)) = ol +d(Homzg(Fy_1,A))

Define a projective resolution of G’ as in the bar resolution for G, and denote its
free modules by {G;}lN:O. By the universal property of free modules, there exists
the family of ZG -module homomorphisms f, : By (Z) — Bg(Z) defined as

fo) = [ Aillg]) = [(g)]
Fllas | galelgn)) =0(g0) [ 7(g2) | o [ 7(gn)]im € Zs1.

They make each square of
d
LSRG, =3
f2 l fi l fo i 1z l
ds do dy
.— K S5 F — F— Z
commutative. Applying Homyzg(Bg(Z), A) induces the commutative diagram

c* *

d dy*
0— Hong(Z,A') — Hong(Fo,A') 41> Hong(Fl,A’) 42>
el e
0 — Homye (Z,A") S» Homya(Glo, A" Do Homye (G'1, A') Ze .

and the cochain transformations {f*},,—o. Take H"(f*) = f. as

1Hong(Z,A’) l

fo ¢ HYG,A)— H'G A
fols + diy(Homza(Fo 1, AY) = fi(s) + diy(Homye (G, 1, A))
The composition yields
fean :+ H"(G,A) — H"(G,A)
fea(l+ d5(Homza (Fu_1, A)) = fulaul + do(Homzg(Fo_1, A)))

’ ’

= folal+ dy(Homza(Fo-1, A))) = (ad) fo + d;y (Homyer (G, 1, A))
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Following the anti- clockwise direction in our diagram, we get

fo + H™G,A) — H"(G,A)
fol+dy(Homzg(Fuo1,A) = fr(l) +dy(Homygr (G, A))
a, : H"(G,A)— H' (G A)
ax(s+d (Homzg(Fr-1,4))) = a.s+d} (Hong(Gn 1,A/))
Their composition gives
. full + djy(Homzg(Fo1,A) = aul(fr(l) +d;(Homyer (G 1, A)))

(

= ou(fi0) + i (Homyg (G, A1)

= ou(lfn) +d;, (Homzc( w1 A))
= a(lfa) +d, (Homzc( n—1 ))

Hence H™(G, A) is a bifunctor: a, f, = fuov, : H"(G,A) — H"(G', A") O

A)
)

7. EXTENSIONS WITH ABELIAN KERNEL

7.1. Description using cocycles. Look at a short exact sequence
£:0—ASE-SG—0

where A is abelian. We will write + for the binary operation on A and E (E
is not necessarily abelian), and multiplicatively for a group G. E acts on itself by
conjugation. Since A ~ »A, and E/»xA ~ G, where »A = kero, »A is a normal
subgroup of E, and A is isomorphic to a normal subgroup of E (we will write a
for »a when it is clear from the context what we mean). Therefore, F acts on A
by conjugation: there exists a group homomorphism <p/ : E — Aut(A) given by
¢ (e)(a) = e+a—e. Since #(A) C ker ¢, there exists ¢ : E/»xA ~ G — Aut(A).
So A is a G-module. . The action defined on a set of representatives (g) of {g} s
in E, such that o({g)) = g, is

p(g)(a) = (g) +a—(g9) <= »(g)(a) +(g9) =(9) +a

Definition 7.1. Let G be a group and A be a G-module, with the fived action ¢ of
G on A. Denote by E(G, A?) the set of equivalence classes of short exact sequences
of groups (extensions)

0—ASE-SG—1,
such that
e(g)(a)=e+a—cleca(g9),9€G,acA,

where two extensions are called equivalent if there exists a group homomorphism
h: Ey — E5 (hence isomorphism), such that the diagram

A"E14>G
ulon e
A"EQ"G

commutes.
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Let () : G — E be a function (not a homomorphism) such that o ((g)) = g.
We choose (1) = 0. Any e € E belongs to the right A-coset A + (o(e)), and can
therefore be written as e = a+(g) ,a € A,g = o(e) € G. Let’s look at the operation
on E :

(a+(g)) + (b4 (h) = a+ ({(g) + b) + (h) = a+ gb+ (g) + (h)
Now,

a((g) + (h) = (gh)) = a((g))o((h))o({gh)) " = gh(gh)™! = ghh™'g =1

(9) + (h) — (gh) € kero=Ims

f(g,h) = {g)+ (h) — (gh) € Im »
(9 +(h) = flg,h)+ (gh)
for some function f: G x G — A. It follows
fLg)+{g = W+ = f(l,9)=0
flg,1)+{g) = (g9 +(1) = f(g,1)=0

So:
(a+(g)) + (b+(h)) =a+gb+ f(g,h) + (gh)

For simplicity, define (a, g) := a + (g) . Then

(a,9) + (b,h) = (a + gb+ f(g,h), gh)
We see that the right hand side gives that E is some "twisted’ semi- direct product

of A and G. If f(g,h) =0,Vg,h € G, then E = A x, G. We should have a group
structure in F :

e There exists a unique zero element (0, 1)

(0,h) +(a,9) = (a,9)
= (b+ha+ f(h,g),hg)
hg = g = h=1
b+ha+ f(h,g) = a= b+1l-a+f(l,g)=a

= b+a+0=a = b+a=a < b=0
e The right inverse element:
(a,9)+ (b;h) = (0,1)
(a+gb+ f(g,h), gh)
gh = 1 = h=g!
a+gb+flg.9g7") = 0= gb=—f(g.97")—a = b=—g""flg,97") —g 'a
The left inverse element:
(b,h) +(a,9) = (=f(1,9),1)
= (b+ha+ f(h,g),hg)
hg = 1 = h= g_1
btglatflghg) = 0= b=—g'a=flg7"9)
The inverse must be unique so this condition must yield

—flg ) =-9"flg97") = flg"9)=9"flg,97")
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So (a,9)' = (—g7'a— flg~",9),97 ")
e F must be associative
{(a,9) + (b,h)} + (c,;k) = (a+gb+ f(g,h),gh)+ (c. k)
(a+gb+ f(g,h) + ghc+ f(gh, k), ghk)
(a,g) + (b+ he+ f(h,k), hk)

(a,9) +{(b,h) + (c, k)}

= (a+g(b+hc+ f(h.k))+ f(g, hk), ghk) = (a + gb+ ghc + gf(h, k) + f(g, hk), ghk)
= [flg,h) + f(gh, k) = gf(h, k) + f (g, hk)
< gf(h,k) + f(g,hk) — f(gh,k) = f(g,h) = 0 <= 6°f(g,h,k) =0

So f is a 2-cocycle.
Claim that the set H = {(a,1) : a € A} ~ {(»(a),1) : a € A} is a normal
subgroup of E :

(1) (0,1)e H

(2) (a7 1)71 - (av 1) €A

(3) it is closed under addition: (a,1) + (a’,1) = (a +1-a + f(1,1),1) =

(a+a,1)eA
(4)
(ba h) + (CL,].) - (b,h) - (b+ha+f(h’1)vh) - (bvh)

— (a4 ha,h)+ (=hb— f(1L,A),h ) = (a+ha,h) + (—hb,h )
— (a+ha—hhb+ f(hh ) hh )= (a+ha—h2b+ f(hh ),1) € H

Define the function i : A — FE as i(a) = (a,1). It is a group isomorphism
A~i(A)QE:
ila+b) = (a+b,1)=(a,1)+(b1)

a € keri < i(a)=(a,1)=(0,1) = a=0
Define the function p : E — G as p(a, g) = g. It is a group epimorphism:

p((a,9) +(b,h)) = pla+gb+ f(g,h),gh) = gh = p(a,g)p(b, h)
Vg € G,30,9) € E|p(0,9)=g

Its kernel is
kerp = {(a,9) [ p(a,g) =1} = {(a,1),a € A} = i(A)

In the beginning, we chose a set of representatives for the elements of G, and
especially (1) = 0. Let {g} o be another set of representatives. Then the two

extensions (0 — A N E<g> 20— 1) and (0 S5 A SN E{g} L. —1

are equivalent by a homomorphism ¢ : Ey — E{4 defined as ((a+(g)) = a+{g} :

C((a+(g) + (b+ (h)) Cla+gb+ f(g,h) + (gh)) = a+gb+ f(g,h) + {gh}
Gifa) = Cla+ (1) =a+{1}=i(a)
pllatig) = p(a+{g})=g=pla+(g)
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Independently of which representative of elements of G we choose, we get an ex-
tension in the same equivalence class. Claim that ¢ is equivalent to this extension

0—>AL>EL>G—>1

Choose (1) = 0. Take ( : E — E as ((a+ (g)) = a + (g) . Use that (a + (g)) =
(a <>)+(0 (9))-

C(la+(g)+ b+ (h)) = (la+gb+ f(g,h)+ (gh)) = a+gb+ f(g,h) + (gh)
C(a+{g) +C+(h) = (a+(g)+ b+ (h)=a+gb+ f(g,h)+(gh)
((i(a)) = (((a) + (1)) = x(a) + (1) = »(a)
oCla+{g)) = ola+{g)=o0(x(a))o((g) =g=nplatg)

What can we say about two equivalent extensions? Suppose ¢ : E — E in

0—>A—>E—>G—>l
\C /

is a homomorphism that makes the dlagram commutative. Then,

(la,9) = (((a,1) +(0,9)) = ¢(a,1) +¢(0,9)

p¢0,9) = p0.g) =g = (0,9) = (alg).9) = C(a,9) = (a,1) + (a(g),9) = (a + a(g),g)
for some function av: G — A. As

€0,1) = (a(1),1) = o(l) =
¢((a,g) +(b,h)) = C(la+gb+ f(g,h),gh) = (a+ gb+ f(g,h) + a(gh), gh)

= ((a,9) +¢(b,h) = (a+alg),9) + (b+ a(h), h)
= (a+alg) +9b+ah) + [ (g,h),9h) = (a+ gb+ alg) + ga(h) + [ (g, h), gh)
= [(9:h) = f(g.h) = alg) + ga(h) — a(gh) = 5" (g, h)

So the factor sets of equivalent extensions are equal modulo 2-coboundaries. Given

these factor sets modulo coboundaries, and a fixed action ¢ : G — Aut(A), we

can recover all elements of E(G, A?). Also, given an extension in E(G, A?), will

give that its factor sets are 2-cocycles, which are equal for all the elements in the
equivalence class. So, we have proved the following Proposition:

Proposition 7.2. For any G, and any G-module A, there exists a bijection of
pointed sets E(G, A) — H?(G, A).

The semi-direct extension has 0 as its factor set, and 0 as a factor set gives the
semi-direct extension.

Lemma 7.3. Let a : A — A’ be a morphism of G-modules. There exists a
well-defined mapping of pointed sets:

E(G,A) — E(G, A
Proof. Start with an element (5 00— A5 E-S G — 1) € E(G,A). Let
(1) = 0. When G acts on A", E acts on A as ea’ = o(e)a’.

ld = o(l)d =a

’ ’ / ’

g(hd) = g(o(h)a’) = a(g)(a(h)a’) “EM (a(g)o(h))d’ = o(gh)a = (gh)a
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The set S = {(a(a), —s(a)) : a € A} is a normal subgroup of A" x E :
a = 0= (0,008

(afa), —(a)) + (a(b), —(b)) (afa) + o (3(—a))a(b), —>(a) — (b)) = (a(a) + a(b), —>(a + b))
ala+0b),—»(a+b)) €S

o(—s(a)) " a(a), %(a)) = (-0 (s(~a)) " a(a), x(a))

a(a ,7(a)) = (a(—a), —x(—a)) € S

(', e) + (a(a),—x(a) = (';e) = (a +ea(a),e—s(a)) + (—(=€)a’,—e)

= (a +eaa) + (e = x(a))(~(~e)(a), e — x(a) — ) = (a' + alea) — (e = »(a) — e)a’,e(~5(a)))

= (a +alea) —d',—esx(a)) = (alea), —s(ea)) € S
Take the factor group E' = A" x E/{((a(a), —x(a)) : a € A). A is isomorphic to a

(
—(a(a),=x(a)) = (=
(=
(

Ch

’

normal subgroup of E by the map a <> (a’,0):

#(0) = (0,00€8
“(a +b) = (d4b,0)=(a,0)+(b,0) =)+ (D)
a € kerx = (d,00€S5 < JacA|-x(a)=0= a=0Aaa)=d
— 4 =0= xisa monomorphism.
(b,e)+(a,0)—(b,e) = (b+ea,e)+(—(eta),—e)=(b +ea —a,0)=sxb +ea —a)

Define amap o : E — G as o (a',€) = o(e).
U,(a(a), —x(a)) = o(=x(a)) =0(x(—a)) = (0x)(—a) =1,Va € A.
o((a,e)+ (1, f) = ola+eb,e+[)=ale+f)=o(e)o(f) =0 (a,e)o (¥, [)
o is an epimorphism:
Yg € G,3ecE|o(e)=g.
Suppose (0,e) € S <= JacAlala)=0A—-x(a)=¢ = e=(—x(a),1),0(e) =1.
— Vge @ 30,e)e A xE|d(0,e)=0c(e) =g.
The kernel of ¢ is » (4') :
(a',e) € kero <= o(e)=1 = ecImx,e=3x(a) = {(a,x(a)):d € A',ac A} €kero
(a', () = (a/,0)+(0,5(a)) = (@,0) + (a(a),0) = (a' +(a),0) = » (d +fa)

Together with the canonical injections % 4/ : A —F g E— El7 we have built
the commutative diagram:

1= 2.q
« iE l 1G l
A ‘ JogiEYe
Define this element in E(G, A') as a.(e). It is well-defined since if
£ 0—A—E —G—1

is an equivalent extension to € by the homomorphism 9 : E' — E, we have that
there exists the homomorphism igt : E° — E' that oy (¢') = (). Suppose
the sequence € we started with, splits by a homomorphism s : G — FE. Then
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the homomorphism v =iy s: G — E', satisfies 0 v = 1¢ by the commutativity
condition. Therefore, the induced sequence in E(G,A) splits. Since o () is an
exact sequence, E' actson A’ by conjugation, hence G acts on A by conjugation

’ ’

ga =¢ +d —¢ |al(e):a(a,e):0(e):g.

Lemma 7.4. E(G,—-) is a covariant functor from G-mod to Sets,.

Proof. Start with (5 0—ASE-S G — 1) € E(G,A). Let @« = 14. We
get

ax(e) 0—A-SE Gg—1
E = AxE/{(a,—x(a)):ac A)
i(a) = (a,0), p(a,e)=o(e).

Define the mapping ¢ : A x E/ ((a,—(a)) :a € A) — E as ((a,e) = x(a) +e. It
is a homomorphism:
Cla, (@) = s(a)— (@) =0, (Va € A)
(((a,e) + (b, f)) = C(lat+ebe+t f)=sxlateb)+etf=x(at+ole))+etf
((a,e) +¢(b, f) #(a) +e+x(b) + f = x(a) +o(e)b+e+ f=sx(atole)h) +e+f

The diagram

A Llog
1Al ¢ 1Gl
A% % ¢
is commutative:
((i(a)) = ¢(a,0) = s(a)
o((a,e) = o(xa+e)=(0sx(a))o(e) =pla,e)
Hence the two extensions are equivalent, (14). = lg(g a). Given a pair of mor-

phisms, @ : A — A',a' : A" — A", will show that (a'a)* = a,a, (they give
equivalent extensions in E(G, A")).

ae) = 0—A S E B ag—1
E/“/ = A’/ @ Ef((afa), —x(a)) 1 a € z‘})
ifa) = (a,0)+{(afa),—3(a))), p((a,e)+ ((aa, —3x(a))) = o(e)
o (as(e) = 0— A" L E" p—/> G—1
E' = A'xE/ <(a'(a’), —i(a)):d € A’>

’

@) = (@.0+((@(@)=i@)). p
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" "

(@'a),e) = 0— A" P rtia—1
F = A"xE/ <((o/a>(a), () :a € A>
') = @0+ ((da)a).~xa)), p" ((".e) + {((a'a) (@), =x(a)) )) = o(e)
In

./ /
A g Pg

1Al -/ Cl lllG
i p

A— F —

" ’

let ¢ : E” — F be the mapping defined as ¢(a”, (a',e)) = (a" +a'(a’),e). It is a

map of pointed sets:

C(0,a(a), ~x(a) = (a'(a(a)), ~x(a)) € {((0'a)(a), ~(a)))
C(e'(a),—a,0) = a'(a)+a (-d)=0
It is a group homomorphism:
C((a",a,e)+ (b, f) = Cla +@@,eb ,(a,e)+®,f)=Cla +eb ,a +eb,e+f)
E actson A  asp(a,e)=e —> FEactson A
= (a +eb +a'(a +eb),e+f)

m

as (a ,e)

C((a”,a',e) + ¢ 0, ) = (@ +a'(@),e)+ 0 +a'(h),f)=(a +a'(d)+e® +a (b)e+f)
= (a” + a/(a/) +eb + eo/(b/),e +f)
Since ea’ (b)) = o(e)a (b)) =a (o(e)b) =a (eb)

= (d +a(a)+eb +a'(eb),e+f)=(a +eb +a(d +eb),e+f)
O

Theorem 7.5. The functors E(G,—) and H*(G,—) are naturally isomorphic as
functors from G-mod to Sets,.

Proof. We will show that the diagram

E(G,A) + HX(G, 4)

Qe

E(G,A) i H*(G, A)

is commutative for all G, : A — A’. Take any element ¢ of E(G, A),
e:0—ASFE-5G—1

Given the factor set for an extension f(z,y), it corresponds to a normalized cocycle
modulo normalized coboundaries in H2(G, A). It induces a function af : Gx G —
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A’, which is also a 2-cocycle:

(af)(@,y) = a(f(z,y) =alzfly,2) - flzy,2) + f(z,y2))
a(zf(y, 2)) — alf(zy, z) + a(f(z,yz2))
z(af)(y, z) — (af)(zy, 2) + (af ) (z,yz2)

since « is a homomorphism of G-modules, a(ga) = ga(a). So af is an element in
Hz(G,Al). Now, the other way. By «a, we obtain an element of E(G,A,). Choose
representatives for ¢ € G in E, [g]. Choose representatives for ¢ € G in E as

ie(lg]) = (0,9).

in(lg]) +ie([h]) —ie(lgh]) = ie(lgl+[h] —[gh]) = ie(f(g,h))
ip((f(g,h) = (¢ @) f(g,h) = 5 (af(g, 1))
= af(g,h)

and we get the same element in H?(G, A). O

Lemma 7.6. Let v : G — Gbea group homomorphism. There exists a well-
defined mapping of pointed sets

7* : E(G7A) - E(G/7A)

Proof. Given A is a G-module, it induces that A is a G’'-module with the action
givenbyg/a:’y(g/)a. Fixe:0—A-5FE->G—1landary:G — G.
Take pullback PB of o and ~,

PB={(e.g) o) =1(g).c€ B € G}

A is isomorphic normal subgroup of PB by the injection map i(a) = (3¢(a), 1) :
i(a) € PB(o(x(a)) =1=7(1))
(0,1) € i(a)bya=0
ifat+b) = (a+b),1)=((a)+3(b),1) = (>(a), 1) + (5(b), 1) = i(a) +i(b)
a € kerx<i(a)=(x(a),1)=(0,1) = x#(a)=0 = a=0
(e,9) + (3(a),1) = (e,9)) = (e+s(a),g)+ (=€, (g) ") = (e+3(a) —e,g(g)")
= (9(x(a)),1) = (5(ga),1) € PB (0(s(ga)) =1 =~(1))

This normal subgroup is the kernel of the projection homomorphism 7 : PB —

’

G

(e,9) € ker w1 = WG/(e,g,) =g =1 = {(e;1)|o(e)=1,ec E} € ker 7/
= e€x(a) = kermy =Imi.

Together with the canonical projections 7g : PB — E, 7 : PB — G, we have

built the commutative diagram of short exact sequences:

A% pp T o

|

’

orpe,g) = ole) =(

9) =(rale,q))
mp(i(a)) = 7e(x(a),l

) = »(a)
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Define v*(¢) to be the top sequence. It is well-defined since if

’ /

c:0—AZSE 26 -—1

lies in the same equivalence class as ¢, then there exists a homomorphism ¢ : E —
E' such that Y = %,, 0/1/1 = ¢. The pullback PB' of p and v would contain

PE ={(€.g) o) =g).c eF.g ec'}
We then get the sequence
V()0 — A PR TG
Define a map g : PB — PB' as
Ble,g) = (1b(e),g) (since (¥(e),g) € PB : 0 (1)) = (o' $)(€) = a(e) =(g))

It is a homomorphism:

B((e.g) + (u,9))

Ble+u,gg) = (lc+u),gg)=(¥(e)+v(u),g g)
(¥(e),g) + (¥(u),9) = Ble.g ) + Blu, g)

B0,1) = (

Also,

Bi(a) = B(xa),1) = (Ws(a),1) = (5 (), 1) = i (a)
T Ble,g) = me(dle),g) =g =mgle,g)
So the diagram
) iYel ’
A— PB—/— (G
1Al ) B l llcf
AL pp I @
is commutative, and y*(¢) ~ 7*(€). The map is well-defined. Suppose ¢ splits.
Then there exists a homomorphism v : G — E such that ov = 1g. v*(¢) splits iff

E'S : G/—>PB|{7TG/S:1G/}

)
3 G =BG — G {s = (bu) A (g ), ulg) = ulg) = g Aot(g) =y(ulg)] .
If we let
U = lg, t=wvy
= ot=(ov)y=vAyu=r
= (t(9),ul9)) € PB.
mo (tg)ulg)) = ulg) =lg
So v*(g) splits too. O

Proposition 7.7. E(—, A) is a contravariant functor in the first variable, from
GR to Sets,.
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Proof. Start with an ¢ € E(G, A),

e:0—ASE-SGE—1

Take v = 1q.
(1g) = 0— A PBISG—1
PB = {(e,9),ec E,geGloa(e) =g}

i(a) = (x(a),1), male,o(e)) = o(e)
The canonical projection 7g : PB — E is an isomorphism (need only to show
injectivity):
mr(e,o(e)) =e = (e,0(e)) €Ekermg <= e=0 = o(e) =1 = kermg = (0,1)
which gives that (1¢)* = 1g(g,4). Now take any pair of morphisms 3 : G —

G,y : G — G. We will show that (v8)* = 8*(v*). 8%(7*) is the top extension in
the diagram

/

A1 pp TG g
l TPB lﬂ
A_“e pp T o
Lol
A 2.5 %,
where
i(a) = (%(a),l), i (a) = (5(a), 1,1) /
PB = {(eyg )eeEgeGla( ) v(g)}
PB’ {(e.g'.9"),(e,g) € PB,g € G |1g(e.g.g ) =g =53 )}
B = 0—>Ai—”>PB”7E>G” —s 1
i'(a) = (#(a),1), 7gule.g ) =g
PB" = {(e.g),e€E,g €G | o(e)=(18)s")}

We define the mapping ( : PB' — PB" as
C(e.g,g") = (eg") (since (e,97) € PB" :0(e) =7(g) =1(B(g ) = (v8)(9 )
It is the canonical projection on PB" . 1ts kernel is

(e,g/7g//) cker( <= e= 0/\g” =1 = ﬁ(g“) =p(1)=1= g/ = ker(=1{0,1,1}

Since ¢ makes the diagram

A pp T9 g
by, <i 1o
A i» pp" ¢, TG Q"

commutative:

1"

morCleg ) = morleg) =g = (5 (@) = C(e(a), 1,1) = ((a), 1) = " (a)

the extensions are equivalent, which concludes our proof. O
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Theorem 7.8. E(—, A) and H?(—, A) are naturally isomorphic as functors from
GR to Sets,.

Proof. We will show that

E(G, A) < H?*(G, A)

o
E(G', A) = H*(G', A)
is commutative for any v : G — G and A. Pick an element of E(G,A):

e:0—A S FE-SG—1

It has the factor set ((¢) = f(x,y) which is a 2-cocycle in H?(G, A). Look at the
normalized bar resolution for G and G respectively:

Zf;F(; — F, e Fye— Fy— ...
7« Fy « Fle— Fye— Fye— ...
We have the morphisms between that ZG and ZG modules:
v o FL—Fi|qlg] =)
Yo+ By — Fl(lg h]) = (g) ()]
vi: H2(G, A) — H?(G', A) is induced, and hence the 2-cocycle
V(g h) = frale W) = T(0(g) v (h)) : G x G — A

The other way:y*(e) = (0 — A . pPB-2 G — 1). Choose representatives

(gl g') for g
([’y(g')]yg/)Jr([v(h’)]ah/)—(h(g h/)],g/h/) = ([v(g N+ (h)] = h(g'h/)],g'h’(g/h/)‘l)

= ()] + O] = (g 1 1) = (FOr(e) (B, 1) = (£ (v(g )7 () = Fr(g ) A()
O

’ ’ ’

Proposition 7.9. E(G, A) is a bifunctor from PAIRS (G, A) to Sets,.

Proof. Since we have the commutativity of the whole diagram, and the peripheral
H?*(G, A) - H*(G', A)

I e

E(G,A) — E(G', A)

l l

E(G,A") — E(G, A
H?(é,A') - Hz(G”,A’)

squares, the middle square is commutative, which is equivalent to that E(—, —) is
a bifunctor. O
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Suppose we have two elements

E, : 0—wAZSE-SG—1
Byt 0——AZE 2G—1
of E(G, A). Look at the set {(AA(al,ag), —x® %l(al,ag)) jay,an € A} .Itisa
normal subgroup of A x PB, where PB is the pullback of (o x cr/) and V¢ :

a = ar=0 = 0=(0,0,1) € PB € PO
—(a+d,—s(a),—3 (a),1) = (—a—a,x(a), (a),1)€ PO < a; = —a,a; = —a
(a,e,e ,g) (a1 + ag, — (al) —%l(ag), 1) — (a,e, e/,g)
(a+g(ar +az), e — x(ar), € — 5 (az), 9) + ( “la,—e,~¢,g7")
= (a+gar+gaz+g(—g 'a),e — x(a1) —e,e — 5 (az) — €, 997"
(a+ga1 + gaz — a,9(—a1),9(—az), 1) = (9a1 + gaz, —gar, —gas, 1)
( ) = (91 + gaz, —s<(gar), = (ga2), 1) € (B4, =2 ® )

(ga1 + gaz, —g(say), — (% az),1

since », > are homomorphisms of G-modules. Define the Baer product of F; and
E5 to be as in the Baer sum for R-modules, only that PO here is not the pushout
of Ay and > ® » in the category GR, just the factor group as described above.
The morphisms are unchanged.

Proposition 7.10. E(G, A) is an abelian group with operation given by the Baer
product.

Proof. For any E € E(G, A), we have the one-to-one correspondence with H?(G, A)
given by ((E) = f, where f is the factor system for the extension E. Suppose [g] € E
and (g) € E' are representatives for g € G. Suppose f is a factor set for E, and f/
is a factor set for E, i.e

flg,h) = [g] +[h] - [gh]
flg.h) = (g)+(h)— (gh)

Look at the direct product extension:

0 Ax A5 BExE 7% Gx G — 1
Choose ([g], (h)) as representatives for (g,h) € G x G in E x E .
(lg1]; (h1)) + ([g2]; (h2)) — ([9192]; (h1h2)) (lg1] + [g2] — [9192], (h1) + (h2) — (h1h2))
= (f(g1,92), f (hn, ha))

So we get that the factor set of the direct product extension is f X f (g1, g2, h1, hs) :
G x G x G x G — Ax A. Further, take the pullback of 0 @ 0’ and Agand get the

element

0 e AxA 287, pp TG

of E(G, A x A) where

G 1

/

PB:{(e7el,g)|U(e):U (el):g’eeE’e/ GE/}
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Choose representatives for g in PB : ([g],(9), 9).

(91, {9}, 9) + ([h], (h) ,h) = ([ghl, (gh) ,gh) = ([g] + [h] = [ghl, (g) + (h) — (gh) , gh(gh)™")
= (f(g.h).f (g,h),1)
o (f @ f)Vaxa is a function from G x G — A x A such that

lgll + 11l = lghll = (f @ |') Vaxa (g,h)

where ||g]| = ([g], (9) , g) is a representative of g. Further, take PO = AXPB/ ((\J 4, — ® ))
and get the commutative diagram

A®RA — PB — G

|

A— PO — G
Choose representatives for g in PO : (0,[g], {(g) ,g). Then:

(0,19, (9)»9) + (0, [n], (R} , h) — (0, [gh], (gh) , gh)

0+9-0,(g),(9),9) + ([hl, (k) ,h)) + (—gh - 0, —[gh], — (gh) , gh)

0,1g] + 1], (9) + () , gh) + (0, —[gh], — (gh) , (gh) ")

0,[g] + [h] = [gh), (g) + (h) — (gh) , gh(gh)™") = (0, [g] + [h] — [gh], (g) + (h) — (gh), 1)
0,f(g.h), f (g,h),1) = (f(g.h) + f (g.h),0,0,1)

o~ o~ o~ o~

So f+ f/ =valf & f/)AGXG is a function from G x G — A such that

{g} +{h} = {gh} = (f + f)(g,h)

where {g} = (0,[g],{g),g) is a representative for g. So we get that {(F1 + E3) =
((F1)+C¢(E2). ¢ becomes a group homomorphism from E(G, A) to H*(G, A), which
is an abelian group Therefore, F(G, A) is an abelian group with operation given
by the Baer product. Since we have that ((A — A x G — G) = 0, we have
found that the class of the split exact extension is the zero element in FE(G, A).
The factor set of the inverse element of € € E(G, A) is just —((¢) (since (is a group
homomorphism), which then gives a complete description of —¢ € E(G, A). O

Theorem 7.11. E(G, A) and H?(G, A) are isomorphic as functors from PAIRS (G, A)
to AB.

Proof. ( is actually an isomorphism. For any cocycle in H?(G, A), we can obtain an
extension in F(G, A) by taking that cocycle to be its factor system. Let E € ker (.
That means that the factor system of E is a coboundary in C?(G, A).

((E) =6"f(g,h) = gf(h) = f(gh) + f(9)

Now, the extension with the factor system s(g,h) = 6" f(g, h) is equivalent to the
semi- direct extension by a (3 in

A—>A><I GHG

NlA
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defined as S(a,g) = (a — f(g),g). B is a homomorphism:

B((a,g) + (b, h)) B(a+ gb,gh) = (a + gb— f(gh), gh)

Bla,g) + B(b,h) = (a— f(g),9)+ (b—f(h),h)

(a—f(g) +g(b— f(h))+ s(g,h),gh)

(a— f(g) +gb—gf(h)+gf(h) — f(gh) + f(g),gh) = (a + gb— f(gh),gh)

And
Bi(a) = Bla,1)=(a— f(1),1) = (a,1) = j(a)
mB(a,9) = w(a— f(g9),9) =G =p(a,g)
0

7.2. Characteristic class of an extension. Look at the short exact sequence of
free abelian groups:

0—I(G) 572G 57 —0
where I(G) is the kernel of the augmentation map ¢ : ZG — Z.

Proposition 7.12. I(G) is a free abelian group on {(g) — (1)},Vg € G\{1}.

Proof. Since i is a ZG module homomorphism, it is a group homomorphism. So
I(@) is isomorphic to a normal subgroup of ZG, which is free abelian. As numbers of
generators, it has |G|—1 many. First, {(g) — (1),g € G} € I(G) since ((g) — (1)) =
0. The set {{g) — (1), g € G} is linearly independent (by induction on n):

a({g) — (1)) = a{g)—a(l)=0 = a(g) =a(l) = (g9 +# 1)a=0 (ZG free abelian)
1) 0 = ai({g) = (1) +a2({g2) = (1) + - + an({gn) — (1)) = {ai}_; =0
2) 0 = a({g1) = (1)) + a2({g2) = (1)) + .. + an({g) — (1)) + ant1({gn+1) — (1))

Take (2) — (1), and since elements in ZG commute, we are left with

ant1(({gnt1) — (1)) =0 = ap41=0.

Now we only need to show that any element of I(G) can be written as a linear
combination of {(g) — (1),g € G}.

D alg)(9) € 1(G) <= Y a(g)=0
geG geG

By writing out the expression and using the above, we conclude the proof:

> alg) ({g) — (1) =D alg)(9) — (Z a(g)) 1) => alg) (g

9€@G geG geqG geq
O
For any ZG-module A, it induces a long exact sequence of Fxtl :
0 — Homyg(Z,A) — Homyq(ZG, A) — Homyg(I(G), A) — Extho(Z, A) —
Extyo(ZG,A) — FExtyo(I(G),A) — Ext3q(Z,A) — Ext34(ZG, A) — ...
Since ZG is a free (hence projective) ZG-module, we get an isomorphism between
Extho(1(G), A) ~ Ext3.(Z, A) = H*(G, A)

and since
Extho(I(G), A) ~ Ezq(1(G), A)
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we get that H?(G, A) is isomorphic to the group of extensions of A by I(G).

0—A—H—IG) —1

Now, to find Ext},(I(G), A) we must choose a projective resolution of I(G). Take
QT QL % Qo 5 I(G) — 0

where Q; = F;11,and 0; = d;40, for i = 0, 1, .., for the free ZG-modules F; and the
module homomorphisms d; from the normalized bar resolution. We get

* *

0 — Hom(I(G), A) == Hom(Qo, A) ~> Hom(Q1, A) ~5 Hom(Qs, A) — ..

So Extl (I(G),A) = kerd}/Imdf = kerd?/Imé' = H?(G, A), so it contains
factor sets, as many factor sets as elements of E,(G, A). By Lemma 5.12, we find
the correspondent element of E,(I(G), A) by taking the middle module as PO =
A X Fi/{(f —21)) and get the short exact sequence
0 — A-5PO-Z1(G)—0
ifa) = (a,1)

pla,9) = o(g) = (g)— (1)

Proposition 7.13. Fiz an element of E(G, A)

e:0—ASE-SLG—1

Let ML be the factor module of the free ZG-module on [e],e € E,[0] = 0 modulo
the submodule generated by

(1) [er + e2] — (o(e1)) [e2] — (1) [e1] : e, e1,e2 € E,[0] =0

The morphisms o : A — ML and 8 : ML — I(G) are ZG-module homomor-
phisms

a(a) = [#(a)]

B(bl) = (o)) — (1)
which give that the sequence splits as a sequence of abelian groups:
0— A% ML 1(G) — 0

Proof.

ala+b) = [xla+b)]+ L= [x(a) +#(0b)] + L = [>(a)] + (0(>(a))) [5(b)] + L

ald ng)lg)-a] =

geG g

Q
=
&
o
3
N———
I
——
AN
=
&
o
&
.
+
~
I
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By the definition of L, each term in both brackets can be decomposed to n(gs)
terms of form [»(gsa)], s = 1,2, .., k, obtaining:

a (Z n(g) (g) a) = > nlg)lxlga)]+ L= n(g)ga) + L

geG geG

Il
=
S
S
X
=
_|_
h
Il
g
3
S
<
N————
2
=

geG geG

since (as L is a submodule). We defined M as the free ZG-module on [e],e € L.
Then, using the universal property of free modules with the functions i : [e] —
le], f([e]) = (o(e)) — (1), we get that there exists a ZG-module homomorphism

B(le]) = (a(e)) = (1)

B(L) = B(ler+e2] —(o(e1)) [e2] — (1) [e1]) = B([ex + e2]) — (o(e1)) B(le2]) — (1) B([ea])
= (o(e1 +e2)) — (1) — (o(e1)) {{o(e2)) — (1)} — (1) {{o(e1)) = (1)}
= (o(e1 te2)) — (1) — (a(er)) (o(e2)) + (= (o(e1))) (— (1)) — (1) {o(e1)) + (= (1)) (= (1))
= (o(e1+e2)) — (1) — (o(e1)o(e2)) + (o(e1)) — (o(e1)) + (1) =0

Ba(a) = B([x(a)]) = (o(x(a))) — (1) = 0

So the sequence is a complex of abelian groups. Define s : [(G) — ML as

s((g) = (1) = [{g}] + L

(where o({g}) = g, {9} is a chosen representative for g in E where {1} = 0). B
the universal property of free abelian groups (which are free Z-modules), in defining
the functions

i({g) — (1)) = (9) — (1), f(g) — (1)) =g} +L

we get si = f and s is a group homomorphism. By the universal property of
the free ZG-module F, we have a ZG-module homomorphism v : M — A as
v({g) [e]) = h(g,e) when taking the functions

i([e]) = gle], f({g)[e]) = {9} +e—{gole)} = h(g,e)
When we look at v as a group homomorphism, we get v(L) =0 :
v([er +ea] = (o(e1)) [e2] —[ea]) = v([er +e2]) —v((o(er)) [e2]) — v([en])
h(l,er+e) = {1} +(ex+e2) —{oer+e2)} (1)
h(o(e1),e2) = {o(e1)} +e2—{oler)o(e2)} (2)
h(l,e1) = {1} +e1—{o(e1)} 3)

1) =@2)=0) = [lex+ex) —{oler +e2)}] + [{oler)olez)} —e2 —{o(er)}] + [{oler)} — el
= (e14+e)—e2—e =0
As a chain complex of abelian groups,

0— A% ML 1(G) — 0
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has a contracting homotopy (s,v) :

(va)(a) = v(p(a)] + L) = h(1, 5(a)) = {1} + x(a) — [0((a))] = »(a) ~ a
fu((g) = (1) = BHg+ L) =(o({g})) — (1) = (9) = (1
(av+sB)([e] + L) = a(u(le]+ L))+ sB([e] + L) = a(h(1,e)) + s({o(e)) — (1))
= [ e+ L+ [{o(e)}] + L =[e—{o(e)}] + L+ [{o(e)}] + L
= [+ (o(e)) [{o(e)}] + L+ [{o(e)}] + L = [e] + ((o(e)) [-{o(e)}] + [{o(e)}]) + L
= le+[HAole)} +{o(e)}] + L=[e]+ L

So the complex is split exact as a complex as abelian groups, hence it is exact as a
complex of groups. O

Call this element in H?(G, A), the characteristic class of the original extension
€.

Proposition 7.14.

0— A-5 PO I(G)—0
and

0— A ML 1(G) —0
are equivalent extensions of A by I(G).

Proof. In defining a group homomorphism v : PO — M L, we must define group
homomorphisms

Ya:A— ML, yp : F1 — ML
such that

Ya(f (g, h) +7r (=020g [ h]) € L <= B(ya(f(g,h) +7r, (02lg [ h]) =
Define
Va(a) = ala) = [>(a)] + L, vg (l9]) = [{g}]
where we choose a set of representatives {¢g} in E, for each g € G, and {1} = 0. So
V(a,9) = [(a)] + {g}] + L
is a ZG-homomorphism (hence also a group homomorphism).
V(f(g,h),—d2lg | hl]) = [¢f(g,h)] = (9) {R} + [{gh}] — Hg} + L

BOy(f(g:h),—dolg | hI)) = B([f (g, )] + L) = (9) BI{A] + L) + B([{gh}] + L)
= 0—=(g) ((h) = (1)) + {gh) = (1) = ({9) = (1)) = 0
So v € Homgr(PO,ML). It commutes with both squares:
Viala)) = (a,1) = [ea)] + [{1}] + L = [#(a)] + L
B((a;9)) B(la)] + [{g}] + L) = B([(a)] + L) + S([{g}] + L)
= (=M +{e({g}) — (1) = (9) = (1) = p(a,9)

- B({g} + L)
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8. EXTENSIONS WITH NON-ABELIAN KERNEL

Look at the exact sequence of groups,
e:0—ASE-SLG—1

where A is not necessarily abelian. It induces a group homomorphism 0. EFE —
Aut(A), 9,(6) (a) = ea = e+ sxa—e. We also have a group homomorphism ¢ : A —
In(A), where In(A) C Aut(A) is the subgroup of inner automorphisms, ¢ (a)(b) =
a+b— a. So we have a group homomorphism 6 : E/x(A) ~ G — Aut(A)/In(A)
given by ¢(g)(a) = {g) + a — (g) ,where o({g)) = g and ¢(g) is a representative
in the factor group Aut(A)/In(A). So for each e € E, the automorphism 9/(6)
is in the automorphism class of 8(o(e)). We say that ¢ has conjugation class 6.
Conversely, we say that the triple (G, A,6 : G — Aut(A)/In(A)) is an abstract
kernel.

Lemma 8.1. Equivalent extensions have the same conjugation class.

Proof. Given two equivalent extensions

J{/ !/
A 2 a

o) A
E
Let the top extension induce a 6 : G — Aut(A)/In(A), and the bottom one a
C: G — Aut(A)/In(A). 0 (g) € Aut(A)/In(A) is given by

0(9)(a) = ()" (¢ + 5 (a) — ¢)

where ¢’ € /71 (g). To define ¢ (g) € Aut(A)/In(A), we need a representative
e € 071 (g). Since op = o', we can choose e = p (¢’). Finally, using p»’ = s,

Clg)a) = >

I
S N‘N

O

Pick a representative [g] € F, o (|g]) = g, for each g € G — {1}, and define
[1] := 0. Then

[9] +a—[9] = p(9)(a) < [9]+a=¢(9)(a)+[g]
for some element ¢(g) of the automorphism class of (g). Since
o(lgl + [h] = [gh]) =1
So we have factor set f(g,h) € A such that

f(g,h) +[gh] = [g] + [h]
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In order that the representatives should make a group, associativity must hold:
(lg] + [R]) + [K] (f(g,h) + [ghl) + [k] = f(g.h) + ([gh] + [K])
= f(g;h) + fgh. k) + [ghk]
g+ (R +[k]) = ([g]+ f(h, k) + [hk] = ©(g)(f(h, k) + ([g] + [hE])
= @(9)(f(hk)) + f(g, hk) + [ghk]
= f(g,h) + f(gh.k) + [ghk] = ©(g)(f(h,k)) + f(g, hk) + [ghk]
flg,h) + f(gh,k) = »(g)(f(h k) + flg, hk)
0 e(9)(f(h, k) + f(g, hk) — f(gh,k) — f(g,h)

We see that if A were abelian, we would get the 2-cocycle condition on f.

Remark 8.2. Let
Z(A)={a€cA|Vbe A(ab=Dba)}
be the center of A. It is well-known that the center is a characteristic subgroup,

i.e. it is invariant under any automorphism. Therefore, if 0 (g) € Aut (A) /In (A),
then

0(9)(Z(A)) = Z(A).
Moreover, if a € Z (A), and if £ € In(A), i.e. £(z) =bxb™t, for some b € A, then
bab~" =bb"'a =a.

It follows that In (A) acts trivially on Z (A). Therefore, the action of G on Z (A)
given by

ga:=9(g) (a)
is well-defined.
Now, conjugation by [g] + [k] and by f(g,h) + [gh] should be the same:
([ + [1]) + a = ([g] + [n]) = lg] + @(h)(a) + [A] — ([g] + [A])
= gl +e()(a) +[h] = (f(g,h) + [gh]) = [g] + ¢(h)(a) + ¢(h)(= (g, h)) + [h] — [gh]
= (gl +¢(h)(a)) = @(h)(f(g, ) + [h] — [gh]
= e9)(eh)(a)) + [g] = @(h)(f(g,h)) + [h] = [gh]
= e9)(eh)(a)) + (g)(=e(h)(f(g,h))) + [9] + [h] — [gh]
= 2(g)(e(h)(a)) = ¢(9)(p(h)(f(g, ) + f(g,h)
= wge(h)(a— fg,h)) + f(g9,h) = p(g)p(h)(a = f(g,h)) + f(g, ])
(100 + gt 0 (71000 9k = 7000+ (] + 0~ g 1) o
o(

—[gh] = f(g,h) +
g)p(h)(a— f(g, ))+f(g h) = f(g,h) + ¢(gh)

)
h)(a— f(g,h)) = f(g,h)+p(gh)(a— f(g,h
elg)p(h) = W(f(g,h))p(gh)

So i) measures the extend that ¢ fails to be a homomorphism from G to Autgr(A).

Proposition 8.3. Given A, G, functions ¢ : G — Autgr(A), f: G X G — A,
with the properties

(1) flg:1) = f(

1,h) =0
(2) 0=o(g)(f(h.k
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(3) ¢(g)p(h) =1iv(f(g,h))p(gh)

we can construct an extension of groups
0—ASE g —1
where E is the set of all pairs (a,9),a € A, g € G, with
(@,9)+ (b,h) = (a+@(h)b+ f(g,h),gh)
i(fa) = (a,1), pla,g9) =g

Call E' for the crossed product group, and this extension for the crossed product
extension.

Proof. i is a homomorphism:
ila+b) = (a+b1)
i(a)+i(b) = (a,1)+(b,1)=(a+e(1)b+ f(1,1),1) = (a+b,1)
p is a homomorphism:
pla,g)p(b,h) = gh
p((a,9) + (b,h) = pla+e(gb+ flg.h),gh) = gh

The zero element is (0,1) :
(a,9) +(b,h) = (a+¢(g)d)+ f(g,N),gh) = (a,9)
= h=10(g)0)+ f(g,h) =0 = ¢(g)(b) =0,y
(0,h) +(a,9) = (b+p(h)(a)+ f(h,g),hg) = (a,9)
= h=1b+¢(h)(a)+ f(h,g) =a
b+p(l)a = a = b=0
The inverse element —(a, g) is (—f(g7,9) — ¢(g9) " *(a),g71) :
(a,9)+(b,h) = (a+¢(9)(b)+ flg,h),gh) = (0,1)
= h=g La+e@®)+flgh)=0 = at+e(g)d) + flg,g7") =0
= @(g)(b) = —a— f(g,97")
(0, 1)+ (a,9) = (b+e(h)(a)+ f(h,g),hg) = (0 ,1)
= h=g " b+elg "))+ flg "9 =0 b=—f(g7"9) —vlg” "))
= (9)(b) = —p(9)(f(g~" 9) — w(9)plg™" )
e@)b) = —)(flg7"9) —e)(a) = —p(9)(flg" 9) —a
= b=0(9) (@) (flg7"9) —e(9) (@) = b=—f(g7" 9) —v(9) ' (a)

The set E is associative:

{(a,9) + (A} + (c.k) = (a+@(g)b)+ flg,h),gh) + (c. k)
= (a+¢(9)d)+ f(g,h) + (gh)(c) + f(gh, k), ghk)
(a,9) +{(b;h) + (¢,k)} = (a,9) + (b+(h)(c)+ f(h, k), hk)
= (a+¢(9)+(h)(c) + f(h,k)) + f(g, hk), ghk)
(a+¢(g)(d) + v(g)p(h)(c) + ©(g)(f(h, k) + f(g, hk), ghk)
= (a+¢(9)d)+ f(g,h) + (gh)(c) = f(g,h) + ¢(g)(f(h k) + f(g, hk), ghk)
= (a+¢(9)(d) + f(g,h) +(gh)(c) + f(gh, k), ghk) = {(a,g) + (b,h)} + (¢, k)



68 CATALINA NICOLE VINTILESCU NERMO

The sequence is exact:
a € keri < i(a)=(a,1)=(0,1) = a=0.
(a,g) € kerp < pla,9)=g=1 = (a,1) €kerp,Va € A = kerp =Imi
(Il

Corollary 8.4. If any automorphism ¢(g) € ((g) satisfies p(1) = 14, then any
extension of the abstract kernel (A, G, () is congruent to a crossed product extension
(A, G, p, f) with the given function p.

Proof. Suppose there exists an extension e : 0 — A — F — G — 1, with all
©(g) € €(g), (1) = 14. All elements of E are of form a + [g],a € A,g € G. We
have:

[9] + [h] = f(g,h) + [gh], for some f(g,h) € A.

FE must be a group, closed under addition:

(a+g]) + (b+[h]) = a+¢(9)(b) + flg, h) + [gh]
Simplify a + [g] — (a, 9).
o(a+[g)) o(x(a))o(lg]) = g
] kero < o([h]) =1 < [h] =1]]
If we choose [1] 0, we get an equivalent extensions

S
= kero={b+[l],b€e A} = x(a) =a+[1] = (a,1) is defined.

O
Suppose we are given an abstract kernel (G, A, (). In each automorphism class
¢(g), pick an automorphism ¢(g) such that (1 ) =1
v ek)(a) = ¢ (K +a—[k)=a = ¢ '(k)(a) = ~[k] + a + [K]
[e(9)e(h)p~ (gh)] (a) = @(9)p(h)(~[gh] +a+ [gh])
= @(g)([h] —[gh] +a+[gh] — [h]) = (lg] + [h] — [gh]) + a + ([gh] — [h] — [g])
= (gl +[n] = [gh]) + a = ([g] + [h] = [gh]) = (e )+a— »(e).
= w(9)p(h)p~ (gh)(a) = f(g,h) +a— f(g.h) € In(A)
)

= p(g)p(h) =i f(g,h)p(gh)

for some function f : G x G — A satisfying

p(Dp(h)e ™ (h)(a) f(Lh) +a—f(1,h)
a = f,h)+a—f(1,h)

We may pick f(1,h) = f(g,1) = 1. Now, ¢(g)¢(h)¢(z) should be associative:
o(g) [p(h)p(k )(a)}

e(9) [f(h, k)
¢(9)(f(h, k)
= (plg)(f(n; k)
= wW(p(g)(f(h,

)(f(h k) + p(g)p(hk)(a) — ©(g)(f(h, k)
(9, hk) — 0(g)(f(h, k))
(p(9)(f(h,k)) + f(g,hk))

+ p(hk)(a) — f(h, k)] = ¢(g
+ f(g,hk) + p(ghk)(a) — f
) + f(g,hk)) + (ghk)(a) —
k)) + f(g, hk))p(ghk)(a)
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[p(9)e(M)] (¢(k)(a)) :

= flg,h) +p(gh)p(k)(a) — f(g,h) = f(g,h) + f(gh, k) + ¢(ghk)(a) — f(gh,k) — f(g,h)

= (f(g,h) + f(gh,k)) + ¢(ghk)(a) — (f(g,h) + f(gh,k)) =it (f(g,h) + f(gh, k)) (p(ghk)(a))
Gives
W (p(9)(f(h, k) + f(g,hk)) = i (f(g,h)+ f(gh,k))
©(9)(f(h, k) + f(g,hk) — (f(g,h) + f(gh, k) € keriyp
©0(9)(f(h, k) + f(g,hk) — (f(g,h) + f(gh,k)) = O(g,h, k) € Z(A)
o(g)(f(h, k) + f(g,hk) = O(g,h k) + f(g,h) + f(gh, k)

where O : G X G x G — Z(A) is a (normalized) function:
O1,h,k)=0(g,1,k) =O(g,h,1) =0

So we can regard O as a 3-cochain of the normalized bar resolution of G with
coefficients in Z(A).

Proposition 8.5. Any obstruction of an abstract kernel (A, G, () is a 3-cocycle of
B (7).

Proof. We will show that 6°O(g, h, k,1) = 0.

gO(h, k,1) — O(gh, k,1) + O(g, hk,l) — O(g, h, kl) + O(g,h, k) = 6°O(g,h,k,1)
e(h)f(k, 1) + f(h,kl) — f(hE, 1) — f(h, k) = O(h,k,l)
p(g)le(h)f(k,1) + f(h, kl) = f(hK,1) = f(h, k)] = gO(h k1)
flg:h) +@(gh)(f (K, 1)) = f(g,h) + e(9)(f(h, kD)) — (9)(f(hk, 1)) — (9)(f(h, k)) = gO(h,k,1) (1)
e(gh)(f(k, 1) + fgh, kl) — f(ghk,1) — f(gh. k) = O(gh,k,1)

)

)

]

)

! k)

f(gh, k) + f(ghk,1) = f(gh, k1) — @(gh)((f (k1)) —O0(gh, k,1) (2)
g 1) hk)
h)
)
h)

)f(hk, 1) + f(g, hkl) — f(ghk,1)) — f(g, = O(g,hk,l) (3)
e(9)(f(h, kD)) + f(g, hkl) — f(gh,kl) — f(g,h) = O(g,h,kl)
f(g,h) + f(gh,kl) — f(g, hkl) o(9)(f(h,kl)) = —O(g,h,kl) (4)
©(9)f(h, k) + f(g,hk) — f(gh,k) — f(g,h) = O(g,hk) (5)

Take [(1)+ (5)]+ (4)+ (3) +(2) :

{f(g,h) +w(gh)(f(k, 1)) — fg, ) + @(g9)(f(h, k) — @(g)(f(hk, 1)) — p(g)(f(h,k))}
+1{p(9)f(h,k) + f(g,hk) — f(gh,k) — f(g.h)} + {f(g.h) + f(gh,kl) — f(g,hkl) — ©(g)(f(h,kl))}
+1{p(9)f(hk,l) + f(g, hkl) — f(ghk,1)) — f(g,hk)} + {f(gh, k) + f(ghk,l) — f(gh, kl) — p(gh)((f(k,1))}

= f(g,h) +(gh)(f(k,1)) = f(g,h) + @(g9)(f(h, kl)) — @(g9)(f(hk,1)) + f(g, hk)
—f(gh, k) + f(gh, kl) — f(g,hkl) — @(g9)(f(h, k1)) + [p(9) f(hk,1) + f(g, hkl) — f(ghk,l)) — f(g, k)]
+[f(gh, k) + f(ghk,1) — f(gh, kl) — o(gh)((f(k,1))]
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The elements in brackets are O € Z(A), so they commute with any of the single
elements of A in the expression, so we get:

f(g,h) +@(gh)(f(k, 1)) — f(g,h) + ©(g)(f(h, k) — ©(g)(f(hk,1)) +
[p(g) f(hk,1) + f(g, hkl) — f(ghk,1)) — f(g, hk)] + f(g, hE)
—f(gh, k) + [f(gh, k) + f(ghk,1) — f(gh, kl) — o(gh)((f(k,1))] + f(gh, kL) — f(g,hkl) — @(g)(f(h, k1))
= f(g,h) +(gh)(f(k, 1)) = f(g,h) + (g)(f(h, k) + f(g, hkl) — f(ghk,l) — f(g, hk)
+f(g,hk) + f(ghk,l) — f(gh, kl) — p(gh)((f(k,1)) + f(gh, kL) — f(g, hkl) — @(g)(f(h, kl))
= f(g,h) +p(gh)(f(k,1)) — f(g,h) )(f (R, kD)) + f(g,hkl) — f(gh,kl)} — p(gh)((f(k,1))
+{f(gh,kl) — f(g, hkl) —
= [f(g,h) +p(gh)(f(k,1)) —
= f(g,h) +p(gh)(f(k,1)) —

e(g
+{e(g
@(g)(f(h, kl))}

f(g,h) +O(g, b, kl) + f(g, h) — p(gh)((f(k,1)) — f(g,h) — O(g, h, k)
f(g:h) + f(g,h) — p(gh)((f(k,1)) — f(g,h) — O(g, h, kl) + O(g,h, kl) = 0
0

Theorem 8.6. An abstract kernel (A, G, () has an extension if and only if one of
its obstructions s equal to 0.

Proof. <=If O = 0, then we get the associativity condition

o(9)f(h, k) + f(g.hk) = f(g,h) + f(gh, k)
and we build the crossed product extension as in (8.3).
= By choosing [1] = 0, we get ¢(1) = 1, and using Proposition 8.3, we get
e(9)(f(h, k) + f(g,hk) — f(gh, k) — f(g,h) =0 = O =0.
O

Lemma 8.7. Given (A, G, (). Fiz ¢(g) € ¢(g). If we change f to another function
f/ that satisfies

e(g)e(h) ih(f(g,h))p(gh)

then we are replacing O by a cohomologous cocycle. By suitably changing f, O may
be replaced by any cohomologous cocycle.

Proof. We choose another element f (g, h) € A such that
p(9)p(h)p~ (gh) = ib(f(g.h) = #(f (9,h) = ['(g9:h) = f(g.h) € keritp = Z(A)
fg.h) = flg.h) = slg.h) < f(g.h) = s(g,h) + f(g, D)

for some normalized function s : G x G — Z(A) (since we chose f,f to be
normalized). So we may look at s as a 2-cochain of the bar resolution of G with
coefficients in Z(A). Actually, it is a 2-cocycle:

528(9, h,k) = gs(h, k) — s(gh, k) + s(g,hk) — s(g,h) =0
gs(h, k) :
= @()(F (h k) = F(h,R)) = O+ (9. 1) + f (gh, ) = f (9, hk) + flg. hk) = f(gh. k) = F(g,h) = O
= [ (g:h)+ f (gh,k) = f (g, hk) + f(g,hk) — f(gh, k) — f(g,h)
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—s(gh, k) + s(g, hk) — s(g,h) :
= [£(gh.k) = £ (gh k)| + |£ (9. 1K) = Flg.h)| + [ F(9.h) = £ (9. )]
Use that the elements in the brackets commute with all f, f and get:
[7(9:0) = £ (9:0)]| + £ (9. 0) + £ (ghs k) = £ (g, h) + [ £ (9, k) = (g, h)| + £(g, k)
~F(ghs k) + [ £(gh, k) = £ (gh, k)] = F(g,)
= f(g.h)+ £ (gh, k) = f(g, 1K) + (9, hk) = f (gh.k) = f(g,h) = 0

Further,
() f (hk)+ f (9. hk) = O'(g,h,k)+ f (g,h) + f (gh,k)
() [s(h, k) + f(g,h)] + s(g, hk) + f(g,hk) = O'(g,h,k) +s(g,h) + f(g,h) + s(g, hk) + f(g, hk)
0(9) [f(g,h) + s(g,h)] + f(g.hk) + s(g.hk) = O (g,h.k)+ s(g,h) + s(g, hk) + f(g,h) + f(g. hk)
0(9)f(g,h) + f(g.hk) +¢(g)s(g,h) + s(g,hk) = O'(g,h,k) + s(g, h) + s(g, hk) + f(g,h) + f(g, hk)

So
0(9)f(g,h)+f(g,hk) = (O (g, h,k)—gs(g, h)+s(gh, k) —s(g, hk)+s(g, h))+f (g, h)+f (g, hk)

O'(g,h,k) — gs(g, h) + s(gh, k) — s(g, hk) + s(g.h) = O(g,h,k)
O'(g,hk) = O(g,h,k) +8s(g, h, k)

Thus we have replaced O by O, a cohomologous cocycle. As we may choose
any normalized 2-cochain s, we reach any cohomologous cocycle by definition of
cohomologous cocycles. O

Lemma 8.8. A change in the choice of the automorphisms p(g) may be followed
by a the choice of such an f such that the obstruction remains unchanged.

Proof. Change ¢(g) to ¢ (g) such that ¢ (1) = 1 in ¢(g). Then their difference is

an inner automorphism of A

# (9)(a) = 7(g) + @(9)(a) — 1(g)
where v : G — A is a function. Calculate ¢ (¢)(¢ (k)(a)) :

= @ (9) () + p(h)(a) = 7(R)

= 7(9) +¢(9) [v(h) + p(h)(a) = v(R)] = v(9)

= 7(9) + ¢(9)(v(h) + v(9)p(h)(a) — ©(g)(v(h)) — ¥(9)

= 7(9) +»(9)(v(h)) + f(g. h) + ¢(gh)(a) — f(g.h) — @(g)(v(h)) —¥(9)

= (9) +¢(9)(v(R) + f(g,h) = v(gh) + ¢ (gh)(a) + v(gh) — f(g,h) — @(g)(v(h)) — ¥(9)
= [ylg) + 2l9)(v(R) + f(g, 1) — (gh)] + ¢ (gh)(a) — [y(g) + (g) (v(R)) + f(g, 1) — ¥(gh)]

Denote the element of A in the brackets as

£ (g.0) = 7(9) +¢(9) (v (R) + f(g. ) —v(gh) = ¢ (9)¢ (h) = iw(f (9,h))¢ (gh)
This gives

¢ (9)f (hk) + f (g,hk) = O'(g.h, k) + f (9. h) + f (gh. k)
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Left side gives:

= ( ) +e(@)(v(h) + flg, h) + (gh)(v(k)) — f(g,h) + ©(g)(f(h, k) — w(g9)(v(hK)) — 7(9)
+7(9) + ¢(9)(v(hk)) + f(g, hk) — v(ghk)

= 7(9) + (@) (v(h) + f(g, h) + (gh)(v(k)) — f(g,h) + ©(g)(f(h, k) + f(g, hk) — v(ghk)
= 0-0+7(9) + @) (v(h) + f(g,h) + p(gh)(v(k)) — f(g,h) + ¢(g)(f(h k) + f(g, hk)

—7(ghk)

= O+ (v(9) +¢(g)(v(h) + f(g,h)) — 0b+ ©(gh)(v(k)) — f(g,h) + w(g)(f(h, k) + f(g, hk)
—(ghk)

= O+ f(g,h) +7(gh) — ob+ (gh)(v(k)) — f(g,h) + ¢(9)(f(h, k) + f(g, hk) — y(ghk)

= O+ f(g.h) +7(gh) + ¢lgh)(v(k)) — O = f(g.h) + (g)(f(h. k) + f(g. hk) — v(ghk)

= O+ f(g.h)+7(gh) + ( h)(v(k)) — f(g. 1) + o(9)(f(h, k) + f(g,hk) — (f(g,h) + f(gh,k))
+(f(g,h) + f(gh,k)) — O — ~(ghk)

= O+ f(g.h)+(gh) +<P(gh)( (k) — f(g,h)
+0 — O+ (f(g,h) + f(gh, k) — v(ghk)

= O+ f(g,h) +~(gh) + ¢(gh)(y(h)) + f(gh.k) — 7(ghk) = O(g,h,k) + f (g,h) + f (gh, k)
so the new obstruction is identical to the old one. O

Theorem 8.9. Fiz an abstract kernel (A, G,(). The map
obs : (Aa Ga C) - H3(G7 Z(A))
obs(0) = O

where O is any one of its obstructions, is well-defined. (A, G, () has an extension
if and only if O = 0.

Proof. By Lemma 8.7, all obstructions are (cohomologous, i.e.) equal modulo 3-
coboundaries, so the map gives an unique element in H3(G, Z(A)).

If O = 0, then there exists a 3-cochain [ such that @ = §°/. Using the same
lemma, there exists such a shift in f, f ', such that O is replaced by a cohomologous
cocycle, 0. Then, by Theorem 8.6, there exists an extension corresponding to that
kernel.

The other way, the kernel has an extension if and only if one of its obstructions
is cochain identical to 0, and since the map is well-defined, we get O = 0. [l



EXTENSIONS OF GROUPS AND MODULES 73

Part 3. Calculations
9. ABELIAN EXTENSIONS
Lemma 9.1. Ez(Z,,, A) =~ A/mA, m is a positive integer.
Proof. Since Ez(Zy,, A) ~ Ext}(Z,, A), we pick the projective resolution of Z,, :

0 — 727272, —0
i(l) = 1, n(l) =1modm
Any 1-cocycle f : Z — A is a group homomorphism, thus it is totally described
by f(1) = a, a € A. Through the group homomorphism ¢ : Z! — A defined as
é(f) = f(1), we get that Z! ~ A. The l-coboundaries g : Z — A are defines
by gi(1) = g(m) = mg(l) = ma,a € A. Through that group homomorphism
® : B! — A defines as ®(g) = mg(1), we get that B' ~ mA. Hence Ez(Zy,, A) ~
Z' /B! ~ A/mA. |
Proposition 9.2. Fiz the ring Z. Let p,q be distinct primes, i,j positive integers.
E7(Z,2) = Ez(Z,Zyi) = Ez(Zyi, Lyi) = 0

Proof. Since Z is a free Z-module, hence projective, Extl(Z,7Z) = 0 ~ Ez(Z, 7).
So all extensions of Z by Z are equivalent to the direct sum extension. Also, all
extensions of Z,: by Z are equivalent to the direct sum extension. Ez(Z,:,Z,) =
ZLys /piqu = Zgi [ Zgs = 0 since ged(p', ¢7) = ged(p, q) = 1. U
Theorem 9.3. a) Ez(Zyi, ) ~ Zyi;
b) Given a € Zy:, the corresponding extension has the form
0 —Z—ZXZLpi — Lpi — 0
if a =0, the form
0 —Z2Z—2Z— 7y, —0
if ged (a,p) = 1, and the form
0—2Z—Z XLy — ZLp — 0
if a = bp*, ged(b,p) = 1.
Proof. a) By Lemma 9.1, Ez(Zyi,Z) ~ Z/p'Z ~ L.
b) From Lemma 5.12, we obtain the short exact sequence
0—Z—ZxZ/{(a,—p")) — Zp — 0

In the middle module we get the relations matrix [ f;)i ] . Suppose

ged(a, —p') = p* < a=1bp*,ptb

for some k € {0,1,...,4}, so our middle module is isomorphic to Z or Z x Z,x. In
the first case, we have the extensions

—g

O—>Z1:>I>)1’Z1—> Zpi — 0

where g is any generator of Z,:. There are pi~*(p—1) = p’ —p'~! such distinct g's.
For the second case,we must define the homomorphisms in

0—2z' =5z xz, Vg, 0

p
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Look at the relations matrix { }?k ccl ] . We require that by a number of elementary

row/ column operations, we can transform the proceeding matrix to { (1) I?z } ,
which can be done according to ([4] Ex.9.15). This is equivalent to requiring
ged(e,d,p*) = Lop* =p' = c=p"Fp|d

i.e. dis a generator g of Z,. so we have p*~1(p — 1) choices for d. We want
that up'~* + vg = Omod p’. Pick u = g,v = —p'~*. Since ged(u,v) = 1, it is an
epimorphism. The kernel of this epimorphism consists of those (z,y) such that

ik

gz —p" Fy=0modp’ = pi_k|x,x:lpi_k

— y = glmodp”
i.e.{ (p'=F1, gl) = 1(p*~*, g). I_flve sum the number of extensions 2221 pFlp—1) =
Z;;jo(p— 1)p™ = (p_l()l(l%pg’) = p'~! —1. Together with the direct sum extension

0—z' =828z, “25 2, —0

so we have described all equivalence classes in Ez(Z,:,Z). 0
Theorem 9.4. a) Ez(Zyi, Zyi) = Lgea(pi piy = Lpminiii) ;

b) Given a € Zy, the corresponding extension has the form

0 — Zpi — ZLpi X Lipyi — Lpyi — 0
if a =0, the form
0 — Zpi — Lpiti — Lpi — 0
if ged (a,p) = 1, and the form
0 — Zpi — Zpivi—r X Lk — Lpi — 0

if a = bp*, ged(b,p) = 1.
Proof. a) Using Lemma 9.1 we get

_ N ij/pinj ~ ij /ij—i ~ Zpi 1< j
EZ(ZPHZPJ) — { ij/p’ij ~7 i 2]

b) As in Lemma 5.12, we obtain
0 — Zpi — Zps % Z/<(a, —pi)> — Zpi — 0

. ~ Liged(pi,pi)
p.?

We can represent the Z-module Z,; x Z/ {(a,—p')) as a matrix of relations M =
b

0 -p
tions, transform the matrix to

r U1 0 o _@
M_{|:O u2:|7u1_d17u2_d1

i ] . By ([4] Ex.9.15), we can, by a series of row and column transforma-

where d; is the ged of the minors of size ¢ in M, i.e.,
di = ged(p),a,—p') = p*,a=bp*,prbk € {0,1,.., min(i, 5)}
ged(—p'p) _iti—k

dy = ESSPP -
pk
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p" 0

We get the relations matrix M = { [ 0 —piti-k } which gives the [min(z, j) + 1]

non- isomorphic middle modules Z,» & Zyi+i-x, k € {0,1,..,min(7,5)}. Let’s ex-
plicitly define the maps in the short exact sequence:

0— ij 1—>—(C>7d) Zpk (&) Zpi+j—k

p* 0 c :
0 pitick g which we need to be transformed

(z.y)— (urtvy) Zy — 0

‘We have the relations matrix {

to [ (1) 12 8 } by elementary row/ column operations. This means that gcd(c, p*) =

1,ged(d, p"*i=F) = pi, ie. prcand d | pti~F. Since any element of Zyx has or-
der a divisor of p’, we can take ¢ = g, where g is any generator of Zy. We have
p*~1(p — 1) many distinct choices for c. Since p’d = sp'™7~F, for some integer s,
we pick d = p*~*. In defining the epimorphism, we wish that ug + p'~* = wp’, for
some integer w. Choose u = p'~* v = —g. Since ged(u,v) = 1, we have defined an
epimorphism (z,y) — (pi’kx — gy) mod p*. Look at

i—k

i—k k

(P Fx—gy) = Omodp’ < pFlgy = pF |y, y=0p'" = pFz - glp' " = 0mod p’
—  z=glmodp" = (z,y) = (gl,lp"") = U(g,p"™")
So the sequence is exact. We have found, in total

min(,j

)
> P e-n= > pre-1)=@r-1
k=1

m=0

min(%,j)—1

(1 _pmin(i,j)fl)
(1-p)

extensions. When k = 0 we have the short exact sequence

_ pmin(i,j)fl -1

1—c Tr—ux
0— Zpi — Zpivi  — Lp — 0

¢ should be an element of order p’, so we pick ¢ = p*. Let’s find the epimorphism.
We want that upZ = Omo'dpz_. Pick u = g, where ¢ is any generator Of'Zp‘rn‘in(i,j),
so we have p™in(i-j) — pmin(i))=1 chojces for g. Altogether we have p™in(id) — 1
extensions, and together with the direct sum extensions, we have found all. O

Lemma 9.5. Let G be the finite cyclic group of order m, with generator x. Fix the
ring Z.G.

g6 Pure X rg P ng a7 — 0

is a free resolution of ZI™™, with the homomorphisms given by

m—1 m—1

(Y aixt) = Zai, Daw=Du, D=2—-1, NNu=Nu, N=14+z+...+a™ !
=0 i=0

Proof. Look at Example 10.5 in the next subsection. (]
Apply Homzg(—, A), for an arbitrary ZG-module A, :and get the left complex
0 — Homgza(Z, A) <, Homyza(ZG, A) Lz Homyg(ZG, A) RN Homyc(ZG, A) Lz

which is exact at the first two non-zero terms. Since ker D* = {a | ga = a} = A,
and Homzg(ZG, A) ~ A as abelian groups, we get

0—AC A2 AN AP, e =a
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D'a = D*f(1)= f(D.(1)) = f(D-1) = f(t—1) = tf(1) - f(1) = ta—a

N*a = N*(f(1))=f(Nu(1)) = f(L+t+.t" ) = fF1) +tf(1) + ... + " f(1) = Z ta

=0
This gives:
Theorem 9.6. Let G = (x) be a finite cyclic group of order m, with generator xt.
For any G-module A, we have the following cohomology groups:
HY(G,A) = {acA|ta=a}
H* Y G,A) = {a€ A|N*a=0}/D*A,n <€ Zsg
H™(G,A) = AY/N*A,n € Zy.
Corollary 9.7. Let G = () be a finite cyclic group of order m, with generator x.
For any trivial G-module A we have the following cohomology groups:
HY(G,A) = A
H*™ (G, ,A) = {a€A|ma=0},n¢€Zs
H>™(G,A) = A/mA,n € Zsy.
10. RESULTS CONNECTING ABELIAN EXTENSIONS TO NON-ABELIAN EXTENSIONS
10.1. Ez(G, A) is a subgroup of E(G, Atrivial),
Theorem 10.1. There exists an injective group homomorphism from Ez(G, A) to
E(GvAtri'uial).
Proof. Remember that Ez(G, A) ~ Ext}(G, A). Let Z[G] denote the factor group
of the free abelian group on [g],g € G, on the subgroup generated by [1], and
Z|G x @] the factor group of the free abelian group on [g, k], g, h € G, modulo the
subgroup generated by [1,h],h € G and [g,1],9 € G, and so on. We can construct
the projective resolution
v — ZIGXGXxGQBILGxGl&F 25 Z[G x G 2% Z[G) = G — 1
elg) = 9
o(lg,hl) = gl +[n] - [gh]
oi(lg, b, k]) = [h k] —[gh, k] + [g, hk] — [g, R]
01([g, h]) lg.h] = [h, g]
By the universal property of free modules, ¢,0¢,0; are Z-module homomorphisms.
F'is a free abelian group that is attached to make the sequence exact.
o(lg,hl) = (lg]+ 1] = [gh]) = gh(gh) ™' =
00(01(lg, b, k])) = 0o([h, k] — [gh, k] + [g, hk] — g, h])
= [h] + [K] = [hk] — [gh] — [K] + [ghk] + [g] + [hk] — [ghk] — [g] = [h] + [gh] = O
o0(di(lg,h)) = 0o(lg,h] = [h,g]) = [g] + [h] — [gh] =[] — [9] + [h]
= —lgh] + [hg] = —[gh] + [gh] = 0

]+
We have exactness at Z[G]. Any a € kere has the form
a = algi] + azfge] + - + arlgr], 91" 95" 977 =1
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Claim that the kernel is generated by

(s,9) = slg]=l9°]
<gv h> = [g]+[h] _[gh]’ 3={O,1,..,ord(g)},g,h€Z
which are both elements of Z [G] .Now

a = a—{a,g) — (a2, 9) — ... — (ar,9) = [97*] + [95°] + ... + [g0"]
a = a — (97", 95°) = l91"95°] + [95°] + .- + [977]
a = a — (9795, 95°) = 91" 952 95°) + ... + [927]

Continue in this manner and get that ¢ minus a linear combination of (s, g) and
(g, h) is equal to

91" 92977 = [1] =0
Hence the sequence is exact at Z[G]. We do not need to continue the projective
resolution to the left, we just know it can be done. We obtain an element of
FEz(G, A) by picking an element f € Fzt}(G, A) and taking pushout of (g, f),

as in Lemma 5.12. We have found a factor system for the extension: ¢(g,h) =
f([g,h]) € A. Then

o(g,h) —plh,g) = f(lg,h]) — f([h,g]) = f(lg,h] = [h, g]) = fo1([g,Rh]) =0 = w(g,h) = ¢(h,g)
foullg, hokl) = f([h, k) — f(lgh, k]) + f([g,hE]) — f([g,h]) =0

= f(lg,h]) = f([h k)~ f(lgh, k) +f([g, hk]) <= @(g,h) = p(h,k)—p(gh, k)+p(g, hk)

So ¢ € Z2(G, A),.¢ is a 2-cocycle. Define the map A : Exth(G, A) — H?*(G, A)
as A(f) = ¢. It is well-defined. Fix the above resolution over Z. Given two cochain
homologous elements f,1 € Homyz(Py, A), their difference is a 0-cochain,

f(lg; h]) = Ug, b)) = s([g]) + s([h]) — s([ghl), s € Homz(Fo, A)

Let (g, h) = I([g, h]) € A be the factor system in the extension given by pushout of
(1,00). By the universal property of free modules, there exists a ( € Homgg(F1, A),
where F} is the projective module in the normalized bar resolution such that

C(g) = s([g])
Then we have
©(g,h) —¥(g,h) = ((g) + ((h) — C(gh) = (01 ([g, h]) = 21(([g, h])

So A maps the cohomologous chains to the same element in H?(G, A). Suppose

Af)=0:
©(g,h) =01¢([g, h]) = ¢01([g, h]) = C(g) + ¢(h) — C(gh)

By the universal property of free modules, there exists an s € Homy(Py, A) defined
as

This gives
o(g.h) = [f(lg,h]) = s([g]) + s([h]) — s([gh]) = s([g] + [h] — [gh])
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So A is a monomorphism. X is not (in general) an epimorphism since in H?(G, A),
there is no condition that the cocycles should be symmetric:

e(g,h) = @(hk) — o(gh, k) + (g, hk)

o(h,9) = ¢(g,1) — p(hg,l) + @(h, gl)

We have the isomorphism 3 : H?(G, A) — E(G, A) given by cocycles in H?(G, A)
give extension with that cocycle as factor set. Hence we have a monomorphism
Ez(G,A) — E(G, A). d

10.2. The case G is finite cyclic.
Theorem 10.2. Ez(Zy,, A) = E(Zm, A) as abelian groups.

Proof. We must show that the composition A/mA ~ Exty(Zy,, A) — Exty, | (Ztrivial A) ~
A/mA gives identity. Start with Ext}(Z,,, A). Fix the projective resolution of Z,,

0 — 7277, -0
i(l) = m, n(l)=1

By the comparison lemma we have

Z - 7 > Zm
f1I fOI lem
dl d() €
L2y X Ly X L | X E —> Z[Zy X Zpy| — Z[Zm] —> Zm

Set [i] = [j] < i = jmodm.

mho(li]) = eli) =
fodo([5,k]) = folls] + [K] = [ + k]) = ifa ([, k]) = mfa([j, k])
fl(dl([J’k’lD) = fl([kvl]_[.7+k,”+[jak+l]_[J7k]):0

So let’s define such a family {fi}i:O,l :

0 j+k<m 0 j+k<m

folil =7 = j—i—k—(j—l—k)modm:{ m jiksm fl([j,k])={ 1 j+k>m

Let a represent @ € A/mA.

ok = A Da={ | TTRST

is a 1-cocycle:

edi([5, k1) = (k1] = [ + k1 + [k +1] = [5,k])
= fillk)a— f[1(lG+k Da+ f1(l5,k+ e — f1([4, k])a
= fl([k’l] - [] + k),l} + [.77k + l] - [.7) k])a = fldl([jvk’l])a =0a=0

and a 2-cocycle in H?(Z,,, A). For the E(Z,,, A), we have the specific resolution of
the finite cyclic group Z,, and the bar resolution, so there exists a lifting g such
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that the diagram

2170 25 21200 N 21200 25 2120 S T
93‘[ QQT 91‘[ QOT 1z,
F3 62 > F2 61 > F1 50 > FO ‘ - 7
commutes. Set (j) = (k) <= j = kmodm.
N(G) = O+ + .+ m-1D)GH=G+0+D+..+(G+m—1)
= (0)+ (1) + ...+ (m —1), independent of j € Z,,.
D.((5)) = (1) —=(0) () ={+1) =)
Let’s define the gg, g1, g2 from the commutativity conditions:
egl) = el)=0= g =1
g0(bols]) = go((G) [ =) = (7) 9o(l]) = 9o([0]) = (G) [| = [ = (4) — (0)
Du(pr(li) = Ds (Z () <j>> = > D)D) = D el (G +1) =) =) = (0),c(d) € Z
€L JE€Lm €L,

= g1([j]]) = (0) + (1) + ...+ ( — 1) may be chosen

9161([75, k) = () [K] =[5 + K] + [5])
Da(r) = G0 +{1)+..+(k—-1))
(1) = W+ <J+1>+ +<J+k—1>
—n(+E) = —(O+DM+..+G+Ek-1)
(2) = —0-M—-.-+k-1
3) a(li) = 0+ @) +. +<J—1>
If 5+ k < m, we get from [(3) + (1)] + (2) that

9101([j: k) = O+ D+ 4G = D+ +G + D+t G+ -k = D= (0) =)= =G+ k= 1) =0

Suppose j+k>m.Let j+k=m+ s, s € Zp,.

1 D+ ++G+E-1)
= N+F+D+..+(m-1D+0)+ (1) +..+(s—1)
(2 —(0)— (1) —..—(s—1)

)
(3) <0>+<1>+...+<j—1>
(2)

O+ W+ .+ -+ +G+D)+ o+ (m—=1)+{0) + (1) + ..+ (s — 1)
—0) = (1) — ... = (s —1)
= O+D+.+-L+H+F+H+..+m-1)=0)+(L)+...+(m—1) = N,
— wli={ g JTEsm
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Since
N*9252 = (N*D*)QB =0 = 9252 cker N, =ImD.,
9202([3, k. 1)) = Du(b),b= D  a(i) (i) € Z[Zp]
1€Lm
= D a@ i+ @)= > al@)i+1) - > a(i) )
V€L, 1€Lm, 1€Lm

Then for any Z[Z,,]-module homomorphism h({(j)) = a,Vi € Z,,,define:

wli.w = halik) = { 0 TTRS {0 dTisn

1) is a 2-cocycle:

$o2([5, k1) = hgada([j, k1)) = h(D. (b)) = h (Z a(i) (i +1) = ) ali) <i>>

1€ L 1€Lm

S a@h (G- 1) - 3 alh(() = 0
€L, 1E€Lm,
w-ua) = {020 JTEsm

s0 ¢ and 1 are cochain cohomologous, and give the equivalent extensions in E(G, A).
So Ez(Zm,A) = E(Zy, A). O

10.3. The case G is Zy, X Zp.

Lemma 10.3. Let R be a ring, and let P = (P* - C) be a complex over a

(left or right) R-module C. We consider C as a trivial complex concentrated in
dimension 0. All the homomorphisms below are R-module homomorphisms.
a) For P being a resolution, it is sufficient that there exist a homomorphism

q:C — Py
and a homotopy
Sn Py — Ppy1,n >0,
such that
rq = 1g,
S : 1p, «wgr
b) If both P,, n > 0, and C, are projective then the existence of such a q and

an S is a necessary condition.

Remark 10.4. In other words, the lemma above means: a) if P. — C' is a chain
homotopy equivalence, then P, — C' is a resolution; b) If P, — C is a projective
resolution, and C 1is projective, then P, — C' is a chain homotopy equivalence.

Proof. a) rq = 1¢ implies that r is an epimorphism. Let now x € kerr C Py. It
follows that

v=a—qr(@) = (1-qr) (@) = dS (),
i.e. x is a boundary. Let x € kerd C P,,, n > 0. It follows that

z = (1) (z) = (dS + Sd) (z) = dS (z)
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i.e. x is a boundary.
b) Since C' is projective, and r is an epimorphism, there exists a ¢ : Py — C
with r¢ = 1¢. Consider now two chain transformations:

1,qr: P, — P..

Since r (qr) = r, both are liftings of the identity homomorphism C — C. Tt
follows immediately from Lemma 1.22 that 1 and gr are chain homotopic, via some
homotopy S. (|

Example 10.5. Let G be a cyclic group with m elements. The group ring R = ZG
is isomorphic to Z[x]/ (x™ —1). The following is a projective resolution of Z!"*
(see [3], Theorem IV.7.1):

.—R-—R-—R-—R-57Z" 0

where r (x) = 1, and where ds : Psy1 — Ps is the multiplication by x — 1 when s
is even, and the multiplication by

m_1
¢ =l+4+a+a22+.. +2m1

== z—1

when s is odd. Consider the resolution above as a Z-module resolution. All abelian
groups involved are free, Z!"™ with one generator 1, and R with m generators
1,z,2% ...,2™ . Lemma 10.3b) implies that there exist a group homomorphism
q:7Z"" — R, and a homotopy (over 7)

S,:R— R,n>0,

such that
rq = lgiriv,
1p, —qr = dS,
1p, = dS+Sd,n>0.

n

However, we can construct q and S independently of [3]. It will follow from Lemma
10.3a), applied to Z-modules, that the sequence above is indeed a resolution of Z!"*.
Let ¢ (1) =1 and let

, A | l+z+22+..+271 if i>0
g = _ = >
Sar (=) z—1 { 0 if i=0 F=0
i 1 if i=m-—1
Sor1 (2') = {o if izm—1 F=0
Then:
rg(l) = r(1)=1 = rq= 1z,
i—1 _
(1—qr)(xi) = .’I,‘i—IZ(Z‘—l);_l:dS(gji),xleR:PO,
" —1 | ™ —gm 1 m—1 - -
s (o) esae) = { LTI T LA S
=1 z-1_  2-1 % Zf Z#mil

L _11+1:3:i:1(xi),xiGR:ng,k>0.

dS (z') + Sd (z') = (z—1)
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Definition 10.6. Consider two positive complexes (P, dy) of right R-modules and
(Q«,d4) of left R-modules. Let Vs = Ps @ g Q¢ We hope that no confusion arises
if we denote by the same letters

deg @ =ds® 1Qt Vs — stl,t;

dst ¢ =(—1)"1p, @04 : Vg — V1.

Clearly dd =0, 66 =0, do+6d = 0, even for s =0 ort =0, since we have assumed
that d_1 =0 and _1 = 0.

Let
m
W = @D Ve s,
5=0
and let
Dy Why1 — Wiy,m >0,
be given by
D(w) = dw+ dw,
w € Vim—s C Wy,
dw € Viim—s € Wp1,
ow € Vsmo1-5s S Wp_1.

It follows that
DD =dd+dé+dd+66=0+04+0=0,

and (W, D.) is a complex. That complex is called the tensor product of complezxes
P, and Q.:

W* = P* ®R Q*
Remark 10.7. If R is commutative, then Ps®pr Q¢ become R-modules (projective if

P; and Q: were projective). If R is arbitrary, then we can only claim that Ps @ Q¢
are Z-modules.

Remark 10.8. We will write ® instead of ® g when no confusion arises.

Proposition 10.9. Let P, and U, be positive complexes of right R-modules, and
let Q. and V, be positive complezes of left R-modules. Let further

L Pe— U,
9.9 + Qi —Vi,

be pairwise homotopic chain transformations:
S:fof,\T:g=og.

Then the transformations f ® g and f' ® g’ are homotopic.

Proof. Roughly speaking, S ® g gives a homotopy between f ® g and f’ ® g, while
f'®T gives a homotopy between f'®¢g and f'®g’. The desired homotopy between
f®gand f/®g is given by S ® g+ f' ® T. The only problem is to choose the
correct signs.

Consider first f ® g and f' ® g. For t @ y € P, ® Qy, let

Alzey)=S()@g(y).
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Then

(feg—fog/(

T ®Y)
= (f@)=f (=) ®@g(y)

= ((d5+5d) (x)) @ 9(y),

while

(DA + AD) (z ® y)
= D(S(2)@gW)+Adroy+(-1)°z®dy) =
= dS(@)@g(y) +S (@)@ (-1)" g (y) + Sd(x) @ g(y) + (-1)° S (v) @ g (y) =
= ((dS+5d)(z) ®gy),

since dg = gd. Therefore, A gives a homotopy between f ® g and f' ® g.
Analogously, let

Broy)=(-1)"f(r)oT(y).
Then
(ffeg-fogd)(zey)
= f@)e(ly) g @) =Ff(z)®((dT+Td)y),

while

(DB + BD) (z ® y)
= (-)’D(f'(x)@T(y)+Bdz@y+(-1)°z®dy) =

(—1)°df' (2) @ T (y) + f (2) @ 6T (y) + (—1)° 7" fd(2) @ T (y) + f' (x) ® TS (y) =
= f(2)@((dT+Td)y),

since df’ = f’d. Therefore, B gives a homotopy between f' ® g and f' ® ¢'.
Finally, A + B gives a homotopy between f ® g and f' ® ¢'. O

Corollary 10.10. If, in the conditions of the above Proposition, f and g are ho-
motopy equivalences, then

fOrRG: Pi®rQx — Ui @R Vi
is a homotopy equivalence.
Proof. 1t follows from the Proposition, that
(fffegh)(feg = [f'fegg=lreq.,
(feg(fteg!) = ffeg " 2luen,
O
Theorem 10.11. (simplified Kiinneth formula) Let C be a projective right R-

module, D be a projective left R-module, and let e : (Py,ds) — C and ¢ :
(Q+,6+) — D be projective resolutions. Then

6®R5 : (P*;d*) ®R (Q*aa*) HC@RD
is a resolution.

Proof. Due to Lemma 10.3b), ¢ : P, — C and € : Q. — D are homotopy
equivalences. Corollary 10.10 guarantees that e ® € is a homotopy equivalence as
well. Due to Lemma 10.3a), e ® ¢ is a resolution. (]
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Lemma 10.12. Let G be a cyclic group with m elements, and H be cyclic with n
elements. Then

R=Z[G x H| = Z[z,y]/ (™ — 1,y" —1).

Consider the following complex (Us,ds) of free R-modules ([i,m —i] are symbolic
generators for free modules):

Un = éR[i,mfi],

i=0
(=1 [s=1,m—s]—(y—1)[s,m—s—1] if s and m — s odd
Nyls—1,m—s|+(y—1)[s,m —s—1] if s even and m — s odd

d(ls;m —s]) = (x—1)[s—1,m—s] — Ny[s,m —s—1] if s odd and m — s even
Nyls—1,m—s]+Ny[s,m—s—1] if s and m— s even
where
m—1
N, = 2 : =l4a+z2+.. . +am
T —
-1
N, = yy—l =14+y+y’+...+y" L

Let further m: Uy — Z'™ be given by 7 ([0,0]) = 1. Then
r U, — 7
s a projective resolution over R.
Proof. Let
e: P, — 7'
be a projective resolution from Example 10.5. Here
P, =Ry =Z |G|~ Z[z]/ (™ - 1).

Analogously, apply Example 10.5 to the cyclic group H, and obtain a projective
resolution

£:Q, — T
where

Qi =Ry =Z[H|~Zly]/ (y" - 1).
Forget temporarily about G- and H-module structures, and consider the two reso-

lutions as free Z-module resolutions of a free Z-module Z!"**. Using Theorem 10.11,
construct a free Z-module resolution

U* - P* Xz Q* — Ztr“}-

It is easy to check that this resolution is actually a free resolution over the ring
Z |G x H], because

R ®z Re = Z |G x H]
as abelian groups, while all differentials D, in the complex, as well as the projection
7 Uy — Z!" are in fact G’ x H-module homomorphisms. O

Lemma 10.13. E(Z, X Zy,Z,) ~ Zy, X Ly, X Zy,.
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Proof. By taking Homzay m)(—, A) on the projective resolution in Lemma 10.12,
we get

0— HomZ[GXH](Zm”mZ,A) — A — AXA — AXAXA — AXAXAXA — ..
where the differentials are some maps consisting of D, (g) and N, (g). When A is the
trivial G x H-module, D, (g) (a) = 0, N, (g) (a) = ord(g)a. When G = H = A = Z,,
we get that N, (g) (a) =0 € Z,, so all differentials in between the A’s are the zero
map. Hence, H?(G, A) ~ Z, X Zy, X ZLy. O
Theorem 10.14. The natural homomorphism

En(Zy % T, L) — E(Zy X Ty, L)
is a monomorphism, but not an isomorphism.
Proof. Ez(Zy X Ly, Lyp) = Ly X Ly, while E(Zy X Ly, L) ~ Ly X Lp X L. O

Remark 10.15. [t is well-known that there are two non-isomorphic non-abelian
groups of order p3. Let us denote them G (pg) and H (pg), The center of both is a
cyclic subgroup with p elements. The group E(Z, x Z,,Z,) consists of p* elements,
and describes central extensions

0 — 2, —E— Zy,x7Z, — 1.

The zero element of E(Zy X Zy,Zy) corresponds to the case E ~ Zy X Ly X Lyp.
Some p? — 1 elements of E(Zy, X Ly, ZLy) correspond to the case E ~ 7y X Zy2. The
remaining p> — p® elements are subdivided into two classes, corresponding to the
two cases E ~ G (p*) and E ~ H (p*).
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