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“And it is He (Allah) who sends the winds as good tidings before His mercy” 
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Abstract
Wind energy conversion systems, such as wind farms, are growing in numbers and capacity all 
over the globe. The onshore wind energy generation sector witnessed an increase of 
approximately 144 TWh during 2020, with onshore wind farms capacity addition of 108 GW, 
which is twice as much as the added capacity during 2019 (IEA, 2021). This staggering increase 
in capacity imposes higher need for improved methodologies and expertise, in measuring and 
improving the performance of wind farms.  

Cold climate regions are known to have an appealing potential for attracting wind farms 
installation and investments. However, the weather conditions in cold climate regions impose 
risks and challenges to the operation and maintenance of wind turbines, and to the workers at 
wind farms. Another challenge prevails in the lack of data and expertise related to wind energy 
projects in cold climate regions, due to the fact that wind farms installations are relatively new 
in these regions. Furthermore, cold climate regions are more sensitive to climate changes than 
other parts of the globe, which increases concerns about the environmental impact of increased 
investments in wind farms in those regions.   

The risks and challenges discussed in this thesis can be classified in different ways, some risks 
are induced by weather conditions that affect the operation and performance of wind turbines, 
such as the reliability, availability, and maintainability of wind turbines, and there are the risks 
that are induced by the wind farms that will affect the societal, the economic, and the 
environmental status of the surroundings of wind farms.  

This thesis introduces applicable methodologies that can be used to measure performance-
related aspects of wind farms in cold climate regions, on different levels, and operating under 
different scenarios. Moreover, in a performance-related context, a methodology for measuring 
the resilience of wind farms facing disruptive events is introduced, and lastly, the different risks 
related to the operation of wind farms in cold climate regions are identified and analyzed 
through a methodology that allows for proper ranking of risks to prioritize the measures that 
can be used to mitigate those risks. 

Keywords: wind farm; wind turbine; cold climate regions; Arctic region; overall
performance index; resilience assessment; risk assessment; operation and maintenance. 
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Abbreviations 

WF Wind farm 

WT Wind turbine 

CCR Cold climate region 

MW Megawatt 

kW kilowatt 

OPI Overall performance index 

MCDM Multi-criteria decision-making 

WSM Weighted sum method 

IEC International electrotechnical commission 

ISO International organization for standardization 

NOK Norwegian krone 

BN Bayesian network 

LCOE Levelized cost of energy 

CAPEX Capital expenditures 

OPEX Operational expenditures 

CA Communication availability 

CMS Condition monitoring system 

SCADA Supervisory Control and Data Acquisition 
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Notations 

R(t) Reliability 

F(t) Probability of failure 

p Probability of an event 

λ Number of events over a specific period, the mean value of the Poisson 
distribution 

t Fixed time interval 

k, x Number of events the Poisson distribution finds the probability of 

ρ Restoration 

R Reliability conditional probability  

M Maintainability conditional probability 

S Supportability conditional probability 

O Organizational resilience conditional probability 

d  Throwing distance 

D Rotor blade diameter 

H Hub height 

v  Wind speed 

Wi Relative weight of performance indicator 

Si Score of performance indicator 

NoisyOrDist  Noisy or distribution function 

NoisyAndDist Noisy and distribution function 

Xn Variables in a joint probability distribution 

μA(x) Membership function 

X Universal set containing all values of the inputs to the fuzzy logic 
process 

A Fuzzy set 

(a, b, c) The three points denoting the triangular fuzzy membership function 
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Chapter 1 
1 Introduction 
1.1 Wind energy in cold climate regions 
Wind energy applications are flourishing in cold climate regions (CCRs). CCRs are recognized 
as regions that experience a minimum hourly temperature at or below -20°C for at least 9 days 
per year when measurements are taken for a long term such as 10 years or more of measurement 
(Lehtomäki et al., 2018). Moreover, the long-term average temperature of the location should 
be below 0°C (Lehtomäki et al., 2018). According to the Global Wind Energy Council, the 
annual rate of increase of wind energy capacity in CCRs exceeded 20% compared to before 
2010  (GWEC, 2011). According to the Wind Power Monthly market update (Lehtomäki, 
2016), around 100 Gigawatt (GW) of wind energy were installed in CCRs by the end of 2015. 
The same report anticipated that the increase in the installed capacity of wind energy in CCRs 
would reach 12 GW per year. This significant increase in this sector’s investments should be 
accompanied by extensive research, to cope with the challenges and risks that might be faced.  

Most of the challenges and risks that face wind energy applications installed in CCRs are due 
to the harsh weather conditions in CCRs. These risks and challenges affect the performance of 
wind farms (WFs), and their resilience, which is defined as the ability of a  technological system 
to restore its capacity to perform at an acceptable level, when encountering disruptive events 
(Firesmith, 2019). The majority of current studies concerning the performance of WFs in CCRs 
focus on the effects of icing on the structural behavior of WTs (Alsabagh et al., 2013), the 
resulting power losses due to harsh weather conditions (Kilpatrick et al., 2020), the currently 
used anti/de-icing technologies (Wei et al., 2020) (Dai et al., 2012) (Parent and Ilinca, 2011), 
and risks caused by ice fall, ice throw, and thrown blade parts (Bredesen and Refsum, 2015) 
(Rastayesh et al., 2019). What characterizes these studies is that they mostly focus on the 
technical part of the performance of WFs, at the expense of other performance aspects that 
concern primarily the risks and challenges caused by the operation of WFs, which might affect 
the surrounding environment, community, and economy, characterized by the sustainability 
performance. 

Similarly, risks related to WFs in CCRs can be classified into risks caused by harsh weather 
conditions, such as ice accretion on the blades of WTs, snow accumulation on roads of WFs, 
and extremely cold temperatures that affect the dexterity of laborers at WFs, and risks caused 
by the WFs that affect their surrounding environment, community, and economy, such as the 
impact of WFs on wildlife, the noise and visual annoyance to nearby residents, and their 
economic situation. The analyses of these risks can provide a holistic view of the different risks 
that are important for decision-making by designers of WFs, stakeholders, and the community.  

Additionally, the performance of WFs under disruptive events, which could be caused by 
unpredictable extreme weather conditions taking place in CCRs, can be an interesting topic, 
expressed by the resilience of WFs, which is not researched enough in the literature. There is a 
lack of a sufficiently comprehensive framework for the resilience of WFs in CCRs, that 
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discusses resilience from different aspects, which can be an addition to researches such as 
(Skobiei et al., 2021), where the resilience of offshore WFs is discussed in the light of one 
factor, which is the redundancy of operating vessels to support the maintenance activities. 
Considering several different factors, affecting and shaping the resilience of WFs in CCRs, can 
provide a more comprehensive framework for measuring resilience, and a demonstration of the 
interactions between such factors. This can be attained by utilizing the concept of conditional 
probability as an example, and by using the Bayesian Networks to create different operating 
scenarios. 

The current thesis proposes a hierarchical structure for the performance of WFs, consisting of 
the technical performance, which can be measured by certain indicators such as the reliability 
of the wind turbines (WTs), their capacity, and availability. The other part the of performance 
structure is the sustainability performance, which is concerned with the impacts WFs have on 
the surrounding environment, community, and economy. Furthermore, the thesis proposes 
methodologies to calculate the performance of WFs in CCRs, by calculating an overall 
performance index (OPI). Moreover, the thesis introduces a methodology to measure the 
resilience of WFs in CCRs under various operating scenarios using the Bayesian networks and 
analyzes the related risks to WFs in CCRs with the application of Fuzzy logic tools. 

1.2 Problem definition 
WFs in cold CCRs are subject to several risks that affect their performance. The data and 
information on the performance and the associated risks to WFs in CCRs might be lacking and 
insufficient, due to the fact that wind energy applications in such regions are relatively new. 
For example, in 2010, the total installed wind energy capacity in Sweden was 2,163 MW, of 
which only 124 MW was located in cold climate regions. Norway, in the same year, had a total 
installed wind energy capacity of 436 MW, with only 48 MW installed in cold climate regions 
(Battisti, 2015). Today, the total wind energy capacity installed in the northern part of Norway, 
in the counties of Nordland, Troms, and Finnmark, has reached 473 MW, which is nearly 10 
times the capacity installed 10 years ago in the same region, the Arctic region. It can be said 
that the Arctic region and most cold climate regions are among the largest “non-standard” 
markets in wind energy today (Lehtomäki et al. 2018).    

The newness of the wind energy market in CCRs entails less expertise in the operational 
conditions that are experienced by WFs, less available data on the operation and maintenance 
of WTs under severe weather conditions, leading to less comprehensive risk analysis of 
potential risks, and minimal research on the resilience of WFs in case of unexpected disruptive 
events taking place.  

In order to proceed with a comprehensive assessment of the performance of WFs in the light of 
potential risks, this study suggests a number of methodologies that can be applied to calculate 
the overall performance of WFs, identify and analyze the potential risks to and from WFs in 
CCRs, and calculate the resilience of WFs under various operating scenarios, induced by the 
weather conditions encountered in the CCRs.  
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1.3 Purpose and objectives 
The purpose of this research is to propose methodologies that can be applied to enhance the 
performance of WFs in CCRs, and identify the potential risks and challenges that can emerge 
specifically in CCRs, and affect the performance of WFs, by attaining the following objectives: 

1. Developing an index for WFs operating in CCRs that calculates the overall performance 
of WFs, by combining the technical aspects and the sustainability aspects of WFs. 

2. Identifying the most prominent risks related to WFs in CCRs and proposing a method-
ology to analyze those risks.  

3. Assessing the resilience of WFs in CCRs, which can be done by developing a method-
ology, that calculates the resilience under various scenarios that differ in severity. 

1.4 Research questions 
In order to fulfill the above-mentioned purpose, three research questions have been formulated 
in order to help with identifying the key purposes of the research as follows: 

Q1. What are the performance aspects that determine the overall performance of WFs 
operating in CCRs and how can they be measured? 
Q2. What are the risks and challenges related to WFs in CCRs during their operation and 
maintenance and how to analyze them? 
Q3. How to measure the resilience of WFs in CCRs under different operating scenarios, 
including disruptive operating conditions? 

These three research questions have been investigated throughout the 6 papers included in this 
research. The papers attempt to study and discuss the different aspects mentioned in the research 
questions. Table 1 shows which of the research papers covered and answered which of the 
research questions.  

Table 1: Papers covering research questions 

 Paper 1 Paper 2 Paper 3 Paper 4 Paper 5 Paper 6 

Q1       

Q2       

Q3       

 

1.5 Scope and limitations 
The scope of this research covers the assessment of risks and resilience of the performance of 
WFs located in CCRs. The research focused on the Arctic region of Norway as a part of the 
CCRs. The data analyzed in the papers were gathered from WFs located in the Arctic region of 
Norway. However, the methodologies applied in this research are applicable to WFs located in 
CCRs or in other non-CCRs.   

Regarding the performance of WFs in CCRs, the research is limited to qualitatively calculating 
an overall performance index for WFs, by measuring two categories of performance indicators: 
the technical performance indicators, and the sustainability performance indicators. The 
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research calculated and compared the overall performance index of a WF located in a CCR to 
another that is located outside a CCR. 

Regarding the resilience of WFs, the research is limited to certain factors contributing to 
shaping the resilience of wind farms in CCRs. Those factors are the reliability of WTs, the 
maintainability of the WTs, the supportability of the WF, and the organizational resilience of 
the WF. Moreover, the research calculates the resilience of WFs as a percentage and was limited 
to three main operating scenarios, which are the non-cold climate operating conditions scenario, 
the cold climate operating conditions scenario, and the black swan operating conditions 
scenario. 

Regarding the analysis of risks to WFs, the research is limited to analyzing 6 types of risks, 
which are i) the increased stoppage rate of WTs due to harsh weather conditions, ii) ice throw 
from wind turbines, iii) cold stress to workers at wind farms, iv) limited accessibility to wind 
farms due to snow cover on roads, v) environmental risks caused by the wind farms, and vi) the 
social opposition risk to installing WFs in CCRs. The research aimed at ranking these 6 risks, 
depending on their probability of occurrence and severity of consequences, and making a 
comparison in terms of the ranking of these risks between a WF located in a CCR and a WF 
located outside this region. 

1.6 Data gathering 
In order to achieve the goals and objectives of this study, data from two WFs in the Arctic 
region of Norway were collected throughout this study. Two non-disclosure agreements had to 
be signed with the two companies owning the two WFs. The gathered WFs data consisted of 
alarm logs which indicated errors and potential failures the WTs experienced, in addition to the 
time they were detected and their duration, ice detection events on the blades of the WTs, and 
the duration of each corresponding stoppage caused by ice accretion, the unavailability of 
communication events between the WTs and the supervisory system, power production-related 
conditions such as wind speed, nacelle position, rotor and generator speeds, amount of power 
produced by each WT, as well as maintenance reports of WTs, which showed the type of failure, 
the replaced parts, the maintenance activity duration, and the number of personnel carried out 
the maintenance activities.  

In addition, data were collected from experts in the wind energy field, analyzed, and used to 
make up for the lack of data in certain areas. For example, in Paper 1 experts were asked to 
assess the relative weight of each performance indicator qualitatively, by giving each indicator 
a value between (1 and 10), depending on the importance of the indicator to the overall 
performance of the WF. In Paper 3, experts provided values (from 0 to 10) for the probabilities, 
consequences, and risk levels in order to plot the membership functions, which were used later 
in the fuzzy logic process to rank the risks identified in the paper. 
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1.7 Thesis structure 
Chapter 2 presents the background upon which the thesis is built, which encompasses the 
hierarchical structure of the overall performance of WFs, the resilience of WFs in CCRs, and 
the identification of WFs-related risks in CCRs. Chapter 3 introduces the research 
methodologies used to calculate the overall performance index of WFs in CCRs, their resilience 
under three distinct operating scenarios, and the analysis of six identified risks.  The discussion 
and results of the application of the proposed methodologies, using WFs in the Arctic region of 
Norway as case studies, are illustrated in Chapter 4. Finally, the conclusions are given in 
Chapter 5.   
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1.8 Description of publications 
Paper 1 

Mustafa, A. M., A. Barabadi, T. Markeset and M. Naseri (2021), An overall performance index for wind 
farms: a case study in Norway Arctic region, International Journal of System Assurance Engineering 
and Management. 

My contribution is developing the methodology used in the paper, communicating with WFs 
and collecting performance data from one WF, communicating with experts and collecting their 
answers, analyzing the data, and writing the paper. Masoud Naseri helped me with the 
calculation made in the paper. Abbas Barabadi and Tore Markeset reviewed the paper and 
provided comments to improve it.  

In Paper 1, we developed a methodology to measure the performance of WFs, by designing a 
set of performance indicators, that represent the technical and sustainability performance 
aspects of WFs. Experts in wind energy field provided their assessments regarding the relative 
weight of each performance indicator. Furthermore, A set of criteria was defined for each 
performance indicator, and by using the weighted sum method, which is one of the famous 
methods for multiple-criteria decision making (MCDM), the overall performance index was 
calculated. This methodology was applied to a WF in the Arctic region of Norway. The 
resulting overall performance index was 61.3%, which indicated that the WF performance 
could be described as good. Furthermore, the same methodology was applied to a WF located 
in a non-cold climate region. Due to the fact that the sustainability performance of this WF was 
lower than the cold-climate WF, the resulting overall performance index was calculated to be 
nearly 60%. 

Paper 2 

Mustafa, A. M. and A. Barabadi (2021), Resilience Assessment of Wind Farms in the Arctic with the 
Application of Bayesian Networks, Energies, 14(15): 4439. 

My contribution is developing the methodology used in the paper, collecting the data of a WF 
in the Arctic region of Norway, developing and mapping the Bayesian network, running the 
network, analyzing the data, and writing the paper. Abbas Barabadi reviewed the paper and 
provided comments to improve it.  

In Paper 2, we developed a methodology, using Bayesian networks, to calculate the resilience 
of WFs as a percentage, while operating under cold climate conditions, and subjected to 
disruptive events. Three scenarios were defined, and the corresponding resulting resilience was 
calculated for each scenario. The first scenario implies that the WF operates under non-cold 
climate conditions, in which the calculated resilience of the WF was the highest. The second 
scenario is when the WF is operating under cold climate conditions, in which the WF shows a 
slight degradation in the calculated resilience. The third and final scenario is a black swan 
scenario, during this scenario the resilience of the WF is significantly reduced due to the severe 
characteristics of the operating conditions of this scenario. 
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Paper 3 

Albara M. Mustafa, Abbas Barabadi. Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms 
Operation in Cold Climate Regions. Energies. 2022; 15 (4):1335. 

My contribution is developing the methodology of the paper, collecting the data of a WF, 
collecting and analyzing responses from experts, developing the membership functions and 
fuzzy logic inference using MATLAB fuzzy logic toolbox, running the model, and writing the 
paper. Abbas Barabadi reviewed the paper and provided comments to improve it.  

In Paper 3 we reviewed the most prominent risks that WFs in cold climate regions are subjected 
to. In total, 6 risks were identified and analyzed. Experts were communicated to provide their 
subjective values of probabilities, consequences, and output risk levels (low, medium, high, 
etc.) for each risk. Afterwards, a set of rules were defined for the different combinations of 
probabilities and consequences during the fuzzy inference step. A WF in the Arctic region of 
Norway was selected as a case study, the fuzzy logic toolbox in MATLAB calculated the 
resulting risk level of all the identified risks for the selected WF, which led eventually to ranking 
them according to the resulting risks levels. In addition, a WF in a non-cold-climate region was 
selected to demonstrate the effects of the Arctic operating conditions on the ranking of risks. 

Paper 4 

Mustafa, A. M., A. Barabadi and T. Markeset (2019), Risk assessment of wind farm development in ice 
proven area, Proceedings of the 25 th International Conference on Port and Ocean Engineering under 
Arctic Conditions (POAC), June 9-13, 2019, Delft, The Netherlands  

My contribution is reviewing the different types of ice and snow that can accrete on WTs, and 
the different effects and risks such accretion may represent, during operation and maintenance 
activities. Moreover, I developed a cross-tabular assessment table that ranks the different types 
of ice and snow according to the potential risk they may represent to the different parts of 
onshore and offshore WTs. Abbas Barabadi and Tore Markeset reviewed the paper and 
provided comments to improve it.  

In Paper 4 we outlined the different types of icing that may affect the performance and 
availability of onshore and offshore WFs located in CCRs. The main types of ice included in 
the paper are i) Atmospheric icing, ii) Super-structure Icing, and iii) Sea ice. The paper 
describes the process of formation of each type of ice, and which components in WTs are prone 
to each ice type. Furthermore, the paper discusses the effects of icing on WTs and WFs in terms 
of i) mechanical equipment performance, ii) operation and maintenance crew performance, iii) 
accessibility to WFs and iv) public safety risks. Lastly, the paper proposes a cross-tabular 
assessment to assess the impacts of icing on the safety of WTs and WFs in CCRs. The 
conclusion of the paper is that glaze ice and freezing rain and snow induce the highest impact 
on the structure of WTs. Moreover, operation and maintenance crew performance is highly 
affected by glaze ice, as it causes slipping, tripping, and falling risks. 
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Paper 5 

Mustafa, A., T. Markeset and A. Barabadi (2020), Wind Turbine Failures Review and Gearbox 
Condition Monitoring, ESREL, Milano, Italy, 

My contribution is reviewing the research done on the measured failure rates of the components 
of WTs, and the resulting downtime of those failures, in order to determine the most critical 
component to the availability of WTs. Moreover, I reviewed the commonly used condition 
monitoring systems (CMS), and Supervisory Control and Data Acquisition (SCADA) systems, 
to track the health conditions of the different components of WTs. The paper concludes, as 
other research with a similar aim, that the most critical component to the availability of WTs is 
the gearbox. Based on that, I reviewed the causes of gearbox failures and the used CM systems 
to monitor its health condition. Abbas Barabadi and Tore Markeset reviewed the paper and 
provided comments to improve it.  

Paper 5 reviews the critical failures WTs usually experience during their operation by 
determining the failure rates of components and the resulting downtime from each failure. In 
addition, the paper provides a brief review of the current CMS and the SCADA systems utilized 
to monitor the condition and performance of WTs. The paper goes further into Investigating 
the causes of gearbox failure, which was determined to be the most critical type of failure to 
WTs, based on the review, and reviews the current CM methods used to monitor the health 
condition of the gearbox. 

Paper 6 

Mustafa, A. M., T. Markeset and A. Barabadi (2020), Downtime Cost Estimation: A Wind Farm in the 
Arctic Case Study, Esrel 2020, Italy,  

My contribution is reviewing the contributing costs to the levelized cost of energy (LCOE) 
from WFs, the risk factors affecting the values of LCOE, selecting a WF in the Arctic region 
of Norway as a case study, calculating the downtime cost by making use of the LCOE of the 
WF, caused by the failure of a gearbox in a WT. Abbas Barabadi and Tore Markeset reviewed 
the paper and provided comments to improve it.  

Paper 6 proposes a method to calculate the monetary cost of downtime resulting from a failure 
in a WT or a WF. The main contributing factors to the LCOE of WFs are the capital 
expenditures (CAPEX) and the operational expenditures (OPEX). The paper explains the 
details of each of these contributing factors and how to combine them in an equation to calculate 
the LCOE. Furthermore, the paper outlines the risk factors that might affect the values of the 
variables in the LCOE equation. In addition, a WF in the Arctic region of Norway was selected 
to calculate the monetary losses resulting from the downtime caused by the failure of a gearbox 
in one of the WTs. 
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1.9 Research strategy and design  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this research certain aspects related to the performance of WFs, operating in CCRs were 
covered in six published papers. Figure 1 describes the overall process followed in this research 
and connects each of the six papers to the process. The process is divided into 3 main activities. 
The first activity is to identify the key performance indicators of WFs in CCRs and to calculate 
the overall performance of WFs by developing an overall performance index, presented mainly 
in paper 1. The second main activity is to identify the main risks affecting the performance of 
WFs in CCRs, as well as the main risks WFs induce on their surroundings in CCRs, which were 
covered and ranked in paper 3. Lastly, the third main activity is to identify the main aspects 
contributing to the resilience of WFs in CCRs, and to develop a methodology that measures the 
resilience of WFs when operating under different operational conditions in CCRs, which were 
covered in Paper 2.  

It should be noted that identifying the key risks to WFs in CCRs, in the second main activity of 
this process, helps with the identification of the most affected WFs performance indicators by 
the operational conditions in CCRs, described in the first main activity. Moreover, it helps with 
the identification of the main contributing aspects to the resilience of WFs in CCRs, presented 
in the third main activity. Therefore, the second main activity in this process can be described 
as a central activity to the whole research process.  

Papers 4, 5, and 6 discussed partially the aspects related to the three main activities. Therefore, 
the discussions in the following sections of this thesis are mainly focusing on papers 1, 2, and 
3 that cover the three main activities extensively. 

 

 

Figure 1. Research process and strategy for this study 

Performance of wind farms (WFs) in cold climate regions (CCRs) 
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Chapter 2 
2 Background 
2.1 Overall Performance of wind farms in cold climate regions 
WFs located in CCRs are subjected to a plethora of challenges. Most of these challenges emerge 
from the harsh weather conditions such as very low temperatures, ice accretion on the blades 
of the WTs, and snow accumulation on roads of the WFs, which can hinder the accessibility to 
the WTs in case they needed maintenance (Lehtomäki et al., 2018). Such challenges affect the 
technical performance of the WF, which is related to the amount of power produced by the WF 
(Koo et al., 2018), and can be described and measured by certain indicators, which were 
developed in this thesis, and described in Figure 2, where the technical performance is 
constituted by the quality, availability, and capacity performance indicators. In addition, the 
availability performance indicator can be furtherly sub-categorized into three sub-performance 
indicators, which are the reliability, maintainability, and supportability performance indicators. 

On the other hand, the operation of WFs impacts the surroundings. The impacts can be 
measured by the sustainability performance of the WF. The social and safety, environmental, 
and the economic performance indicators represent the three pillars of sustainability 
performance indicator of a technological system (Diaz-Balteiro et al., 2017). 

 

 

 

 

 

 

 

 

Figure 2. The overall performance model for wind farms 

2.1.1 Technical performance 
Technical performance is mainly related to the technical functions of WFs, in terms of the 
amount of electricity generated (Koo et al., 2018), and how they are affected under cold climate 
conditions. Technical performance refers to the importance of the quality of the power produced 
by the WFs, as well as their capacity and availability performances, which can be described in 
terms of the reliability, maintainability, and supportability of the WFs (IEC, 2015). 

2.1.1.1 Quality performance 
The quality performance of WFs reflects the design and manufacturing quality of WTs and the 
WF layout. It also implies maintaining stability between generated and demanded power 
(Arulampalam et al., 2006). Unstable weather conditions, commonly occurring in CCRs, can 
cause fluctuations in power production due to significant variations in wind speed. Other 
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hazards, such as ice accretion on the blades of WTs (Alsabagh et al., 2013) and limited 
accessibility to WFs due to snow accumulation on the roads (Lehtomäki et al., 2018), will also 
limit maintenance activities and reduce the quality of power production.  

2.1.1.2 Capacity performance 
The capacity performance of a WT can be defined as its ability to deliver power according to 
the design capacity, or according to current demands, in a fixed period with given production 
resources (Barabady et al. 2010, Shahidul et al. 2013). In light of this definition, the capacity 
of a WF should reflect the highest sustainable rate of power produced that can be achieved, 
given the specifications of the WF, the current resources, weather conditions, and maintenance 
strategies. Capacity can duly affect the efficiency and effectiveness of the operation of a WF 
(Isaza et al. 2015).  

WFs in CCRs are challenged by severe weather conditions, such as ice accretion, snow 
accumulation, and low temperatures, which can lead to a reduction in wind farm capacity. In 
addition, the selection of a suitable maintenance strategy plays an important role in attaining 
the maximum capacity of a WF. Considering these factors, the capacity performance of WFs is 
expected to be degraded under CCR weather conditions. 

2.1.1.3 Availability performance 
Availability is defined as “the ability of a functional unit to be in a state to perform a required 
function under given conditions at a given instant of time or over a given time interval, 
assuming that the required external resources are provided” (ISO/IEC-2382, 2015). According 
to the International Electrotechnical Commission (IEC), the availability performance depends 
upon the combined characteristics of the reliability and maintainability of the item and the 
maintenance support performance (IEC, 2015), which will be discussed in light of CCR 
operational conditions.  

i) Reliability performance: reliability is defined as “the ability of a component or a system to 
perform its required functions without failure during a specified time interval, under given 
conditions”(IEC, 2015). The main aim of system or equipment reliability is to prevent or 
mitigate the failures that lead to downtimes and reduced power production from WFs. 

The rate of failure of WT components may increase under severe weather conditions. Ice and 
snow may accumulate on the blades of WTs. Snow infiltration inside the nacelle and extreme 
temperatures may lead to condensation in the electronics and, consequently, can lead to 
electrical failure (Laakso et al. 2003). For the aforementioned reasons, the blades, control 
system, and electrical system are responsible for the highest failure rates (Pérez et al., 2013). 

Poor component quality of, for example, the variable pitch system, the frequency conversion 
system, the electrical system, the control system, the gearbox, the generator, and the yaw system 
can lead to WT breakdown incidents, particularly under harsh weather conditions such as those 
found in CCRs (Zhang et al., 2013). Moreover, very low temperatures can change the properties 
of materials and fluids; for example, steel can become more brittle, and lubricants and hydraulic 
fluids’ viscosity increases (Barabadi and Markeset, 2011).  
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ii) Maintainability performance: Maintainability is defined as “the ability of an item to be 
retained in or restored to a state to perform as required, under given conditions of use and 
maintenance” (IEC, 2015). The maintainability of WTs in CCRs depends to a large extent on 
the accessibility to the wind farm/turbine to carry out the required maintenance and inspections. 
Snow accumulation on the roads of onshore WFs hinders the accessibility to the WTs and calls 
for snow-removal strategies, or the use of specially equipped vehicles, which will increase the 
cost of energy (Lehtomäki et al., 2018). Lower temperatures may affect the performance of 
several materials, such as iron and steel, polymers, and plastics, used in maintenance tools, 
which experience embitterment at cold temperatures (Markeset et al., 2015). Moreover, 
maintainability needs to consider human ergonomics, logistics management, design layout, and 
the level of experience and training of the maintenance personnel (Balindres et al., 2016). 
Figure 3 shows an example of the harsh weather conditions maintenance crews experience at 
Fakken WF, which may hinder proper maintenance activities. 

 

 

 

 

 

 

 

 

iii) Supportability performance: Supportability is defined as the “ability of an item to be 
supported to sustain the required availability with a defined operational profile and given 
logistic and maintenance resources” (IEC, 2015). The supportability of a WF is essentially 
connected to its maintainability performance, as supportability contributes to fast and frequent 
maintenance through timely repair/replacement of failed parts in order to maintain the 
availability of the WF (Kratz 2003). Based on that, numerous factors contribute to the 
supportability level achieved by WFs. These include logistics considerations of spare parts, 
personnel, procedures, test equipment, and integrated tools (Smith and Knezevic 1996).  

The availability and the location of spare parts have a great impact on the supportability of a 
product/system (Markeset and Kumar 2005). Spare parts storage at WFs with large-scale WTs 
is normally limited to small-size spare parts, as it might not be feasible to store large 
components, such as blades and gearboxes, due to size and capital investment. However, it is 
the failure of the large-scale components that decreases the availability of WTs significantly 
and results in the longest downtime, such as the case of the gearbox, which is responsible for 
almost 56% of the total downtime resulting from failures of WT’s main components (Artigao 
et al., 2018). Therefore, WF operators tend to order large-scale components from the suppliers 
once a propagation of failure is observed. In the Arctic region, as an example of a CCR, the 

Figure 3. Unclear visibility at Fakken WF due to snowy weather conditions (Mæhlum, 2013) 
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remote geographical location from suppliers, the cold and harsh climate, and the insufficient 
and inconvenient infrastructure can affect the effectiveness, and efficiency of the logistics of 
required supportability services, and the delivery of supplies (Gao and Markeset 2007, Barabadi 
2012). In addition, supportability was confirmed, during interviewing experts, to be one of the 
main challenges to WFs located in remote locations in CCRs. 

2.1.2 Sustainability performance  
Sustainability science focuses on the management of the relationship between the environment 
and humans (Afgan et al., 1998), by understanding the interactions between nature and society, 
meaning that the sustainability goals of a system are achieved through a scientific assessment 
of the current and the potential future conditions for the Earth System (Omer, 2008). 

Sustainability in power production systems implies increasing energy production continuously, 
using minimum material and energy, as well as non-hazardous materials, cleaning the waste 
materials resulting from that production in natural ways, decreasing the risks related to human 
health as far as possible, and using raw materials, including environmental resources, in an 
efficient way, which in turn results in minimum life-cycle costs (Hallstedt et al. 2010).   

The sustainability of WFs located in CCRs should comply with the principles of sustainability, 
which aim at preserving the ecosystem’s integrity and promoting human health while meeting 
the demands of the customer and society (Mayyas et al., 2012). Moreover, sustainability implies 
that WFs should be designed for disassembly, remanufacturing, and recycling, and should be 
highly recyclable at the end of their life. The conceptual priority in sustainability performance 
is mainly sustaining society and not explicitly the environment and the economy (Musango and 
Brent, 2011). Based on this, the sustainability performance indicators of WFs in CCRs are 
assessed by the following three impacts categories: 

• Environmental impacts  

• Social impacts 

• Economic impacts 

2.1.2.1  Environmental impacts of WFs in CCRs 
Certain CCRs such as the Arctic are known for their unspoiled nature and wilderness. There 
are plentiful resources of different fish species, planktonic organisms, and bird habitats, which 
also make the area vulnerable found in some CCRs. Moreover, it is estimated that the Arctic 
region might contain 13% of the world’s undiscovered oil and 30% of its undiscovered gas 
(Gautier et al., 2009). Pollution resulting from energy production from fossil fuels may have 
serious consequences for the sensitive environment found in CCRs, especially in the Arctic 
region. WFs, on the other hand, generate electricity carbon-free with no long-term waste,  and 
no cooling water (Pasqualetti, 2011), and are environmentally benign in several ways. 
However, their environmental performance needs to be assessed. 

Anti-/de-icing chemicals, particularly glycol compounds, such as ethylene, propylene, and 
alkaline, may be used to de-ice wind-turbine blades, which may create human safety and health 
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problems, cause environmental harm, represent a threat to surface and groundwater, damage 
roads and vehicles and may not be cost-effective (Back et al., 1999) and (Dai et al., 2012). In 
addition, WTs might be one of the reasons for bird mortality. However, research studies stated 
that, compared to fossil fuels, wind energy killed 20 times fewer birds, and the number of birds 
killed by WTs may be negligible compared to some other human activities (Sovacool, 2009). 
In addition, in the Arctic, as a CCR, WFs might be installed on important winter grazing areas 
for reindeer, which might lead to changes in reindeers’ density in the region, which might be 
noticed as well during the construction phase of WFs. 

2.1.2.2 Social and safety impact of WFs in CCRs 
WFs also have impacts on the surrounding community and its safety. For example, the noise 
emitted by WTs during their construction and operation, and the visual annoyance that might 
increase the opposition from the surrounding community to installing WTs in certain areas. 
Moreover, ice thrown from operating WTs might be a major concern in CCRs, as pieces of 
thrown ice might hit the surroundings, including people, cars, animals, and other facilities. 
However, this issue might be sometimes exaggerated, as WFs in CCRs are normally located in 
remote locations, and the severity of icing differs from one WF to another and does not even 
take place in some WFs, depending on the surrounding geographical and environmental 
conditions. This was proved during the author’s visits to WFs and by discussing this issue with 
operators of WFs in northern Norway.  

In another context, it can be claimed that governments are violating the rights of indigenous 
communities by approving wind energy projects in certain areas, causing cultural destruction. 
Constructing wind farms on Sámi lands in northern Scandinavia, for example, may be 
considered unethical and overtly political, simply because it might appear as a systematic 
dispossession of their lands and a lack of recognition of their rights (Lawrence and Moritz, 
2019).  

2.1.2.3 Economic impact of WFs in CCRs 
Wind energy projects create job opportunities for local communities throughout the wind 
farm’s lifetime, especially the planning and construction phases since wind energy investments 
are known to be capital-intensive, with capital costs representing nearly 80% of the total costs 
of a wind energy project over its lifetime and measured in €/kW (Blanco, 2009). In addition, 
wind energy promotes the stability of electricity prices in a country, by diversifying the sources 
of energy. However, most wind energy projects are subsidized by governments due to the high 
capital and operational expenditures (CAPEX & OPEX) of such projects. Still, technological 
advances contribute to decreasing these costs, and will eventually lead to a more effective 
utilization rate of WTs, which is reflected by the percentage of time the WT is operational 
during the 8760 h (365 × 24) of the year. Thereafter, wind energy projects can yield positive 
returns on investments. Without even financial support from governments. Moreover, as the 
prices of fossil fuel-based energy become more expensive, wind energy becomes more 
competitive. 
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2.2 Resilience of wind farms in cold climate regions 
The resilience of technological systems is defined as the extent to which the system can 
maintain a certain level of performance when encountered by disruptions (Firesmith, 2019). 
WFs in CCRs, as an example of a technological system, are prone to disruptions caused mainly 
by the harsh weather conditions that affect the resilience of WFs. Such weather conditions 
create uncertainties about the performance of WFs and how resilient WFs can be in the face of 
disruptions. 

Engineering resilience can be defined mathematically as the sum of reliability and restoration, 
as per Equation 1 (Youn et al., 2011). Restoration is defined as “the event at which the ‘up’ 
state is re-established after failure” (IEC, 2015). According to (Rød et al., 2016) restoration 
depends on several factors, which are (i) the system failure event (i.e. the reliability of the 
system), (ii) the maintainability of disrupted components, (iii) the supportability of maintenance 
activities, and (iv) the organizational resilience of the WF.   

Resilience (Ψ) = Reliability (R) + Restoration (ρ)    (1) 
By considering the uncertainties the weather conditions in CCRs may cause to the factors of 
restoration, a probabilistic approach can be designed to calculate the resilience, which was 
expressed in Equation 1, as a probabilistic value (between 0 and 1). Therefore, restoration can 
be expressed as the conditional probability of the previously mentioned four factors, as in 
Equation 2. 

Restoration (ρ) = (1-R) × M × S × O      (2) 
Where R, M, S, and O are the conditional probabilities of reliability, maintainability, 
supportability, and organizational resilience respectively. The values of these four variables are 
conditional, based on the weather conditions WFs experience in CCRs. Therefore, these four 
factors in addition to restoration and resilience are categorized as probabilistic output variables, 
with values depending on certain probabilistic input variables, as shown in Figure 4. 
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Figure 4. Input and output variables of the resilience of WFs (Mustafa and Barabadi, 2021) 
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1. Reliability (R(t)) can be probabilistically expressed as the inverse of the probability of 
failure (Rausand et al., 2020), as in Equation 3:  

R(t) = 1- F(t)        (3) 
Where F(t) is the probability at which the WTs stop operating due to hazards, caused by 
the harsh weather conditions in CCRs, or due to component degradation. For simplicity, 
Poisson distribution is used to represent the probability of the WT stoppage events, as 
shown in Equation 4 (2007): 

p(k;(0,t), λ) = (𝜆𝜆𝜆𝜆)𝑘𝑘

𝑘𝑘!
𝑒𝑒−𝜆𝜆𝜆𝜆      (4) 

Where k is the number of stoppage events of WTs the Poisson distribution finds the 
probability of, over a fixed period (0, t). λ is the number of WT stoppage events over a 
specific period, and it represents the mean value of the Poisson distribution.  

2. Maintainability. It reflects how easily the system can be maintained, or how quickly the 
component or the system can be restored to a state, where it can perform at an acceptable 
capacity (IEC, 2015). The maintainability of WFs in this paper is dependent on two 
factors, which are the labor dexterity when carrying out the maintenance activities, and 
the accessibility to the WF, which are both affected by the weather conditions in CCRs.  
 

3. Supportability. The supportability activities are tightly connected to the maintainability 
of WFs. Supportability to WFs in CCRs are mainly concerned with the on-site availa-
bility and the provision of WT spare parts, and maintenance tools that will help the 
service team to restore the performance of the WF and its availability, during and after 
disruptive events. Therefore, as shown in Figure 4, supportability is dependent on the 
redundancy of spare parts, and the accessibility to public roads to deliver the needed 
parts and tools from suppliers to the WF site. 
 

4. Organizational resilience. The resilience of a WF as an organization implies the capacity 
of the operational team to prepare for disruptive events, respond, and adapt to them, 
whether these disruptive events take place gradually or as sudden (BS-65000, 2014). 
Therefore, the probabilistic approach to measuring the organizational resilience of WFs 
in CCRs depends on: 

• Communication availability (CA), which encompasses the communication between 
the operational team and the WF through monitoring systems. Incidents that lead to 
loss of data gathered from WTs, through SCADA systems and condition monitoring 
systems, render the communication with the WF unavailable. A Poisson distribution 
is used to estimate the probability of loss of connection events (x), taking place over 
a specific period (0, t), with considering an average number of loss-of-connection 
incidents (λ). Hence, the probability of connection availability can be represented 
as per Equation 5 (Zio, 2007): 

 

CA = 1-p(x;(0,t), λ) =1- (𝜆𝜆𝜆𝜆)𝑥𝑥

𝑥𝑥!
𝑒𝑒−𝜆𝜆𝜆𝜆    (5) 

• On-time response to events. It represents how successful the response of the WF 
operator to the disruptive events the WF encounters, which can be also assessed by 
the percentage of times the operator takes action to respond to the disruptive event, 
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which can be described as an on-time response. For example, if 85% or more of the 
disruptive events are responded to by the WF operator within the first hour of their 
occurrence, then the WF operator can be described as resilient, and the on-time re-
sponse variable can be considered 100% successful (Hosseini and Barker, 2016).  
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2.3 Wind farms-related risks in cold climate regions 
Paper 3 differentiates between risks caused by the harsh weather conditions in CCRs that affect 
the technical performance of WFs, and risks caused by the WFs, which affect the surroundings 
of the WFs such as the environment and the nearby community. Based on that, six types of 
risks are analyzed, which are as follows: 

2.3.1 Risks caused by weather conditions that affect the performance of WFs  
The following risks affect the technical performance of WFs in terms of their reliability, 
maintainability, and supportability performances described earlier in Fig. 1, which in turn affect 
the availability performance of WFs and their power production. These risks are as follows: 

1. Increased WT stoppages due to harsh weather conditions (WT stoppage). This risk en-
compasses the stoppages WTs experience that is caused by the harsh weather condi-
tions, which affect the WTs and lead to increasing their stoppage rate in different ways. 
The physical properties of materials are affected by low temperatures in CCRs. For ex-
ample, the gearbox lubricating oil viscosity differs with variation in temperatures, when 
the temperatures are very low, the viscosity of lubricating oil increases, and flows more 
slowly, creating more friction and thus negatively impacting the efficiency of the gear-
box by overheating it and higher fatigue charges (Laakso et al., 2005). 
In addition, the ice accretion on the blades of the WTs leads to increased load on the 
structure of the WT, and imbalanced and unsafe operation, leading to shutting down the 
WT to avoid major losses such as losing the WT. As a consequence of that, the power 
production from the WT will be lost until the accreted ice melts down and the operation 
of the WT is restored (Andersen et al., 2011).  Figure 5 illustrates the different types of 
ice that accrete on different parts of both onshore and offshore WTs. These ice types are 
furtherly explained and discussed in Paper 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The two most common types of ice that accrete on the blades of onshore WTs are rime 
ice and glaze ice. Rime ice forms when supercooled water droplets freeze immediately 
upon impacting the surface of the WT blade, while glaze ice forms when the liquid 
water freezes shortly after impacting the surface of the blade (Bravo Jimenez, 2018). 
Glaze ice accretion forms near the freezing point (0 oC) and has strong adhesion to the 
surface, it is transparent and has a higher density than rime ice. On the other hand, rime 
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Figure 5. Ice types affecting onshore and offshore wind turbines (Mustafa et al., 2019) 
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ice has lower adhesion to the surface and has a white or opaque color, and can be easily 
removed compared to glaze ice (Xue and Khawaja, 2016). 

2. Cold stress to workers (Cold stress). Cold temperatures cause cold stress to crew work-
ers and limit their dexterity (Wærø et al., 2018). Serious cold-related illnesses and inju-
ries, caused by trench foot, frostbite, and hypothermia, may occur in case of extremely
cold temperatures, in addition to permanent tissue damage, and death that may result as
a consequence of major cold-related injuries (Mustafa and Barabadi, 2022).
High wind speeds and cold temperatures are the two main factors contributing to cold
stress for workers (Osczevski and Bluestein, 2005). Wind Chill Temperature (WCT) is
a measure that determines the likelihood that workers are subjected to the risk of frost-
bite, which can be calculated using Eqn. 6, where V is the wind speed (km/h) 10 m
above the surface and T is the air temperature (°C) (Osczevski and Bluestein, 2005):

𝑊𝑊𝑊𝑊𝑊𝑊[°𝐶𝐶] = 13.12 + 0.621𝑇𝑇 − 11.37𝑉𝑉0.16 + 0.3965𝑇𝑇𝑉𝑉0.16 (6) 

Table 2 has been generated using Eqn. 6. The table is used to determine whether the
workers at WFs in CCRs are subjected to the risk of frostbite or not, where the shaded
region indicates an increased risk of frostbite (Osczevski and Bluestein, 2005).

Table 2: Wind Chill Temperature (WCT) chart (Mustafa and Barabadi, 2022) 

Air Temperature (°C) 

10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 

W
in

d 
Sp

ee
d 

(k
m

/h
) 

10 9 3 -3 -9 -15 -21 -27 -33 -39 -45 -51 -57 -63 

15 8 2 -4 -11 -17 -23 -29 -35 -41 -48 -54 -60 -66 

20 7 1 -5 -12 -18 -24 -31 -37 -43 -49 -56 -62 -68 

25 7 1 -6 -12 -19 -25 -32 -38 -45 -51 -57 -64 -70 

30 7 0 -7 -13 -19 -26 -33 -39 -46 -52 -59 -65 -72 

35 6 0 -7 -14 -20 -27 -33 -40 -47 -53 -60 -66 -73 

40 6 -1 -7 -14 -21 -27 -34 -41 -48 -54 -61 -68 -74 

45 6 -1 -8 -15 -21 -28 -35 -42 -48 -55 -62 -69 -75 

50 6 -1 -8 -15 -22 -29 -35 -42 -49 -56 -63 -70 -76 

55 5 -2 -9 -15 -22 -29 -36 -43 -50 -57 -63 -70 -77 

60 5 -2 -9 -16 -23 -30 -37 -43 -50 -57 -64 -71 -78 

70 5 -2 -9 -16 -23 -30 -37 -44 -51 -59 -66 -73 -80 

80 4 -3 -10 -17 -24 -31 -38 -45 -52 -60 -67 -74 -81 

3. Limited accessibility to wind farms due to snow cover on the roads. This risk is primarily
related to the maintenance of WTs, as accumulated snow on the roads of a WF might
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hinder the accessibility to the defected WTs and delay the maintenance activity. Fur-
thermore, the WF will need to implement certain measures to overcome this challenge, 
either by using specially equipped vehicles such as snowmobiles and snow cats or by 
clearing off the snow on the roads, which can be costly (Lehtomäki et al., 2018). How-
ever, this issue is mostly encountered in case the maintenance strategy followed by the 
WF is a corrective maintenance strategy. Normally, WTs are monitored by condition 
monitoring systems (CMS), which will generate updated data about the health of the 
components of the WTs and will warn the WF operator, in case of unusual signals re-
ceived from the measuring sensors. More details about CMSs are discussed in Paper 5 
(Mustafa et al., 2020), where the condition monitoring of the gearbox is focused on. 

2.3.2 Risks caused by WFs that impact their surroundings. 
The following risks can be categorized as risks affecting the sustainability of WFs in CCRs, 
these risks focus on the impact of WFs on their surroundings, mainly the surrounding 
environment and community. These risks are described as follows: 

1. Risk of ice throw from WTs. When the accreted ice on the blades of operational WTs 
starts melting, accompanied by the centrifugal force of the rotating blades, ice will 
detach and be thrown away in pieces far from the WT, which might hit humans, ani-
mals, and damage nearby structures. In addition, the melting ice on the blades of idle 
WTs will fall, presenting a danger to workers who happen to be close to the WT. In 
both cases, the distance to which the detached ice pieces might reach can be calculated 
using Equations (6&7) (Seifert et al., 2003): 

 
d = 1.5 (D+H), for operational WTs   (6) 
d = v D/2+H

15
 , for idle WTs    (7) 

Where d is the throwing distance, D is the rotor blade diameter, H is the hub height, 
and v is the wind speed. 
 

2. Environmental risks. There are different impacts WTs have on the environment. For 
example, there have been debates over WTs being responsible for the killing of birds 
and bats (Pavokovic and Mandusik, 2006). However, studies show that other human 
activities are responsible for the killing of birds and other species as high as 20 times 
more than WTs, such as the extraction and burning of fossil fuels activities (Sovacool, 
2009). In addition, during the construction phase of WFs, surface or underground water 
might get polluted (Lu et al., 2019). In addition, pollution to water and the environment 
might take place in case chemical anti/de-icing compounds were used to prevent or 
remove the accreted ice off the blades. Moreover, lubricating oil may potentially leak 
from the gearbox, causing more pollution to the environment. Furthermore, WTs might 
impact the grazing activities of animals such as reindeers in the Arctic region, as rein-
deers might stop using the area where the WF is located, which might require extra 
efforts to make the reindeers use the WF area again for grazing (Eilertsen, 2006).  

 
3. Societal opposition to WFs. The local community residing nearby WFs might be af-

fected or annoyed by the visual appearance of WTs and the noise they generate. The 
presence of WFs in some countries or regions might prevent the local community from 
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effectively utilizing the surrounding lands, which can negatively affect its economy 
(Kucukali, 2016). Such risks, in addition to the risk of ice throw, might elevate the 
societal opposition to installing WFs. However, these issues could be less of a chal-
lenge to WFs in CCRs, as WFs are usually installed in remote areas far from the local 
communities. 
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Chapter 3 

3 Research methodologies  

In this chapter, I present the methodologies that were used to answer the research questions 
proposed in this thesis. This chapter is divided into three sections, each section answers one of 
the research questions. The first section presents the methodology followed to calculate the 
overall performance index (OPI) of WFs, which utilized a multi-criteria decision-making 
(MCDM) method considering two types of performance indicators i.e., the technical 
performance and the sustainability performance, with input data from experts concerning the 
relative weights of each performance indicator. The second section presents the use of Bayesian 
networks (BN) to calculate the resilience of WFs, under three distinctive operating scenarios, 
the designed BN calculates the resilience as a percentage value under disruptive and non-
disruptive operating conditions, which were demonstrated in the three scenarios. The 
methodology explained in the third section illustrates the use of fuzzy logic and experts’ 
judgements to analyze 6 risks related to the operation of WFs in CCRs. 

3.1 Calculating the overall performance index of wind farms (Paper 1)  
In this paper, I proposed a methodology for calculating the overall performance of WFs, by 
developing an index, called an OPI, which covers the technical performance and the 
sustainability performance, in order to present an overall image of WFs performance. The 
methodology was furtherly applied to a WF in northern Norway and showed that the 
selected WF had a good overall performance when calculated against a predefined 
qualitative scale of performances. The methodology, shown in Figure 6 depends mainly on 
collecting estimated values from experts for the relative weights of the technical and 
sustainability performance indicators. The relative weights of performance indicators 
describe their importance on a scale (from 1 to 10) to the overall performance of WFs, 
where 1 indicates the lowest importance and 10 indicates the highest importance.   



 

24 

 

Identify a case study by 
selecting a specific wind 

farm

Relative weight of 
 each performance 
category available?

Use the available 
relative weights of 

performances

Establish an expert 
group

Communicate with 
experts and elicit 

the relative weights 
of performances

No
Yes

Relative weight 
of each 

performance 
category

Establish scoring 
criteria for the wind 
farm performance 
(table 3 in the case 

study)

Use the weighted sum 
method to calculate the 

perfromance index for each 
performance indicator

Calculate the overall 
perfromane index (OPI) 

for the wind farm

Accepted OPI?
No

Yes

Identify the performance 
indicators with lowest 

performance index 

Suggest measures to 
improve

Update wind farm operator 
and stakeholders

 
Figure 6. Overall performance index calculation methodology 

The second main part of the followed methodology is establishing scoring criteria for each 
performance indicator. The established criteria rank each performance indicator from 1 to 
4, based on how the WF performs technically and sustainably. For example, if a specific 
WF had a capacity factor between (10% - 20%), this indicates a lower performance of the 
WF, and therefore, the WF has a capacity performance score of 1. On the other hand, if the 
capacity factor of a WF was equal to or over 40%, then the WF has a capacity score of 4. 
The scoring criteria are demonstrated in Table 2 in Paper 1. 

Thirdly, the weighted sum method (WSM) is used to combine the relative weights and the 
performance scoring of the performance indicators to calculate the OPI. The WSM is one 
of the most used methods in MCDM (Triantaphyllou, 2000). The WSM states 
mathematically, as per Equation 8, that the OPI is equal to the sum of products of the 
performance relative weights (Wi) and performance scores (Si). 

𝑂𝑂𝑂𝑂𝑂𝑂 =  ∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1 ×  𝑆𝑆𝑖𝑖           (8)   

Equation 1 calculates the OPI as a percentage, where Table 2 can be used to qualitatively 
express the overall performance of the selected WF. Calculating the OPI will help 
stakeholders and operators of WFs to determine whether the overall performance of a 
specific WFs is acceptable or not. In addition, the proposed methodology allows for 
determining which performance indicators need improvements to increase the OPI value. 
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Another advantage is that by this methodology different WFs can be compared to each other 
in terms of  which WF has better or the best overall performance. 

Table 3. A qualitative scale for expressing the OPI 

OPI Scale 

0-25% Bad performance 

26-50% Average performance 

51-75% Good performance 

76-100% Excellent performance 

 

3.2 Calculating the resilience of wind farms methodology (Paper 2) 
In this paper, I modeled a Bayesian network (BN) and used it to calculate the resilience of 
WFs in CCRs. In addition, I defined three operating scenarios, during which WFs are 
subject to disruptive and non-disruptive operating conditions. These operating scenarios are 
i) non-cold climate conditions (baseline scenario), ii) cold climate conditions, and iii) Black 
swan cold climate conditions. The modeled BN calculates the resilience as a percentage 
value, and allows for backward propagation, which helps, by setting a desired resilience 
value in the BN, to calculate the value of improvements needed by the variables used to 
calculate the WF resilience.  

The proposed methodology in Paper 2 is shown in Figure 7, which implies the use of 
conditional probability of events contributing to the calculation of the resilience of WFs in 
CCRs. Historical data are needed to calculate the probability of occurrence of the events, 
with the use of suitable probability distributions. In case historical data were not available, 
experts can be consulted to provide their estimated probabilities values on events, given 
certain operating conditions of WFs. In Paper 2 enough historical data were collected from 
a WF in the Arctic region of Norway. The probability values were afterwards fed into a 
proposed Bayesian network (BN) that was designed to calculate the resilience, as a 
probabilistic value, of WFs. A certain value of desired resilience can be set (90% for 
example) by the WF to estimate the percentage of improvement needed to achieve the 
desired resilience, and to locate the variables that decrease the resilience value to improve 
them.  
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Identify the 
scenario

Historical data 
available?
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probability 

distribution to 
represent the data

Establish an expert 
group

Interview experts and 
gather probability 

values for each input 
variable in the BN

NoYes

Feed the probability 
values into the BN

Compile the BN to 
calculate the resilience 

under the identified 
scenario

Resilience 
accepted? No

Identify 
the failed 
variables

Improve

Yes

 
Figure 7. Methodology followed to estimate the resilience of WFs using BN. 

In addition, a case study considered the WF in the Arctic region of Norway, where three 
distinct operating scenarios were defined, to calculate the WF resilience under each 
scenario. The first scenario is called the baseline scenario, where the CCR operating 
conditions were not present, the second scenario implied the operation of the WF under 
CCR conditions, and the third scenario is imaginary, called a black swan scenario, where 
extreme operating conditions were proposed to calculate the resilience of WFs in case they 
were to face such scenario.   

3.2.1 The Bayesian Network 
Graphically, a BN consists of nodes and links that connect the nodes. The nodes represent 
the variables, which can be an event or the state of a specific component, such as the state 
of failure or no failure of that component. Each node contains the probability of the 
occurrence of an event or state. The nodes are classified into parent nodes and child nodes, 
depending on how they are connected to each other in the graph, and which node is the 
predecessor (parent), and which the successor (child). The links in the BNs denote the 
causal relationship between the nodes. For example, in Figure 8, the nodes X1 and X2 are 
the parents of node X3, which is the child of both nodes. Likewise, node X3 is the only 
parent of node X4, which is its child (Mustafa and Barabadi, 2021). 
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BNs are described as directed graphs, which means that the relationships between the nodes 
are directed in one direction, with no cycles or links going back to the original (parent) 
node. A BN is an efficient tool for calculating the posterior probability of uncertain 
variables (the probability of the child nodes), depending on the known condition or the 
evident probability of other variables (the parent nodes), in what is known as the conditional 
probability, which updates the probabilities of events when given a certain condition or 
evidence. 

The conditional relationships between the variables in a BN are measured by conditional 
probability distributions. Eqn. 9 presents the full joint probability distribution of a BN 
consisting of n variables X1; X2; . . . ; Xn (Hosseini and Barker, 2016). 

P (X1, X2,…, Xn) = ∏ 𝑃𝑃(𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 | 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋𝑖𝑖))   (9) 

The variables/nodes used in modeling the BN are Boolean discrete variables, having values 
of (Yes/No), where the Yes state represents the Success state of a specific variable, and the 
No state represents the Fail state of that variable. For example, labor dexterity, which 
contributes to the successful maintenance of WTs, is reduced by 70% during the presence 
of extreme Arctic operating conditions. Therefore, assuming that labor dexterity has a 100% 
probability of being successful under normal operating conditions, the probability of 
successful labor dexterity is reduced to 30% under extreme Arctic conditions, which will 
consequently reduce the probability of carrying out successful maintenance on the WTs 
and, therefore, reduce the resilience of the WF (Mustafa and Barabadi, 2021). 

The input and output variables, shown previously in Figure 4, are conditionally dependent 
on each other and are dependent on the weather conditions experienced in CCRs. This 
dependency is illustrated through the graphical formation of the BN, shown in Figure 8, 
where the nodes represent the input and output variables, and the arrows are the links 
between the parent nodes and the child nodes, in which the value of the child node depends 
on the state or the value of the parent node.  For example, if excessive snow is accumulated 
on the roads leading to the WF, with a probability of 80% that the roads will be closed, that 
could mean that the successful delivery of spare parts from the suppliers to the WF will be 
reduced to 20%. If the opposite scenario happened, which implies no snow accumulation 
on the roads and no cold climate conditions are present, this leads to the roads are 100% 
open with no climatic hindrance that prevents or limits the delivery of spare parts to the 
WF, in other words, the delivery of spare parts will be 100% successful. 

Figure 8. An example of a BN with four variables (Mustafa and Barabadi, 2021) 

X1 X2 

X3 

X4 

P(X2) P(X1

 

P (X3 | X1, X2) 

P (X4 
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Figure 9. Graphical depiction of the proposed BN for WF resilience calculation (Mustafa and Barabadi, 2021) 

Netica, a proprietary, user-friendly software, was used to build the BN and enter the 
different equations used, to calculate the probability distributions of the variables in the BN. 
As mentioned previously, the Poisson probability distribution was used to calculate the 
probability of the WT stoppage and communication availability variables in the proposed 
BN. Furthermore, the BN makes use of two other main functions to calculate the probability 
of the maintainability, supportability, and organizational resilience variables, these two 
functions are the NoisyOrDist and the NoisyAndDist functions. 

The NoisyOrDist function is used when the probability value of an output variable is true 
when only one input variable at least is true. For example, the supportability output variable 
probability is true when either one of the input variables (the delivery of spare parts/ 
equipment or the Redundancy of spare parts/ equipment) is true. However, having both 
variables true would give the same success probability value of supportability. The 
NoisyAndDist can be expressed as the complement of the NoisyOrDist, as in Equation 10 
(Fenton and Neil, 2018): 

NoisyAndDist = 1 – NoisyOrDist    (10) 

An example of the use of the NoisyAndDist function is accessing WFs under a severe 
accumulation of snow taking place on the roads. Normally, WFs use a combination of snow 
removal strategy and specially equipped vehicles to guarantee access to WTs, especially 
when maintenance is needed (Lehtomäki et al., 2018). Therefore, the success probability of 
accessing the WF depends on the success of both input variables combined, i.e., the snow 
removal strategy and the use of specially equipped vehicles. Table 1 in Paper 2 summarizes 
the modeled equations used in Netica to design the BN. 

3.3 Risk analysis methodology (Paper 3) 
In this paper, 6 main risks related to the operation of WFs in CCRs were identified and 
analyzed using the fuzzy logic methodology. Input data to the fuzzy logic tool in MATLAB 
were provided by experts to map the probability values, the consequences, and the risk 
levels membership functions. The 6 identified risks provide a holistic overview of the 
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different risks affecting the operation of WFs in CCRs and the effects that the WFs induce 
on their surroundings during their operation. 

Risk analysis is a systematic process of using the available information to understand the 
risks and estimate their level. Risk analysis provides input to the risk evaluation step in the 
risk management process, and to the risk treatment step (ISO 31000, 2018). The 
methodology followed in Paper 3, as shown in Figure 9, to analyze the 6 defined risks, 
utilizes fuzzy logic with inputs of data, provided by experts, to plot the membership 
functions of the input variables, which are the probability of risks and their consequences, 
and the output variable, which is the risk level.  

Identify the potential risks

Ask the experts to provide 
values (0-10) for the probability 

and consequence of each risk

Select a WF as a case study

Define criteria for the 
probabilities and the 

consequences of the identified 
risks

Review related literature and 
research to the identified risks 

Using MATLAB, calculate the 
risk level as a number

Define a group of experts and 
provide them with the defined 

criteria

Experts should provide values (0-10) for 
the levels (low, medium, high,etc) of each 

of the probabilities, consequences, and 
risk levels variables 

Build the membership functions for the 
three variables using MATLAb Fuzzy 
toolbox based on the avergae values 

provided by the experts

Rank the risks according to high 
or low their calculated numbers  

Figure 10. Methodology of analyzing risks to WFs in CCRs using fuzzy logic 

The methodology starts with defining the risks to be analyzed. As previously mentioned, 6 
risks were identified. The identified risks emerged from both the harsh weather conditions 
that affect the technical performance of WFs in CCRs and the operation of WFs that impacts 
the surrounding environment and community. 

The second step is defining qualitative criteria, based on the literature review and available 
data, for the input variables levels. The defined levels for the probability of occurrence of 
risks are: very low, low, medium, high, and very high, and for the severity of consequences 
are: low, moderate, high, and very high. Experts provided numerical values for the input 
variables, based on the defined criteria, to plot the corresponding membership functions.  
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Thirdly, the membership functions that describe the levels of the probability, the 
consequences, and the risk level, were plotted using MATLAB fuzzy logic toolbox. 

To demonstrate the methodology, a WF in the Arctic region of Norway was selected as a 
case study. Experts were provided with the detailed description of the WF to help them in 
assigning values to the input variables. The fuzzy logic toolbox in MATLAB calculated the 
output values, i.e., the values of the risk level, based on a set of defined rules that combine 
the different levels of probabilities and consequences. Based on the calculated results, the 
risks were ranked. 

3.3.1 Fuzzy logic 
Fuzzy logic is based on fuzzy set theory, which was developed by Zadeh (Zadeh, 1965), 
and was first used in control by Mamdani (Mamdani, 1974). Fuzzy set theory is primarily 
developed for reasoning and quantifying using vague and ambiguous language terms, that 
do not have sharp boundaries for their definitions and may be interpreted in different ways 
by different experts (Markowski and Mannan, 2009).  Fuzzy logic can be an efficient tool 
in risk assessment as it compensates for the lack of knowledge, and vagueness encountered 
when assessing the risks related to complex technological systems, and can be very helpful 
when dealing with fuzzy linguistic terms such as low, medium, and high, etc., which are 
traditional qualitative terms used to describe the probability of happening of an event, the 
associated consequences with an event, and the level of the resulting risk. For example, 
fuzzy logic was used to assign rankings to the different failure modes of WT components, 
using Fuzzy Failure Mode and Effects Analysis (Fuzzy FMEA) by (Dinmohammadi and 
Shafiee, 2013), (Gallab et al., 2019). Furthermore, fuzzy logic was used in assessing the 
risks related to transporting flammable substances in pipelines (Markowski and Mannan, 
2009), and offshore engineering systems (Yang and Wang, 2015). 

Membership functions play an important role in fuzzy logic. Assuming a universal set X 
that contains all values of the inputs to the fuzzy logic process. A is a fuzzy set. μA(x) is a 
membership function associated with set A that maps every element of the universal set X 
to the interval [0,1], with many degrees of membership (between 0 to 1) allowed, where 0 
indicates non-membership and 1 indicates total membership. The mapping of membership 
functions is written as follows: 

μA(x): X → [0,1] 

For simplicity, triangular membership functions were used in Paper 3. A triangular fuzzy 
membership function can be denoted by three points (a, b, c), where a ≤ b ≤ c (Figure 10). 
Point b on the x-axis represents the variable value with the maximal grade of membership, 
i.e., μA(b)=1. a and c are the lower and upper bounds of the plotted area and are used to 
reflect the fuzziness of the data (Hong and Wang, 2000). 
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3.3.2 Experts’ judgements 
 A selected group of 7 experts was asked to provide corresponding numeric values (from 0 
to 10) to the levels of the input variables, based on the defined criteria to plot the 
corresponding membership functions. Similarly, the experts are asked to provide numeric 
values that correspond to the levels of the output variable, the risk level, which are the 
following: very low (Vl), low, moderate, moderate-high (Mh), high, very high (Vh), and 
extremely high (Eh). The average of the values provided by the experts is considered in 
plotting the membership functions for the three variables as shown in Tables 3, 4, and 5.  

Table 4. Probabilities ranges for the corresponding probability levels provided by experts 

 

Table 5. Severity ranges for the corresponding severity levels provided by experts 

 

 

 

 

Table 6. Risk levels ranges for the corresponding risk levels provided by experts 

 

The fuzzy logic toolbox in MATLAB was used to plot the membership functions, shown in 

Figures 11 and 12. Moreover, a three-dimensional risk matrix, shown in Figure 13, is 

 

Very low Low Medium High Very high 

a b c a b c a b c a b c a b c 

Average 
values 0 1.46 2.93 2 3.21 4.43 3.71 5.18 6.64 5.86 7.14 8.43 8 9 10 

  

low Moderate High Very high 

a b c a b c a b c a b c 

Average values 0 1.68 3.36 2.36 4.32 6.29 5.00 6.71 8.43 7.64 8.82 10 

  

Very low Low Moderate Moderate- High High Very high Extremely high 

a b c a b c a b c a b c a b c a b c a b c 

Average 
values 0 1 2 1 2 3 2 3.5 5 4 5.5 7 6 7 8 7 8 9 9 10.5 12 

Figure 11. A triangular membership function 
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created. The risk matrix combines three variables, the probability, the severity, and the risk 
level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Risk levels membership functions based on experts' judgements 
 

 

 

 

 

 

 

 

 

 

 

Figure 14. Fuzzy risk matrix combining the three variables for risk analysis 

3.3.3 Fuzzy risk analysis 
The fuzzy logic process followed in Paper 3 is based on a commonly used method called 
the Mamdani method (Mamdani, 1974). The Mamdani method uses the center of gravity 
method to calculate the output value of the risk level, unlike the Sugeno method, which uses 
the weighted average method to calculate the risk level (Sari et al., 2016). Figure 5 shows 
the three main steps to follow to calculate the risk level, and to rank the risks following the 
Mamdani method (Gallab et al., 2019). The steps in Figure 14 follow the plotting of the 
membership functions and show the process used to analyze the 6 identified risks using 
fuzzy logic. Similar to using experts’ judgements to plot the membership functions, these 
steps also involve data input from the same experts, to assign values for the probability and 
consequences of each risk for a selected WF. 

Figure 12. Membership functions of probabilities (a) and consequences (b) of risks based on experts' judgements 
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Figure 15. Overview of the Fuzzy logic process 

• Fuzzification. in this step experts are asked to provide values (x) for the input vari-
ables. The previously defined membership functions for each fuzzy set (A) would 
indicate a certain degree of membership (μA(x)) of x in A.  For example, a probabil-
ity of a risk being assigned a value of 5 by experts might indicate 50% low and 50% 
medium degrees of membership. The same applies to the consequences input vari-
able.   

• Fuzzy logic inference. In this step a set of rules is established with the help of the 
experts, to describe the output of the combinations of the input variables. By making 
use of fuzzy IF-THEN rules, the different combinations between probabilities and 
consequences of each risk can be represented. An example of such rules is: If the 
Probability of risk is Low and the Consequences are High, Then the Risk level is 
Moderate. 

• Defuzzification. This is a counter step to the fuzzification step, where the resulting 
fuzzy risk levels are converted, using MATLAB fuzzy logic toolbox, into numbers, 
reflecting how high or low the risk level is, where the higher number reflects a  
higher risk level and vice versa. Following this step, the risks to WFs can be ranked. 

  

Fuzzification

• Input from experts
• Converting the numbering 

values for Prob. and Cons. 
into fuzzy terms.

Fuzzy logic 
inference

• Establishing the rules for 
combining probabilities and 
consequences.

Defuzzification

• Converting the 
resulting risk level 
into a numbering 
value (0-10).
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Chapter 4  

4 Results and discussion 

Based on the appended papers, I here discuss and reflect on perspectives and key findings 
related to the three proposed research questions. The first section discusses the importance of 
calculating an OPI for WFs, when operating under cold climate conditions, and shows the 
results of the application of the OPI tool on a WF in the Arctic region of Norway. Section 4.2 
presents the results of applying the BN for calculating the resilience of a WF in the same region, 
which also represents a measure of the performance of WFs under disruptive events, that can 
be experienced in that region and identifies the resilience-related variables that need to be 
improved and the values of improvements required. Lastly, section 4.3 provides an overview 
of the different risks to the performance of WFs, when operating in CCRs, as well as the risks 
that such WFs induce on their surroundings during their operation. Moreover, it analyzes the 
defined risks and ranks them according to their calculated risk level using fuzzy logic tools.  

4.1 Wind farms overall performance index (OPI) 
The calculation of the OPI contributes to providing an overview of different performance 
aspects related to the performance of WFs in CCRs. In addition, it helps in identifying which 
performance indicators, among the technical and sustainability performance indicators, require 
more attention by the WF operator to improve them. Figures (15-17) show the relative weights 
of the performance indicators, based on experts’ judgements, which reflect the importance of 
these indicators to the overall performance of WFs in CCRs. According to experts, the highest 
relative weight was given to the technical performance indicator as 54% important to the overall 
performance, as shown in Figure 15, compared to the sustainability performance indicator, 
which had a complement value of 46%. 

 
 
 
 
 

 

 

 

Moving to the next level of performance indicators, shown in Figure 16, experts assigned the 
availability performance, which falls under the technical performance indicator of WFs, the 
highest relative weight of 40% among all performance indicators located in that level. In 
addition, the quality performance was assigned the lowest relative weight of 28% and the 
capacity performance had a 32% relative weight. 

Technical
54%

Sustainability
46%

Overall performance

Figure 16. Relative weights of technical and sustainability performance indicators 
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On the other hand, the environmental impact, as one of the sustainability performance 
indicators, was assigned the highest contributor to the sustainability performance of WFs with 
36% relative weight. Regarding the availability performance, the three performance indicators 
constituting the availability performance have almost the same relative weight, as shown in 
Figure 17, with the reliability performance indicator having a slightly higher relative weight of 
34%.  

This concludes that the environmental impact of WFs in CCRs and their availability are 
relatively the most important performance indicators, while the social impacts and the quality 
of power production were assigned the lowest relative importance among the defined 
performance indicators in the paper. 

 

 

 

 

 

 

 

 

 
Figure 18. relative weight of the availability performance indicators 

Paper 1 includes a case study of a WF called Fakken WF in the Arctic region of Norway. 
Data collected from the WF on the different performance aspects were used to assign the 
proper performance score, using Table 2 in Paper 1. Figure 18 shows the selected scores for 
each performance indicator, and Paper 1 includes the justification for selecting each score. 

Reliability
34%

Maintainability
33%

Supportability
33%

Availability performance

Social 
impact
29%

Environmental 
impact
36%

Economic 
impact
35%

Sustainability performance

Quality
28%

Availability
40%

Capacity
32%

Technical performance

Figure 17. Relative weights of technical and sustainability sub-performance indicators 
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Afterwards, Equation 9 was used to calculate the OPI, which is a normalized value of the 
overall WF performance score (2.84), shown in Figure 18. The resulting OPI is 61.3%, 
which according to a proposed qualitative scale for expressing the OPI in Paper 1, the WF 
can be described as having a good overall performance when compared to the proposed 
qualitative scale in Table 6. 

OPI =  overall performance score−minimum score
maximum score−minimum score

 =  2.84−1
3

= 0.613                                 (9) 

Table 7. Risk levels ranges for the corresponding risk levels provided by experts 

OPI Scale 

0-25% Bad performance 

26-50% Average performance 

51-75% Good performance 

76-100% Excellent performance 

 
If the calculated OPI was deemed unacceptable, it will be easy for the operator to allocate 
the performance indicator that contributes to lowering the OPI, in this case, by referring to 
Fig. 18, the sustainability performance indicates a lower value than the technical perfor-
mance. Moreover, it is the economic performance indicator that has the lowest score among 
sustainability performance indicators. This can be attributed to the high operation and 
maintenance (O&M) costs that lead to increasing the cost of energy produced by the WF. 
Based on that, it can be proposed that more efforts are required to improve the (O&M) 
activities. Moreover, the OPI can help in comparing the performance of two or more WFs 
that share similar characteristics such as WTs type, WF location, etc., and set the needed 
measures to improve their performance.  
 
 
 

Overall wind 
farm score: 2.84

Technical: 3

Quality: 4

Availability: 3

Reliability: 2

Maintainability: 
3

Supportability: 4 Capacity: 2

Sustainability: 
2.65

Social: 3

Environmental: 3

Economic: 2

Figure 19. Performance indicators scores for Fakken WF 
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4.2 Resilience of wind farms in Cold climate regions 
The resilience of WFs in the face of disruptions, caused by the weather conditions in CCRs, 
and the resulting consequence on their performance is an important issue to highlight. The 
different challenges that emerge from the weather conditions in CCRs that affect the per-
formance of WFs, such as ice accretion on the blades of the WTs, snow accumulation that 
blocks the roads to WFs and prevents maintenance procedures, and cold temperatures that 
limit the dexterity of the WF staff, etc., create operational scenarios under which WFs in 
CCRs should operate.  
 
System resilience is defined as the extent to which a system maintains a minimum level of 
performance in the face of disruptions (Firesmith, 2019). The resilience of WFs in CCRs is 
mainly dependent on some of the performance indicators that were discussed and calculated 
in section 4.1, such as the reliability, the maintainability, and the supportability performance 
indicators. These performance indicators, in addition to others, are calculated in this section 
using the concept of conditional probability, implied by the use of Bayesian networks, to 
calculate the resilience of WFs in CCRs as a percentage value. Using this methodology will 
help in calculating the resilience under various operational scenarios that WFs might be 
subject to, and in identifying which performance aspect/ indicator needs to be improved to 
reach a desired level of resilience.  
 
A WF in the Arctic region of Norway was considered as a case study to demonstrate the 
methodology of calculating the resilience, under CCR weather conditions. In addition, three 
scenarios were defined to compare the resulting resilience of the WF when operating under 
different weather conditions. Table 7 summarizes the resulting calculated resilience of the 
three scenarios.  

Table 8. Summary of calculated resilience for each operating scenario 

 
 
 
 
 
 
The first scenario is a baseline scenario, where the WF is operating under normal operating 
conditions and is not subjected to cold climate operating conditions. This scenario is de-
scribed in Paper 2 as non-Arctic operating conditions. The resulting resilience in this sce-
nario showed that the WF is 99% resilient. During the operation of the WF under cold cli-
mate conditions, the second scenario, the collected data from the WF showed that the cal-
culated probability values of the variables contributing to the WF resilience decreased, 
which led to a decreased resilience value of the WF, which was calculated as 88.2%.  
 
The third scenario, the black swan scenario, implied a set of a proposed significant increases 
in the cold climate events that affect the operation of the WF. For example, the scenario 
implied a dramatic increase in the number of icing events to 10 times the number of events 
the WF experienced under the cold climate scenario (the 2nd scenario). In addition, the num-
ber of lost connections between the WTs and the WF staff increases tenfold compared to 
the second scenario, the snow removal strategy would not be efficient enough to guarantee 

Scenario Calculated resilience 

1st scenario (Baseline, non-cold climate) 99% 

2nd scenario (Cold climate) 88.2% 

3rd scenario (Black swan cold climate) 43.6% 
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access to the WTs, and only 50% of equipped vehicles are usable. Therefore, the accessi-
bility to the WF is immensely reduced. Moreover, the public roads are blocked, which hin-
ders the provision of spare parts from suppliers, and only 50% of the spare parts and tools 
would be redundant at the WF site. Lastly, the scenario suggests that the response of the 
WF to these conditions is reduced to 50%. Based on that, the calculated resilience of the 
WF under black swan operating conditions is 43.6%. 
 
A backward propagation analysis is carried out in Paper 2 to calculate the percentage of 
enhancement needed for each variable, to improve the WF resilience, when operating under 
black swan cold climate conditions, from 43.6% to 90%. When running the backward prop-
agation, the BN suggested, as per Table 8, that the reliability variable can be subjected to 
the utmost improvement of approximately 35% to reach the targeted resilience value. The 
rest of the variables are required to be improved by around 10% per each.  
Table 9. Enhancement of variables when improving resilience under black swan cold climate conditions 

Variables/Nodes Resilience = 43.6% Resilience = 90% 

Reliability 34.6% 71.4% 

Maintainability 51% 59.3% 

Supportability 50% 58.5% 

Organizational resilience 45.2% 54.5% 

4.3 Wind farms-related risks analysis 
To demonstrate the methodology followed in Paper 3, a WF in the Arctic region of Norway 
was selected as a case study. Data about the WF were gathered from different sources, to 
be used as input by the experts, so they provide their probability and consequences numeric 
values against each risk separately. The MATLAB fuzzy logic toolbox was afterwards used 
to calculate the level of each risk, based on the average values of the probabilities and con-
sequences estimated by the experts. Table 9 shows the average probabilities and conse-
quences for each risk assigned by the experts and the calculated risk level. Additionally, the 
table shows the ranking of the risks (from 1 to 6), where, specifically to the case-study WF, 
the limited accessibility to the WF risk is assigned the highest rank (1), and the social op-
position risk is assigned the lowest rank (6).  

Table 10. Ranking of risks considering average values of probabilities, consequences, and risk levels 

 

 

Risks Probabilities Consequences Risk levels Risks 
ranks 

Risk 1 (WT stoppage) 2.9 5.4 4.19 2 

Risk 2 (Cold stress) 3.6 2.7 2.66 4 

Risk 3 (Limited accessibility) 7.4 7.8 7.76 1 

Risk 4 (Ice throw) 3.5 1.7 2 5 

Risk 5 (Environmental risks) 3.7 4 3.5 3 

Risk 6 (Social opposition) 1.8 2.3 0.826 6 
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Furthermore, the paper presents a comparison with a WF located in a non-CCR, to show 
the effects of the cold climate operating conditions on the calculated risk level, and the 
ranking of risks. When it comes to the new WF, the same risks are ranked differently due 
to various reasons, such as that the new WF experienced lower number of WT stoppages 
compared to the CCR-WF, and no snow accumulation on the roads of the WF, leading to 
higher accessibility to the WF. Therefore, Risks (1-3) would have lower risk levels com-
pared to the CCR-WF. However, the non-CCR WF is located close to an Environmentally 
Protected Area and is 1.3 km away from a tourist village, which has natural and historical 
values, which means that risks 5 and 6 would have higher levels compared to the CCR-WF. 
Table 10 shows the risks levels and ranks of the non-CCR WF. 
Table 11. Ranking of risks for the Kozbeyli WF in Turkey using experts’ judgements and Fuzzy logic 

 

 

Risks Probabilities Consequences Risk level Risks 
ranks 

Risk 1 (WT stoppage) 1.8 4.6 2 5 

Risk 2 (Cold stress) 2.2 3.4 2.57 3 

Risk 3 (Limited accessibility) 2.8 2.6 2.32 4 

Risk 4 (Ice throw) 1 1 0.752 6 

Risk 5 (Environmental risks) 6.8 7.6 7.5 2 

Risk 6 (Social opposition) 8.3 8.9 9.31 1 
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Chapter 5 

5 Conclusions 

In this thesis, I have presented added knowledge and insights to the measurement of the 
performance of WFs, as well as to the assessment of the resilience and the CCR-related risks, 
which can be encountered by WFs located in CCRs. The thesis has defined 3 main research 
questions, based on which the research was constructed and carried out. The proposed research 
questions discuss the aspects of WFs’ performance installed in CCRs, their resilience, and the 
risks to and from WFs in CCRs.  

In addition, I proposed a methodology to calculate an overall performance index (OPI) for WFs 
in CCRs, that consists of the technological and the sustainability set of performance indicators. 
The benefit of developing such an index is the ability to determine which performance indicator 
is responsible for lowering or elevating the calculated OPI of a WF, which will make it easier 
for WFs to establish measures that can help in improving the indicated weak performance 
aspects.  

Furthermore, I proposed a methodology to calculate the resilience of WFs, when operating 
under different disruptive and non-disruptive operating conditions, related to CCRs. Measuring 
the resilience of WFs contributes to measuring their performance, as resilience is related to the 
ability of a WF to return to an acceptable level of performance after being subjected to a 
disruptive event. The methodology proposed calculates the resilience of WFs as a percentage 
value. Using Bayesian networks, the conditional probability concept is implemented, where the 
condition of the input variables, such as the stoppage rate of WTs, the labor dexterity, and the 
communication availability with WTs, etc., determine the values of the output variables, such 
as the reliability, the maintainability, and the organizational resilience, etc., which contribute to 
the eventual calculation of the WF resilience.  

Moreover, in this thesis, I analyzed 6 types of risks that are associated with the operation of 
WFs in CCRs. The identified risks are either caused by weather conditions that affect the 
performance of WFs, such as the increased WT stoppages due to harsh weather conditions, cold 
stress to workers, and limited accessibility to WFs due to snow cover, or are risks caused by 
the WFs and their impacts on their surroundings, such as thrown ice pieces from operational 
WTs, environmental risks, and social opposition risk.  

I proposed a methodology that utilizes experts’ judgements and fuzzy logic to analyze the 
identified risks. The numerical values provided by experts, that express the different levels of 
the probabilities, consequences, and risk levels were used in the MATLAB fuzzy logic toolbox 
to calculate the risks levels and rank them accordingly.  

5.1 Suggestion for future research 
This study has contributed to proposing different methodologies, that can be used to measure 
different aspects related to the performance of WFs in CCRs. This opens the door to building 
upon my work, such as by proposing new performance indicators that can be added to the model 
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I proposed in paper 1, which can provide a more comprehensive overall performance index of 
WFs in CCRs.  

Furthermore, the Bayesian network designed to calculate the resilience of WFs in CCRs can be 
used to identify new operating scenarios for WFs, in addition to the three scenarios I identified 
in Paper 2, and to calculate the resilience of WFs under many different operating scenarios, 
whether these identified scenarios are related to CCRs or not. 

The study identified six types of risks in relation to the operation of WFs in CCRs, this can be 
furtherly built upon by identifying and analyzing more risks, which can provide a more holistic 
view of the different risks that can be encountered by WFs in CCRs or their surroundings.  
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Appendix 1: Questionnaire used to gather data from experts on relative weights of different perfor-
mance indicators to calculate the Overall Performance Index (OPI) in Paper 1. 

OPI Questionnaire: 
For each of the following questions, please mark the relative level of importance of each performance 
category from 1 to 10, where: 1: indicates the lowest importance and 10: indicates the highest im-
portance. 

Overall performance: The overall performance of wind farms consists mainly of the Technical 
performance and Sustainability performance as shown below. 

1. The Technical performance is mainly related to the technical functions of the wind turbines. Mark the
level of importance of the Technical performance with regard to the overall performance of wind farms 
in cold climate regions. 

2. The Sustainability performance is concerned with the Social, Environmental, and Economic impacts
of wind farms in the Arctic. Mark the level of importance of Sustainability with regard to the overall 
performance of wind farms in cold climate regions. 

Technical performance 
Mark the relative importance of Quality, Availability, and Capacity performances with regards to Tech-
nical performance. 

3. Quality performance:  The quality of power production implies maintaining a balance between gen-
erated and demanded power. Unstable weather conditions can cause fluctuations in the power produced 
by wind farms, caused by significant fluctuations in wind speed. Mark the level of importance of quality 
performance with regard to the wind farm's technical performance in cold climate regions. 

4. Availability reflects how many years wind farms can operate and yield the prospected power without
failure under the prevailing conditions in the Arctic. Mark the level of importance of the availability of 
wind farms in cold climate regions with regard to their technical performance. 

5. Capacity performance:  Capacity reflects the highest sustainable rate of power produced by a wind
farm that can be achieved given its specifications, the current resources, weather conditions, and mainte-
nance strategies. Mark the level of importance of the capacity performance of wind farms in cold climate 
regions with regards to their technical performance. 

Availability performance 
Mark the relative importance of Reliability, Maintainability, and Supportability with regard to the Avail-
ability performance 
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6. Reliability is “the ability of a component or a system to perform its required functions without failure
during a specified time interval”. Failures in wind turbines lead to downtime and loss of power 
production. Mark the level of importance of Reliability with regard to the availability of wind turbines 
in cold climate regions. 

7. Maintainability refers to the relative ease and efficiency of performing tasks associated with machine
maintenance, including both routine service and unplanned repairs (Walford, 2006). Mark the level of 
importance of maintainability with regard to the availability of wind turbines in cold climate regions. 

8. Supportability can be defined as the ability of wind farms' design and planned support resources to
keep the availability of wind turbines at a certain high level. Mark the level of importance of 
Supportability with regard to the availability of wind turbines in cold climate regions. 

Sustainability performance: 
The sustainability performance of wind farms refers to maintaining a certain level of performathathich 
will impact the environment, the economy, and the social life in cold climate regions. Therefore, 
sustainability is mainly concerned with the impacts of these factors. 

9. Social impacts: Noise generated by wind turbines during construction and operation, traffic caused
during construction of wind turbines, ice shedding from wind turbine blades, acquisition of lands, etc. 
Mark the level of importance of social impacts with regard the sustainability of wind farms in cold 
climate regions. 

10. Environmental impact: threatening the biodiversity in the Arctic, pollution to water and soil during
construction and use of chemicals for deicing, bird mortality when hitting the wind turbines, etc. Mark 
the level of importance of the environmental impacts with regard to the sustainability of wind farms in 
cold climate regions. 

11. Economic impacts: reducing electricity prices, creating more job opportunities, and energy sources
diversity. Mark the level of importance of the Economic impacts with regard to the sustainability of 
wind farms in cold climate regions. 

If you have comments related to the questionnaire, please feel free to write them here. 
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Appendix 2: Data collected from Experts using the Questionnaire in appendix 1 (Paper 1), which 
shows the relative weight (importance) of each of the performance indicators. 

Availability performance 
Technical perfor-

mance Sustainability performance 
Overall perfor-

mance 

Relia-
bility 

Main-
taina-
bility 

Support-
ability 

Qual
ity 

Avail-
ability 

Ca-
pac-
ity 

Social 
impact 

Environ-
mental 
impact 

Eco-
nomic 
impact 

Tech-
nical 

Sustaina-
bility 

Exp1 8 6 5 3 5 6 4 8 6 5 
Exp2 8 5 7 4 7 6 6 4 8 7 4 
Exp3 9 6 6 5 5 9 4 10 7 9 4 
Exp4 8 9 10 8 9 7 4 8 6 8 7 
Exp5 5 8 8 5 9 2 8 6 9 8 7 
Exp6 10 10 9 8 10 9 6 10 8 8 8 
Exp7 7 6 5 6 8 3 10 10 3 8 10 
Exp8 9 2 9 5 9 9 9 9 
Exp9 10 10 10 10 10 10 10 10 10 10 10 
Exp10 9 9 9 7 9 7 3 3 7 7 4 
Exp11 9 7 7 7 9 8 8 10 8 9 10 
Exp12 5 8 10 6 10 10 5 8 8 7 5 
Total weight 97 84 86 71 95 76 75 92 91 96 83 
Combined ex-
perts’ opinion 8.08 7.64 7.82 5.92 8.64 6.91 6.25 7.67 7.58 8.00 6.92 

Relative 
weights 0.34 0.32 0.33 0.28 0.40 0.32 0.29 0.36 0.35 0.54 0.46 

Standard devi-
ations 1.68 1.75 1.94 2.27 1.50 2.70 2.30 2.71 1.78 1.13 2.47 
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Appendix 3: Data collected from experts to plot the triangular membership functions for each of the 
probability values, consequences values, and risk levels in Paper 3. 

Probability membership function values: 

Very low Low Medium High Very high 
a b c a b c a b c a b c a b c 

Exp. 1 0 1.5 3 2 3 4 3 5 7 6 7 8 7 8.5 10 
Exp. 2 0 2 4 3 4 5 6 6.25 6.5 7 8 9 8 9 10 
Exp. 3 0 1 2 2 3 4 4 5 6 6 7 8 8 9 10 
Exp. 4 0 1.5 3 2 3.5 5 4 5.5 7 5 6.5 8 7 8.5 10 
Exp. 5 0 1.75 3.5 2 3.5 5 3 5 7 6 7.5 9 9 9.5 10 
Exp. 6 0 1.5 3 2 3 4 3 4.5 6 5 6.5 8 8 9 10 
Exp. 7 0 1 2 1 2.5 4 3 5 7 6 7.5 9 9 9.5 10 
Avg. 0.00 1.46 2.93 2.00 3.21 4.43 3.71 5.18 6.64 5.86 7.14 8.43 8.00 9.00 10.00 

Consequences membership function values: 

low Moderate High Very high 
a b c a b c a b c a b c 

Exp. 1 0 2 4 3 4.5 6 5 6.5 8 7 8.5 10 
Exp. 2 0 1.5 3 2 4.25 6.5 5.5 7 8.5 8 9 10 
Exp. 3 0 1 2 1 3 5 4 6 8 7 8.5 10 
Exp. 4 0 1.5 3 2 4.5 7 5 7 9 8 9 10 
Exp. 5 0 1.75 3.5 2.5 5 7.5 5.5 7.25 9 8.5 9.25 10 
Exp. 6 0 2 4 3 4.5 6 5 6.5 8 7 8.5 10 
Exp. 7 0 2 4 3 4.5 6 5 6.75 8.5 8 9 10 
Avg. 0.00 1.68 3.36 2.36 4.32 6.29 5.00 6.71 8.43 7.64 8.82 10.00 

Risk level membership function values: 

Very low Low Moderate Moderate- High High Very high Extremely high 
a b c a b c a b c a b c a b c a b c a b c 

Exp. 1 0 1 2 1 2 3 2 3.5 5 4 5.5 7 6 7.5 9 8 9 10 9 10.5 12 
Exp. 2 0 1 2 1 2 3 2 3.5 5 4 5.5 7 6 7.5 9 8 9 10 9 10.5 12 
Exp. 3 0 1 2 1 2 3 2 3.5 5 4 5.5 7 6 7.5 9 8 9 10 9 10.5 12 
Exp. 4 0 1 2 1 2 3 2 3.5 5 4 5.5 7 6 7.5 9 8 9 10 9 10.5 12 
Exp. 5 0 1 2 1 2 3 2 3.5 5 4 5.5 7 6 7.5 9 8 9 10 9 10.5 12 
Exp. 6 0 1 2 1 2 3 2 3.5 5 4 5.5 7 6 7.5 9 8 9 10 9 10.5 12 
Exp. 7 0 1 2 1 2 3 2 3.5 5 4 5.5 7 6 7.5 9 8 9 10 9 10.5 12 
Avg 0 1 2 1 2 3 2 3.5 5 4 5.5 7 6 7 8 7 8 9 9 10.5 12 
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Appendix 4: The estimated probability and consequences values by experts for the 6 identified risks 
in Paper 3, and the calculated risks levels, using MATLAB, for the case study wind farm in Northern 
Norway and the non-cold climate wind farm. 

The probabilities values of the risks in cold climate regions 

The consequences values of the risks in cold climate regions 

The calculated risk levels for the cold climate region wind farm 

The calculated risk levels for the non-cold climate region wind farm 

Risk Probability Consequences Risk level Risk rank 
Risk 1 (WT stoppage) 1.8 4.6 2 5 
Risk 2 (Ice throw) 1 1 0.752 6 
Risk 3 (Cold stress) 2.2 3.4 2.57 3 
Risk 4 (Limited accessibility) 2.8 2.6 2.32 4 
Risk 5 (Environmental risks) 6.8 7.6 7.5 2 
Risk 6 (Social opposition) 8.3 8.9 9.31 1 

Risk 1 Risk 2 Risk 3 Risk 4 Risk 5 Risk 6 
Exp.1 1 2 1 1 5 1 
Exp.2 2 3 2 3 4 3 
Exp.3 3 4 3 5 3 5 
Exp.4 1 2 3 3 2 3 
Exp.5 3 1 2 4 6 4 
Exp.6 2 3 1 1 1 1 
Exp.7 1 4 2 1 3 1 
Avg 2.9 3.5 3.6 7.4 3.7 1.8 

Risk 1 Risk 2 Risk 3 Risk 4 Risk 5 Risk 6 
Exp.1 1 2 1 1 5 1 
Exp.2 2 3 2 3 4 3 
Exp.3 3 4 3 5 3 5 
Exp.4 1 2 3 3 2 3 
Exp.5 3 1 2 4 6 4 
Exp.6 2 3 1 1 1 1 
Exp.7 1 4 2 1 3 1 
Avg 1.85 2.71 2 2.57 3.42 2.57 

Risk Probability Consequences Risk level Risk rank 
Risk 1 (WT stoppage) 2.9 5.4 4.19 2 
Risk 2 (Ice throw) 3.5 1.7 2 5 
Risk 3 (Cold stress) 3.6 2.7 2.66 4 
Risk 4 (Limited accessibility) 7.4 7.8 7.76 1 
Risk 5 (Environmental risks) 3.7 4 3.5 3 
Risk 6 (Social opposition) 1.8 2.3 0.826 6 
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Abstract Wind farms (WFs) experience various chal-

lenges that affect their performance. Mostly, designers

focus on the technical side of WFs performance, mainly

increasing the power production of WFs, through improv-

ing their manufacturing and design quality, wind turbines

capacity, their availability, reliability, maintainability, and

supportability. On the other hand, WFs induce impacts on

their surroundings, these impacts can be classified as

environmental, social, and economic, and can be described

as the sustainability performance of WFs. A comprehen-

sive tool that combines both sides of performance, i.e. the

technical and the sustainability performance, is useful to

indicate the overall performance of WFs. An overall per-

formance index (OPI) can help operators and stakeholders

rate the performance of WFs, more comprehensively and

locate the weaknesses in their performance. The perfor-

mance model for WFs, proposed in this study, arranges a

set of technical and sustainability performance indicators in

a hierarchical structure. Due to lack of historical data in

certain regions where WFs are located, such as the Arctic,

expert judgement technique is used to determine the rela-

tive weight of each performance indicator. In addition,

scoring criteria are predefined qualitatively for each

performance indicator. The weighted sum method makes

use of the relative weights and the predefined scoring cri-

teria to calculate the OPI of a specific WF. The application

of the tool is illustrated by a case study of a WF located in

the Norwegian Arctic. Moreover, the Arctic WF is com-

pared to another WF located outside the Arctic to illustrate

the effects of Arctic operating conditions on the OPI.

Keywords Wind farms � Overall performance index �
Weighted sum method � Scoring criteria � Expert judgment

1 Introduction

Wind energy investments in the Arctic region is appealing

because of the higher availability of wind power, which is

almost 10% higher than in other regions due to the higher

density of air Fortin et al. (2005). Moreover, the Arctic

region is sparsely populated, which makes it even more

attractive for wind energy investments. However, the per-

formance of wind farms (WFs) located in the Arctic is

faced with a plethora of challenges. Most of these chal-

lenges are attributed to operating in severe weather con-

ditions such as low temperatures, ice accretion on the

blades and snow accumulation on roads. These weather-

related challenges affect mainly the technical performance

of WFs. For example, ice accretion on WT blades creates

mass imbalances and instantaneous losses in power pro-

duction, which, under certain conditions, can reach 30% of

the power produced, even in light icing events, Laakso and

Peltola (2005), or in severe icing conditions, leading to

total shutdown of the wind turbine (WT).

Technical performance is related to the technical func-

tions of WFs, in terms of the amount of electricity gener-

ated Koo et al. (2018).It also refers to the quality of the
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power produced by the WF, as well as their capacity and

availability performances. Availability performance can be

described in terms of the reliability, maintainability and

supportability of the wind farms, IEC (2015). Figure 1

illustrates the proposed technical performance indicators.

The quality performance indicator reflects the design

and manufacturing quality of WTs and the WF layout Zaki

(2020). The availability performance indicator depends, for

the most part, on the reliability, maintainability and sup-

portability of the wind farm IEC (2015) and Naseri and

Barabady (2016), and the capacity performance indicator

reflects the maximum power delivered by the wind farm,

considering the operating conditions in the respective

region (Barabady et al. 2010).

The primary objective of this work is to devise a method

for calculating the Overall Performance of WFs and to

evaluate the mutual impacts of WTs on their surroundings

and impact of the surrounding environment on WTs.

The impacts of WTs on their surroundings can be

summarized into three categories, namely: social and

safety impacts, environmental impacts, and economic

impacts. According to Musango and Brent (2011) and

Kucukali (2016), these three types of impacts can be

grouped under sustainability performance of WFs, as

shown in Fig. 1. It is worth noting that many sustainability

indicators can be included to describe the sustainability of

WFs; however, these three indicators are described as the

traditional pillars of sustainability Diaz-Balteiro et al.

(2017).

The social and safety impacts constitute hazards such as

noise generated by the WTs during construction and

operation, traffic on public roads caused by transporting

large WTs components, and ice fall and ice throw from

WTs that can harm humans, animals and nearby structures,

Mustafa et al. (2019). Other concerns related to the social

and safety impacts are,for example, the visual pollution

that might detract from pristine views or hinder tourism,

and doubts related to that WFs might interfere with the

operation of military radar systems Welch and Venka-

teswaran (2009). In addition, there are claims such as that

governments are violating the rights of indigenous com-

munities, by approving wind energy projects, causing

cultural destruction. For example, constructing wind farms

on Sámi lands in northern Scandinavia, may be considered

unethical and overtly political, simply because it might

come across as a systematic dispossession of their lands,

and a lack of recognition of their rights Lawrence and

Moritz (2019).

The environmental impacts of WTs can be positive such

as the carbon-free electricity production, no long-term

waste and no cooling water required, for these concerns,

WFs are environmentally benign. On the other hand,

chemical deicing used to remove ice from the blades of

WTs, and birds and bats mortalities caused by WTs, are

examples of the negative impacts of WFs. However, the

number of birds killed by WTs may be negligible com-

pared to that by fossil fuels, and some other human

activities Sovacool (2009). In addition, water pollution in

some areas, during the construction phase of WFs Lu et al.

(2019), is another example of negative environmental

impacts caused by WFs.

The economic impacts are described as being crucial for

wind energy investment in any country, Kucukali (2016).

Examples of these impacts are the job opportunities created

by WFs projects for local communities, stabilizing the

prices of electricity as the country will not be dependent on

a single source to produce its electricity and help in low-

ering the prices of electricity. This, however, is dependent

on the cost of electricity produced by the WF.

Fig. 1 The overall performance model for wind farms
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Most wind energy projects are subsidized by govern-

ments due to their high capital and operational costs.

Without governments’ subsidies, wind energy projects will

yield negative returns, and investors will find it difficult to

cover for the cost of involved risks Welch and Venka-

teswaran (2009). However, if the capital costs of wind

energy investments were reduced and the utilization rate of

WTs increased, which is the percentage of time a WT can

be in use during the 8760 h (365 9 24) of the year, the

wind energy projects would have positive returns on

investments, without even the subsidies from governments.

Furthermore, as the cost of sources of energy such as oil

and natural gas become more expensive, wind energy

becomes more competitive. Therefore, the accelerated

increase in technology development that we witness every

day, and the rise in oil and gas prices, will put wind energy

on a short path to become financially self-sustaining and

will have positive economic impact on investors and

societies.

The proposed model combines the technical and sus-

tainability performances and can be applied to model the

performance of WFs, located in cold climate regions such

as the Arctic region, as well as other regions that are not

characterized by cold climate conditions. In this paper, this

model is used to evaluate the overall performance of a WF

in Arctic Norway.

The majority of current studies on the performance of

WFs in the Arctic focus on the effects of icing on WTs in

terms of their structural behavior Alsabagh et al. (2013),

resulting power losses Kilpatrick et al. (2020), anti/de-icing

technologies Wei et al. (2020) Dai et al. (2012) Parent and

Ilinca (2011) and risks caused by ice fall, ice throw and

thrown blade parts Bredesen and Refsum (2015) Rastayesh

et al. (2019). These studies mostly focus on the technical

performance of WTs. It is observed that an integrated

approach covering both the technical and sustainability

performances of WFs is lacking.

The rest of this paper is organized as follows: in Sect. 2

the methodology adopted for calculating the OPI for WFs

using the WSM, expert judgements, and the predefined

scoring criteria is presented. Section 3 presents the appli-

cation of the methodology on a WF located in Arctic

Norway. The conclusions and findings of this work are

presented in Sect. 4.

2 Weighted sum method for OPI calculation

There are several multiple-criteria decision-making meth-

ods that can be used in the decision-making process such as

weighted sum method (WSM), weighted product method

(WPM), analytical hierarchy process (AHP), technique for

order of preference by similarity to ideal

solution (TOPSIS), etc. The common characteristic of

these methods is that the analysis of the alternatives is

based on determined criteria Böğürcü (2012). WSM, which

is used in this paper, is one of the oldest and most-widely

used methods in multi-criteria decision-making (MCDM)

Triantaphyllou (2000). For example, Stanujkic and

Zavadskas (2015) used WSM to introduce an approach that

helps decision makers to choose the best alternative, con-

sidering both the highest unit performance and the pre-

ferred performance, Kucukali (2016) developed a risk

score card to rank the wind energy projects in Turkey using

WSM and expert judgement. In addition, Williamson et al.

(2014) used the WSM method to select the most appro-

priate low-head hydro-turbine alternatives by using quan-

titative and qualitative scoring.

The basic idea of the WSM is to calculate the OPI as a

sum of products of performance relative weights and scores

of criteria, as follows in Eq. 1, Stanujkic and Zavadskas

(2015):

OPI ¼
Xn

i¼1

wi � Si: ð1Þ

where wi is the relative weight of the performance indicator

i, Si is the criteria score for the performance indicator

i. Figure 2 shows the steps followed in calculating the OPI

for WFs using the WSM method. At first, the relative

weight of each of the performance indicator shown in

Fig. 1 needs to bdetermined. In case of lack of such data,

the relative weight of performance categories is determined

using expert judgment technique, explained in Sect. 2.1.

Secondly, a set of qualitative scoring criteria is to be

developed to define the scores for each performance indi-

cator. The scoring criteria reflect the different levels of

performance a WF can operate according to. The scoring

for each performance indicator can be divided into 4 levels,

where level 1 reflects the minimum level of performance

and level 4 is the highest. The scoring criteria is illustrated

in Sect. 2.2.

Thirdly, the performance index for each performance

indicator is calculated using Eq. (1), where the relative

weight is obtained from experts and the performance score

is obtained from the scoring criteria table (Table 2 in

Sect. 2.2), which is based on the characteristics of the

selected WF. The same process is repeated to calculate the

performance index for each indicator up to the overall

performance index of the WF.

Finally, we end up with a value of OPI that reflects how

well or degraded the performance of a specific WF is. This

index is instrumental for WFs operators and stakeholders to

identify weaknesses in performance, in order to take the

proper measures to alleviate them in cases, where the

overall performance index was below the acceptable limit.
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Fig. 2 Overall performance index calculation methodology
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A flow chart indicating the evaluation methodology of OPI

is shown in Fig. 2. A case study will be presented to

demonstrate the application of this methodology.

2.1 Expert judgements

Wind energy applications in Arctic Norway are relatively

new. For example, in 2010, the total installed wind energy

capacity in Norway was 436 MW, with only 48 MW

installed in theArctic Battisti (2015). As such, long term data

on the performance of WTs in Arctic Norway is far from

satisfactory, which emphasizes the need for experts’

knowledge that can contribute significantly to determining

the relative weight of each performance indicator. However,

expert judgement technique is indispensable even in situa-

tions where data is satisfactorily available as the statistical

treatment of data cannot replace the expert judgments in the

operational risk management process in hydropower plants,

Mermet and Gehant (2011) as well as wind power plants.

Expert judgement is recognized as a type of scientific data

and methods are developed for treating it as such. This

technique is typically applied when there is substantial

uncertainty regarding the true values of certain variables,

Colson and Cooke (2018). It entails selecting experts with

relevant experience (i.e. wind energy) and communicating

with them, in order to elicit the needed information (i.e. the

relative weight of each performance indicator). The Elici-

tation processes can involve simple correspondence, ques-

tionnaires, personal interviews (by telephone or in person)

and various other combinations of interactions Beaudrie

et al. (2016).

Each expert, in the elicitation process, can either be

calibrated by giving his/ her answer a certain weight, that

reflects the strength of the answer among other answers.

The calibration process can consider, for example, the

number of years of experience the expert has, the more

experience the expert has the more important his answer is,

compared to other experts’ answers, example of that can be

found in Naseri et al. (2015). In another approach, all

experts can be treated as the same with having equal

importance for their answers. For simplicity, the latter

approach is the one used in this case study.

The selected group of experts in this study had expertise

that ranged from academic doctors, and professors at uni-

versities involved in wind energy technologies to that of

operators, engineers, and managers at WFs in Arctic Nor-

way. Experts were interviewed physically or through dis-

tant conference meetings. Other means of communication

with experts were telephone and email. Experts were asked

to participate in a questionnaire that aimed to assess the

relative weights of the performance indicators defined in

the proposed model in Fig. 1. In total, 12 experts partici-

pated in answering the questionnaire. It is extremely

unlikely that experts will ever be in total agreement with

one another when answering questions where uncertainty is

substantial.

The questionnaire consisted of 11 questions, covering all

the 11 performance indicators. The meaning and aspects of

each performance indicator were explained to the experts

for each question to avoid ambiguity. Experts were asked

to assess the relative weight of each performance indicator

qualitatively, by ranking each one from 1 to 10, where 1

indicated the lowest importance and 10 indicated the

highest importance.

Afterwards, experts’ rankings were summed for each

performance indicator, as shown in Table 1. The average

weight of each performance indicator (PI) was calculated

by dividing the sum of weight rankings from experts by the

number of experts (n), as presented in Eq. (2).

PI averageweight ¼
Pn

n¼1 ranks of PI

n
: ð2Þ

To calculate the relative weight of each performance

indicator, the resulting average weight for each indicator is

divided by the total weight for each group of performance

indicators. For example, the availability performance rep-

resents a group of performance indicators that includes the

reliability, maintainability, and supportability performance

indicators. In order to calculate the relative weight of relia-

bility performance, the averageweight of reliability,which is

8.08 as per Table 2, is divided by the sum of the average

weight of reliability (R), maintainability (M) and supporta-

bility (S), which is equal to 23.54. The relative weight of

reliability in that case is equal to 34% as per Eq. 3. The same

applies to maintainability and supportability performance

indicators, with the relative weight equal to 33% for each,

and to the rest of other performan indicators.

Reliability PI relative weight ¼ average weight of Rð ÞP
averageweight R;M; Sð Þ

¼ 8:08

8:08þ 7:64þ 7:82
¼ 0:34

ð3Þ

Figure 3 summarizes the relative weight of each perfor-

mance indicator assessed by the experts. According to

experts, there is a slight difference between the technical and

sustainability performances in terms of their relative

weights; this was indicated by assigning a higher relative

weight (54%) to technical performance. Through discussion,

experts explained that by improving the technical perfor-

mance will improve the sustainability performance aspects,

i.e. the social, economic, and environmental aspects.

Therefore, the technical performance was assigned a higher

relative weight.
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It can be seen from the Fig. 3 that all three performance

indicators under the availability performance, i.e. the reli-

ability, maintainability, and supportability, have almost the

same relative weight. The experts have assigned the

availability performance a higher relative weight (40%)

compared to capacity and quality performances, which had

relative weights of 32% and 28%, respectively as shown in

Fig. 4. The experts have assessed that the environmental

and economic performance indicators represent more than

70% of the total relative weight under sustainability per-

formance, with the social performance indicator having

29% as a relative weight.

The next step, after determining the relative weights, is

to define the scoring criteria for each performance indica-

tor. The selected score from the predefined criteria is

mainly dependent on the performance characteristics of the

selected WF.

2.2 Performance scoring criteria

A set of criteria was defined for each performance indi-

cator, with specific scores from 1 to 4, as shown in Table 2,

which is established based on a literature review, measured

data, documented evidence, and human reasoning. Select-

ing criteria scores are dependent on the specifications and

performance characteristics of the WF under study, which

can include technical characteristics, location, and WF

impact on its surroundings. An example of the use of

scoring criteria was shown by the Japan International

Cooperation Agency JICA JICA (2011), in which a scoring

criteria was used to assess the environmental and societal

impacts of infrastructure projects around the world.

As can be seen from Table 2, the scores for availability,

technical and sustainability performance indicators are not

defined. This is because these performance indicators are

functions of the performance indicators under them. In

order to obtain the scores of these undefine performance

indicators, the WSM can be used. As an example, Eq. (4)

shows the method for calculating the criteria score for

availability performance, which is equal to the sum of

products of the relative weights of Reliability (R), Main-

tainability (M) and Supportability (S) indicators, and their

criteria scores, taken from Table 2 for a specific WF.

Availability score SAð Þ ¼ wR � SR þ wM � SM þ wS � SS:

ð4Þ

where wR, wM, wS are the relative weights of reliability,

maintainability, and supportability respectively, and SR,

SM, and SS are their criteria scores. Similarly, the overall

WF score of a WF can be calculated as a function of its

technical and sustainability performance indicators using

Eq. (5) below:

OverallWFperformance score¼wtech� Stechþwsus� Ssus:

ð5Þ

where wtech and wsus are the relative weights of the tech-

nical and sustainability performance indicators respec-

tively, assessed by the experts. Stech and Ssus are the criteria

scores, calculated using equations similar to Eq. (4) for the

technical and sustainability performances.

3 Calculating OPI for Fakken wind farm: a case
study

The Arctic region considered in this case study is the

northern rt of Norway, which experiences warmer tem-

peratures than cities further south in the overall Arctic

region, such as Canada or the United States. The coastal

part of Arctic Norway is recognized to be ice free.

Therefore, some WFs installed close to the coast do not

need to equip their WTs with anti-icing systems, to prevent

ice accretion on the blades, such as Fakken WF.

kken WF is an onshore WF, located on a small island

called Vannøya to the north of Troms and Finnmark

County, Norway. The WF is sited on a small hill at the

southwestern edge of the island, at an altitude of 40 to

200 m above sea level Birkelund et al. (2018). A mountain

range is located to the west of the WF and two large fjords

to the south, forming a complex terrain surrounding the

Table 1 Relative weight of performance indicators assessed by experts (1: lowest importance, 10: highest importance)

Overall performance

Technical performance Sustainability performance
Technical

1–10

Sustainability

1–10

Availability Performance Quality

1–10

Availability

1–10

Capacity

1–10

Social

1–10

Environmental

1–10

Economic

1–10

Reliability

1–10

Maintainability

1–10

Supportability

1–10

Sum weight 97 84 86 71 95 76 75 92 91 96 83

Average weight 8.08 7.64 7.82 5.92 8.64 6.91 6.25 7.67 7.58 8.00 6.92

Relative weight 0.34 0.33 0.33 0.28 0.40 0.32 0.29 0.36 0.35 0.54 0.46
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WF. The WF consists of 18 Vestas V90-3.0 WTs with rated

power 3.0 MW each, yielding a total installed capacity of

54 MW. The hub height of the turbines is 80 m above the

ground, and the rotor diameter is 90 m. The 18 WTs are

placed in two roughly parallel lines, as shown in Fig. 5,

perpendicular to the southeastern inter-cardinal direction. It

is assumed that the wind farm will operate for 25 years

with no catastrophic operation and maintenance (O&M)

events.

Table 2 Scoring criteria for wind farm performance

Score (S) = 1 S = 2 S = 3 S = 4

Technical performance

Capacity

Ozturk and

Fthenakis

(2020)

Wind farm capacity factor

CF: 10% B CF B 20%

Wind farm capacity factor is

20% B CF B 30%

Wind farm capacity factor is

30% B CF B 40%

Wind farm capacity factor is

larger than 40% CF C 40%

Quality The manufacturing quality of

WTs and the quality of

used spare parts are not

satisfactory. The selected

WTs model is not

suitable for the WF site,

and the WF layout is not

well designed

Good quality of WTs

manufacturing processes

and the used spare parts.

However, the selected WTs

model and the WF layout

could have been improved

Good quality of WTs

manufacturing processes

and the used spare parts.

The selected WTs model

and the design layout of the

WF is good

High quality of manufactured

WTs and the used spare

parts in maintenance

activities. The selected

WTs model is among the

most suitable for the WF

site, and the layout of the

WF is of high-quality

design

Availability performance

Reliability

Spinato et al.

(2009)

The WTs experience a high

failure rate, more than 3.5

failures per WT per year

The average number of

failures per WT per year is

between 2.5 and 3.5

The average number of

failures per WT per year is

between 1.0 and 2.5

The average number of

failures per WT per year is

less than one

Maintainability

Ozturk and

Fthenakis

(2020)

The time to repair a failure is

more than 24 h

TTR[ 24 h

The time to repair a failure is

between 16 and 24 h

16 h\TTR B 24 h

The time to repair a failure is

between 8 and 16 h

8 h\TTR B 16 h

The time to repair a failure is

less than eight hours

TTR B 8 h

Supportability

Dao et al.

(2019)

The mean downtime is more

than 100 h per failure

The mean downtime is

between 50–100 h per

failure

The mean downtime is

between 25–50 h per

failure

The mean downtime is less

than 25 h per failure

Sustainability performance

Environmental

impact

Kucukali

(2016)

The wind turbines are placed

on birds’ migration route,

reindeers’ grazing area or

near to an ecologically

sensitive area

The wind farm has an

Environmental Impact

Assessment Report which

is prepared by a desk study.

But the wind farm is not

located in the vicinity of

wetlands, protected natural

areas, caves, and birds’

migration routes

The wind farm has an

Environmental Impact

Assessment Report or study

which is supported with

field studies

The wind farm has a detailed

Environmental Impact

Assessment Report in

which biodiversity issues

are addressed. The

environmental analysis is

supported with field

surveys, and a monitoring

system is established at the

site for relevant

environmental parameters

Economic

impact

The price of electricity

generated by the wind farm

is 26–50% higher than what

households in the country

usually pay to purchase

electricity

The price of electricity

generated by the wind farm

is 1–25% higher than what

households in the country

usually pay to purchase

electricity

The price of electricity

generated by the wind farm

is equal to what households

in the country usually pay

to purchase electricity

The price of electricity

generated by the wind farm

is cheaper than what

households in the country

usually pay to purchase

electricity

Social impact

Kucukali

(2016)

The wind farm stops or limits

local communities’ ability

to utilize the surrounding

lands and provide a

livelihood

A public consultation process

has been not carried out,

but the wind farm does not

stop local communities’

ability to utilize the

surrounding lands and

provide a livelihood

A public consultation process

has been carried out. The

locally affected community

has been notified and

adequate mitigation

measures have been taken

A robust public consultation

process has been carried

out. No major objections

from local communities

were raised. The local

community may benefit

from the wind farm
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Fig. 3 Performance indicators relative weights, assessed by experts

Fig. 4 Relative weights of

technical and sustainability

performance indicators

Fig. 5 Fakken wind farm layout
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3.1 Fakken WF performance indicators scores

Through communication with the WF manager and oper-

ator, we were able to get our hands on 28 service reports,

and more than two years of alarm logs that contained the

operation and maintenance data of one wind turbine (WT

No.8), for the period from January 2018 until July 2020.

Based on the analysis of this data, the performance indi-

cators criteria scores were selected from Table 2 and cal-

culated using variations of Eq. (1), similar to Eq. (4), as

can be seen in Fig. 6. The justification for the selection and

calculation of the scores is shown in Sect. 3.1.1.

3.1.1 Justification of scores

Reliability. By reviewing the service reports for the refer-

ence WT (WT No. 8), it was found that the WT experi-

enced three main failures during 2019 that led to its

operation being halted: a hydraulic pump failure, a gener-

ator bearing failure, and a defective bearing on the gener-

ator’s fan. Based on that, a score of 2 was assigned to the

reliability performance of that WT. Moreover, an overall

regular annual inspection of the WT took place twice

during the period from January 2018 until July 2020. The

regular inspections took place in August 2018 and 2019,

with no major failures reported in either of the inspections.

Maintainability. According to the service reports, the

mean time needed to replace the hydraulic pump, the

generator’s bearing and the generator’s fan bearing were

10, 21 and 2 h, respectively. when referring to the scoring

criteria Table 2, it is obvious that each time to repair of

these failed components has a different criterion score as

follows: the hydraulic pump has score of 3, the generator’s

bearing is assigned a score of 2 and the generator’s fan

bearing is assigned a score of 4. Therefore, by taking the

average of these scores, the maintainability of the WT can

be assigned a value of 3.

Supportability. Both failures, the hydraulic pump and

the generator bearing failures, were repaired during the

same day they failed, which means that the mean downtime

for the WT per failure is less than 25 h. Referring to

Table 2, the supportability score is assigned a value of 4.

Availability. The availability criteria score is a function

of the reliability, maintainability and supportability per-

formance indicators relative weights and criteria scores. By

applying Eq. (4), the calculated availability criteria score is

equal to 3.

Quality. The quality of the manufactured WTs is high.

Vestas, the WTs manufacturer, is a well-known and a

pioneer company in the WTs manufacturing, selling,

installing, and servicing. Fakken WF is being monitored

remotely by Vestas, and in case of failure, Vestas takes

Fig. 6 Performance indicators scores for Fakken WF, based on Table 2
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care of the maintenance procedure required. Therefore, the

quality of used spare parts is high. The selected model of

WTs (V90-3 MW) is an improved design that provides

more power without an appreciable increase in size,

weight, and tower loads Vestas (2013). The design of the

WF layout is based on research and measurements of wind

speed, humidity, temperature, and other factors, which are

still being monitored until today. Moreover, a highly effi-

cient software was being used to analyze the measured

data. Therefore, the quality performance is assigned a score

of 4.

Capacity. The amount of energy produced by the WF

throughout the year is estimated at 130 GWh TromsKraft

(2018), divided by the maximum amount of energy the WF

would have produced at full capacity, which is estimated at

473 GWh. The resulting capacity factor is 27.5%. Based on

that, the capacity performance is assigned a score value of

2.

Technical performance. The technical performance

score can be calculated as a function of the availability,

capacity and quality relative weights and criteria scores, by

applying an equation similar to Eq. (4). The resulting value

pf technical performance score is 3.

Environmental impact. the WF is not located in bird

migration routes and does not represent threats to endan-

gered species in the Arctic. Still, the WF was built on an

important winter grazing area for reindeer. However, test-

ing data showed that reindeer density within the wind farm

area did not change significantly during and after the

construction of the wind farm, Tsegaye et al. (2017). The

effects on reindeer spatial use during and after WF devel-

opment were negligible, according to the same study.

However, some significant changes in reindeers’ use of the

area was noticed that might be caused by human activities

during certain construction stages of the WF. Based on

that, the assigned environmental impact score of Fakken

WF can be equal to 3.

Economic impact. In the European Free Trade Associ-

ation (EFTA) Surveillance Authority (ESA) report San-

derud and Monauni-Tömördy (2011), dated 16 March

2011, regarding the fund offered to Troms Kraft Produk-

sjon AS to construct Fakken WF, Enova SF, a company

owned by the Ministry of Climate and Environment in

Norway, announced that the price of electricity from

Fakken WF is calculated based on a six-month average of

three year forward contracts, and it is going to be NOK

0.34/kWh. Comparing this price of electricity to the aver-

age price paid by households in Norway during the same

period, i.e. the three years following the construction of the

wind farm, 2012, 2013 and 2014, as taken from Statistics

Norway, SSB (2020), the price of electricity generated by

Fakken WF was found to be 8% more expensive.

An estimation of the levelized cost of energy produced

by Fakken WF was conducted by Mustafa et al. (2020).

The cost estimation shows that the WF produces energy

25% more expensive than what households in Norway

normally pay. However, households in Norway pay a

unified price of electricity, whether it comes from wind

energy or from hydropower, which is the main source of

electricity in Norway. Therefore, the economic impact of

Fakken WF has a score of 2.

Social impact. The WF is located in a remote site away

from residential areas, so the noise generated by the WTs

does not affect the local society. The WTs are not equipped

with anti/de-icing systems, as ice rarely accretes on them.

Therefore, the risk of ice throw from WTs is negligible.

This was confirmed when speaking to the manager of the

WF. Moreover, the WF does not stop or limit local com-

munities’ ability to utilize the surrounding lands and gain a

livelihood. However, some claims surfaced from the local

community regarding the effects of the WTs on reindeers’

use of the WF area, but these claims were disproved, by

Tsegaye et al. (2017). Based on that, the social impact

score is assigned a value of 3.

Sustainability performance. The sustainability perfor-

mance score can be calculated as a function of the envi-

ronmental, economic, and social impacts’ relative weights

and criteria scores, by applying an equation similar to

Eq. 4. The resulting sustainability performance score is

2.65.

Overall WF performance score. The overall perfor-

mance score is a function of the technical and sustainability

performances’ relative weights and scores. By using

Eq. (5), the resulting value of the overall performance

score of Fakken WF is equal to 2.84.

3.2 Fakken WF overall performance index

The proposed OPI is a normalized value of the overall WF

performance score, which was calculated using Eq. 3. The

value of the overall performance score is normalized to be

from 0 to 1. This can be done by subtracting the lowest

attainable score, which is 1 from the calculated overall

performance score and dividing the result by the difference

between the highest (4) and lowest (1) attainable scores, as

shown in Eq. 6:

OPI ¼ overall performance score � minimum score

maximum score� minimum score

¼ 2:84� 1

3
¼ 0:613 ð6Þ

The resulting OPI represents an absolute value that can

help operators and stakeholder at a specific WF to decide

whether the overall performance of that WF is accept-

able or not. In case the resulting OPI was deemed to be
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unacceptable, the performance indicator that contributes to

lowering the overall WF performance can be easily allo-

cated. Moreover, the resulting OPI can be expressed

qualitatively by defining a qualitative scale as show in

Table 3.

Based on that, the 61.3% OPI can be expressed to be

good performance. In case the decision was to improve the

OPI of Fakken WF, it can be seen, by referring to Fig. 5,

that the sustainability performance indicates a lower impact

than the technical performance. Therefore, improvements

should be focused on the WF sustainability performance.

Moreover, it is the economic performance indicator that

has the lowest score among sustainability performance

indicators. This can be attributed to the high operation and

maintenance (O&M) costs that lead to increasing the cost

of energy produced by the WF. Based on that, it can be

proposed that more efforts are required to improve the

(O&M) activities.

Another advantage of using the OPI is that it can be

calculated for multiple WFs that share similar character-

istics, such as WTs brands, capacity, location, etc. The OPI

can help us compare the overall performance of these WFs,

or their specific performance indicators, and therefore,

ranke them according to how high or how low their per-

formances are. For example, the OPI of Fakken WF can be

compared with other WFs located in Arctic Norway, such

as Nygårdsfjellet and Kvittfjell/ Raudfjell WFs. Based on

the resulting OPI values, decision-makers can decide which

WFs need to be improved to provide better performance

and which performance indicators need more focus.

In order to compare the effects of Arctic operating

conditions on the calculated OPI of Fakken WF, the same

OPI quantification methodology is applied to a WF located

in a non-cold-climate region, in Turkey. The Kozbeyli WF

in Turkey has higher technical performance than Fakken

WF, with a technical performance criterion score equal to

3.73 out of 4, due to higher reliability and capacity per-

formances. This has led to an OPI value of nearly 75% if

the sustainability performance of Kozbeyli WF was equal

to that of Fakken WF, which is not the case. This is due to a

lower environmental performance as Kozbeyli WF is

located close to an Environmental Protected Area,

migration route of birds, and endangered species. In addi-

tion, the Kozbeyli WF is 1.3 km away from a village that

has a touristic value, which has reduced the social accep-

tance and performance of the WF Kucukali (2016) that

consequently, reduces the sustainability performance cri-

teria score of the WF to 1.7 out of 4. Consequently, the

resulting OPI of Kozbeyli WF is nearly 60%, which is

mainly due to lower sustainability performance of the WF.

4 Conclusions

The OPI is an important tool in providing a measure of the

overall performance of WFs, especially in cases where

performance data is scarce. The overall performance of

WFs constituted the technical and sustainability perfor-

mance indicators. The technical performance consisted of

the quality, capacity, and availability performance indica-

tors. The weighted sum method (WSM) is one of the most

widely used methods for multiple-criteria decision making

(MCDM). The use of WSM implies summing the products

of the performance indicators relative weights and their

scores of criteria.

Due to data scarcity, the relative weight of each per-

formance indicator was estimated using expert judgement

technique. Experts estimated that the technical perfor-

mance had higher relative weight (54%) than the sustain-

ability performance (46%). The rest of performance

indicators had relative weights estimated by the experts as

follows: Quality (28%), Capacity (32%), Availability

(40%), Reliability (34%), Maintainability (33%), and

Supportability (33%). Moreover, the sustainability perfor-

mance indicators had the following relative weights: social

and safety impacts (29%), environmental impacts (36%),

and the economic impacts (35%).

The proposed methodology was applied to an onshore

WF in Arctic Norway, called Fakken WF. The assigned

and calculated scoring criteria for the performance indi-

cators using Table 2 are found to be as follows: Reliability

(2), Maintainability (3), Supportability (4), Availability (3),

Quality (4), Capacity (2). The calculated technical perfor-

mance score is equal to 3. The sustainability performance

indicators had the following criteria scores: social and

safety impacts (3), environmental impacts (3), and the

economic impacts (2). The calculated sustainability criteria

score is equal to 2.65. Consequently, the calculated total

criteria score for the WF was found to be equal to 2.84.

The calculated OPI of the WF is 61.3%, which was

deemed to be good, when compared against a proposed

qualitative criteria scale. The OPI indicated that the eco-

nomic performance of the WF needs to be improved, which

can be attained by lowering the O&M costs to lower the

cost of energy of the WF. Moreover, in order to understand

Table 3 A qualitative scale for expressing the OPI

OPI Scale

0–25% Bad performance

26–50% Average performance

51–75% Good performance

76–100% Excellent performance
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the effects of Arctic operating conditions on the perfor-

mance of WFs, the OPI of Fakken WF has been compared

to the OPI of Kozbeyli WF, which is a WF located in a

non-cold-climate region. The comparison concluded that

Kozbeyli WF had higher technical performance in its

reliability and capacity performances, due to the absence of

Arctic operating conditions. However, the location of

Kozbeyli WF has led to lowering its sustainability perfor-

mance, due to its negative impacts on the environment and

society, which has led a lower OPI value (60%), which was

lower than the OPI of Fakken WF.
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Resilience Assessment of Wind Farms in the Arctic with the 
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Abstract:  Infrastructure  systems,  such as wind  farms, are prone  to various human‐induced and 

natural disruptions such as extreme weather conditions. There is growing concern among decision 

makers about  the ability of wind  farms  to withstand and  regain  their performance when  facing 

disruptions, in terms of resilience‐enhanced strategies. This paper proposes a probabilistic model 

to calculate the resilience of wind farms facing disruptive weather conditions. In this study, the re‐

silience of wind farms is considered to be a function of their reliability, maintainability, supporta‐

bility,  and organizational  resilience. The  relationships between  these  resilience variables  can be 

structured using Bayesian network models. The use of Bayesian networks allows  for analyzing 

different  resilience  scenarios. Moreover,  Bayesian  networks  can  be  used  to  quantify  resilience, 

which is demonstrated in this paper with a case study of a wind farm in Arctic Norway. The results 

of the case study show that the wind farm is highly resilient under normal operating conditions, 

and slightly degraded under Arctic operating conditions. Moreover, the case study introduced the 

calculation of wind farm resilience under Arctic black swan conditions. A black swan scenario is an 

unknowable unknown  scenario  that can affect a system with  low probability and very high ex‐

treme consequences. The results of the analysis show that the resilience of the wind farm is signif‐

icantly degraded when operating under Arctic black  swan  conditions.  In  addition,  a backward 

propagation of the Bayesian network  illustrates the percentage of improvement required  in each 

resilience factor in order to attain a certain level of resilience of the wind farm under Arctic black 

swan conditions.   

Keywords: wind farms; wind  turbines; Arctic conditions; Arctic black swan; resilience; Bayesian 

network 

1. Introduction

Infrastructure  systems  in  the  Arctic  are  prone  to  disruptions  in  their  operation 

caused mainly by the harsh weather conditions they face. The resilience of infrastructure 

systems in the face of disruptions and the resulting consequences has become a signifi‐

cantly recognized  topic among project owners. The author  in [1] defined system resili‐

ence as the extent to which a system maintains a minimum level of performance in the 

face of disruptions. Wind farms (WFs) are among the infrastructure systems installed in 

the Arctic  that  are prone  to disruptions  resulting  from  the weather  conditions  in  the 

region.  Ice  accretion  on  the  blades  of wind  turbines  (WTs),  snow  accumulation  that 

blocks the roads  to WFs and prevents maintenance procedures, and cold  temperatures 

that limit the dexterity of the WF staff are among the disruptions that affect the resilience 

of WFs in the Arctic.   

When uncertainties are taken into consideration in resilience analyses, probabilistic 

resilience measures that normally have a probability value between 0 and 1 can be used 

[2]. For example, a system that possesses a resilience estimate of 0.8 can indicate that the 
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system  is,  in general, 80%  resilient against a  specific disruptive event. Furthermore,  it 

could reflect an 80% probability that the system will continue to perform under a defined 

disruptive event, or recover  to an acceptable system performance  level, within a given 

time interval after the disruptive event disappears.   

Due to the uncertainty in energy system applications such as WFs, there are several 

variables  that have  to be determined and many explicit pieces of evidence  that can be 

linked  together  through  the application of Bayesian networks  (BNs), which depend on 

the concept of probability  to compute uncertainties. BNs have been used for modeling 

infrastructure  resilience  [3–5], post‐disaster  infrastructure  recovery  [6], and  in applica‐

tions of infrastructure system reliability [7,8]. 

According to Aven [9], resilience is event‐dependent, and can be assessed based on 

the description of  the disruptive event  that  the  infrastructure  system  is  facing.  In  that 

sense, there is a need to define the type of events that the system deals with, in order to 

decide whether it is resilient to them or not. Therefore, the approach adopted in this pa‐

per is to define three separate scenarios against which the resilience of a WF can be test‐

ed. The first scenario is the baseline scenario, where the WF is operating under normal 

operating conditions, while the second scenario tests the WF’s resilience to Arctic oper‐

ating conditions on the WF site. The third scenario is an imaginable scenario, defined as 

an Arctic black swan scenario, where the impacts of the disruptions are extreme. 

The black swan concept was defined and popularized by Nassim Nicholas Taleb in 

his book The Black Swan [10], in which he identified three main attributes of a black swan 

event: 1) a black swan event is an outlier and unexpected, in the sense that nothing in the 

past can  indicate  the  likelihood of  it occurring; 2)  its  impact  is extreme; and 3) after a 

black swan event has occurred, humans are able to find an explanation for it, making it 

explainable and predictable despite its outlier nature. According to Aven [11], black swan 

events are seen as extreme events relative to current knowledge and beliefs. Furthermore, 

Aven and Krohn [12] pointed out that black swan events can be events that are known to 

the risk analysts, but assessed to have a negligible probability of occurrence, and thus not 

anticipated to happen. Therefore, testing a WF’s resilience to black swan events helps the 

WF operator to be prepared for worst‐case scenarios. 

This  study  is motivated  by  the  observation  that uncertainties  emerging  from  the 

changing  climate  conditions  might  open  up  the  possibility  for  unexpectedly  harsh 

weather conditions, characterized as a black swan,  to  take place  in regions such as the 

Arctic. The effects of such a scenario taking place, and affecting the operation of WFs in 

the Arctic, are not well addressed  in the  literature. Using BNs to model an uncertainty 

scenario and calculating the resulting resilience is effective as a BN is a practical tool for 

calculating conditional probabilities, and it is easy to understand its models. Most studies 

that have implemented BNs for applications in the Arctic are concerned with risks posed 

to ship  transportation and collisions with  ice  in Arctic waters  [13–15]. WF systems are 

relatively new in the Arctic, and as there is a corresponding lack of data in the field, the 

use of BNs  to describe Arctic scenarios and  their effects on WFs can be an  interesting 

application. 

This paper utilizes BNs to estimate the resilience of WFs located in the Arctic region 

of Norway, which will contribute towards enriching the literature with a unique meth‐

odology, to create multiple scenarios and assess the WF resilience against each scenario. 

The paper includes and assesses the WF’s resilience against three main scenarios, which 

are  the normal operating  conditions  scenario,  the Arctic operating  condition  scenario, 

and the Arctic black swan scenario.   

The remaining sections of this paper are organized as follows: Section 2 presents a 

conceptual definition  of  engineering  resilience.  Section  3  introduces  the methodology 

adopted, while Section 4 explains the design and modeling of the BN. Section 5 demon‐

strates the use of the proposed BN by applying it to a case study of a WF in the Norway 

Arctic region. The conclusions of the study are then presented in Section 6. 
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2. Conceptual Definition of Engineering Resilience

Youn  et al.  [16] proposed a  theoretical definition of  engineering  resilience, which 

derives  its generic  formula  from  the  system  reliability  and  the  three key  attributes of 

prognostics and health management (PHM) efficiency, which are diagnostics, prognos‐

tics, and condition‐based maintenance [17]. The definition concluded that resilience can 

be mathematically measured as the sum of reliability and restoration, as per Equation (1) 

[16]. 

Resilience (Ψ) = Reliability (R) + Restoration (ρ)  (1)

Restoration (ρ) is defined as “the event at which the ‘up’ state is re‐established after 

failure” [18], which according to [16] depends mainly on the attributes of PHM efficiency 

and system reliability, by focusing on transforming the system into a resilient system and 

minimizing  its  life‐cycle cost  (LLC). Based on  that, restoration can be expressed as  the 

joint probability of a system failure event (i.e., the reliability of the system) (Esf), and the 

three PHM attributes, which are a correct diagnosis event (Ecd), a correct prognosis event 

(Ecp), and a mitigation/recovery (M/R) action success event (Emr), expressed in Equation 

(2) [16]. 

Restoration (ρ) = P (Esf Ecd Ecp Emr)  (2)

The authors  in  [19] proposed  that  the most  important  factors  for consideration  in 

assessing the resilience of a system  in the Arctic are: (I) reliability of the system’s com‐

ponents, (II) maintainability of disrupted components, (III) supportability of maintenance 

activities,  (IV)  the organizational  resilience, and  (V)  the PHM efficiency of  the  system. 

However, the PHM elements, namely diagnosis, prognosis, and M/R action, are embed‐

ded in the maintainability, supportability, and organizational factors of restoration. This 

is because the organization has to gather and analyze data in order to define the potential 

hazards (diagnosis), estimate the remaining useful life of the impacted WT components 

(prognosis),  and  take  the  required M/R measures  in  a  condition‐based maintenance 

(CBM) sense, where the latter can be reflected by the maintainability and supportability 

of the WF. Based on that, and by referring to restoration equation in [19], restoration can 

be expressed as in Equation (3). 

Restoration (ρ) = (1 − R) × M × S × O  (3)

where R, M,  S,  and O  are  the  conditional  probabilities  of  reliability, maintainability, 

supportability, and organizational resilience, respectively, which are the main factors of 

resilience that are important for WFs to maintain and regain their resilience during and 

after a disruptive event. These  factors can be denoted as output variables  that will de‐

pend on other input variables in determining their values. Figure 1 illustrates the input 

and output variables that will shape the resilience of WFs, considering Equations (1) and 

(3), and that will be used in establishing the Bayesian network (BN) for calculating the 

resilience of the WFs. 
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Figure 1. Input and output variables of the resilience of WFs.

2.1. Reliability 

WF reliability reflects the ability of the WTs to operate as required, without failure, 

for a given period under given conditions. Reliability can be expressed  in  terms of the 

probability of failure [20], as in Equation (4): 

R(t) = 1 − F(t)    (4)

where F(t) is the probability at which the WTs stop operating due to the hazards, which 

can be due to Arctic operating conditions or component degradation. Different statistical 

models have been developed for reliability modeling of complex systems like WTs, such 

as the Power law process (PLP), which is a special case of the Poisson process [21], and 

the Poisson process with  covariates  [22].  For  the  sake  of  simplicity,  in  this paper  the 

Poisson distribution  is used  to represent the probability of the WT stoppage events, as 

shown in Equation (5) [23]: 

p(k;(0,t), λ) = 
ሺఒ௧ሻೖ

௞!
𝑒ିఒ௧    (5)

where k is the number of WT stoppage events the Poisson distribution tries to find the 

probability of, over a fixed time interval (0, t). λ is the mean value of the distribution and 

is equal to the number of WT stoppage events over a specific period (e.g., a month). 

2.2. Maintainability   

The maintainability of an item is the ability to keep performing, or restored to a state 

to perform  as demanded, under  given  conditions  of  operation  and maintenance  [18]. 

Maintainability  is  influenced by the design of  the system,  in terms of how easy  it  is  to 

maintain it. From a different angle, the maintainability of a WF can be expressed in terms 

of two factors, which reflect the ability to restore the functionality of the WF: the level of 

labor dexterity when carrying out the maintenance activities, and the accessibility to the 

WF; both  factors are affected by  the Arctic operating  conditions.  In order  to maintain 

access to the WTs, WFs can utilize snow‐removing strategies, which might be costly, or 

equip the service team with specialized vehicles. A cost/benefit analysis must be carried 

out in order to determine which option is better. However, most WFs employ a combi‐

nation of both solutions [24]. 
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2.3. Supportability 

Supportability  is defined as  the ability of a  system  to be supported  to maintain a 

certain level of availability under defined operational conditions and given logistic and 

maintenance resources [18]. Based on this definition, the supportability of a WF involves 

the provision and availability of spare parts and tools that will help the service team to 

restore  the WF’s performance and availability, during and after a disruptive event. To 

this end, supportability depends on the redundancy of spare parts, and the accessibility 

of roads and routes, via which spare parts and tools can be delivered by suppliers. 

2.4. Organizational Resilience 

According  to  the BS‐65000  standard  [25], organizational  resilience  implies  the  ca‐

pacity of the organization to prepare for disruptive events, respond and adapt to them, 

whether  they  take  the organization by  surprise or unfold gradually. Cutter  et  al.  [26] 

argue that organizational resilience requires an assessment of the physical properties of 

the organization,  such as  communication  technology, number of members,  and  emer‐

gency assets. Hence, the resilience of a WF can be measured in terms of (I) communica‐

tion availability and (II) on‐time response to events. 

I. Communication availability (CA) covers the communication between staff members 

and the WF. Incidents involving loss of connection with WTs, which lead to loss of 

data, are stored  in the SCADA system. A Poisson distribution can be used to esti‐

mate the probability of loss of connection events (x), taking place over a specific in‐

terval  (0,  t),  considering  an  average  number  of  loss  of  connection  incidents  (λ). 

Hence, the probability of connection availability can be represented as per Equation 

(6) [23]: 

CA = 1 − p(x;(0,t), λ) = 1 − 
ሺఒ௧ሻೣ

௫!
𝑒ିఒ௧    (6)

II. On‐time response to events covers the responsiveness of the operator to disruptive

events and is a measure of the WF’s resilience, which can be assessed by the proba‐

bility of an on‐time response to the events that have led to WT stoppage. For exam‐

ple, if 85% or more of the disruptive events that lead to or require stopping the WTs

are being handled and treated by the WF operator, within the first hour of their oc‐

currence,  the WF operator can be described as resilient, and  the on‐time response

variable  can be  set  at  100%,  and  considered  successful  [3]. This  can  also  include

corrective maintenance activities if the treatment of the failure starts within the first

hour of its occurrence.

3. Methodology

The methodology  adopted  to  calculate  resilience using  the proposed BN  is  illus‐

trated in Figure 2. The probability values of the input variables in the BN will either be 

extracted from historical data gathered from WFs or, in the event of a lack of data, from 

expert assessments. Afterwards, the BN is compiled to provide the posterior probabilities 

of the output variables, including resilience. Upon calculating the resilience value of the 

WF,  the BN will show  the probability of urgency  to  take measures  to  improve  the WF 

resilience.   
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Figure 2. Methodology followed to estimate the resilience of WFs using BN.

4. Designing the Bayesian Network

Graphically, a BN consists of nodes, and links that connect the nodes together. The 

nodes represent the variables, which can be an event or the state of a specific component, 

such  as  the  state  of  failure  or  no  failure  of  that  component.  Each  node  contains  the 

probability of  the occurrence of an event or state. The nodes are classified  into parent 

nodes and child nodes, depending on how they are connected to each other in the graph, 

and which node is the predecessor (parent), and which the successor (child). The links in 

the BNs denote the causal relationship between the nodes. For example, in Figure 3, the 

nodes X1 and X2 are the parents of node X3, which is the child of both nodes. Likewise, 

node X3 is the only parent of node X4, which is its child. 
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Figure 3. An example of a BN with four variables. 

BNs are described as directed graphs, which means that the relationships between 

the nodes are directed  in one direction, with no cycles or  links going backwards to the 

original (parent) node. A BN is an efficient tool for calculating the posterior probability of 

uncertain variables (the probability of the child nodes), depending on the known condi‐

tion or the evident probability of other variables (the parent nodes), in what is known as 

the conditional probability, which updates the probabilities of events when given a cer‐

tain condition or evidence. 

The conditional relationships between the variables in a BN are measured by condi‐

tional probability distributions. Equation (7) presents the full  joint probability distribu‐

tion of a BN consisting of n variables X1; X2; …; Xn [3]. 

P (X1, X2,…, Xn) = ∏ 𝑃ሺ𝑋௜
௡
௜ୀଵ | 𝑃𝑎𝑟𝑒𝑛𝑡𝑠ሺ𝑋௜ሻሻ    (7)

The variables/nodes used in modeling the BN are Boolean discrete variables, having 

values of (Yes/No), where the Yes state represents the success state of a specific variable, 

and  the No state represents  the  fail state of that variable. For example,  labor dexterity, 

which contributes to the successful maintenance of WTs, is reduced by 70% during the 

presence of extreme Arctic operating conditions. Therefore, assuming that labor dexterity 

has  a  100%  probability  of  being  successful  under  normal  operating  conditions,  the 

probability of successful labor dexterity  is reduced to 30% under extreme Arctic condi‐

tions, which will consequently reduce the probability of carrying out successful mainte‐

nance on the WTs and, therefore, reduce the resilience of the WF. 

A graphical depiction of the proposed BN, which illustrates the interactions between 

the input and output variables, is shown in Figure 4. User‐friendly software called Neti‐

ca, which  is not open source, was used  to build  the BN  to assess  the resilience of WFs 

under Arctic operating conditions. Netica allows for entering equations and probability 

distributions and converting them into conditional probability tables (CPTs). 
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Figure 4. Graphical depiction of the proposed BN for WF resilience calculation. 

In addition to the Poisson distribution function used to design the WT stoppage and 

communication availability nodes, two other main functions were used to design the BN 

nodes, which have two or more input nodes each, such as the maintainability, supporta‐

bility, and organizational resilience nodes. These two functions are the NoisyOrDist and 

the NoisyAndDist functions.   

The NoisyOrDist  function  is used when  there  are n  input nodes 𝑋1, …, 𝑋𝑛  of  an 
output node, Y, where the probability value for Y being true takes place when one and 

only one X1 is true, and all input nodes other than X1 are false. The NoisyOrDist function, 

based on [27], is expressed as shown in Equation (8): 

NoisyOrDist (𝑙, 𝑋1, 𝑣1, 𝑋2, 𝑣2, …, 𝑋𝑛, 𝑣𝑛)    (8)

Term 𝑣i is the probability of the output node, Y, being true if and only if that input 
node (Xi) is true, as presented in Equation (9) [27]: 

𝑣𝑖 = 𝑃 (𝑌 = 𝑇𝑟𝑢𝑒 |𝑋𝑖 = 𝑇𝑟𝑢𝑒, 𝑋𝑗 = 𝐹𝑎𝑙𝑠𝑒, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 ≠𝑖)  (9)

Term l is called the leak probability, and it represents the probability that Y will be 

true when all of its input nodes are false, as expressed in Equation (10) [27]: 

𝑙 = 𝑃 (𝑌 = 𝑇𝑟𝑢𝑒 |𝑋1 = 𝐹𝑎𝑙𝑠𝑒, 𝑋2 = 𝐹𝑎𝑙𝑠𝑒, …, 𝑋𝑛 = 𝐹𝑎𝑙𝑠𝑒)  (10)

Generally, the conditional probability of Y obtained using the NoisyOrDist function, 

based on [3], can be expressed as in Equation (11):   

𝑃 (𝑌 = 𝑇𝑟𝑢𝑒 |𝑋1, …, 𝑋𝑛) =   

1 െ ሾሺ1 െ 𝑃 ሺ𝑙ሻሻ∏ ሺ1 െ  𝑃 ሺ𝑌 ൌ  𝑇𝑟𝑢𝑒 |𝑋𝑖 ൌ  𝑇𝑟𝑢𝑒ሻሻ௡
௜ୀଵ ሿ   

(11)

The NoisyAndDist  function  is used when  the  true  state  of  the  output node Y  is 

caused by more than one input node X being true. The NoisyAndDist can be expressed as 

the complement of the NoisyOrDist, as in Equation (12) [27]: 

𝑃 (𝑌 = 𝑇𝑟𝑢𝑒|𝑋1, …, 𝑋𝑛) = 1 − NoisyOrDist    (12)

Table 1 summarizes the equations used to model the main nodes in the BN to cal‐

culate the resilience of WFs. 
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Table 1. Summary of the modeled equations used by Netica in the designed BN.

Node  Notes  Netica Equation Entered in the BN Nodes 
Equation 

Number 

WT stoppage 
A Poisson distribution of the number of 

WT stoppages 

P (WT stoppage | ArcticConditions) = 

ArcticConditions == Yes? PoissonDist (k, λ) 

Equation 

(13) 

Reliability  R(t) = 1 − F(t)  R(t) = 1 − F(t) 
Equation 

(4) 

Access strategy 
Dependent on the snow removal and the

specialized vehicles nodes 

P (Access strategy | Snow removal, 

Specialized vehicles) = NoisyAndDist (Access 

strategy, 0, Snow removal, 0.5, Specialized 

vehicles, 0.5) 

Equation 

(14) 

Maintainability 
Dependent on WF accessibility, labor 

dexterity, and supportability nodes 

P (Maintainability | WF accessibility, Labor 

dexterity, Supportability) = NoisyAndDist 

(Maintainability, 0, Accessibility, 0.33, Labor, 

0.33, Supportability, 0.33) 

Equation 

(15) 

Supportability 
Dependent on the redundancy and the

delivery of spare parts 

P (Supportability | Redundancy, Delivery) = 

NoisyOrDist (Supportability, 0, Redundancy, 

1, Delivery, 1) 

Equation 

(16) 

Communication 

The complement of the Poisson 

distribution for the number of lost 

communication events 

P (Communication | ArcticConditions) = 

ArcticConditions == Yes? 1‐PoissonDist (k, λ): 

0 

Equation 

(17) 

Organizational 

resilience 

Dependent on the communication and the 

on‐time response of the WF 

P (Organization | Communication, Response) 

= NoisyAndDist(Organization, 0, 

Communication, 0.5, On‐time response, 0.5) 

Equation 

(18) 

Restoration 

Conditional probability of WF reliability, 

maintainability, support‐ability, and 

organizational resilience 

Restoration (ρ) = (1 − R) × M × S × O 
Equation 

(3) 

Resilience  The addition of reliability and restoration 
Resilience (Ψ) = Reliability (R) + Restoration 

(ρ) 

Equation 

(1) 

Resilience 

Improvement 

If the calculated resilience is higher than 

the desired level, then there is no need for 

improvements; otherwise, improvements 

are needed. 

Improve (Resilience, Desired) = Resilience >= 

Desired? No: Resilience < Desired? Yes: No 

Equation 

(19) 

5. Case Study: A Wind Farm in Arctic Norway

A WF in Arctic Norway was selected for the case study, comprising three different 

scenarios  for calculating  the  resilience of  the WF, using  the BN. The  first scenario  is a 

baseline  scenario,  through which  the  resilience  of  the WF  is  calculated under normal 

operating conditions, and where  the Arctic conditions are not  included in the analysis. 

The second scenario is the Arctic operating conditions scenario, which calculates the re‐

silience of  the WF under  the Arctic conditions  that  the WF normally experiences  in  its 

location. The third scenario is an imaginable scenario, called the Arctic black swan sce‐

nario,  aimed  at  calculating  the  resilience  of  the WF  under  suggested  extreme Arctic 

events, which has a low probability of occurring, but in the event of which, the impact on 

the WF would be  immense. In connection with the Arctic black swan scenario, a back‐

ward propagation of the BN was used to determine which resilience factors would need 

to be improved in order to reach a certain level of resilience, in the light of Arctic black 

swan events. 
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The data gathered from WF operators included ice detection incidents on the WTs 

with resulting downtime, events concerning a loss of communication between the WTs 

and the WF staff, the duration of each event, as well as data related to WT maintenance 

and  service  activities.  In  addition, data  regarding  the performance of  the WF  such  as 

generated power, wind speed, and rotor and generator speed were gathered. However, 

these latter types of data were not utilized in this study.   

5.1. Baseline Scenario Analysis 

The baseline  scenario analysis  concerns  the  resilience of  the WF when  it operates 

under normal operating  conditions  (no presence of Arctic disruptive events). Figure 5 

illustrates  the baseline  scenario with  the probability of occurrence of Arctic operating 

conditions set to 0%. Based on the available data, the resilience of the WF and the con‐

tributing factors were calculated probabilistically as follows: 

Figure 5. Baseline Bayesian network for calculating the resilience of wind farms. 

Based on the gathered data, the WF experienced a total of 1993 WT stoppages during 

2019. The  reasons  for  the  stoppages mainly  concerned  servicing  and maintaining  the 

WTs. The  stoppages  that  resulted  from Arctic operating  conditions,  such as  icing and 

snow  accumulations, were  excluded. Based on  this,  the  stoppage  rate per WT during 

each month of that year was approximately 12 stoppages/WT/month. Therefore, the BN 

shows, by applying  the Poisson distribution over  the mean value of  the stoppage  rate 

(i.e., 12 stoppages/WT/month), as discussed in Equation (13), that the probability of WT 

stoppage is 11.4%. Consequently, the reliability of the WF, based on the BN, by utilizing 

Equation (4), will be 88.6% under normal operating conditions. 

Labor dexterity is 100% under normal operating conditions, where the Arctic con‐

ditions are not present, which hinder the maintenance activities and limit the ability of 

workers to perform their work. In addition, accessibility to the WF is 100% probable since 

no snow has accumulated on the roads to the WF.   

Regarding the supportability of the WF, the supply and provision of spare parts is 

100% successful as roads are open and not affected by the Arctic conditions. Therefore, 

the NoisyOrDist function in Equation (16) shows that supportability is calculated to be 

100% successful. Consequently, by using the NoisyAndDist function in Equation (15), it 

shows that the maintainability of the WF is 100% successful. 
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WF data show that the mean value of lost communication events between the WTs 

and the operator is five events per month per WT, under normal operating conditions. By 

applying Equation (17), the Poisson distribution over the mean value of the lost commu‐

nication  events  shows  an  82.5%  probability  of  successful  communication  during 

non‐disruptive event conditions.   

In addition, by reviewing the timing and duration of the maintenance activities, it is 

observed  that more  than 85% of  the maintenance procedures  for  failures  that  the WTs 

experience are carried out within the first hour of the failure taking place. Based on that, 

the on‐time response is set to 100% as successful WF responsiveness. The overall organ‐

izational resilience, by applying  the NoisyAndDist  in Equation  (18),  is calculated  to be 

successful with 91.2% probability. 

By applying Equation (1) to calculate the WF resilience, the BN shows  in Figure 5 

that the WF is 99.1% resilient under normal operating conditions. Setting the desired re‐

silience to be at least 90%, the resilience improvement node, which is modeled using the 

expression in Equation (19), in Table 1, shows that there is 99.1% no need for resilience 

improvement for the WF. 

Table 2 summarizes the values of the BN input and output nodes, and the results of 

a  forward propagation baseline  scenario  that  could  take place, using  the modeled BN 

shown in Figure 5. 

Table 2. Summary of baseline scenario input and output nodes. 

Input Nodes  Yes Value  Output Nodes  Yes Value  Resilience 

WT stoppage  11.4%  Reliability  88.6% 

99% 

WF accessibility  100% 
Maintainability  100% 

Labor dexterity  100% 

Spare parts/equipment 

delivery 
50% 

Supportability  100% 
Spare parts/equipment 

redundancy   
100% 

Communication  82.5%  Organizational 

resilience 
91.2% 

On‐time response  100% 

5.2. Arctic Operating Conditions Scenario Analysis   

If the WF was operating under Arctic conditions, its resilience would be degraded 

due to the effects of ice accretion on WT blades, cold temperatures that affect the dexter‐

ity of the crew staff, and snow accumulation on roads that hinders accessibility to the WF. 

Figure  6  illustrates  the values of  the WF  resilience  and  contributing  factors. The data 

considered in the analysis of this scenario relate to the month of December as Arctic op‐

erating conditions are mostly witnessed during this month.   
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Figure 6. Bayesian network for calculating resilience in Arctic operating conditions scenario. 

There were 65 WT stoppages altogether due to icing in December 2019. The average 

number of WT stoppages due  to  icing per WT during December  is  five. The  resulting 

probability from applying Equation (13) to the average number of WT stoppages due to 

icing is 17.56%. By using Equation (20), the total WT stoppage probability is equal to the 

probability of stoppage due to icing events added to the stoppage probability calculated 

in the baseline scenario, under normal operating conditions, which was 11.4%. This re‐

sults in 29% probability of stoppage under Arctic operating conditions. Based on that, by 

applying Equation (4), the calculated reliability probability is 71%. 

P (WT stoppage|Arctic operating conditions) =   

P (WT stoppage due to icing events) + P (WT stoppage under normal operating conditions) 

(20)

The dexterity of maintenance crews during extreme Arctic conditions is assessed to 

be reduced by 70% due to exposure to the cold weather [28], which can lead to decreased 

cognitive performance,  injuries, dangerously  low body  temperature, and  loss of sensi‐

tivity. Such conditions can directly influence the uncertainty of a person’s decision or ac‐

tions  significantly  [29]. Based on  this, a  simple  scale  can be developed  to assess  labor 

dexterity under milder Arctic conditions, such as those experienced by the WF. Table 3 

proposes a qualitative scale  for assessing  the success of  labor dexterity under different 

degrees of Arctic conditions. Labor dexterity success  in  the WF area during December 

falls within  the  range of 61–90%. By  taking  the average value of  this  range,  the  labor 

dexterity success would be approximately 75%. 

Table 3. Labor dexterity success percentage according to operating conditions. 

Operating Conditions  Labor Dexterity Success 

Extreme Arctic conditions  0–30% 

Moderate Arctic conditions  31–60% 

Mild Arctic conditions  61–90% 

Normal conditions  91–100% 

Moreover, the WF employs a snow removal strategy to some extent, and uses spe‐

cially equipped vehicles to maintain access to the WF. This can guarantee 75% successful 

access to the WF when applying the NoisyOrDist function in Equation (14) in the BN. By 
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assuming that the spare parts and equipment are redundant, and available at the WF site, 

this would indicate 100% successful supportability, according to the NoisyOrDist func‐

tion in Equation (16). This will contribute to successful maintainability of 84.2%, by ap‐

plying the NoisyAndDist function in Equation (15). 

According to the available data, the number of lost communication events between 

the WTs and the WF operator has doubled under Arctic operating conditions. In other 

words, the probability of successful communication between the WTs and the WF oper‐

ator  is  halved  compared  to  the  normal  operating  conditions  in  the  baseline  scenario. 

Therefore, the probability of successful communication is reduced to 41.2%. Moreover, it 

is observed from the data that the responsiveness of the WF to failures did not change 

under Arctic conditions. Therefore, the probability of an on‐time response by the opera‐

tor to Arctic events remains at 100%. Based on this, the probability of organizational re‐

silience is 70.6% when applying the NoisyAndDist function in Equation (18). 

By applying Equation (3), the probability of successful restoration under the given 

conditions is only 17.2%. This is because the reliability of the WF is still high, even under 

Arctic conditions. In addition, by setting the desired resilience node to 90%, the resilience 

improvement node shows a slight probability of improvement urgency of 13.1%.   

The resilience of the WF under Arctic operating conditions is 88.2% when calculated 

using Equation  (1). This  indicates  that  the Arctic conditions contributed  to a 10.8%  re‐

duction in resilience, compared to the baseline scenario. Table 4 summarizes the values of 

the BN input and output nodes when the WF operates under Arctic conditions, using the 

modeled BN shown in Figure 6. 

Table 4. Summary of input and output nodes in the Arctic operating conditions scenario. 

Input Node  Yes Value  Output Node  Yes Value  Resilience 

WT stoppage  29%  Reliability  71% 

88.2% 

Snow removal strategy  50% 

Maintainability  84.2% Specialized vehicles  100% 

Labor dexterity  75% 

Spare parts/equipment 

delivery 
50% 

Supportability  100% 
Spare parts/equipment 

redundancy   
100% 

Staff communication  41.2%  Organizational 

resilience 
70.6% 

On‐time response  100% 

5.3. Arctic Black Swan Scenario Analysis 

The resilience of the WF can be tested against a scenario that is unlikely to happen 

but which, if it were to happen, would have an immense impact on the performance of 

the WF. This is classified as an Arctic black swan scenario. Proposing such a scenario can 

help the WF operator to prepare for the worst‐case scenario that the WF might face, and 

to consider the best measures to take in order to mitigate the impacts of such a scenario.   

The imaginable Arctic black swan scenario implies a dramatic increase in the num‐

ber of icing events, which are going to be 10 times the number of icing events that the WF 

experiences under the Arctic operating conditions scenario. Moreover, the number of lost 

connections between the WTs and the WF staff during this scenario would increase ten‐

fold compared to the Arctic operating conditions scenario, and the WF’s response to such 

scenario events would be reduced to 50%. In addition, accessibility to the WF would be 

reduced as the snow removal strategy would not be efficient enough to remove the ex‐

cessive accumulated snow, and only 50% of the specialized vehicles would be useable to 

access the WF. Lastly, the scenario suggests that roads to spare part suppliers would be 

blocked due  to  the  immense  amount of  accumulated  snow,  and  that only  50% of  the 
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spare parts and tools would be redundant at the WF site. Figure 7 illustrates the proba‐

bilistic values of the input and output nodes that correspond to the proposed scenario. 

Figure 7. Arctic black swan scenario Bayesian network for resilience calculation. 

By following the same methodology mentioned earlier in the previous two scenari‐

os, it can be seen from the figure that the resilience of the WF is significantly reduced to 

43.6%. All resilience factors witnessed a significant reduction in this scenario, but it is the 

reliability of the WF that witnessed the highest reduction, as reliability is reduced to 34.6%. 

Moreover, due to reduced maintainability, supportability and organizational resilience, the 

restoration of the WF is reduced to nearly 9%. Furthermore, the improvement of the WF re‐

silience, shown in the resilience improvement node, is increased to 50.8%, indicating a higher 

urgency of implementing measures to improve the resilience of the WF. 

5.3.1. Backward Propagation Analysis 

Backward propagation is another practical characteristic of BNs. In backward propaga‐

tion, observation is conducted of a precise variable, usually an output variable (e.g., the re‐

silience node or the restoration node). After that, the BN calculates the marginal probabilities 

of unobserved variables by  introducing  the  impact of  the observed variables  into  the net‐

work in a backward style. For example, if the resilience value is set at 90%, as shown in Fig‐

ure 8, this scenario implies enhancing the reliability of the WF from 34.6% to 72.2%, which 

can be achieved, for example, by installing anti/de‐icing systems on the blades of the WTs. 

However, a cost/benefit study should be carried out to assess the feasibility of installing such 

systems [30]. In addition, Table 5 shows the required percentage value for each of the con‐

tributing factors to resilience in order to increase the overall WF resilience to 90% when op‐

erating under Arctic black swan conditions. 

Table 5. Enhancement of variables when enhancing resilience under Arctic black swan events. 

Variables/Nodes  Resilience = 43.6%  Resilience = 90% 

Reliability  34.6%  71.4% 

Maintainability  51%  59.3% 

Supportability  50%  58.5% 

Organizational resilience  45.2%  54.5% 
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Figure 8. Backward propagation scenario when the expected resilience is set at 90%. 

6. Conclusions

Infrastructure  systems  in  the Arctic, such as wind  farms, are exposed  to different 

types of  threats  ranging  from natural hazards  to unfriendly human‐induced events  to 

accidents. Under such disruptive events, WFs need to be resilient to withstand and re‐

cover quickly and efficiently.   

In this paper, resilience was probabilistically modeled using Bayesian networks. The 

proposed resilience model consists of variables related to the reliability, maintainability, 

supportability, and organizational resilience of the wind farm. The concluded resilience 

value is an indication of how resilient the wind farm is in the presence of Arctic disrup‐

tive  events. A Bayesian network  is a qualified  tool  for  calculating prior and posterior 

conditional  probability,  through  linking  input  and  output  variables  in  a  network. 

Bayesian networks can be efficiently used for estimating risks and contributing to deci‐

sion‐making process in uncertain environments such as the Arctic region. 

A WF  in Arctic Norway was considered as a case study. Three separate scenarios 

were analyzed  to calculate  the WF resilience under  three distinct operating conditions. 

The baseline  scenario  showed  that  the WF  is highly  resilient under normal  operating 

conditions, with a 99% chance of being successfully resilient. The second scenario tested 

the resilience of  the WF under Arctic operating conditions. The calculated resilience of 

the WF under such conditions  is still high, with almost 88.2%  resilience. On  the other 

hand,  the WF  resilience was degraded  to 43.6% under an Arctic black  swan  scenario. 

Moreover, the BN indicates that the WF needs urgent improvement actions to enhance its 

resilience, with a probability of nearly 51% that the WF’s resilience should be improved. 

A backward propagation scenario analysis would be particularly beneficial for WF 

decision‐makers as  it provides  insights  into achieving a specific  level of resilience. The 

paper illustrated the values of resilience variables in the event that decision‐makers want 

to enhance resilience to 90% when the WF is operating under Arctic black swan condi‐

tions. The  enhancement of  resilience  to  such  a  level  requires  improving  the  reliability 

significantly by more than 25%, which can be achieved by installing anti/de‐icing systems 

on the blades of the WTs. Regarding maintainability, supportability, and organizational 

resilience, the improvement range is within 10% for each of them. 
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Nomenclature 

WT  Wind turbine 

WF  Wind farm 

BN  Bayesian network 

R  Reliability 

M  Maintainability 

S  Supportability 

O  Organizational resilience 

PHM  Prognostics and health management 

ρ  Restoration 

P  Probability 

F(t)  Probability of stoppage 

CBM  Condition‐based maintenance 

k  Number of events occurring 

λ  Rate of occurrence of an event 
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Abstract: Different risks are associated with the operation and maintenance of wind farms in cold
climate regions, mainly due to the harsh weather conditions that wind farms experience in that region
such as the (i) increased stoppage rate of wind turbines due to harsh weather conditions, (ii) limited
accessibility to wind farms due to snow cover on roads, and (iii) cold stress to workers at wind farms.
In addition, there are risks that are caused by wind farms during their operation, which impact the
surrounding environment and community such as the (iv) risk of ice throw from wind turbines,
(v) environmental risks caused by the wind farms, and (vi) social opposition risk to installing wind
farms in cold climate regions, such as the Arctic. The analysis of these six risks provides an overall
view of the potential risks encountered by designers, operators, and decision makers at wind farms.
This paper presents a methodology to quantify the aforementioned risks using fuzzy logic method.
At first, two criteria were established for the probability and the consequences of each risk; with
the use of experts’ judgments, membership functions were graphed to reflect the two established
criteria, which represented the input to the risk analysis process. Furthermore, membership functions
were created for the risk levels, which represented the output. To test the proposed methodology,
a wind farm in Arctic Norway was selected as a case study to quantify its risks. Experts provided
their assessments of the probability and consequences of each risk on a scale from 0–10, depending
on the description of the wind farm provided to them. Risk levels were calculated using MATLAB
fuzzy logic toolbox and ranked accordingly. Limited accessibility to the wind farm was ranked as the
highest risk, while the social opposition to the wind farm was ranked as the lowest. In addition, to
demonstrate the effects of the Arctic operating conditions on performance and safety of the wind
farm, the same methodology was applied to a wind farm located in a non-cold-climate region, which
showed that the risks ranked differently.

Keywords: wind farms; cold climate regions; risk analysis; fuzzy logic; expert judgment; probabilities;
consequences

1. Introduction

Wind energy applications in cold climate regions (CCRs) have gained more attention
recently, and are growing at a rapid rate of approximately 20% per year according to the
Global Wind Energy Council [1]. There are various encouraging reasons for installing wind
farms (WFs) in CCRs: among others, the fact that the density of air in such regions is 10%
higher than other non-cold climate regions, which results in higher availability of wind
power resources [2]. In addition, abundant air resources exist in mountainous CCRs such
as the Arctic region of Norway, where relatively steady winds with higher velocities [3].
Moreover, CCRs are known to be less and sparsely inhabited than other regions in the
same country. Therefore, having WFs installed there will have less perceived impact on
people than WFs built in large cities for example, and will likely encounter less opposition
to installing WFs from residents.

Energies 2022, 15, 1335. https://doi.org/10.3390/en15041335 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15041335
https://doi.org/10.3390/en15041335
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6035-6197
https://doi.org/10.3390/en15041335
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15041335?type=check_update&version=1


Energies 2022, 15, 1335 2 of 17

CCRs are characterized by an air temperature of less than −20 ◦C, lasting for at least
nine days per year, and an average annual temperature of less than 0 ◦C [4]. Wind turbines
(WTs) in CCRs experience temperatures below their standard operational limits and may
experience incidents of icing conditions. Therefore, such weather conditions can result in
risks that will have negative impacts on WFs, and can consequently affect their surrounding
environment and community.

The discussed risks in this paper are described to be emerging either from the harsh
weather conditions in CCRs that affect the operation and maintenance of WFs, or risks that
emerge from the WFs that affect their surrounding environment and community. The first
type of risks that emerge from harsh weather conditions include the very cold temperatures
and the ice accretion on the blades of WTs, which will increase the failure rate of the blades
and other WT components [5,6], leading to increased operation stoppage rate of WTs. In
addition, very cold temperatures can cause cold stress to workers at WFs, and might result
in injuries, leading to reduced dexterity of workers and delaying maintenance of defected
WTs [7]. Moreover, excessive snow precipitation can limit the accessibility to WFs, which
can affect the maintenance activities required to maintain a certain level of performance.
Therefore, snow removal strategies and specially equipped vehicles have to be used to
overcome this risk [4]. On the other hand, the second type of risks that emerge from WFs
include the ice throw from WTs caused by the centrifugal force of the WTs and the melting
of ice on the blades, which can be harmful to workers at the WF, nearby residents, and other
infrastructures and animals [8]. Furthermore, there are the environmental risks, which can
be critical especially in the Arctic region, which is famous for its sensitive environment
(with vulnerable bird and mammal species); lastly, there is the social opposition from
the surrounding community that can negatively affect the wind energy investments in
CCRs [9].

Careful analysis of the aforementioned risks is mandatory to control them and mitigate
their probability of occurrence and the severity of their consequences. Moreover, analyzing
these risks represents an input to the risk evaluation step in the risk management process
and to the risk treatment step [10]. Additionally, this paper provides inputs to several wind
energy research fields such as the optimization of the WT performance [7,11,12], in which
the cold climate operating conditions are a major contributor to degrading the performance
of WFs installed in that region, which likewise applies to WT power curves [13,14], WT
blades [15,16], and WT life [17,18] research fields.

Furthermore, this paper aims at providing an overall analysis and ranking of these
risks, which can help designers of WFs, risk managers, and operators acquire a holistic
image of the potential risks, which will contribute to the prioritizing of their decisions in
case of the lack of sufficient data that is usually encountered in CCRs, due to the fact that
wind energy applications in that region are relatively new [4].

One of the effective tools for analyzing and ranking risks in the absence of quantitative
probability models is fuzzy logic [19]. Fuzzy logic can make use of experts’ judgments and
available data to model the inaccuracy and uncertainty in human thinking [20], which can
create confusion when using vague linguistic terms such low, medium, high, etc. Risks
are measured quantitatively using fuzzy logic, which increases the accuracy of ranking
the risks and accurately prioritizes risk control measures. Fuzzy logic has been applied
in different applications. For example, Fuzzy Failure Mode and Effects Analysis (Fuzzy
FMEA) has been developed and applied by [19,21] to rank the failures in different WT
components, and in determining the costs of failure to WTs [22]. Fuzzy logic was also
used for risk assessment of pipelines transporting flammable substances [23], and offshore
engineering systems [24].

This paper utilizes fuzzy logic and experts’ judgments to rank six types of risks to
and from WFs in CCRs, mainly in the Arctic region. Furthermore, the paper compares the
ranking of the same risks to a similar WF that is installed in a non-cold-climate region, to
demonstrate the Arctic effects on the WF.
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The paper is organized as follows: Section 2 presents the methodology followed
to analyze the risks. Section 3 explains the fuzzy logic process. Section 4 identifies six
risks to WFs in CCRs. Section 5 defines the criteria for the risks, considering five levels
of probabilities (very low, low, medium, high, very high) and four for the severity of
consequences (low moderate, high, very high). Section 6 considers a WF in Arctic Norway
as a case study to demonstrate the proposed methodology and ranks the six risks; finally,
conclusions are presented in Section 7.

2. Methodology

The methodology adopted in this work, shown in Figure 1, starts with identifying
the potential risks usually WFs in CCRs are subjected to. The risks-relevant literature and
research are being reviewed to define criteria for the inputs to the risk analysis, which
are the probabilities of occurrence and the severity of consequences of the identified
risks. Afterwards, the defined criteria are sent to a selected group of experts who will
provide estimated values (between 0 and 10) for the different levels of the probabilities and
consequences, which represent the input to the risk analysis and for the risks’ levels, which
represents the output. Based on the data collected from the experts, and by using MATLAB
fuzzy logic toolbox, membership functions are graphed to represent the levels of the inputs
and the output.
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This methodology is implemented to a WF in Arctic Norway as a case study for
demonstration. Initially, data regarding the WF are gathered from the WF operator, re-
search articles, and weather stations that publish their data online. Afterwards, the collected
data conceded to a selected group of experts, who are asked to quantitatively evaluate
the corresponding probability of occurrence and severity of consequences of each of the
identified risks on a scale from 0 to 10. Experts’ judgments were then fed into MATLAB
fuzzy logic toolbox, which calculated the risk level, using specifically defined rules. Even-
tually, the risks are ranked depending on the resulting risk level, the highest risk level was
assigned a rank of (1) and the lowest risk was assigned a rank of (6).

3. Fuzzy Logic Process

Fuzzy logic is based on fuzzy set theory developed by Zadeh [25]. Fuzzy sets are a
generalization of the classical set theory, indicating that the classical set theory is a special
case of the fuzzy set theory [26]. Fuzzy logic is an efficient tool in risk assessment as it
compensates for the lack of knowledge and vagueness encountered when assessing the
risks related to complex technological systems, and can be very helpful when dealing with
fuzzy linguistic terms such as low, medium, high, etc., to describe the risks, as these terms
do not have sharp boundaries for their definitions and can hold different interpretations
when interpreted by different experts [23].

For example, taking X as a universal set that contains all objects used in the risk
analysis process. Probability, consequences, and risk levels are the input and output
variables used in the risk analysis. Each one of these variables contains a number of objects
(fuzzy terms) that were previously defined in X as follows:

X = {very low, low, medium, moderate, high, very high, moderate-high, extremely high}
Input variable (probability) = {very low, low, medium, high, very high}
Input variable (consequences) = {low, moderate, high, very high}
Output variable (risk level) = {very low, low, moderate, moderate-high, high, very high,
and extremely high}

Each fuzzy term in the universal set X is described as a fuzzy subset (A), characterized
by a membership function µ(x), which assigns to each object a degree of membership that
has values between zero (no-membership) and one (complete membership). Based on
that, a fuzzy subset A can be written as a set of pair: A = {(x,µA(x)); x∈X}, where x is a
numbering value provided by the experts to describe the input variable (i.e., the probability
or the consequences) [23].

The fuzzy logic process followed in this paper is based on Mamdani method [27],
which is the most commonly used method in fuzzy logic, using the center of gravity method
to calculate the output value of the risk level during the defuzzification step, unlike the
Sugeno method, which uses the weighted average method to calculate the risk level [28].
Figure 2 shows the three main steps (fuzzification, fuzzy logic inference, defuzzification)
followed in applying the fuzzy logic process to calculate the risk level and ranking the
risks [19]:

• Fuzzification: In this step experts are asked to provide values (x) for the input variables.
The previously defined membership functions for each fuzzy subset (A) would indicate
a certain degree of membership (µA(x)) of x in the subset A. For example, a probability
of a risk assigned a value of 5 by experts might indicate a 50% low and 50% medium
degrees of membership. The same applies to the consequences input variable.

• Fuzzy logic inference: In this step a set of rules is established with the help of the
experts to describe the output of the combinations of the input variables. By making
use of fuzzy IF-THEN rules, the different combinations between probabilities and
consequences of each risk can be represented. An example of such rules is: If the
Probability of a risk is Low and the Consequences are High, Then the Risk level is
Moderate.

• Defuzzification: This is a counter step to the fuzzification step, where the resulted
fuzzy risk levels are converted, using MATLAB fuzzy logic toolbox, into numbers
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reflecting how high or low the risk level is, where higher number reflects higher risk
level and vice versa. Following this step, the risks to WFs can be ranked.
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4. Risks Identification

The risks to WFs in CCRs are mainly caused by the harsh weather conditions they
experience, which degrade their overall performance and resilience. In addition, WFs
impose risks on their surroundings, these risks can be associated with environmental
concerns and social opposition to WFs being installed in CCRs, such as the Arctic region.
The following description of the six risks will be used in Section 5 to define the criteria for
the probabilities and consequences of the risks.

Risk 1. Increased WT stoppages due to harsh weather conditions (WT stoppage): Low tem-
peratures affect the physical properties of materials and the normal operation of electronic
devices [29], leading to increased failure rate in WT components. Lubrication oil viscosity,
for example, changes under low temperatures and has an impact on the dimensions and
mechanical properties of different components in the WT. This results in possible overheat-
ing and higher fatigue charges on components, with one of the most affected being the
gearbox, as its lifetime is considerably reduced [30].

Moreover, ice accretion on WTs, which mostly takes place on the leading edge of the
blades, increases mass and aerodynamic imbalances, and might render the operation of the
WT unsafe, leading to the shutting down of the WT and the loss of power production until
the ice is removed or melted [31]. The probability P of stoppages of WTs, due to failures
and ice accretion, can be calculated using the Poisson distribution in Equation (1) [32]:

p(k; (0, t), λ) =
(λt)k

k!
e−λt (1)

where λ denotes the rate of stoppages per WT per a specific period t (e.g., a month or a
year), and k is the number of WT stoppages the distribution calculates the probability of.

Risk 2. Cold stress to workers (Cold stress): Cold temperatures cause cold stress to crew
workers, and limit their dexterity [33]. Serious cold-related illnesses and injuries, caused by
trench foot, frostbite, and hypothermia, may occur in case of extreme cold temperatures, in
addition to permanent tissue damage, and death that may result as a consequence to major
cold-related injuries.

High wind speeds and cold temperatures are the two main factors contributing to cold
stress to workers [34]. Wind Chill Temperature (WCT) is a measure that determines the
likelihood that workers are subjected to the risk of frostbite, which can be calculated using
Equation (2), where V is the wind speed (km/h) 10 m above the surface and T is the air
temperature (◦C) [34]:

WCT[◦C] = 13.12 + 0.621T− 11.37V0.16 + 0.3965TV0.16 (2)



Energies 2022, 15, 1335 6 of 17

Table 1 has been generated using Equation (2). The table is used to determine whether
the workers at WFs in CCRs are subjected to the risk of frostbite or not, where the shaded
region indicates an increasing risk of frostbite [34].

Table 1. Wind chill temperature (WCT) chart.

Air Temperature (◦C)

10 5 0 −5 −10 −15 −20 −25 −30 −35 −40 −45 −50

Wind
Speed
(km/h)

10 9 3 −3 −9 −15 −21 −27 −33 −39 −45 −51 −57 −63
15 8 2 −4 −11 −17 −23 −29 −35 −41 −48 −54 −60 −66
20 7 1 −5 −12 −18 −24 −31 −37 −43 −49 −56 −62 −68
25 7 1 −6 −12 −19 −25 −32 −38 −45 −51 −57 −64 −70
30 7 0 −7 −13 −19 −26 −33 −39 −46 −52 −59 −65 −72
35 6 0 −7 −14 −20 −27 −33 −40 −47 −53 −60 −66 −73
40 6 −1 −7 −14 −21 −27 −34 −41 −48 −54 −61 −68 −74
45 6 −1 −8 −15 −21 −28 −35 −42 −48 −55 −62 −69 −75
50 6 −1 −8 −15 −22 −29 −35 −42 −49 −56 −63 −70 −76
55 5 −2 −9 −15 −22 −29 −36 −43 −50 −57 −63 −70 −77
60 5 −2 −9 −16 −23 −30 −37 −43 −50 −57 −64 −71 −78
70 5 −2 −9 −16 −23 −30 −37 −44 −51 −59 −66 −73 −80
80 4 −3 −10 −17 −24 −31 −38 −45 −52 −60 −67 −74 −81

Risk 3. Limited accessibility to wind farms due to snow cover: CCRs are known for their
diverse landscape, especially the Arctic region, including tundra, glaciers and steep moun-
tains. The Arctic terrain can be challenging to move around. Snow accumulation on WFs
roads and pathways will reduce accessibility to the WTs, this is especially significant when
it comes to the maintainability of WTs, which might be reduced under such conditions [4].
The severity of snow accumulation determines whether the WF needs to implement snow
removal strategies, using special snow removal vehicles, or if it would be enough to use
specially equipped vehicles to access the WTs, such as snow mobiles and snowcats, in case
normal vehicles were not useable.

Risk 4. Thrown ice pieces from operational wind turbines (Ice throw): This phenomenon
can occur when pieces of ice are either thrown away from an operational WT, see Figure 3,
due to the aerodynamic and centrifugal forces, or dropped down if the WT was idle. In
both cases, ice pieces landing on the ground will represent a hazard to the safety of the
WF including the WTs, WF facilities, crew personnel, and animals [8]. A simple equation
(Equation (3)) can be used to measure the distance of thrown ice pieces from an operational
WT as follows [35]:

d = 1.5 (D + H) (3)

where (d) is the throwing distance, (D) is the rotor blade diameter, and (H) is the hub
height.
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The probability of ice throw from operational WTs depends on the probability of ice
formation on the WT blades, the probability of being thrown away to a location where
ice pieces may represent a hazard to WF surroundings, and the probability of members
of the public, crew personnel, and animals being present within the range of landing ice
pieces [37]. The probability of ice accretion on WT blades depends on many factors such as
the air temperature, wind speed, liquid water content (LWC), median volume diameter
(MVD), and the elevation of WT from the sea level [38].

Rime ice and glaze ice are the two most common types of ice to accrete on the blades of
WTs. Rime ice forms when supercooled water droplets freeze immediately upon impacting
the surface of the blade, while glaze ice forms when the liquid water freezes shortly after
impacting the surface of the blade [39]. Glaze ice accretion forms near the freezing point
(0 ◦C) and has strong adhesion to the surface; it is transparent and has a higher density
than rime ice. On the other hand, rime ice has lower adhesion to the surface and has a
white or opaque color [40].

The probability of ice formation on WTs can be reflected by estimating the daily
intensity of the icing events in kg/m2. Table 2 summarizes five site icing index categories
that can be used to determine the intensity of icing on WTs in the WF location on a daily
basis [41].

Table 2. Site icing index categories.

Site Icing Index Intensity of Icing kg/m2/day Icing Severity

S1 >120 Heavy
S2 61–120 Strong
S3 25–60 Moderate
S4 12–24 Light
S5 0–12 Occasional

Risk 5. Environmental risks: The Arctic, as an example of CCR, is known for its sensitive
environment. Locating WFs in the Arctic will lead to possible impacts on the critical
habitats and threatened species. For example, bird mortalities caused by WTs have been
debatable [42] for several years, even though it is stated that wind energy killed 20 times
fewer birds compared to fossil fuels, and the number of birds killed by WTs can be negligible
compared to some other human activities [43]. In addition, the construction phase of wind
farms might result in pollution of nearby surface or underground water [44]. Similarly, the
use of liquids such as the gearbox lubricating oil might result in pollution in case it leaked
from the WT. Moreover, the Arctic area is known for reindeer grazing, therefore, having
WFs built on winter grazing areas for reindeer might affect their density, especially during
the construction phase or even after it.

Risk 6. Social opposition: The visual presence of WTs can be annoying, especially to
residents living nearby WFs. The presence of WFs might stop or limit the ability of local
communities to utilize the surrounding lands and might affect its economy [45]. In addition,
the generated noise by WTs might be annoying to residents living nearby WFs. The sources
of the generated noise by WTs are the mechanical components such as the gearbox and
control mechanisms, and the rotation of the WT blades through the air. Noise levels are
measured by decibels (dB(A)), which is a scale designed to measure how the human ear
perceives the sound frequencies. The day–evening–night noise level (Lden) is a European
standard to express the noise levels from machines throughout an entire day [46]. The
institution of occupational safety and health (IOSH) designed a scale for classifying noise
levels [47], which can be used to assess the severity of noise emitted by WTs, as shown in
Table 3.
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Table 3. Noise levels classification.

WF Noise Level Class Noise Level Lden dB(A)

Very low 0–40
Low 41–70
Medium 71–100
High 101–140
Very high >140

5. Probabilities of Risk Occurrence and Severity of Consequences Criteria

Table 4 determines the criteria for estimating the probability of each of the identified
risks. The criteria are based on reviewed research studies, measured data, and human
evidence. Selecting the probability level for each risk type is primarily dependent on the
WT or WF under the study.

Table 4. Criteria for the probabilities of risks experienced by WFs in CCRs.

Risk Very Low (Vl) Low Medium High Very High (Vh)

Increased WT
stoppage rate [48]

The probability of
stoppage using
Equation (1) is between
0–20%

The probability of
stoppage using
Equation (1) is between
21–40%

The probability of
stoppage using
Equation (1) is between
41–60%

The probability of
stoppage using
Equation (1) is between
61–80%

The probability of stoppage
using Equation (1) is
between 81–100%

Cold stress
[34]

Mild wind chill
conditions. The wind
chill temperature can be
larger or equal to
−10 ◦C
WCT ≥ −10 ◦C

Low wind chill
temperature
−10 ◦C > WCT ≥
−25 ◦C

Very cold wind chill
temperature
−25 ◦C > WCT ≥
−35 ◦C

Danger of frost bite
−35 ◦C > WCT ≥
−60 ◦C

Great danger of frostbite
WCT < −60 ◦C

Limited
accessibility

[4]

No snow cover on the
roads. The WF is easily
accessible.

The roads of the WF are
covered with snow but
is still accessible with
normal cars.

Accessing the WF
requires the use of
snowcats and snow
mobiles due to snow
cover.

There is a need to
remove the snow off the
road using special
vehicles and equipment
such as snowplows,
blowers, loaders, and
deicer trucks, etc.

The accessibility is very low
due to extreme weather
conditions and excessive
snow cover on the roads.

Ice throw
[41]

The site icing index
according to Table 2 is
S5, indicating
occasional icing.
No roads, residential
areas, or facilities are in
the range of thrown ice
pieces.

The site icing index
according to Table 2 is
S4, indicating light icing.
Most roads residential
areas, and facilities are
not in the range of
thrown ice pieces.

The site icing index
according to Table 2 is
S3, indicating moderate
icing.
Roads and facilities in
the surroundings are in
the range of thrown ice
pieces.

The site icing index
according to Table 2 is
S2, indicating strong
icing.
The probability of being
hit by ice pieces is high.

Excessive ice accretion on
the WT blades, S1. the main
road is very close to the WF
site; therefore, surroundings
are in great danger of being
struck by ice pieces thrown
from the WTs.

Environmental
risks

The WF is not built on a
migration route for
birds and is not built on
winter grazing area for
reindeer. No records of
water or environmental
pollution by the WF
exist.

The WF is built on a
migration route for
birds and on a winter
grazing area for
reindeer, but the effects
are not significant. No
records of water or
environmental pollution
by the WF exist.

The WF is built on a
migration route for
birds and on a winter
grazing area for
reindeer and affect their
existence. No records of
water or environmental
pollution by the WF
exist.

The WF is built on a
migration route for
birds and on a winter
grazing area for
reindeer and affect their
existence significantly
high. There is a record
of water and
environmental
pollution by the WF.

The WF affects the existence
of migrating birds and
reindeer density in the area
very significantly, with
significant water and
environmental
pollution record by the WF.

Social Opposition
[45,49]

The WF is located far
from residential areas,
does not have an impact
on the livelihood of
local communities, and
the noise level is very
low, Lden = 0–40 dB(A).

The WF is located far
from residential areas,
does not have an impact
on the livelihood of
local communities, and
the noise level is low,
Lden = 41–70 dB(A).

The WF is located near
residential areas, with
bearable effects on the
livelihood of local
communities, and the
noise level is moderate,
Lden = 71–100 dB(A).

The WF is located near
residential areas, with
high effects on the
livelihood of local
communities, and the
noise level is high, Lden
= 101–140 dB(A).

The WF is located close to
residential areas, with very
high effects on the livelihood
of local communities, and
the noise level is very high,
Lden > 140 dB(A).

Table 5 shows the criteria selected for measuring the consequences of the identified
six risks. The consequences of risks are defined differently based on the type of risk
being assessed. The consequences can be evaluated depending on the resulting system
deterioration, injuries or loss of lives, maintenance delays, and short- or long-term effects.
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Table 5. Criteria for the consequences of risks experienced by WFs in CCRs.

Risk Low Moderate High Very High

Increased WT
stoppage [21]

The WT stoppage did not
cause deterioration in the
WF operation and was
slightly noticed by the
operator.

The WT stoppage caused
slight deterioration in the WF
performance and was highly
noticeable by the operator.

The WT stoppage was
caused by a failure that
significantly deteriorated the
WF performance or led to
minor injuries to humans
nearby.

The WT stoppage would
seriously affect the
ability of the WF to continue
operating, or cause damage,
serious injury or death.

Cold stress [50] No injury or illness. Minor injury or minor
occupational illness.

Medium injury or medium
occupational illness.

Serious injury or death of
humans.

Limited
accessibility [51]

No delay in carrying out
maintenance activities to the
failed WTs.

Maintenance is slightly
delayed, with slight loss of
power production

Maintenance is significantly
delayed, with significant
loss of power production.

Maintenance of the failed
WT is highly delayed, with
so highly increased power
losses.

Ice throw [50] No injury or illness. Minor injury or minor
occupational illness.

Medium injury or medium
occupational illness.

Serious injury or death of
humans.

Environmental
risks [50]

Minor environmental
damage, readily repaired
and/or might incur slight
costs to correct and/or in
penalties.

Short-term environmental
damage, with slight costs to
correct and/or in penalties.

Medium-term
environmental damage, with
significant costs to correct
and/or in penalties.

Long-term environmental
damage, with very high
costs to correct and/or in
penalties.

Social
Opposition [50]

The WF has minor effects on
the touristic activities in the
area. The WF noise levels do
not cause hearing
impairments.

The WF has short-term effects
on the touristic activities in the
area. The WF noise levels
cause minor hearing
impairments.

The WF has medium-term
effects on the touristic
activities in the area. The
WF noise levels cause severe
hearing impairments.

The WF has long-term
effects on the touristic
activities in the area. The
WF noise levels might cause
permanent hearing loss.

6. Experts’ Judgments

The preceding criteria were sent to seven experts, who were asked to provide their
range of values for each fuzzy linguistic term used to assess the probability (Very low
(Vl), Low, Medium, high, Very high (Vh)) and the consequences (Low, Moderate, High,
Very high) term, as well as the risk levels, which are described as Very low (Vl), Low
(L), Moderate (M), Moderate-high(MH), High(H), Very high (Vh), and Extremely high
(Eh). Afterwards, the data gathered from the experts were used to design the membership
functions that reflected these fuzzy terms.

The selected experts have backgrounds ranging from university professors working
on wind energy to experienced staff at wind farms in Arctic Norway. Experts were assumed
to have equal weights for their answers. Based on the average values for the probabilities,
consequences, and risk levels collected from the experts, and by using MATLAB fuzzy
logic toolbox, the triangular membership functions for the input variables (i.e., probabilities
and consequences) and the output variable (the risk levels) were defined, as shown in
Figures 4 and 5, where the x-axis represents the input values provided by the experts
(from 0 to 10), and the y-axis represents the degree of membership (from 0 to 1) for each
membership function. The combination between these three variables can be represented
by a 3-dimensional surface plot, in Figure 6, which shows a fuzzy risk matrix.
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For more illustration, the y-axis in Figure 4a,b represents the degree to which a certain
input (a probability or a consequence) can be described as low, medium, high, etc. For
example, if the average value of the probability of a certain risk, given by experts, was 5,
that means that the degree of membership of the probability of that risk is 80% medium, as
per Figure 4a. Similarly, if the severity of a specific risk was determined by experts to be
9, that means that the severity of that risk is 100% very high, as per Figure 4b. Following
that, the defined inference rules will determine the level of the risk in fuzzy terms. A
logical inference rule that applies to this example can be: if the probability is medium and
severity is very high, then risk level is high. The degree of membership of the risk level is
determined using the minimum operator as in Equation (4) [20]:

µ (Risk is high) = min (0.8; 1) = 0.8 (4)

where µ (Risk is high) is the degree of membership of the risk level as a high risk. After-
wards, the risk level is determined by referring to Figure 5, where the x-axis value for the
risk level that corresponds to 80% high risk is equal to 7.5.

The fuzzy inference functions in MATLAB used in this risk analysis application are
shown in Table 6. The membership functions defined by the experts are used to generate
the fuzzy rules that will be used to rank the risks. A total of 5×4 = 20 rules were generated.
Examples of these rules are as follows:

• Rule 1: If probability is very low and consequence is low, then the risk level is very
low.

• Rule 11: If probability is medium and consequence is high, then the risk level is
moderate-high.

• Rule 19: If probability is very high and consequence is high, then the risk level is very
high.
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Table 6. MATLAB fuzzy inference functions used.

Type andMethod orMethod defuzzMethod impMethod aggMethod

Mamdani min max centroid min max

A detailed description of the WF was sent to the experts, who were asked to provide
their numeric values for the probabilities and consequences of each risk. Afterwards, the
fuzzy logic toolbox in MATLAB was used to calculate the risk level using the centroid
method [52]. Figure 7 illustrates the different probability and consequence combinations,
based on the defined 20 fuzzy rules, to calculate the risk level values.
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Case Study: Wind farm in Arctic Norway

A WF in Arctic Norway, with a layout shown in Figure 8, was selected to demonstrate
the proposed methodology. The selected WF is located in a valley at around 420 m above
the sea level. The WF consists of fourteen 2.3 MW WTs. In order to support the experts
in their estimations, operational and site specifications data about the WF were acquired
from different sources. For example, data regarding failure rates, icing rates, maintenance
reports, and WTs performance were acquired from the WF operator; this data covered
two years of WF operation, from 2019 to 2020. In addition, data regarding the WF’s
site specifications and weather data were acquired from published research articles and
manufacturers’ technical publications, as well as weather stations that publish their data
online.
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6.1. Analysis

MATLAB fuzzy logic toolbox was utilized to calculate the level of each risk on the
basis of the average values of the probabilities and consequences of each risk provided by
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the experts. Table 7 shows the average probability and consequence values determined
by the experts as well as the resulting risk level calculated by MATLAB. In addition, the
table shows the ranking of the risks, where limited accessibility to WF risk is assigned the
highest rank (1), and social opposition risk is assigned the lowest rank (6).

Table 7. Ranking of risks considering average values of probabilities, consequences, and risk levels.

Risks Probabilities Consequences Risk Levels Risks Ranks

Risk 1 (WT stoppage) 2.9 5.4 4.19 2
Risk 2 (Cold stress) 3.6 2.7 2.66 4
Risk 3 (Limited accessibility) 7.4 7.8 7.76 1
Risk 4 (Ice throw) 3.5 1.7 2 5
Risk 5 (Environmental risks) 3.7 4 3.5 3
Risk 6 (Social opposition) 1.8 2.3 0.826 6

Risk 1 (WT stoppage). From the data gathered from the WF operator, there were 1993
stoppages experienced by the WTs during 2019, mainly due to maintenance. In addition,
December 2019 was the month that witnessed the highest rate of WT stoppages due to icing,
which was 65 stoppages. Equation (1) was applied separately to determine the probability
of stoppage per WT per month due to failure and per month due to icing. It was found
out that the probability of stoppage was 29% per WT per month. Those stoppages did
not result in deterioration of the WF production and operation was resumed as regular,
according to the WF operator.

Risk 2 (Cold stress). The coldest average ambient temperatures impacting the WF occur
during January, February, and March, according to Figure 9a, with the coldest average
temperature of as low as nearly −12 ◦C recorded in February. In addition, the average
monthly wind speed during the same month is 13.6 km/h, as shown in Figure 9b [53]. By
applying Equation (2), the WCT during February is calculated to be about −19 ◦C, which
indicates no risk of frostbite to workers at the WF. In addition, according to the WF operator,
there are no injuries recorded or illnesses caused to workers at the WF by very cold WCTs.
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Figure 9. Monthly average temperatures (a) and wind speeds (b) at the WF’s location [54]. Data were
gathered from Weather Atlas.

Risk 3 (Limited accessibility). The Norwegian Meteorological Institute [55] provides
information about the snow depth of specific sites in Norway through weather stations
distributed in different areas of the country. The closest weather station to the WF is
located in Straumsnes. Figure 10 shows that the highest recorded snow depth in 2020
occurred during February until May, with a maximum snow depth of 75 cm recorded in
April. Such accumulation of snow requires specially equipped vehicles, such as snowcats
and snowmobiles to be available all the time, to maintain access to the WF under severe
weather conditions, which was confirmed by the WF operator during a visit to the WF
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by the authors. Besides that, during periods of peak snow accumulation, snow removal
strategies are implemented, which can be costly [4].
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Figure 10. Snow depth in an area close to the WF [55].

Risk 4 (Ice throw). A field study shows that the daily intensity of icing in Narvik, a city
close to the WF, is approximately 14.5–18.5 kg/m2 during January, February, and March, as
shown in Figure 11 [56]; those measurements can be assumed close enough to be applicable
to the site under consideration. This indicates a light icing intensity with site icing index
for the WF site, according to Table 1. By applying Equation (3) to calculate the throwing
distance of ice pieces, it is found that the throwing distance is 255 m. The closest residential
area to the WF is kilometers away. Moreover, a main road passes next to the WF, but it is
around 500 m away from the closest WT, which means that no residents or personnel exist
within the range of ice throw risk.
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Risk 5 (Environmental risks). A study by Jacobsen et.al. [57] revealed that the number
of registered birds migrating through the WF area was low, where the average number of
observed birds passing through the WF was around five birds during 4 h of observation
in a day. This is primarily due to the topography and local conditions of that area, which
is not inviting to migrating birds. However, the area around the WF has great value for
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reindeer husbandry and is used for reindeer grazing during autumn and winter. In this
respect, field results show that the density of reindeer in WF areas in Arctic Norway do not
change significantly, and that reindeer can adapt and keep using WF areas for grazing [58].
With regards to environmental pollution, there is no evidence that the WF caused pollution
to nearby waters or to the environment in general.

Risk 6 (Social opposition). The presence of the WTs and the noise they generate are
not expected to cause annoyance to humans due to the fact that the WF is located away
from residential areas, in a valley with surrounding mountains as high as 2000 m above
sea level from the north and south. Besides, the location of the WF is not classified as a
touristic area. However, there is a main road that passes next to the WF, which means that
drivers and passengers passing by the WF will be subjected to this noise level for very
short time. According to one study, the level of noise generated by a similar WT located at
approximately 500 m far, which is nearly the distance between the closest WT and the main
road, would be 48 dB(A) at a wind speed of 10 m/s [59], meaning that the noise severity
can be described as low.

6.2. A Wind Farm under Normal Operating Conditions

In order to compare the effects of cold climate operating conditions on the calculated
risk level and ranking of risks, the same methodology is applied to a WF located in a
non-cold-climate region. The Kozbeyli WF [45], in Turkey has higher reliability, with lower
rate of WT stoppages, no ice accretion on the blades of the WTs, less snow accumulation on
the roads of the WF, and a 3.1 km access road built to guarantee access to the WF. However,
the WF is close to an Environmentally Protected Area in Foça, with a bird migration route
4 km to the south of the WF [60]. Moreover, in the WF area, there are endangered species
such as Passer Domesticus and Crocidura Russula, that were identified and listed by the
Bern Convention [45].

Furthermore, the WF is located 1.3 km near to a touristic village, which has natural
and historical values. Social acceptance of the WF was determined to be poor due to its
impact on tourism in that area. Based on the preceding information, Table 8 demonstrates
the ranking of risks using experts’ judgments and MATLAB fuzzy logic toolbox. It can
be seen from the table that the social opposition risk ranked the highest, followed by the
environmental risks, while the risk of ice throw from WTs ranked as the lowest risk, flowed
by the risk of WT stoppage.

Table 8. Ranking of risks for the Kozbeyli WF in Turkey using experts’ judgments and fuzzy logic.

Risks Probabilities Consequences Risk Level Risk Rank

Risk 1 (WT stoppage) 1.8 4.6 2 5
Risk 2 (Cold stress) 2.2 3.4 2.57 3
Risk 3 (Limited accessibility) 2.8 2.6 2.32 4
Risk 4 (Ice throw) 1 1 0.752 6
Risk 5 (Environmental risks) 6.8 7.6 7.5 2
Risk 6 (Social opposition) 8.3 8.9 9.31 1

7. Conclusions

In this paper, six types of risks that are related to the operation of WFs in CCRs. These
risks were distinguished as being caused by the harsh weather conditions, and risks caused
by the WFs on their surrounding environment and community. The identified risks were
analyzed using expert judgment and MATLAB fuzzy logic toolbox. The identified risks are
the increased WT stoppages risk, cold stress to workers risk, limited accessibility to WFs
risk due to snow accumulations on the roads, ice throw from WTs risk, environmental risks,
and social opposition risk.

Based on a research review, gathered data, and published data, and experts’ reasoning,
two criteria tables were defined for the probability of occurrence and the severity of conse-
quences of each risk. Furthermore, experts’ judgments and MATLAB fuzzy logic toolbox
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were used to graph the membership functions for the probabilities and consequences of
each risk (the inputs), as well as risk levels (the output). The risk levels were calculated
based on a set of 20 rules generated using the experts’ data.

A WF in Arctic Norway was selected to illustrate the proposed methodology. Experts
were provided with a description of the WF and were asked to deliver their assessed values
for the probabilities and consequences of each risk. Through the calculated risk level, it
was concluded that limited accessibility to the WF ranked as the highest risk, followed by
WT stoppage. On the other hand, social opposition was ranked as the lowest risk followed
by the ice throw.

In order to demonstrate the methodology further, a WF that is not subjected to cold
climate operating conditions, located in Turkey, was selected. The social opposition to
the WF was ranked as the highest risk followed by the environmental risks, where the ice
throw risk and WT stoppage risk were deemed to be the lowest-ranked risks. This was due
to the fact that the Turkish WF was installed close to a village with touristic value and in a
area that is a home for endangered species.
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Nomenclature

WT Wind turbine
WF Wind farm
CCR Cold climate region
X Universal set
A A fuzzy subset
µ(x) Membership function
λ Stoppage rate per wind turbine per year
Lden day–evening–night noise level
WCT Wind chill temperature
V Wind speed (km/h)
T Air temperature (◦C)
P probability
dB(A) decibels
IOSH The institution of occupational safety and health
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ABSTRACT 
There many risks associated with wind farms operating in cold harsh areas, a number of 

these risks is caused by icing. Atmospheric and super-structure icing can cause ice accretion on 
wind turbines’ structure, and lead to public safety risks caused by ice throw and the failure of 
wind turbine’s components.  Other risks can affect wind farm’s maintenance crew and their 
activities. Such risks are caused by snow accumulation and forming of sea ice, which can lead 
to limiting the access to wind turbines, and reducing their availability and the overall power 
production of the wind farm.   

Snow accumulation and ice accretion on wind turbines specifically and the wind farm 
generally induce different types of risks. Therefore, an analysis should be carried out to 
determine how the different types of icing and snow accumulation affect each part of a wind 
turbine and wind farm. A risk matrix is usually utilized to determine the rank of these risks and 
prioritize them, which will help in the decision-making process for risk mitigation.  

KEYWORDS: Wind farm safety; Public safety; Icing types; Icing effects; Risk matrix. 

1. INTRODUCTION
The global average capacity of installed wind power throughout the past couple of years 

exceeded 50 GW per year, where 2015 marked a record-breaking year in which the global 
installed wind power capacity exceeded 60 GW (Sawyer, 2017).  It is expected that the growth 
of installed wind power will exceed 840 GW by 2022, this will be supported by an increased 
growth in the installed capacity of offshore wind turbines, which only represented 3.5% of 
global installed capacity in 2017 (Sawyer, 2018).  Figure 1 illustrates the projected wind power 
capacity in Gigawatt (GW) to be installed during the following four years until 2022. It is 
noticed from the figure that the cumulative installed wind power capacity will grow at nearly a 
constant rate of 10% until 2022. 



Figure 1. Annual and cumulative wind power forecast, reproduced from (Sawyer, 2018) 

Air density in the arctic is higher compared to the other regions. According to (Tammelin 
and Säntti, 1996), air at -30 oC is almost 27% denser than at 35 oC. Knowing that power output 
of a wind turbine is proportional to air density, the available wind power in Arctic is almost 
10% higher than in other regions (Fortin et al., 2005). Therefore, northern areas in Norway are 
appealing for wind energy investments. For example, Kvitfjell/ Raudfjell Wind Park, located in 
Troms County in Norway, will be launched in November 2019. Kvitfjell wind farm consists of 
67 wind turbines, each with 4.2 MW capacity, a total of 281 MW (Sivam et al., 2018). To 
develop an effective and safe offshore wind farm, the available experience of onshore wind 
farms plays an important role.  

2. ICE TYPES AFFECTING WIND FARMS
Ice accretion can be categorized into atmospheric icing and super structure icing caused by 

sea water sprayed on the wind turbine’s structure during low temperatures, forming ice on it. 
Onshore structures like wind turbines and power lines are affected by atmospheric icing. 
Offshore stationary structures like offshore wind turbines and oil drilling platforms are affected 
by both types of icing (Battisti et al., 2006). Moreover, a third category of ice can be added to 
this classification of ice types affecting offshore wind turbines, which is land-fast and floating 
frozen sea water applying static and dynamic loads on the foundation and the tower of the wind 
turbine. Figure 2 shows the classes of ice affecting onshore and offshore wind farms. Following 
is an analysis regarding which of the main components (foundation, tower, nacelle and blades) 
of a wind turbine operating under icing conditions are mostly affected by the different types of 
icing. The analysis is summarized in Table 1, where the sign () indicates the type of icing that 
affects each wind turbine’s component. Moreover, different aspects of effects and risks are 
furtherly discussed in Section 3.0. 
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Figure 2. Ice types affecting onshore and offshore wind turbines 

2.1. Atmospheric Icing 
The process of atmospheric icing formation is that super cooled water particles in the form 

of droplets and drizzle or rain at temperatures ranging between -15 oC and 0 oC are found in the 
atmosphere (Ingvaldsen, 2017). These particles freeze immediately upon hitting a surface 
exposed to the atmosphere. Atmospheric icing can be divided into three types: In-cloud icing, 
precipitation and frost (Parent and Ilinca, 2011).  

The main icing types of interest when it comes to ice build-up or ice affecting wind turbines’ 
structure and performance are in-cloud icing and precipitation icing.  Frost has very low density 
and persistency and is believed to not cause any problems to wind turbines (Dalili et al., 2009). 
Therefore, frost is excluded from the following analysis and from Table 1.  
2.1.1. In-cloud icing: includes rime ice and glaze ice (Parent and Ilinca, 2011). Several 

factors like liquid water content (LWC), median volume diameter (MVD) of water 
droplets, wind speed, pressure, temperature, etc. determine the form of in-cloud icing. 

A. Glaze ice:  often associated with precipitation, and can be witnessed mostly on flat 
surfaces such as the top of the nacelle (Parent and Ilinca, 2011). It forms when 
portion of water droplets does not freeze immediately upon impact, but runs back 
on the surface and freezes later. The resulting ice density and hardness is very high, 
which makes it difficult to remove. Glaze can also, with the presence of wind, 
accumulate on vertical surfaces, such as the tower and blades when facing the wind 
direction.  

B. Rime ice is the most common type of in-cloud icing, and is classified into soft rime 
and hard rime (Ryerson, 2011). Soft rime has lower density and adhesion than hard 
rime. Hard rime is more difficult to remove. The probability and frequency of rime 
ice formation depends on the geographical location and elevation of the wind farm. 
Rime ice accumulates on objects facing the wind like the wind turbine’s blades 
and tower, smaller diameter objects have higher collection efficiency of rime ice, 
such as cables, stair case railings and lattice structures which is a form of offshore 
wind turbines’ towers (Sundina, 1998). 
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2.1.2. Precipitation: consists of rain or snow freezing upon impact with below zero oC surface, 
forming freezing rain and wet snow (Ryerson, 2011). The accretion rate from 
precipitation can be much higher than in-cloud icing. Wet snow and freezing rain 
accumulate mostly on all components of a wind turbine, especially on horizontal 
surfaces such as top of the nacelle. In case of severe precipitation, snow can add 
considerable weight to the wind turbine’s structure. Snow and freezing rain accumulate 
also on the wind turbine’s foundation and wind farm’s roads, which makes it even more 
challenging for maintenance crews to reach wind turbines and perform the needed 
maintenance. Moreover, snow occurs during sea-spray icing and can enhance 
superstructure ice accumulation. 

2.2. Super structure icing: 
 In an open sea where offshore wind turbines are installed, ice accretion becomes a complex 

phenomenon as both types of icing i.e. atmospheric and superstructure icing take place (Battisti 
et al., 2006). However, the intensity of superstructure ice accretion on wind turbine blades 
depend highly on the elevation of the wind turbine above sea level and the type and size of the 
wind turbine. In case the offshore wind turbine elevation was relatively low, sea water can spray 
on the blade’s tip when it is pointing downward, and if air temperature was below freezing, ice 
accumulates on the lower part of the tower and the blade tip. Sea spray ice can form on the wind 
turbine of up to 16 meters above the sea surface. However, it is expected that waves can carry 
sea spray above that limit.  

Table 1. Wind turbine main components affected by different types of icing 

3. ICING EFFECT ON WIND TURBINE AND WIND FARM
Ice effects on a wind farm can be categorized into four main aspects: 

• Mechanical equipment performance
• Operation and maintenance crew performance
• Wind farm accessibility
• Public safety risks

3.1.  Mechanical equipment performance 
Generally, an equipment performance is a function of reliability, maintainability (how easy 

the failed component can be repaired), which are both main factors comprising the availability 
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performance of an equipment such as a wind turbine. Therefore, fast and frequent maintenance 
is important in keeping the wind turbine functioning and in minimizing the loss of power 
production. Figure 3 shows the relationship between production performance and availability 
and functional performance (Markeset, 2010).  

 
Figure 3: Production performance concept (Markeset, 2010) 

Icing may reduce the reliability of wind turbine’s components, decrease their maintainability, 
reducing the availability of the wind turbine as a result (Markeset, 2010). Furthermore, icing 
can reduce the capability, capacity and HSE performance of the wind farm, affecting its 
functional performance and resulting in loss of power production. In addition, icing disturbs the 
accuracy of measuring devices, such as anemometers, wind vanes, temperature sensors and ice 
detectors. For example, 30% wind speed-reading error was recorded during the assessment 
phase of a site prone to icing conditions (Laakso et al., 2003).  

Ice accretes on different parts of a wind turbine creating mass and aerodynamic imbalance, 
increases the structural loads on the turbine significantly, shortens the wind turbine’s 
components’ lifetime and increases blade generated noise (Andersen et al., 2011). However, the 
most critical part of a wind turbine that can be affected by different types of the ice is the blade. 
Ice accretes differently from one blade design to another. The accretion process of ice is not 
uniform along the same blade; most accretion takes place on the tip and leading edge of the 
blade due to the existence of stagnation point there, see Figure 4.  

 
 
 
 
 
 
 
 

 

Figure 4. Iced turbine blade in Switzerland, (Tammelin et al., 2000) 

Ice accretion leads to increase in blade’s surface roughness and increasing the drag 
coefficient, leading to reduction in power production, which can be in range of 20-50% under 
sever icing conditions (Laakso et al., 2005). Continuing in operation under sever icing 
conditions and heavily accreted ice will harm the wind turbine and decrease its fatigue life as 
the wind turbine’s components are subjected to excessive loads, which can be up to 50% of the 
blade’s weight (ISO, 2001). Therefore, wind farm operators tend to shut down the wind turbine 
until the accreted ice is removed. Stoppage of the wind turbine can happen without the 
interference of the operator as the heavily accumulated ice can slow down the rotation of the 



blades or stop them completely. Figure 5 shows the percentage of main causes resulting in wind 
turbines’ downtime in Finland between the year 1996 and 2008 for 72 wind turbines. As this 
figure shows, 4% of downtime is caused by icing (Stenberg and Holttinen, 2010). Icing 
increases the probability of failure of components and shortens the lifetime of the wind turbine. 
Therefore, it is important to focus on icing issues and solutions. 

Figure 5. Percentage downtime causes, redesigned from (Stenberg and Holttinen, 2010). 

Not only accreted ice on wind turbine’s structure affects it, but also static and dynamic loads 
on offshore wind turbine’s tower and foundation caused by land-fast and drifting sea ice pieces 
or even ice fields is another effect of icing. Drifting ice masses can hit the wind turbine’s tower 
at velocities even higher than 1 m/s, causing damages to the tower and the foundation of the 
wind turbine through increasing the overturning moments (Battisti et al., 2006). Moreover, 
floating ice pieces hitting the tower increase the vibrations in the wind turbine’s structure and 
can damage the tower due to the brittle behavior of low carbon steel that the tower is normally 
made of. In addition, sea ice accumulation can increase the corrosion process of the tower and 
the support structure (Morcillo et al., 2004). Also, in some cases the sea water around an 
offshore wind farm freezes completely, such state can last for several months, and will block 
the access to the wind turbines for maintenance purposes for a long periods of time and will 
therefore influence the output power from the wind farm. 

3.2.  Operation and maintenance crew performance 
Ice affects the operator and maintenance crews’ performance as well as their safety. Icing can 

decrease worker’s visibility and limit the entrance to the wind turbine due to snow accumulation 
on the roads within the wind farm and at the entrance of each wind turbine. Figure 6 shows how 
workers’ visibility is reduced during snowy weather conditions in Fakken wind farm in northern 
Norway. Snow and ice can cause personnel slipping hazards. Snow can melt and refreeze on 
lattice structures and hatches (for example the nacelle hatch) (Ryerson, 2011), which makes it 
even more difficult to open to perform maintenance. Icing increases the probability of accidents 
and injuries, and it is a reason for workers to be absent from work due to sick leaves and 
hospitalization.  
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Figure 6. Unclear visibility in Fakken wind farm due to snowy weather conditions (Mæhlum, 2013) 

Maintenance crews will need to climb up to the nacelle where most mechanical rotating 
equipment are inside in order to carry out the required maintenance including replacing worn 
parts, oil and filters change and carry out required inspections. In addition, cleaning blades off 
accreted ice requires the use of cranes and lift workers to pretty high elevations at which 
workers are subject to higher wind speeds and low temperatures and, thus, more prone to falling 
risks. Moreover, glaze ice and snow accumulate on top of the nacelle, which can undoubtedly 
be a reason to the risk of slipping, tripping and falling off the wind turbine. Snow accumulated 
on top of the nacelle can melt and fall down on the wind turbine’s vicinity. Ice throw is another 
risk to wind farm’s workers. Pieces of ice either are thrown off an operational wind turbine due 
to aerodynamic and centrifugal forces or they fall down in case the wind turbine was idle. In 
both cases ice pieces represent a hazard to personnel, animals, roads and surrounding structures 
including other wind turbines. With the aid of Monte-Carlo simulation Battisti et al., 2005, have 
shown that the odds to be hit by a piece of ice (between 0.18 and 0.36 kg) on a site with moderate 
icing conditions (5 days per year) is 1 in 10. This is valid for a person walking 10 hours under 
an operating turbine that uses a de-icing system, considering a total ice accretion of 75 kg/ rotor/ 
day. 
Tammelin et al., 2000, and Seifert et al., 2003, developed two equations (1&2) for measuring 
the distance of thrown ice pieces from an operational and idle wind turbine:  

d = 1.5 (D+H), when the wind turbine is operating. (1) 

d = v D/2+H
15

 ,   when the wind turbine is idle. (2) 

Where (d) is the throwing distance, (D) is the rotor blade diameter, (H) is the hub height, and 
(v) is the wind speed at hub height in m/s. 

Despite these equations are empirical, they do not consider all necessary parameters to 
calculate the throwing distance of ice pieces, such as relative wind direction and speed, 
temperature, humidity, speed of rotation of the blades, and also the initial position and velocity 
of the ice piece being detached from the wind turbine. All these mentioned parameters can be 
different from one site to another and from one wind turbine to another. Therefore, the severity 
of risks evolving from ice throw and ice fall is not the same for all wind farms, and should be 
thought of during the early stages of the design phase of the wind farm. International 
recommendations for ice fall and ice throw risk assessments has been provided by (Krenn et 
al., 2018) in which the development of trajectory models of ice throw and ice fall have been 
reviewed. Moreover, it is stated that the properties of the ice piece itself should be considered 
in order to understand the trajectory of a given particular ice piece. 



3.3.  Wind farms’ accessibility: 
Onshore wind farms are subject to snow accumulation on the roads and pathways leading to 

the wind turbines. Snow accumulation on staircase and wind turbine’s door can reduce 
accessibility to the failed components and consequently it will reduce the availability and 
performance of the wind turbine. Snow drifting on road and against wind farm’s buildings can 
limit movability, and make transportation of personnel and equipment a challenging task. 
Consequently, specialized vehicles may be needed. 

Another solution is to employ a snow removal strategy as shown in Figure 7. However, a 
feasibility study to determine the best option must take place. This should include parameters 
such as the cost of each solution, distance travelled (length of access roads), estimated annual 
snowfall accumulation and frequency, health & safety training, etc. noting that a combination 
of both solutions can be more feasible than depending on only one of them (Lehtomäki et al., 
2018). 

Figure 7. Snow removal employed (Lehtomäki et al., 2018) 

Accessing offshore wind farms for maintenance and inspection purposes is carried out 
utilizing one out of three possible transportation strategies (Nielsen and Sørensen, 2011), taking 
into consideration the presence of ice:  

• Option 1: always use boat to perform repairs.
• Option 2: repair as soon as possible (ASAP) using either boat or helicopter. In case of

good enough weather conditions, boats are used, otherwise helicopters are used. The boat
is assumed to require a mean wind speed less than 10 m/s and wave length less than 1.5m,
or it will more difficult to move from the boat to the wind turbine. The helicopter is
assumed to operate at wind speeds less than 20 m/s.

• Option 3: Risk-based alternative, where the cheapest type of transportation is used whether
it is a boat or a helicopter, assuming perfect weather forecast while performing the repair,
which is not the case in reality. This option implies finding the first coming days where
repair is possible by boat or helicopter, and the cost of repair and lost production until that
day is found for each transport type.

Using a boat only to perform repairs will result in high costs due to high production loss, 
leading to large total costs, see Figure 8. When the ASAP option is used, most repairs are 
performed using a helicopter, which is the main contributor to the increase in the total costs of 
ASAP strategy option. In the risk-based strategy, most repairs are performed using the boat. 
The total costs are smallest for in risk-based option since the less costly usually should be used, 
given a good weather forecast.  



  

 

 

 

 

 

 

 

Figure 8. Cost of each transport strategy (Nielsen and Sørensen, 2011) 

3.4.  Public safety risks: 
Wind turbines can cause external safety risks to public and wild life in the wind farm’s 

surrounding area.  As mentioned in Section 3.2, ice accreted on wind turbine’s blades can 
detach, break in pieces and fly away, representing a risk to people, cars driving on roads near 
the wind farm, animals and  other nearby public buildings and infrastructures, which can be 
described as public safety risks. Many countries define a buffer distance, also called setback 
distances, between wind turbines and existing public roads and infrastructure to reduce the 
safety risks from wind turbines to them (Larwood, 2005). For example, the setback distance 
defined in Denmark is four times the wind turbine’s height.  

Ice and snow accumulation on wind turbine’s structure can decrease its fatigue life and might 
lead to components’ failure. Complete or partial detachment of components, such as the wind 
turbine’s blade or the nacelle/ rotor combination and the collapse of the tower are all modes of 
failure that can be caused by ice and snow accumulation on wind turbines and can result in 
safety risks to the surrounding area. A fault tree analysis was used by (Brouwer et al., 2018) to 
describe an analysis of wind turbine failures that can lead to public safety risks. The analysis 
concluded that the most common failure was complete or partial loss of a blade, which is also 
the component that is most prone to ice accretion.  

Following the snow removal strategy mentioned in Section 3.3 to remove snow off wind 
farm’s roads, snow-blowing machines used for that purpose can increase the traffic around the 
wind farm and develop hazardous situations for users of nearby roads.  

Using anti/de-icing chemicals, in particular glycol compounds (e.g. ethylene, propylene, 
diethylene, alkylene) to clear ice off wind turbine’s blades has many disadvantages. For 
example, chemicals can create human safety and health problems, cause environmental harms, 
damage roads and vehicles and may not be cost effective (Back et al., 1999). Anti-icing 
chemical compositions represent a threat to surface and ground water. De-icing chemicals can 
pollute drinking water and cause diseases to humans. They also may increase water’s salinity,  
alter its density, change the physical and ecological properties of lakes, and suppress convective 
motion of water in spring (Dai et al., 2012). In addition, water polluted by ant/de-icing 
chemicals harms living plants and animals in the surrounding areas.  

4. RISK ASSESSMENT OF ICING EFFECTS ON WIND FARMS  
A cross tabular methodology similar to (Ryerson, 2011) was developed to assess the risks 

imposed by different types of icing on different wind farm’s safety aspects. Based on the 
expertise of the authors of this paper, ice types were ranked according to the expected hazards 
they might inflict on the function and safety of wind farm as shown in Figure 9. Ice types were 
ranked from 1 to 10 starting from lowest to highest potential hazards on safety. For example, 



glaze ice is assigned a hazard value of 10 because it affects many wind turbine’s components 
like the blade, nacelle and tower, and it accumulates on both onshore and offshore wind turbine 
components. Glaze ice has high density and strong adhesion, and is more difficult to remove 
compared to rime ice (Parent and Ilinca, 2011).  

Freezing rain and wet snow impact the structures and foundations of wind turbines as well as 
roads within onshore wind farms. Thus it affects functions related to the wind farm’s safety 
such as wind farm’s accessibility and maintenance. Both freezing rain and wet snow are 
assigned a hazard value of 8.  

Rime ice accretes mainly on small diameter objects like cables, railings and latticed tower 
structures. Rime ice accretion on blades can result in power losses. For example, a 28.7 m 
diameter wind turbine demonstrated a 20% power loss due to rime ice accretion (Alsabagh et 
al., 2013). Rime ice is assigned a hazard value of 6.  

Sea ice collides with the tower and foundation of offshore wind turbines and causes damages 
to them. It also limits the access to offshore wind farms, and reduces their maintainability and 
availability. For these reasons the hazard value assigned to sea ice is 4. Super structure icing 
represents a substantial threat to offshore oil platforms as it causes structural damages and 
disable many of the platform’s safety-related functions (Ryerson, 2011). However, in case of 
offshore wind turbines, with tubular cross section of the tower, unlike offshore platforms, the 
tubular cross section does not allow for intense ice accretion from sea spray. Moreover, sea 
spray ice can only accrete on the tip of the blade when the blade is at the lowest point. Therefore, 
superstructure icing is assigned a hazard value of 2. 

Structural and functional safety aspects of the wind farm were ranked by the relative 
importance of each structure/ function to overall wind farm safety, taking into account the 
effects of different icing types on each structure and function. For example, the blade is assigned 
a safety rating of 10, due to a number risks induced by the blades, such as the risk of ice throw 
and ice fall. Also, ice accretion can cause blade’s failure, which is of high safety concern to 
public safety in case of complete or partial blade detachment from the wind turbine.  

The tower carries each of the nacelle, hub and blades, therefore its stability is of high 
importance to the wind farm’s safety. The intensity of ice and snow accumulation on the tower 
is small compared to the blade due to the tubular shape of the tower. In case of offshore wind 
farms, the tower is prone to sea spray ice accretion and sea ice collision, which can cause serious 
damages to it. Furthermore, speaking of the probability of tower failure, it is considered less 
probable than blade failure (Brouwer et al., 2018). Wind turbine’s tower is assigned a safety 
value of 8.  

Operation and maintenance crew performance is highly important for consistent availability 
of the wind farm and to prevent interruptions in inspection and repair activities. Crew 
performance is assigned a safety value of 7.  

Snow accumulation on wind farm’s roads and paths limits the access to wind turbines and 
can create unsafe condition to carry out the required inspection and maintenance, which will 
affect the availability of the wind turbines and lead to loss of power production. Wind farm’s 
accessibility is assigned a safety value of 6.  

Wind turbine’s foundation is important for stability and integrity of wind turbine’s structure 
and for wind farm’s safety. The foundation can be damaged by collision of sea ice in case of 
offshore wind farms. Snow accumulation takes place on the foundation in onshore wind farms. 
However, it is rare that snow accumulation will lead to foundation’s failure. As such, offshore 
wind turbine’s foundation is assigned a safety value of 5.  



The nacelle contains the main mechanical components responsible for power generation, 
such as the gearbox and generator. Snow and ice accumulation on top of it can cause slipping 
hazards to personnel. Failure and detachment of a nacelle due to icing is less probable than a 
blade’s detachment. Therefore, the nacelle is assigned a safety value of 4.  

Figure 9: Cross tabular assessment comprising impacts of icing types on functional and structural safety of onshore 
and offshore wind farms 

It is noticed from Figure 9 that glaze ice and freezing rain and snow induce the highest 
impact on wind turbine’s structure, mainly the blades and the tower, through changing the 
blade’s profile and adding considerable weight to the wind turbine’s structure. In addition, 
operation and maintenance crew performance is highly affected by glaze ice as it may cause 
slipping, tripping and falling hazards while performing operation and maintenance activities. 

5. CONCLUDING REMARKS:
Wind farms operating in ice proven areas experience multiple safety risks induced by 

different icing types. The effects of different icing types on onshore and offshore wind farms 
have been investigated and listed in Table 1. Ice accretion on wind turbines’ structure increases 
its components’ failure process and creates risks such as ice throw and detachment of an entire 
or partial component, resulting in public safety risks. Moreover, ice and snow accumulation on 
the roads of a wind farm and land-fast and floating sea ice reduce accessibility to wind farms 
to perform the required maintenance, which affects the availability of the wind turbines and 
wind farm’s overall power production. The effect of each icing type on wind turbine’s 
components and wind farms’ safety aspects have been illustrated in Table 2. 

The design of the wind turbine’s components and foundation should be resistant to the 
damages and vibrations caused by ice accretion and sea ice. Cold weather packages and offshore 
corrosion protection systems have to be adopted. Inspection and maintenance planning should 
be designed to accommodate limited access to wind turbines due to seawater freezing. 

Maintenance crews must receive the required training and work only when their health and 
psychological conditions are appropriate. Moreover, workers have to use proper equipment and 
clothing and follow regulations like using safety ropes and cranes and working in pairs, etc. 
There are techniques used to clean blades off accreted ice, such as the use of drones that can 
spray de-icing liquid to the blades.  

There are other aspects of risks that can be witnessed in wind farms operating under icing 
conditions, which were not mentioned in this paper such as the effects of icing on wind farm’s 
communication tools, and the increased noise hazards due to ice accretion on wind turbine’s 



blades. Further investigation of the effects of the use of chemical Anti/De-icing systems (ADIS) 
on the environment can be included. 
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