SRS

< MRCT
Haon &

UiT The Arctic University of Norway

P
T,

fuiT

Department of Computer Science

M-CDS: Mobile Carbohydrate Delivery System

Helping people with insulin-treated diabetes deal with “on the go”

Neethan Puvanendran
INF-3971 Master's Thesis in Health Technology — June 2023







Preface

When | was choosing the topic for my master's thesis, | saw this project and resonated with it
immediately. As someone with two parents with T2D and at a high risk of developing T2D
myself, | hoped to create something useful for those with diabetes and, if it were to come,
something | could use as well. Throughout the year, | have learned more about diabetes than
ever before. | also realized how much work it can be to help a group of people who know more

about their disease than | do.

During my five years of being a student at UiT, | have accomplished many things that | am
proud of; | worked part-time at the local student house, DRIV, as a technical director with a
50% position throughout my studies; renovated an apartment; got married; became a father;
and | passed all my exams and even got as far as writing my master’s thesis and creating the
physical prototype described in this project. | hope that someone else can take this proof-of-

concept and create an even better product to help those with diabetes.



Acknowledgments

This thesis would not have been possible without Eirik Arsand. Thank you for dealing with me
the past year and helping me tremendously with my last-minute questions and late-night emails.
| am also grateful to my co-supervisors Gunnar Hartvigsen, André Henriksen, Pietro Randine,
and Miriam Wolff for sticking with this project and giving me the feedback and ideas needed.

Many thanks to Ken-Arne Jensen for all your help in the IFI Workshop, teaching me how to

use the 3D printer, and giving me a new Raspberry Pi when | bricked the first one.

Without @ystein Tveito’s ideas for a mobile system, this thesis would not be nearly as
successful. Thank you for your ideas which you happily explained in detail to me, and for

helping plan the hardware aspect of the system.

Thank you to my fellow students Eric, Sigurd, and Sondre for helping me get through school
when my life was at its busiest and countless hours of table tennis. I couldn’t ask for a better

group of friends during these years.

Thank you to my church friends and family for your prayers, my parents for their support, and

my father and elder sister for proofreading.

Thank you to my wonderful wife, Sunniva, for your support and love throughout the past year.
I could not have done this without you; thank you for always believing in me. Thank you to my

son Caleb for all the smiles, laughter, and joy you bring to the world.

Neethan Puvanendran, June 2023.



Commit to the Lord whatever you do,

and he will establish your plans.
Proverbs 16:3



Abstract

When patients with type 1 diabetes (T1D) are physically active, they encounter an issue with
keeping their blood glucose (BG) stable. Generally, their blood glucose level (BGL) will drop,
causing hypoglycaemia which can have fatal consequences. The simple solution is to consume
carbohydrates in the form of liquids or food, but during physical activities, it can be difficult to

follow their BGL at the same time as they exercise.

This thesis presents the design and implementation of a mobile carbohydrate delivery system,
M-CDS. Previous work has shown that it is possible to create a stationary carbohydrate delivery
system that reads the user’s BG data in real-time, gives feedback to the user when their BGL is
nearing hypoglycaemia, and issues a dose of juice with 15 grams of carbohydrates. The proof-
of-concept system in this thesis has the same functions but is contained within a modified
CamelBak backpack. A Raspberry Pi, together with various sensors and a peristaltic pump, can
transfer juice from a drinking reservoir to a drinking tube, which the user can easily drink from

while physically active.

The results show that the backpack works as intended and was able to avoid a BGL under 3.9
mmol/L while testing the system with a user using physical activity, thus successfully avoiding
a hypoglycaemic event.

As the system is a proof-of-concept, many things can be improved or modified to create a more
robust, user-friendly, compact, and complex system. However, creating a prototype proved to
be a time-costly project, whereas future work can use this project as a base to further improve
it.



Table of Contents

PIETACE ... e i
ACKNOWIBAGMENTS ...ttt e et e s e e b e e s sb e e be e enn e e sbeeanbeenreas i
AADSTIACT ... %
Lo LISEOF TADIES ... Xi
. LISEOF FIQUIES ..ottt e s be e sreenbeanee s Xi
iii.  List of Abbreviations and ACIONYIMS .........cccoiiieriiieiieri e i
1 INEFOAUCTION ...t b ettt b bbbt 1
1.1 IMIOTIVALION ..ot bbbkttt bbbt 2
1.2 Goal and Research ProbIem ... 2
1.2.1  SUBPIOBIEMS ..o s 2

1.3 Assumptions and LiMItatioNS ...........ccccveieiiieireie e e 3
1.3.1  TIME CONSIIAINTS ....ecuevieieeiiiteit e 3
1.3.2  FOCUS ON ProtOtYPING ..eocveeieieieiie ettt ettt nne s 3
1.3.3 CGM and Mobile Device Compatibility..........c.ccceveiiieiiiiiiieie e 4

1.4 TRESIS SITUCKUIE ... bbbt 4

2 Theoretical FramEWOIK .........ccooiiiiiii e 6
2.1 DHADELES ... 6
2.1.1  TYPE L DIADETES ...ttt 6
2.1.2  TYPE 2 DIADETES. ...ttt 6
2.1.3  HYPOGIYCABMIA. ... 7
2.1.4  ContinuouSs GIUCOSE IMONITOT ......ccueiuiiiiiiiiieieie s 7

2.2 SHALE-OT-TNE-AIT.. ... 8
2.2.1  SUPEISAPIENS .. eeuteeeeesteesteeseesteesteaseesseesseeseesseesseaseesseesseaseesseessesseesseessesseesseensessenssens 8
2.2.2 WV BI ettt ettt b bbbt 10
2.2.3  LBVEIS .. 10



2.2.4  JANUAIY Al .o 11

2.3 REIAEA WOTK ... .o 12
2.3.1  HOUSE OF CaArDS.....iiiiiiieiieieieie sttt 13
2.3.2  Push-DUtton-get-Candy ..........cccooiiiiiiiie s 13
2.3.3  DUual-hormone AP SYSEMS........ccuiiieiieieiieieeie st sre e se e sae e sre e 14

2.4 Technical BaCKgroUNG...........cccoiiiiiiiiiic st 15
2.4.1  NIGNISCOUL .....eeiieeie ettt e e e aesneenreenee e 15
2.4.2  RASPDEITY Pl.eveiiiicie e 16
2.4.3 12 bbb ne e 17

3 MELNOUOIOGY ...t 18

3.1 LITEratUre REVIBW ..otttk bbbt 18

3.2 ReSearch ParatigiM .........ccocuiiiieieieieiesie e 19

3.3 Requirements SPECITICAION ........c.cciiiiiiiiieieee s 20

3.4 Diabetes Association Research FOrUM ..........coviiiiiiiiiieniiineee e 20

3.5 IMPIEMENTALION ....c.eiiiiiiici bbbt 21

3B TOOIS ..t bbbt 22
3.8.1  BD PIINEI oot 22
3.6.2  TFTWOIKSNOP ..ottt 23
3.6.3  HOUSE OF CarbS ...t 23

N A 1 ot U 1 YRR 23
3.7.1  Application to UiT s DPO.......cccoiiiiiiiiiiiiiiiicie e 24
3.7.2  APPHCAtION t0 SIKE ..o 24

4 Requirements SPeCITICALION. .......ccuiiiiiiiecie e 24

4.1 FUNCtional reqUITEIMENTS ......cc.eiuiiiiiieii ettt 24

4.2 Non-functional reqUITEMENTS ..........oiiiiiiiieiei et 26
4.2.1  Look and Feel REQUITEMENTS. .......ccuiiiieieieiesiesie e 26



4.2.2  Usability and Humanity REQUIFEMENTS .........ccooeiiiiiinieiciee e 26

4.2.3  Performance REQUITEMENTS ........ccuiiiirieieiesiesie st 26
4.2.4  Security REQUITEMENTS .....ccuiiuiiiiiieiieieieie ettt 27
DTS} oSSR 28
oIS [0 T L 1= [ o SR 28
5.1.1  M-CDS BaCKPACK ......ceivieiiiiieiiieie e ste e sre et ae e sne s 28
5.1.2  MOoDbile @pPlICALION.......ccieiiiieii et 29
5.1.3  Data CONECLION........cviiiiiicii e 30
5.2 FINAI DESIGN....cciiiiieiie ittt b et be et sre e aeerae s 30
5.2.1  Updated doSING SYSIEIM.......iiiiiiiiiiiiieiie ettt re e e e srae e e saeenree s 31
IMPIEMENTALION. ... 33
6.1  M-CDS BACKPACK........cciiiiiiiiiiiee e 34
B.1.1  CaMEIBAK ..ot 35
6.1.2 3D PriNted PAIS ....cc.eiuiiiiieiie et 38
B.1.3  RASPDEITY Pl 42
6.1.4  Raspberry Pi Hardware and PartS.........cccceoeoererenineninieiesese e 44
B.1.5  M-CDS SOFtWAIE........eoviiiiiiieieiitee e 60
6.1.6  M-CDS DOSING SYSIEIM......ccuiiiiieiiciiciie ettt sre e 62
8.2 BACKENT SEIVEN ...ttt 66
Evaluation and RESUILS ..........coviiiiiie e 67
7.1 LITErature REVIEW ........ooiiiiiiiiieeie et 67
7.2 Diabetes Association Research FOrum ..o 68
7.3 INEEIVIBW ..ottt b bbbt 68
T4 SYSTEIM Lottt 69
7.5 PrOtOTYPE COSES......eeiiiieeiiieiti ettt 70
7.8 USEE TOSHING....eititiitieieeiieie ettt bbbttt n bbb sb b 70



T.8. 1 RESUIS e 71

8 DISCUSSION ...tttk b bbbt b et e b ettt b et e 73
8.1 LITEratlre REVIBW ..ottt bbb 73
8.2 INLEIVIBW ..ottt 73
ST B | SRS U SRR PP PRPRPRPRPRIN 74
I S S (01(0] 1Y/ 0L 01 £ J PRSPPI 75
8.5  Design and IMpPIemeNntation...........cccoiieiiiieii e 76

8.5.1 3D PrINLING ..ectieiiieciie ettt e et a e rae s 76
8.5.2  Waterproofing and SEaliNg ..........ccoveiiiiiiiiii i 78
8.5.3  Raspberry Pi DeVelOPMENT.......cciiiiiiiiiiie it 80
8.5.4  Mobile Application DeVEIOPMENT.........ccoiviiiiiiiriieeee e 81
8.5.5  BaCKPACK DESIGN.....c..oiviiiiiiiiiiisiieiieieeee e 81
8.5.6  Hypoglycaemia Detection AlGOrithm ............cccooiiiiiiiiiiiiie e 82
8.6 Testing and USability ...........coueiiiiiiiiieiiiseeee s 82
8.7 FULUIE WOTK ...ttt bbbt bbb 84
8.7.1  Multiple containers of liquid (with and without sugar, water)............c.ccccvevenen. 84
8.7.2  Better qUality PUMP .....coviiii et 85
8.7.3  Better hypoglycaemia detection algorithm ...........c.ccceeviiiiiiii i, 85
8.7.4  Mobile phone and smartwatCh USAgE .........cccccvevveiieiieeie e 85
8.7.5  LOW-POWEN NAIAWAIE ......coviieieieeie ettt 86
8.7.6  4G/5G dIreCt CONNEBCLION ....o.viiiiiieiieiieeie et 87
8.7.7  CUSIOM PCB ... 87
8.7.8  Enclosed container for the entire SYSteM.........cccocvvveiiiiiiieiie i 87
8.8  RESEArch ProbIBMS ........coiiiiiieie s 87

O DISSEMINALION ...ttt bbbttt b bbbt 89

9.1  POSEr fOr ATTD 2023 ...ttt bbbt 89



9.2  Poster Presentation for Diabetes FOrum 2023 ..o 89

10 CONCIUSION. ...ttt bbbttt e bbbttt se s eneas 91
RETEIEINCES ... bbbt bbbttt bbb bbbt e s 92
N 0] 0L a0 1 ST SS PSSRSO 96
First email to UIT’ S DPO ...cciiiiiiiiiii ittt 96
APPHCALION 10 STKL ..ot nre s 98



I. List of Tables

Table 1: LIterature reVIEW QUETY ......ccveieeeesieesteeeesteesieeeestee e sseessaesaessaesseesaeaneesseesesneesseensenns 18
Table 2: Functional requirements for the M-CDS ... 25
Table 3: Overview of the parts included in the M-CDS backpack ...........ccccoceviiiiiniiininnnn, 34
Table 4: Overview of the different buzzer events and SOUNS .........ccceevvivereiieiiere e 57
Table 5: Overview of the test results from the chosen Papers. ........ccccoccevvveveiieviereccie e, 67
Table 6: Overview of the costs of the prototype Parts .........cccccevveiieiiieiie e 70

ii. List of Figures

Figure 1: Supersapiens mobile application [22].........ccceieiiiiiiiiiie e 9
Figure 2: Comparison of the Libre Sense (left) and the Libre 2 (right). The Libre 2 image has
the PCB overlayed on top of the sensor to show the similarities in hardware parts [23, 24] ....9

Figure 3: Veri’s mobile application and the Libre 2 CGM sensor [26] ......ccccvvvvriveriiieeeniinennne 10
Figure 4: The Levels mobile application and sensor patch [30] ......ccccoevveiieiiieiieiiecciccee, 11
Figure 5: January AI’s mobile application [32] ........cccoiiiiiieiiiiiiicieeeseeeee e 12
Figure 6: The House of Carbs SYSIEM [7] ....cviviiiiiiiiieeeree s 13
Figure 7: Push-button-get-candy [35] ........cooviieiieie i 14
Figure 8: The Nightscout graphical interface [39] .........ccoviiieiiiiiiice e 16
Figure 9: RaSPDEITY Pl AB ...ttt 16
Figure 10: PRISMA diagram from the [iterature reVIEW. .........cccccovvrieiirieienene e 19

Figure 11: Presentation of the master project at Diabetes Association Research Forum 2023 20

Figure 12: Testing the individual components together. Pictured is the piezo buzzer, Raspberry

Pi, motor controller, pressure sensor and peristaltic PUMP. .......cccooviirieienenene e 22
Figure 13: The TFI WOTKSNOP.......coviiiiiii e 23
Figure 14: The initial design of the M-CDS, from the capstone project [45] ........cccccevvvennne. 28
Figure 15: Finalized design of the M-CDS ..o 30
Figure 16: Overview of the New dOSINg SYSIEM .......ccuiiiiiiiiiiesiseeee e 31

Figure 17: The implemented system. Visible are the backpack, pump housing, and drinking

L0 o1 P PSPPI 33
Figure 18: Some of the various parts inside the M-CDS BackpackK..............cccccevevveieeinenenne. 34
Figure 19: CamelBak Arete 18 backpack, modified...........cccoveiiiiiiiniiieeeec e 35

Xl



Figure 20: The drinking reservoir, with drinking tube and bite valve. ...........cc.ccoooiniiiinnn. 36
Figure 21: Peristaltic pump housing attached to CamelBaK ............ccccccevvvveiieieicc i 36
Figure 22: Completed modification of the drinking tube. ..o, 37
Figure 23: Pushbutton, power switch and USB-C charging port mounted to the backpack.... 37
Figure 24: Printing a part on the PRUSA 13 MK3 3D Printer. .......ccooeveiineneninencseseeeens 38
Figure 25: Raspberry Pi 4 Case for RGB Cooling Hat’ by timmygu, licensed under CC BY 4.0,

alongside modified version used in this SYStEM. ........cccvciiiieii i 39
Figure 26: Modification of the fan VENL. ... 39
Figure 27: Modification of the side Vent hOIES. ..ot 40
Figure 28: Holding the case together with tape and SCreWs. ..........ccueererenene s 40
Figure 29: M16x1 GX16 Aviation Connector by jbkuma, licensed under CC BY-NC-SA 4.0;
the nut attaching the pushbutton to the backpack. ...........cccccooiiiiiiii e, 41
Figure 30: Raspberry Pi Hat Standoff by makenai, licensed under CC BY 4.0; printed standoffs
(o] g TN OO P PO PPPPPPPT 42
Figure 31: Raspberry Pi 4B with sensors, HATs and various cabling. .........c.cccccvevevvervenenne. 42
Figure 32: An overview of the hardware and how various parts are connected. ..................... 45
Figure 33: The Adafruit DC & Stepper Motor BONNEt ............cooiiiiiieiiieieccse e 45
Figure 34: The 12C addressing PCB pads on the rear side of the motor controller.................. 46
Figure 35: Adafruit MPRLS Ported PreSSure SENSOT..........cccveivereiiieieesieeieseeseeiessaesve e 47
Figure 36: The pump tubing assembly with juice flow directions............cccccoeveviiiiiiiieinnne, 48
Figure 37: MPL3115A2 12C Barometric Pressure/Altitude Sensor............ccccoovvevivnercnninnn 49
Figure 38: Adafruit Perma-Proto HAT for Pi, before and after adding components............... 50
Figure 39: The peristaltic pump in itS @NCIOSUIE .........ccveiieiiece e 51

Figure 40: The pump with the plastic head removed. The three rollers are visible and are driven
from the motor through a rod that goes through the center of the rollers. ............cccceeiein 52
Figure 41: Peristaltic pump mechanism. As the roller turns, the liquid is forced through the

EUDE. [48] ottt e et eare e reeae e e nre s 52
Figure 42: Generic 20000 MAN POWET DANK .........cciviiiiiiiie i 53
Figure 43: The powerbank and charging port mounted inside the backpack.............cc.cc.c...... 54
Figure 44: The pushbutton, power switch, and piezo buzzer...........c.ccccooveveiiecie v 55
Figure 45: Modified power switch cable, connected to the RPi and motor controller. ........... 55
Figure 46: The Molex connector going to the pushbutton and piezo speaker. ..........cccccccee... 56

Xii



Figure 47: A diagram of the tubing CONNECTIONS.........cciriiiiiiiiriees e 58

Figure 48: Metal hose adapters, modified adapter on the left..........c.ccccoeveveiieccie e 59
Figure 49: The heat-shrink wrapped adapters. Top: from reservoir to pump, bottom: from pump
10 AFINKING TUDE ...t bbbt 59
Figure 50: The MRPLS sensor with the tubing securely attached. ............cccocvvininiiinnn, 60
Figure 51: Measuring the tube INACCUIACY. .......ccoveiueiieiiee e 63
Figure 52: The black currant juice nutritional information..............cccccceveviiiicnie e, 64
Figure 53: Calculating dose 1eNgth..........cooviii i 64
Figure 54: Flowchart showing how the dosing process WOrks. ..........ccccccevererenieniinesiesinenns 65
Figure 55: The participant receiving a dose of juice from the M-CDS system. .........cc.cccevenee. 71
Figure 56: Test results from the test partiCipant.............ccoccveeeiieereiie s 72
Figure 57: An assortment of failed 3D PrintS.........cccoviiiiieiieciie e 77
Figure 58: Two attempts at attaching the silicone tube to the MPRLS sensor. Left: hot glue,
Right: heat shrink without glue, With @ ZIP e .......ccoiiiiiii 78
Figure 59: Failed attempt at attaching silicone tubes with glueless heat shrink ...................... 79
Figure 60: A T-connector and 2-prong adapter..........cccveiveiieeiieiieeiie e 79
Figure 61: The drinking reservoir filled with juice and sealed with a bag clip...........cc.cc...... 84
Figure 62: The Raspberry Pi PICOW and Zero 2 W .........cccooiiiiiiinieeieese s 86
Figure 63: The ATTD 2023 POSIEL.....ccuveiiieieiieite e st seeste ettt a e ta et e e e sreeneennes 89

lii. List of Abbreviations and Acronyms

Abbreviation | Explanation

Al Acrtificial Intelligence

AP Artificial Pancreas

API Application Programming Interface
BG Blood Glucose

BGL Blood Glucose Level

BLE Bluetooth Low Energy

Xiii



CGM

Continous Glucose Monitor

CcoB Carbohydrates-on-board

DKA Diabetic Ketoacidosis

GPIO General Purpose Input Output

HIT Health Informatics and -Technology
ID Inner Diameter

10B Insulin-on-board

M-CDS Mobile Carbohydrate Delivery System
ML Machine Learning

oD Outer Diameter

RPi Raspberry Pi

T1D Type 1 Diabetes

T2D Type 2 Diabetes

Xiv




1 Introduction

Physical activity and exercise are essential to maintaining a healthy lifestyle. Engaging in
regular exercise has been shown to provide numerous health benefits, such as improved
cardiovascular function, stress reduction, increased energy levels, and the prevention of many

chronic diseases [1].

The body utilizes glucose in the bloodstream during exercise as an energy source. As physical
activity progresses, insulin sensitivity increases, leading to the transfer of glucose from the
blood into muscle cells [2]. This process generally results in lower blood sugar levels. However,
the pancreas can counteract this effect under normal circumstances by releasing glucagon.
Glucagon triggers the liver to convert glycogen into glucose, which is then released into the
bloodstream and raises BGL [3]. This intricate balance between insulin and glucagon helps

maintain stable blood sugar levels during exercise.

When individuals with T1D exercise, their body does not control their BGL in the same way as
a person without T1D. Their pancreas cannot produce glucagon to counteract a hypoglycaemic
event, causing their BGL to continue dropping [4]. They must instead actively monitor their
BGL while exercising and consume carbohydrates to increase their BGL. The lack of a
convenient solution for managing their BGL during exercise can pose significant challenges.
These challenges may result in reduced motivation to engage in regular physical activities, as
maintaining a balanced BGL during exercise requires additional effort and constant monitoring.
This, in turn, can have a detrimental impact on their overall health and well-being, as exercise
is crucial for maintaining a healthy lifestyle and effective diabetes management [5].

In this thesis, we propose and develop a mobile carbohydrate dispensing system specifically
designed for patients with T1D. The primary objective of this system is to allow individuals
with T1D to concentrate on exercising while the dispensing system effectively manages the risk
of hypoglycemia by delivering carbohydrates when the user’s BGL begins to drop before
entering hypoglycemia. By shifting the focus away from BGL monitoring and towards the
physical activity itself, this innovative solution aims to improve the exercise experience and

empower those with T1D to lead healthier, more active lives.

Side 1 av 101



1.1 Motivation

The research on carbohydrate delivery systems for individuals with T1D, or for delivering
carbohydrates during exercise in general, is lacking. Few similar projects focus on this issue.
Some attention has been given to dual-hormone artificial pancreases that can administer insulin

and glucagon, but there are currently no commercially available products.

A system proposed in this thesis could greatly benefit individuals with T1D. T1D requires a
delicate balance between insulin administration and carbohydrate intake, and during exercise,
correct carbohydrate intake is especially important to avoid hypoglycaemia. Automating
carbohydrate intake during exercise would allow individuals with T1D to reduce the stress and
burden associated with maintaining a stable BGL while exercising. Additionally, it could help
those with a fear of exercising due to a fear of hypoglycaemia to participate in physical

activities.

On a personal note, | have two parents with insulin-dependent T2D who are physically active.
This also puts me at a high risk of being diagnosed with T2D [6]. Having seen my parents
struggle with diabetes throughout their lifetime, creating a system that can be of good use to

them — and possibly myself — is a personal motivation for this project.

1.2 Goal and Research Problem

The goal of this master’s project is to create a mobile carbohydrate delivery system for patients
with T1D, which allows them to exercise and engage in physical activities without the need to
focus on consuming enough carbohydrates and avoiding hypoglycaemia. The main research

problem is as follows:
RP: How do we design a mobile carbohydrate delivery system?

1.2.1 Subproblems

The main problem can be broken down into several subproblems.

The main problem consists of making an existing carbohydrate delivery system, House of Carbs
[7], into a mobile system. From the standalone system, two main changes need to be made:

The original carbohydrate delivery system uses an unsealed system, where the container of

carbohydrates and the glass that the juice is pumped into are both unsealed containers. This
Side 2 av 101



allows the containers to avoid releasing pressure built up due to the transfer of liquids. In a
sealed system, the containers are closed. The pressure in each container would change and cause
damage if the system does not handle the change in pressure during pumping. This leads us to

the first subproblem:
RP1: How can we use a sealed system to pump liquid from a container?

Taking the existing system and adding a battery to it may be a simple task, but containing the
system inside a backpack presents additional challenges. The electronics must be protected
from damage, and the system must be kept functional and reliable during transportation and
use. In addition, in case of liquid spillage inside the backpack, the system should not short-

circuit and harm the user. Thus, the second subproblem is defined as:

RP2: How can we safely encase the system in a portable container?

1.3 Assumptions and Limitations
Some assumptions and limitations have been considered throughout this master project. These
factors are important to note, as they influence the overall quality and the outcome of the

project.

1.3.1 Time Constraints

The limited timeframe for the master’s project meant that some aspects of the system had to be
prioritized over others. Designing, assembling, and programming the hardware for the system,
creating a mobile application, understanding the BLE protocol, and developing a physical end
product took a substantial amount of time. This limitation may have led to sub-optimal design

choices or oversights in each aspect of the system.

1.3.2 Focus on Prototyping

The end product of this master’s project is a prototype rather than a polished, production-ready
system. Therefore, the system may have limitations such as poorly optimized code and
hardware performance, lack of scalability, and the lack of mass-production focused hardware,
and may need to be improved before bringing it to a broader commercial platform. However,
the primary goal of this master’s project was to demonstrate the feasibility of a mobile

carbohydrate delivery system rather than creating a finished product for mass production.

Side 3av 101



1.3.3 CGM and Mobile Device Compatibility

The implemented system relies on Nightscout to fetch BGL data from the user. It is assumed
that the user has a CGM that is compatible with Nightscout and can send their BGL data in
real-time or near real-time. Although the most popular CGMs in Norway can do this natively,
there are two CGMs! that require modified applications running on the user’s phone to access

BGL in real-time [8]. Non-power users of these CGMs are therefore not able to use our system.

The mobile application designed in this thesis is created exclusively for Android devices, using
the Xamarin framework to simplify the development process. Due to this choice, users with
IOS devices, such as an iPhone or iPad, cannot use the system. The focus on Android

compatibility is a limitation, potentially excluding a portion of the intended user base.

1.4 Thesis Structure

The rest of the thesis follows the following structure:

Chapter 2: Theoretical Framework — Overview of key concepts and literature relevant to this
thesis. Covers diabetes, state-of-the-art, related work and technical details of hardware and

software components used.

Chapter 3: Methodology — Description of the approach and process of this thesis. Includes

literature reviews, a user interview, the implementation process
Chapter 4: Requirements Specification — Presentation of the requirements for the system
Chapter 5: Design — Presentation of the system design and required elements

Chapter 6: Implementation — Description of the system development and implementation

process

Chapter 7: Evaluation and Results — Assessment of the system performance and a summary
of the findings

1 Eversense E3 and Guardian Connect
Side 4 av 101



Chapter 8: Discussion — Discussion of the results, choices made during design and

implementation, and areas of future work.
Chapter 9: Dissemination — Conferences and other platforms where the work has been shared

Chapter 10: Conclusion — Summary of the work and closing remarks

Side 5av 101



2 Theoretical Framework
2.1 Diabetes

Diabetes mellitus is a group of chronic medical diseases characterized by the body’s inability
to produce or use insulin effectively. When an individual has diabetes, they either have a
pancreas that cannot produce enough insulin or cells in their body cannot respond properly to
the produced insulin, causing an imbalance in blood sugar regulation [9]. Without insulin, their
blood sugar will rise, causing hyperglycaemia, which can lead to toxic acids called ketones to
build up in the body, also known as diabetic ketoacidosis (DKA). This can lead to nausea,
frequent urination, blurred vision, vomiting, confusion, and loss of consciousness [10].
According to the International Diabetes Federation Diabetes Atlas, in 2021, an estimated 537
million adults live with diabetes, which was also attributed to over 6.7 million deaths annually

[11]. The two most common types of diabetes are type 1 and type 2 diabetes.

2.1.1 Type 1 Diabetes

Type 1 diabetes is caused by an autoimmune process in the body. The cells that produce insulin
in the pancreas are attacked by the body’s immune system, resulting in a reduction or complete
absence of insulin production. The cause of T1D is not fully understood but is likely attributable
to a combination of genetic and environmental factors [11]. Individuals with T1D depend on
administering insulin daily to maintain their BGL within a safe range, usually between 4 — 7
mmol/L before meals and below 10 mmol/L after meals [12]. Excessive insulin administration
can cause BGLs to drop to an unsafe level, resulting in hypoglycaemia, which can lead to
impaired concentration, headaches, blurred vision, weakness, and loss of consciousness [13].
Approximately 9 % of the Norwegian population with diabetes has T1D. [14]

2.1.2 Type 2 Diabetes

Type 2 diabetes is the most prevalent type of diabetes, affecting approximately 91 % of the
Norwegian diabetic population [14]. Compared to T1D, which involves the immune system
attacking insulin-producing cells, T2D primarily occurs when the body becomes less responsive
to insulin or the pancreas cannot produce enough insulin. T2D has a multifactorial etiology
involving genetic and lifestyle factors, such as obesity and physical inactivity [15]. Symptoms
of T2D can be similar to T1D; however, they often appear gradually, and some individuals may

Side 6 av 101



not experience any symptoms at all, leading directly to complications such as DKA, impaired

vision, heart disease, and strokes [11].

2.1.3 Hypoglycaemia

Hypoglycaemia is a medical condition that occurs when an individual has an abnormally low
BGL, usually below four mmol/L. It can lead to symptoms such as shakiness, dizziness,
sweating, confusion, and in severe cases, loss of consciousness and seizures [16].
Hypoglycaemia occurs when there is an imbalance between the body's glucose production,
glucose utilization, and insulin levels, often resulting from excessive insulin administration or

insufficient carbohydrate intake [13].

Hypoglycaemia is more likely to occur during exercise as the body's demand for glucose
increases. Muscles require glucose for energy, leading to rapid glucose utilization and a drop
in blood glucose levels. Insulin sensitivity is also enhanced during exercise, causing more

glucose to be moved out of the blood and into muscle cells, further lowering blood sugar levels

2]

Hypoglycaemia can be particularly detrimental during exercise, leading to decreased cognitive
function, impaired coordination, and reduced physical performance. Additionally, experiencing
hypoglycaemia during exercise may cause individuals to become fearful of engaging in
physical activities, leading to a sedentary lifestyle, which can further exacerbate diabetes-
related complications [5]. Severe cases of hypoglycaemia can be life-threatening, especially
during exercise, as it may result in unconsciousness or seizures, increasing the risk of accidents

or injury [16].

2.1.4 Continuous Glucose Monitor

A Continuous Glucose Monitor (CGM) is a device that continuously measures BGLs in the
interstitial fluid, which is the fluid that surrounds the cells of the body’s tissues. A CGM usually
consists of a small wearable sensor that detects the BGL under the skin every 5 to 15 minutes,
a transmitter for sending the reading from the sensor, and a receiver that displays the readings

to the end user. The receiver may be a physical hardware device or a mobile phone [17].

Since a CGM provides a continuous stream of BGL data, individuals with diabetes can make
better decisions about insulin administration, carbohydrate intake and other activities that may

Side 7 av 101



impact their BGL. They can also view historical data to assess the impact of their past choices.
A CGM can help them to manage their diabetes better, reduce the risk of hypo- and

hyperglycaemia, and minimize the complications that arise with these conditions [18].

A CGM can also send an alert when their BGL is trending downwards, giving them enough
time to take corrective action by eating a snack or adjusting insulin doses. This is especially
helpful for those who do not get symptoms during a BGL fall and those with hypoglycaemic
unawareness [19]. A CGM can help predict a hypoglycaemic event before it happens and allow
the individual to avoid entering hypoglycaemia [20]. Four companies have CGMs approved in
Norway: Abbott with the Freestyle Libre 2 and 3, Medtronic’s Guardian 4 and Guardian
Connect, Dexcom G6 and G7, and Senseonics with the Evensense E3 [21].

2.2 State-of-the-art

The current market for technology related to diabetes and blood glucose monitoring, with a
particular focus on physical activity, mainly consists of mobile applications that use
commercially available CGMs to help users discover what affects their BGLs. With this
information, they can then make informed decisions on specific diets or activities that positively
impact their BGLs. This section provides an overview of some of the most popular mobile
applications in this field: Supersapiens, Veri, Levels, and January Al. Although each app has
its unique features, they all share a common goal of improving metabolic health, and they all

rely on some form of CGM to collect and interpret the user's blood glucose data.

2.2.1 Supersapiens

Supersapiens is a sports technology company that produces the Supersapiens mobile
application which allows athletes to gain insights into their glucose data in real-time. The
mobile application uses the Abbott Libre Sense Sport Biosensor to provide live blood glucose
data minute-by-minute, track historical BGL data, and receive real-time BGL alerts. This allows
users to analyze the impact of exercise routines, carbohydrate intake, and other factors on their
BGL to increase their metabolic efficiency. Additionally, the sensor can connect directly to the
Supersapiens Energy Band, a smartwatch specifically designed for use with Supersapiens,
freeing the user from their mobile device [22]. The Supersapiens mobile application can be seen

in the Figure below.

Side 8 av 101



wured by
ABBOTT LIBRE SENSE

SUPERSAPIENS

Figure 1: Supersapiens mobile application [22]

The sensor streams data to the user’s mobile phone via Bluetooth and is designed for sports use
only. Supersapiens states on their website in multiple sections that the sensor and application is
not intended for use in diagnosis, treatment, or management of diabetes. They also indicate that

the technology used in the Libre Sense is identical to that in the Libre 1 and 2 [22].

Figure 2: Comparison of the Libre Sense (left) and the Libre 2 (right). The Libre 2 image has the PCB overlayed
on top of the sensor to show the similarities in hardware parts [23, 24]

There is strong evidence that the Libre Sense Sport Biosensor is a repackaged Libre 2 sensor
with real-time streaming capabilities enabled. Libre 2 sensors can be hacked to retrieve BGL
data, as the sensors can transmit this data but do not use Abbott's official mobile applications
[25]. Figure 2 compares the two sensors, with colored boxes highlighting similarities in various

hardware components.

Side 9 av 101



2.2.2 Veri

Veri is a company that produces a mobile application to help individuals improve their
metabolic health. The app reads their BGL via a Libre CGM and gives feedback on how
different foods affect them, allowing users to find foods that help them lose weight, and reverse
insulin resistance [26]. The Veri mobile application can be seen in the figure below.

Veri, your compass

for metabolic health

Figure 3: Veri’s mobile application and the Libre 2 CGM sensor [26]

Veri uses the Libre 1 and Libre 2 sensors to access the user’s BGL data. Their data is transferred
using the LibreLink application, as Veri accesses it via a Practice 1D, usually reserved for
general practitioners to see their patient’s BGL data. The user must manually scan their sensor
to receive updates in the Veri application, as they are not using a sensor that streams data
automatically as Supersapiens with the Libre Sense Sport Biosensor [27].

Veri also specifies that it is not intended for those with diabetes or anyone seeking medical
advice [28].

2.2.3 Levels

Levels Health is responsible for creating the Levels fitness tracking program to help individuals
optimize their metabolic health. The app connects to the user’s CGM and reads their BGL to
give real-time feedback on how food, exercise and other variables influence them and allows
them to control how their body produces and uses energy [29]. The Levels mobile application
and sensor patch can be seen in the figure below.

Side 10 av 101



Figure 4: The Levels mobile application and sensor patch [30]

Both the Dexcom G6 and the Libre 2 may be used with the Levels application, which they
differentiate as a real-time streaming sensor and a manual scan CGM. Libre 2 sensors are
connected to Levels using the same method as Veri, via LibreLink. Dexcom has an official API
that allows for direct integration with applications. This allows users to log in to their Dexcom

Cloud account and authorizes the Levels application to read their BGL data [31].

Levels also states that their product is not intended for use with a Type 1 or Type 2 diabetes

diagnosis.

2.2.4 January Al

January Al is a health application that combines CGMs with Al to provide personalized health
insights and recommendations to help users align their lifestyle habits and routines to suit their
body’s needs. It achieves this by tracking the user’s BGLs, physical activity, and food intake to
provide personalized recommendations [32]. The January Al mobile application can be seen

below.

Side 11 av 101



y/dL
3 swananen Power the
future of
your health

_

Figure 5: January Al’s mobile application [32]

By utilizing Al, January Al can provide continuous glucose estimates, predictions, and insights.
The user wears a Libre CGM for 14 days, during which their BG data is gathered and sent to
January Al. This information is then used to train the Al to understand the user’s BGL patterns.
After 14 days, the user does not need to use a CGM. The Al can predict the user's BGL solely
based on the user’s carbohydrate intake and physical activity data. January AI’s white paper
suggests a percent error of 13.0 %, which shows their Al-driven predictions' accuracy. The user
may update the model by reapplying a CGM, which January Al recommends doing every three
months [33].

An activity tracker must also use January Al, such as a Fitbit or Apple Watch. This provides

insights into physical activity patterns, including heart rate data.

They also state that their application can be used by anyone who is not dependent on insulin,
so those with type 2 diabetes, pre-diabetes, or at risk for diabetes can use the January
application. This is different than the previous applications, which explicitly warns against use
by individuals with diabetes [34].

2.3 Related Work
Although no other mobile carbohydrate delivery systems exist today, there are both stationary

systems that are proven to work and clinical trials of dual hormone AP systems.

Side 12 av 101



2.3.1 House of Carbs

House of Carbs is a stationary carbohydrate dispensing system that dispenses juice to help
patients with T1D avoid hypoglycaemic events. The system consists of a stationary dosing
system and a messaging bot accessible through the Telegram messaging application. A
Raspberry Pi controls the dosing system and communicates with Nightscout to retrieve the
user’s BG data. In the case of an oncoming hypoglycaemic event, the RPi will notify the user
via the Telegram bot, requesting that they get ready for a dose of juice. The RPi then pumps
liquid from a container into a glass, equivalent to 15 grams of carbohydrates, using a peristaltic
pump before sending a new message to the user requesting them to pick up the glass from the
station and drink the juice. The system then waits 15 minutes before checking the user’s BGL

to see if the dose successfully helped avoid a hypoglycaemic event. [7]

Figure 6: The House of Carbs system [7]

The user may also adjust settings by sending commands to the Telegram bot.

2.3.2 Push-button-get-candy

Push-button-get-candy is an open-source stationary carbohydrate dispensing system that uses
Skittles to help patients with T1D avoid hypoglycaemic events. It also utilizes Nightscout to
retrieve the user’s BGL. By pressing the button on the outside of the system, the system
calculates how much candy the user needs by reading their current BGL and dispenses the
candy. The number of Skittles dispensed depends on the target BGL as defined in the

application itself or from Nightscout, Loop or OpenAPS. The user must also input their insulin
Side 13 av 101



sensitivity factor to calculate their carbohydrate sensitivity factor, as some users may be more
sensitive to changes in BGLs than others. The system does not automatically give the user a

dose; the user must manually request it by pressing the machine’s button. [35]

Figure 7: Push-button-get-candy [35]

2.3.3 Dual-hormone AP systems

Dual-hormone AP systems are advanced artificial pancreas systems that can administer two
hormones; insulin to lower BGL, and glucagon to increase BGL. These closed-loop systems
can mimic the biological pancreas more realistically than single hormone systems, as they can
increase the user’s BGL automatically when needed, like a normal pancreas. Automating a
pancreas can improve a patient’s quality of life and, due to the improved glycemic control,
reduce long-term complications associated with diabetes. Incidents of hypo- and

hyperglycaemia are also significantly reduced. [36]

These systems are not as widely adopted for multiple reasons. Firstly, there is a lack of
widespread research and adoption of these systems. No commercially available systems are
approved by the United States Food and Drug Administration, but there are many ongoing

clinical trials with dual-hormone AP systems.?

2 https://clinicaltrials.gov/ct2/results?cond=diabetes&term=dual+hormone
Side 14 av 101



Secondly, tests of dual-hormone systems have been shown to increase nausea in patients due
to the glucagon component of the systems [37, 38]. This could lead to patients discontinuing or
not wanting to use the system. As these systems require two infusion sites for insulin and
glucagon, it could lead to more pain or bleeding when applying or removing the patches. [37,
38]

2.4 Technical Background
To understand the software, hardware and technology used in the produced prototype from this

thesis, knowledge of the following is required:

- Nightscout, a cloud-based CGM allowing for remote access of an individual’s BGL,
IOB and COB.

- Raspberry Pi: a programmable microcontroller running Linux that can communicate
via WiFi, Bluetooth and be connected to various sensors

- 12C, a serial interface protocol for communicating with devices

2.4.1 Nightscout

Nightscout is a cloud-based CGM used by those with diabetes and caretakers of those with
diabetes to visualize and share data from their CGMs in real time. Nightscout is compatible
with most CGMs devices, including Dexcom, Medtronic, and Abbott. The data from these
CGMs are sent to Nightscout using an uploader. The uploader can be an application that runs
on the user’s mobile device or a script that fetches data directly from a cloud service from
Dexcom, Abbott, or other CGM providers. Nightscout can also track a user’s IOB and COB

from their insulin pump [39].

Side 15 av 101



Figure 8: The Nightscout graphical interface [39]

Data from Nightscout can be fetched from other applications using its REST API. This allows
for applications to integrate Nightscout’s functionality in their application easily. In addition,
the developer only needs to implement a single API to support multiple CGMs rather than

creating a separate implementation for each CGM [39].

2.4.2 Raspberry Pi

The Raspberry Pi is a series of single-board computers created by the Raspberry Pi Foundation.
They also produce smaller microcontrollers and are used for everything from robotics to
carbohydrate delivery systems. Their newest flagship computer, the Raspberry Pi 4B, has a
quad-core processor and supports USB 3.0, HDMI, Wi-Fi, and Bluetooth 5.0 [40].

Figure 9: Raspberry Pi 4B3

One of the key aspects of the Raspberry Pi is its ease of use. Raspberry Pi devices typically run
Raspberry Pi OS, which is Debian-based. This makes the development and setting up of the
system very similar to a standard computer running a Linux distribution. With a large user base,

multiple tutorials, and software, it is easy to start working with Raspberry Pis [40].

Raspberry Pis use “HATS”, or “Hardware Attached on Top” add-on boards that add specialized

functionality, such as sensors, motor controllers, and LED controllers. The boards are

3 https://unsplash.com/photos/jvHymbptolE, licensed under the Unsplash license
Side 16 av 101



connected to the 40-pin header on the Raspberry Pi, which gives access to various protocols,
power, and GPIO pins [40].

2.4.3 I,C

Inter-Integrated Circuit (12C) is a communication protocol used for transmitting data between
devices, initially developed to allow simple communication between components on the same
circuit board. It is a serial protocol and uses two wires to communicate: the data line, SDA, and
the clock line, SCL. Multiple 12C devices can be chained together and only use these two pins
for communication. Each device has its own address, which is used by the master device to
communicate directly with a specific device. [41]

12C is commonly used in Raspberry Pi HATs and sensors to connect many devices without

using multiple GPIO pins.

Side 17 av 101



3 Methodology

3.1 Literature Review

A literature review was conducted to get an overview of the state-of-the-art Al and ML research

regarding diabetes. The literature review aimed to see if there were any recent Al or ML

discoveries regarding diabetes, such as predicting BGL.

The searches for the review were performed in the academic database IEEE and PubMed. The

search query structure is as follows:

Table 1: Literature review query

Section | Partial Query Reason

1 (Al OR Artificial Intelligence OR ML OR Al and ML related papers
Machine Learning)
AND

2 (Diabetes OR T1D) Diabetes or T1D related
AND

3 (BGL prediction OR BG prediction OR BGL prediction, or predicting
prediction) other variables

For the papers found to be included in the review, the following inclusion criteria were set:

- Uses Al or ML within diabetes research,
- Predicts future BGL using Al or ML,

- Testing is done with a single algorithm.

The exclusion criteria were as follows:

- Paper is written before 2019,

- Paper is not in English,

- Paper contains test results on humans with T1D,

- Paper is not a review.

A PRISMA diagram of the search and screening process can be seen in Figure 10.

Side 18 av 101



S
5
B Articles identified through
‘E database searching
= PubMed (n = 45)
g IEEE (n = 26)
S
v Articles excluded
R - Published before 2019
- - Notin English
ﬁqmzcl_?f)screened [——*| - Useofanimals
Duplicates
(n=18)
A4
] Articles excluded
Articles screened o| - Mo AUML in title/abstract
o (n=53) 1 - No diabetes in titie/abstract
T!: (n=18)
a v
Articles excluded:
Articles full-text screened .| - NoBGL prediction
(n=35) = Multiple algorithms
- Qut of scope
(n=24)
—_—
— hJ
3
+] Studies included in review
E n=11)
—_

Figure 10: PRISMA diagram from the literature review.

3.2 Research Paradigm
This thesis uses the “design” research paradigm as proposed by Denning et al. in “Computer as

a Discipline” [42]. This paper suggests three different paradigms for research in computer
science: theory, abstraction, and design. The theory paradigm is rooted in mathematics, the
abstraction paradigm is rooted in the scientific method, and design is rooted in engineering. The

design paradigm consists of four steps:

State the system requirements,
State the system specifications,

Design and implement the system,

A Wb

Test the system.

Side 19 av 101



The requirements and specifications of the system are described in the Requirements
Specification, which is then used as a basis for the Design and Implementation. A participant

then tested the system to ensure proper functionality of the system.

3.3 Requirements Specification

The Volere Requirements Specification Template is used as a basis for the requirements
specification of this thesis. The template is a framework used in software development to gather
and organize various requirements for a project. It is used in this thesis to lay a foundation for
the project’s functional and non-functional requirements. Functional requirements describe
what the system must do or actions it should take, whereas non-functional requirements are the

properties that the system's functions must have. [43]

3.4 Diabetes Association Research Forum

Figure 11: Presentation of the master project at Diabetes Association Research Forum 2023
The supervisor of this thesis presented a poster of this thesis at the Diabetes Association
Research Forum 2023 (Diabetesforbundets Diabetesforum 2023). A speed presentation and a
full presentation with discussion and questions from a panel was presented in a 10-minute time

slot at the conference. The presenter asked the following questions to a panel of medical experts

Side 20 av 101



to gain insight, which could lead to a more effective and efficient system and create a system

that would work properly for those with diabetes.

- Are there any parts of the system that should be done differently?

- How early should a hypoglycemic event be detected while the user is doing physical
activity?

- Who would need such a device? Why/why not?

- General feedback

After the presentation, a member from the audience contacted the supervisor with great interest
in the project and wanted to be interviewed. The interviewee was a mother who has T1D along

with her son.
The interview was conducted with the following interview guide as a basis:

- How do you manage your diabetes on a daily basis? (equipment, etc.)
- Do you manage your diabetes in the same way during physical activity?
- Compared to normal activity, how does your blood sugar fluctuate during physical
activity?
- Do you compensate for fluctuating blood sugar while exercising by eating or drinking?
- [After explaining the system detailed in this thesis]
o Would you use such a system?
o Why/why not?

The result of the interview is shown in section 7.3.

3.5 Implementation

A systematic approach was followed to develop the hardware of the M-CDS. The first stage of
hardware development involved testing the individual components to ensure they worked
properly and were usable for the project. If a component did not function properly or unsuitable

for the system, it needed to be replaced before the final implementation stage began.

After confirming that all the individual hardware components were functional, the components
were connected together using a microcontroller. At this stage, the code written for the

microcontroller only tested the components working together to see if there were any conflicts

Side 21 av 101



between the components. Once a working prototype was achieved with all the hardware

components, the system was then put into the final container, the backpack.

Figure 12: Testing the individual components together. Pictured is the piezo buzzer, Raspberry Pi, motor
controller, pressure sensor and peristaltic pump.

The software development began with creating test programs for specific tasks, such as BLE
communication between the mobile device and Raspberry Pi, making basic API calls to
Nightscout and parsing the data, and figuring out a simple hypoglycaemic detection algorithm.
Testing these pieces separately ensured that each function worked independently of each other.
Then, all the test programs' functionality was combined into a single script and software, and
code for interfacing with the hardware was written. At this stage, the hardware was already
tested and integrated into a single device, leaving only the software integration left.

3.6 Tools

To create the system that is M-CDS, many vital tools and resources needed to be used.

3.6.1 3D Printer
3D printing is an additive manufacturing method where plastics are melted and added together
layer by layer to create a complete piece. 3D printing allows for faster prototyping and lower

costs, and model designs are available for free on the Internet from various providers. [44]

A 3D printer was an essential tool for creating parts of the system that could not be ordered
quickly or had particular needs.

Side 22 av 101



3.6.2 IFI Workshop
|

Figure 13: The IFI Workshop

The Department of Computer Science Workshop (IFI Workshop) is a workshop area designated
for creating projects for the C.S. department. The workshop is equipped with various tools and
equipment essential for hardware development, including soldering tools, drills, and
mechanical and electronic parts. The 3D printer mentioned earlier was also located within the
workshop. All the hardware components of the M-CDS backpack were assembled and created

in the workshop.

3.6.3 House of Carbs
This project was based on the House of Carbs stationary carbohydrate delivery system. House
of Carbs served as a foundation and inspiration for the M-CDS, and uses many of the same

components and similar technology. [7]

3.7 Security
When handling sensitive data, such as BG data, it is crucial to ensure that users can trust the
system and that their data is stored securely. Their data should not be leaked, and the system

should be secure enough not to be breached.

The Raspberry Pi stores the user's BG data locally on the device without any unique identifiers

tracing back to the user. If a malicious user were to gain access to the local database file, they

Side 23 av 101



would have a user’s data but without any trace back to whose data it is. All data between the

Raspberry Pi and the backend server is encrypted and sent over HTTPS.

3.7.1 Application to UiT’s DPO

UiT’s Data Protection Officer (DPO) was contacted to receive advice regarding the data
security and privacy for this master project. The project's scope and the system being developed
were described in the email, as well as how the user’s data was to be stored and sent. The email

in full can be seen in the Appendix, and the answer from the DPO in section 8.3.

3.7.2 Application to Sikt
Sikt — Norwegian Agency for Shared Services in Education and Research is a public
administrative body. When doing scientific research involving test subjects, an application

stating how the subjects’ personal data will be used and stored usually must be sent to Sikt.

An application* was sent to Sikt sent on April 20" stating that a selection of T1D patients would
use the M-CDS system, and that their BG data would be collected to use the system. A complete

detail of the application is available in the appendix.

4 Requirements Specification

The functional and non-functional requirements for the system are described in this section,
following the Volere Requirements Specification Template [43].

4.1 Functional requirements
The project includes hardware and software, and thus the functional requirements are
intertwined. Each requirement below uses a subset of the properties defined in the Volere

Requirements Specification Template:

- Requirement Number: Unique identifier for the requirement.
- Description: Definition of the required functionality.
- Rationale: Why the requirement is needed.

- Fit Criteria: How to measure or conclude that the requirement is met.

4 Sikt refers to applications as «Notification forms» in English, but application is a better fitting term
Side 24 av 101



- Priority: How necessary this requirement is for the system: low, med, high.

- Dependencies: What other requirements is this requirement dependent on.

Table 2: Functional requirements for the M-CDS

Description Rationale Fit Criteria PRI | Deps.
The system should | Importing BG data is | The system should High
fetch real-time BG necessary for the successfully read the

data from an system to predict a BG data from an

external source hypoglycaemic event | external source

The system should | To counteract a The physical system | High | 3
give the user the hypoglycaemic event, | gives the user juice

ability to drink juice | the user needs through some means

from a container or | carbohydrates here in

other means the form of juice

The system should To give the user a Juice is pumped High | 2
pump juice specific amount of normally to a

continuously to a juice to drink container

container

It shall be possible To allow the user to A settings file or Med

to change the change settings based | configuration page

thresholds and on their situation should be available

settings of the for the user

system

The system should | Avoid the user The system detects High | 1
detect an oncoming | entering when the users BGL
hypoglycaemic hypoglycaemia is falling and issues a

event dose of juice

The system shall Give the user adose | The system starts the | High | 5
administer a dose of | to avoid dosing system before
carbohydrates when | hypoglycaemia a hypoglycaemic

a hypoglycaemic event occurs

event is detected

The system should If the user manually | A physical button Low | 2,3
allow the user to requires allows the user to

request a dose of carbohydrates request a dose

juice

The system should If the user does not A physical button Med | 2,3
allow the user to need a dose or wants | allows the user to stop

stop a dose of juice | to stop it prematurely | the dose

The system shall To give the user A speaker or buzzer High | 5

warn the user of
different events
audibly

audible feedback on
what the system is
doing

plays back audio or
sounds during
different system
events

Side 25 av 101




10 | The system shall be | To allow the system | A battery powers the | High
powered by a to be portable system
battery
11 | The system shall be | To make the system The system can High | 5, 6
autonomous, as simple as possible | recognize an
requiring minimal for any user oncoming
user input hypoglycaemic event,
give a dose and
finished it without
user input
12 | The system shall be | To enable the system | A smartwatch or Low
able to access the only when the user is | similar device is used
user’s physical physically active and | to fetch physical
activity data use that data to assist | activity data
in hypoglycaemia
detection

4.2 Non-functional requirements
This section describes four of the different non-functional requirements from the Volere

Requirements Template for this project.

4.2.1 Look and Feel Requirements
As this system is a prototype, no specific look and feel requirements exist. The appearance and
style of the product are not essential for ensuring a working prototype.

4.2.2 Usability and Humanity Requirements
The system should be user-friendly for people of all ages, but the target audience is adults over
18. The system should give necessary feedback to the user on what it is currently doing and

should be simple enough for the user to remember how it works easily.

The system should enable personalization through custom settings for different variables and
thresholds. It should also be easy to learn to use the system, and users should be able to learn

to use it quickly. Long, formal training should not be necessary to use the system.

The system should hide the details of how it is constructed from the user, but the user should

instinctively understand the system's mission.

4.2.3 Performance Requirements

The system should give a dose of juice as soon as the lower threshold BGL is reached. It should

poll for BG data every minute to ensure that it has an updated reading from the user. Any other
Side 26 av 101



sensors used in the system should be polled as quickly as possible to ensure updated values, as

the system needs to run in real time.

The system should not give doses that can pose a risk of hyperglycaemia, or doses at the wrong

time. It should not fail to provide a dose if the conditions are met.

The system should give accurate juice doses, within £1 g of carbohydrates. In case of error, the
system should safely stop and ensure that no components continue to operate. The system
should restart automatically in case of an error. The system should run on the battery for as long

as possible and safely shut down if the battery were to lose power.

4.2.4 Security Requirements
The system should be accessible only by the user using the system. Data transferred from the
system to external servers should be encrypted and protected from abuse. The system should

not leak data to malicious users.

Side 27 av 101



5 Design

In this section, both the initial design and the final design are explained, with the differences

between the two are highlighted.

5.1 Initial Design

Patient with diabetes

"Time to drink juice!" - )
exercising and doing

"Your blood glucose is 4.5 and decreasing.”

"Your blood glucose is ok, but fill up on water." non-intense physical activities
(f.ex. hiking)
Backpack containing P
speaker mobile carbohydrate system
Smartwatch (optional)
L]
I‘b(—
< > <« CGM (and insulin pump)

Dosing system

_%4_

Bluetooth LE
Raspberry Pi (RPI) -
({controls the dosing system and —Internet connection—»
interprets data from Nightscout)
|ae
v \/ ’

give dose based on data from Nightscout, including: User's mobile device
- blood glucose (CGM) (Middle-man between RPI and Nightscout)
- insulin-on-board (pump) Nightscout

- optionally: physical activity (smartwatch)

L ) . All components connect to the
A dose of juice is transfered from an internal container bile devi hich all
into a separate, removable container on the side of the IEBLECEVICE VNG OWS

backpack, allowing the user to easily drink their them to communicate with
required carbohydrates each other.

Figure 14: The initial design of the M-CDS, from the capstone project [45]

The initial design had three main components: the backpack, containing the carbohydrate
dosing system; the mobile phone, running an app that would allow for configuration of the
system and send BG data to the backpack; and data collectors, in the form of a CGM, insulin

pump and smartwatch for use in hypoglycaemia prediction.

5.1.1 M-CDS Backpack
The backpack in the initial design was a generic backpack to house the entire mobile system.
Inside the backpack would be the Raspberry Pi, speaker, dosing system, and other necessary
components (battery, sensors, etc.).

Side 28 av 101



The Raspberry Pi controlled the dosing system and received data from Nightscout. Since the
Raspberry Pi would not have access to the Internet in a remote area, it would connect to the
user’s mobile device using BLE, and through our mobile application, it could receive data from
Nightscout. Using this data, it would then calculate when the user needed a dose, and if required,
then give the user this dose.

The speaker was designed to be the only feedback to the user on what the system is doing. This
ensures that the user needs to do as little as possible to use the backpack because simplicity and
autonomy are critical elements of the system. If the user needs to take a dose, stop drinking, or

restart the system, a voice from the speaker will tell them.

Initially, the dosing system was planned to be a removable bottle on the side of the backpack.
This would allow the user to easily take the required dose quickly and continue with their
physical activity. The juice would be pumped into the bottle from an internal container to ensure
that only the required amount of juice for a dose would be in the bottle. The Raspberry Pi would
use the user’s BGL from their CGM, the current amount of IOB, and physical activity data from
their smartwatch to figure out whether a dose is required and how much juice to dose to the

user.

The system could also notify the user to hydrate and pump water into the bottle rather than
juice. If the user has a smartwatch, the system can access the user’s physical activity data,

enabling it to calculate and predict the optimal time to refill the liquids.

5.1.2 Mobile application

Individual diabetes patients react differently to carbohydrates and experience fluctuating BGLs
differently. To adapt the system for different users, the system must be configurable. By
developing a mobile application that can connect to the Raspberry Pi using BLE, we can allow
for different configurations. The mobile application is also used as a middleman for all the data
from Nightscout to the Raspberry Pi, as the Raspberry Pi cannot connect to the Internet without
a Wi-Fi connection, and 4G adapters for the Raspberry Pi can be expensive and difficult to
setup. Mobile phones usually have a 4G or 5G connection and are always online, making it

easy to fetch the data from Nightscout via their phone.

Side 29 av 101



5.1.3 Data collection

The user’s BGL, I0B, and COB can all be collected through the Nightscout application. BG
data is collected from the user’s CGM, IOB from the user’s insulin pump, and COB from the
user’s data input to their insulin pump. If the user has their own Nightscout instance, we can
configure the system to use it instead of our server. This data is stored on the Raspberry Pi for
logging purposes and is used for the hypoglycaemia prediction. If the user has a smartwatch,
the data can be used to detect physical activity, heart rate, and other variables. This data could

then be used in hypoglycaemia prediction or seeing if the user needs to take a break.

5.2 Final Design

Patient with diabetes

Long buzz: start/stop drinking exercising and doing
Multiple pulses: Error/check BGL non-intense physical activities
(f.ex. hiking)
CamelBak containing P

Buzzer mobile carbohydrate system

i <
.‘.‘

Camelback w/drinking tube

and bite valve
% <
v a4
i Mobhile hotspot
Raspberry Pi (RPI) .
(controls the dosing system and —4G/5G connection—»
interprets data from Nightscout)
A dose of juice is given to the user via the CamelBak User's mobile device
bite valve. (Runs a mobile hotspot)
Nightscout

Figure 15: Finalized design of the M-CDS

The final design of the M-CDS system has only a couple of minor variations from the initial

design. Figure 15 shows the updated design with changes and can be compared with Figure 14.

Firstly, on the left side, we see that the speaker has been replaced with a buzzer and the dosing
system with the CamelBak with a drinking tube and bite valve. A buzzer was simpler to

program than a robotic voice through a speaker and requires less hardware to implement. The

Side 30 av 101



dosing system and backpack have been finalized and chosen, and the separate, removable

container has been replaced with the CamelBak drinking tube and bite valve.

A mobile hotspot is used instead of BLE between the Raspberry Pi and mobile device. This
design choice was made far into the implementation stage when it became apparent that the
complexity of the BLE solution was not feasible to be completed within the project's time

constraints. The mobile device shares its 4G/5G connection with the Raspberry Pi.

Finally, only CGM data is used in the new design. Insulin pump data and smartwatch data are

not used.

5.2.1 Updated dosing system

Peristaltic pump

CamelBak hydration bladder {pumps juice when user bites on
- w/drinking tube bite valve, allowing us to measure
CamelBak containing .

the exact amount of liquid drunk)

maobile carbohydrate system
— contai ! . [ )|
ohtains—— —tube is connected to— — )
P

pumps juice into

Patient with diabetes

-

€——liquid is drunk by

I

Bite valve from Camelbak

4

Figure 16: Overview of the new dosing system

A direct dosing system is used instead of the separate container on the side of the backpack.
Figure 16 describes the dosing system. The CamelBak backpack contains a drinking reservoir
with a drinking tube. The tube from the reservoir is connected to a peristaltic pump that pumps
juice into the drinking tube with a bite valve on the end of it. The user can then drink the liquid

by biting on the bite valve.

Side 31 av 101



The mobile application in the final design has been removed, as it was no longer needed with
the mobile hotspot. This also simplified the entire process, as no mobile application needed to

be developed. The Raspberry Pi can instead handle all communication with Nightscout.

Side 32 av 101



6 Implementation

Figure 17: The implemented system. Visible are the backpack, pump housing, and drinking tube.

The final implementation uses a modified CamelBak backpack to encase the entire system, as
shown in Figure 17. The backpack contains a CamelBak Crux Reservoir, modified to integrate
a peristaltic pump between the reservoir and the drinking tube. The system is controlled by
various scripts written in C and Python running on a Raspberry Pi, which is housed in a 3D-
printed enclosure. The Raspberry Pi also controls the dosing system and retrieves data directly
from Nightscout through a Wi-Fi hotspot. In addition, the CamelBak also contains several
necessary components, such as a motor controller, pressure sensors, and a piezo speaker. The
entire system is powered by a 20000mAh USB power bank, allowing simple recharging with

any USB-C charger.

The system is highly autonomous, minimizing user interaction other than switching the device
on, nor does it require a mobile device to operate. A single button on the outside of the backpack

allows the user to interact with the system when needed for specific actions.

For data gathering, a server running an instance of Nightscout is deployed to collect BG data
from the user. The user may use any CGM that can send data in real-time to Nightscout. A

Freestyle Libre 3 CGM was used during testing, allowing a new reading to be sent every minute.

Side 33 av 101



The server also runs a script to fetch data from LibreLinkUp?®, Libre’s cloud patient monitoring

system.

6.1 M-CDS Backpack

Figure 18: Some of the various parts inside the M-CDS Backpack.

Figure 18 shows some of the different parts used for the M-CDS backpack, and Table 3 provides

a complete overview of the system parts.

Table 3: Overview of the parts included in the M-CDS backpack

Part

Usage

Camelbak Arete 18 w/ 1.5L Crux Reservoir

Contains the entire system, including the
juice that the user drinks

Raspberry Pi 4B

Controls the various hardware components,
dosing system and communicates with
Nightscout

Adafruit DC & Stepper Motor Bonnet

Controls the peristaltic pump motor.

Adafruit MPRLS Ported Pressure Sensor

Reads the pressure in the drinking tube

MPL3115A2 12C Barometric
Pressure/Altitude Sensor

Reads the ambient pressure

5 https://github.com/timoschlueter/nightscout-librelink-up
Side 34 av 101



Adafruit Perma-Proto Board

PCB where various hardware components
are connected

6V Peristaltic Pump

Non-invasive pump, pumps liquid from the
reservoir into the drinking tube

20000mAh Powerbank

Powers the entire system

Switches and buttons

Powers on/off the system, button allows user
to give input when required by the system

Tubing connectors and silicone tubes

Used for connecting tubes of different sizes
together, transfers the liquid from the
reservoir to the drinking tube

3D printed parts

Solved problems that were fixable with
custom parts

6.1.1 CamelBak

Figure 19: CamelBak Arete 18 backpack, modified

The CamelBak Arete 18 is an 18L outdoor backpack by CamelBak that contains a 1.5L Crux

drinking reservoir, as seen in Figure 19. The backpack has a dedicated pocket for the reservoir,

two pockets on the sides, and plenty of space inside. Modifying this existing system saved time

in demonstrating that the system is viable rather than focusing on creating the perfect backpack.

The drinking reservoir that comes with the CamelBak can be seen in Figure 20 below.

Side 35 av 101



Figure 20: The drinking reservoir, with drinking tube and bite valve.

The backpack was modified to allow cables to pass through the sides of the backpack to connect
the required button, switch, and charging port. The pump housing was also attached to the left
shoulder of the backpack by drilling small holes in the shoulder arm and securing it with
machine screws with nuts and washers, as seen in Figure 21.

Figure 21: Peristaltic pump housing attached to CamelBak

The drinking reservoir needed to be modified, as the required peristaltic pump had to be
connected between the reservoir and the drinking tube. The entire tube was cut, and the section
by the reservoir was shortened to ensure as quick of a pathway for the liquid as possible. The
drinking tube was then reattached after the peristaltic pump by using tubing adapters.

Side 36 av 101



Figure 22: Completed modification of the drinking tube.

In Figure 22, we can see the finished modification of the drinking tube. The blue tube is part of
the original drinking tube, and behind the black and red heat shrink are the metal tube adapter
and narrower silicon tubing. The tube could have been much shorter, but by using a longer
piece of tube the user can “suck out” the liquid from the tube, giving a better drinking
experience. The end of the drinking tube has a bite valve attached. The user must bite on this

mouthpiece to allow the juice to exit the tube and to be able to drink the juice.

Figure 23: Pushbutton, power switch and USB-C charging port mounted to the backpack.

On the right side of the backpack is a momentary pushbutton, power switch, and a USB-C

charging port, as seen in Figure 23. The push button is the only manual user input to the entire

system. Based on the current action the system is doing, the button may either start the system,

turn off the system, cancel a calibration, or cancel an ongoing dose. The button is mounted with
Side 37 av 101



a nut behind the backpack's fabric, giving a clean look. The USB-C charging port is mounted
in the same way. The port serves as a method of charging the power bank inside the backpack
without the need to remove it. The power switch switches off power from the power bank to

the Raspberry Pi and motor controller and is the hard reboot switch for the entire system.

6.1.2 3D Printed Parts

Figure 24: Printing a part on the PRUSA 13 MK3 3D Printer.

During the implementation stage, it became apparent that additional parts were needed. Some
of the parts required were very specific, needed to be customized, only orderable in high
quantities, or were not available in the IF1 Workshop. However, a PRUSA 13 MK3 3D Printer
was available for use in the IFI Workshop, visible in Figure 24. The parts printed for this system

are all available from Thingiverse.®

Although print times can be long, 3D printing proved to be a quick, cheap, and easy way to
create custom parts that were not commercially available. Three parts in the M-CDS system are
3D printed: the Raspberry Pi Case, an M16x1 nut, and standoffs for the Raspberry Pi HATSs.

6 https://www.thingiverse.com/
Side 38 av 101



6.1.2.1 RPi Case
Raspberry Pi cases are available on the internet in various designs and sizes. The main issue

with these cases is the limitation of customization and modification. The system uses two RPi
HATS — the Perma-proto board and the motor controller board — which means the case needs

to be tall enough and not have internal bracings in the way of the HATS.

Figure 25: Raspberry Pi 4 Case for RGB Cooling Hat” by timmygu, licensed under CC BY 4.0, alongside modified
version used in this system.

A case design was found on Thingiverse’ and printed to solve this issue, as seen in Figure 25.
This design was meant to be used for a specific HAT, the RGB Cooling HAT, and therefore

requires some modification to fit our HATs and Raspberry Pi in the case.

Figure 26: Modification of the fan vent.

7 https://www.thingiverse.com/thing:4598338
Side 39 av 101



The fan vent on the top was cut out to allow a silicon tube to pass through to the MRPLS
pressure sensor and make space for the motor controller's terminal blocks, as seen in Figure 26.
The tube may have fit without cutting out the vent, but this gave the tube more leeway and

made removing the case easier.

Figure 27: Modification of the side vent holes.

The side of the case had vent holes to allow air circulation inside. These holes were expanded
to allow cabling for the motor controller and power pass-through, as visible in Figure 27.

Supports by the USB ports were also cut to pass cables for the piezo buzzer and button.

The inside of the case had various supports to ensure a tight fit for the RGB cooling HAT it
was designed for. However, with the two HATSs we installed, the case did not fit properly. Many
of these internal supports were trimmed away to ensure that the case fit, but this did not weaken

the case's structural integrity.

Figure 28: Holding the case together with tape and screws.

Side 40 av 101



Two machine screws were used to secure the Raspberry Pi to the bottom part of the case, but
due to the HATS’ design and the lack of sufficient parts, the case had to be taped together to
ensure it would not come apart, see Figure 28. The case is designed so that it provides a tight
fit around the perimeter but does not ensure that the case locks into place. Using tape also
allowed for easier debugging in case the internals needed access.

6.1.2.2 M16x1 Nut

-
-
-
=
-
— )
-
-
=

Figure 29: M16x1 GX16 Aviation Connector by jokuma®, licensed under CC BY-NC-SA 4.0; the nut attaching the
pushbutton to the backpack.

Although the system is autonomous, a single button outside the CamelBak allows user input in
some specific situations (as explained in section 6.1.4.7). This pushbutton was found in the IFI
Workshop but was missing the nut to attach it in place securely. The size of the threads on
button were measured to be M16x1, an uncommon thread pitch for such a large thread diameter.
Buying a replacement M16x1 nut would be difficult and not worth shipping such a small item.
By 3D printing a new nut, seen in Figure 29, which was done relatively quickly, the button

could be used without ordering a new metal nut.

8 https://www.thingiverse.com/thing:3399570
Side 41 av 101



6.1.2.3 Pi HAT standoffs

Figure 30: Raspberry Pi Hat Standoff by makenai®, licensed under CC BY 4.0; printed standoffs on HATSs.

Each HAT mounted to the Raspberry Pi is supported by the header pins they are connected to.
On the other side, however, the HATSs float in midair. Although the header pins are strong
enough to hold them, they can flex slightly if pressure is exerted. To avoid the HATs from
flexing and to give them a tighter fit, standoffs that could be snapped into the mounting holes
were printed, as seen in Figure 30. This gave a simple way of ensuring that the HATs could not
flex downwards. Flexing in the opposite direction was not an issue, as the 3D-printed RPi

enclosure held the HATSs in place.

6.1.3 Raspberry Pi

Figure 31: Raspberry Pi 4B with sensors, HATs and various cabling.

9 https://www.thingiverse.com/thing:1149645
Side 42 av 101



A Raspberry Pi 4B single-board computer is the heart of the M-CDS backpack. The pushbutton,
piezo speaker, pressure sensors, and motor controller are directly connected to the RPi using
the Perma-Proto board or directly via the RPi’s header pins, as seen in Figure 31. The sensors
and motor controller communicate with the RPi via the 12C protocol. Note that the Raspberry
Pi itself is unmodified and can be replaced in case of failure; each HAT is removable and can

be replaced as well.

The Raspberry Pi runs Raspberry Pi OS, a Debian Linux-based distro, and has three scripts that

are necessary for the operation of the M-CDS system:

- startup.py: a script that runs on boot for initializing the Raspberry Pi,
- watchdog.c: a program that continuously runs the main script, restarting it if necessary,

- mcds.py: the main software script that fetches BG data and runs the main algorithm.
The main software script is described in sections 6.1.5 and 6.1.6.

6.1.3.1 Start-up script

After the Raspberry Pi has booted, a script (startup.py) is immediately started via the bash script
“rc.local” executed at the end of the multi-user mode after network services have started and
the command line is available to the user. The bash script also logs all output to a log file for
debugging and historical purposes.

The start-up script initializes the network and waits for the user to be ready to use the system.
Firstly, the script Kills any existing instances of wpa_supplicant — a Unix program used for
connecting to WPA-encrypted Wi-Fi networks — to avoid conflicting connections. The script
then checks for a valid ethernet connection by pinging a known IP address with high uptime
(8.8.8.8, Google’s public DNS server). This check allows a quicker boot time, as an ethernet
connection was used during debugging and the programming phase to quickly make changes
to the system. If the ping fails after three attempts, the system attempts to connect to a Wi-Fi
network from a list of known networks and passwords. The network it connects to is a mobile
hotspot started by the user’s mobile phone. It attempts each Wi-Fi network four times before

failing.

Side 43 av 101



If no network connection is made, the Raspberry Pi will buzz the piezo buzzer with a failure
tone, similar to the sound of an ambulance. This indicates to the user that a fatal error has

occurred and that they must reboot the system.

If the network connection is successful, the system will make a continuous beeping sound
through the piezo buzzer, indicating that the system is ready to start. The user may then press
the pushbutton on the outside of the backpack to start the watchdog, which will play a short

melody and start the main system.

6.1.3.2 Watchdog

After the user has pressed the pushbutton, the watchdog (watchdog.c) starts execution. This
program continuously runs in the background and does not end until the Raspberry Pi is shut
down. It is called a watchdog based on the nature of a watchdog timer, a hardware device that
can automatically detect errors in software and reset the system if they occur. [46] The
watchdog starts the main M-CDS software script and waits for it to exit. When the M-CDS
script exits due to a fatal error or user intervention, the watchdog starts listening for a
pushbutton press. When the pushbutton is then pressed, the watchdog starts the M-CDS script
again. The watchdog uses the WiringPi C library to access the GPIO pins.

This allows the Python script to fail gracefully and restart in the case of an error and ensures
that the system does not need user interaction through a terminal or graphical interface to start
the program again. Since the system is designed with autonomy in mind, this is an important
detail.

6.1.4 Raspberry Pi Hardware and parts

Several hardware devices and parts must be connected to the Raspberry Pi for the M-CDS
system to function. A graphical overview of the hardware configuration is depicted in Figure
32.

Side 44 av 101



Raspberry Pi

e Piezo buzzer Peristaltic pump Power switch
'\ Perma-Proto board .
s. - T
USB-C charging port
Pressure

Powerbank
Figure 32: An overview of the hardware and how various parts are connected.

sensor

The entire system is powered by a USB power bank, which can be recharged through an
external USB-C port on the backpack's exterior. A power switch, also positioned outside the
backpack, controls the power supply for the motor controller and the Raspberry Pi. The
Raspberry Pi is interfaced with all other necessary hardware components through the two
HATS: the motor controller and the Perma-Proto board. The Perma-Proto board serves as a hub
by connecting various devices; the piezo buzzer, pushbutton, pressure sensor, and altimeter are
connected. Furthermore, the motor controller controls the peristaltic pump, which pumps the

juice from the reservoir to the drinking tube.

6.1.4.1 Motor Controller

" 0 0#00000000000000000 @.,
00600000000000000000

RXD 817 #27 #23 #25 nis0O CEQ #5 #12 #16 #20

00000000000»00OOOOOOOOOOOO
JSOAIITXD  #4 ‘R18 w2z 8240 MOSI CLK CE1

#13 .19 #21
[tbagpynyé JHHHH“H]’@ ‘ ‘

adalrun'
DC &
Stepper
Motor
lonnet

M4 5~12u5——-

Moter f

Figure 33: The Adafruit DC & Stepper Motor Bonnet

Side 45 av 101



This project uses the Adafruit DC & Stepper Motor Bonnet'® to power the motor for the
peristaltic pump, as shown in Figure 33 above. This motor controller can run up to four motors
simultaneously and uses a dedicated power supply to supply power to the motors. It
communicates with the RPi through 12C and has its own PWM driver chip to control motor
direction and speed, freeing up the use of the RPi’s already few PWM pins. The motor
controller has existing libraries for use in Python, allowing for quick and simple programming.
Running the motor forward pumps juice from the reservoir to the drinking tube, and running it

in reverse pumps excess juice back into the reservoir after a session to clean the system.

This HAT is relatively overpowered for the use case of this project. Although only a single
motor channel is being used, connecting multiple motors in case of a different design, such as
the one mentioned in section 8.7.1, is possible. The controller also supports motors with
voltages up to 12V, but to keep the project's simplicity and run everything from a 5V USB
power bank, a 5V peristaltic pump was used.

The altimeter used in this project also communicates with the RPi through I1.C and has a fixed
address of 0x60 that cannot be modified simply. The motor controller also has a starting address
of 0x60 which crashed with the altimeter. However, the motor controller has PCB pads that can
be soldered together to change the address of the I1.C device. The device address was therefore
changed to channel 0x61, as visible in Figure 34.

Figure 34: The 1.C addressing PCB pads on the rear side of the motor controller.

10 https:/fwww.adafruit.com/product/4280
Side 46 av 101



6.1.4.2 MRPLS pressure sensor

MPRLS

pressure

Figure 35: Adafruit MPRLS Ported Pressure Sensor!

The Adafruit MRPLS Ported Pressure Sensor*! is a barometer pressure sensor with a metal port
on top of the sensor chip. This allows attaching a tube and measuring pressure in a closed

environment, as seen in Figure 35.

The drinking tube has a bite valve on the end of it to stop the juice from overflowing or pouring
out unexpectedly. However, during calibration and dosing, pressure will build up inside the
system if the user does not bite on the valve, which could lead to tubes loosening and juice
spraying everywhere. The bite valve can only hold a certain amount of pressure and could
slightly open up and spray juice with high pressure. These scenarios could lead to the

electronics of the system being damaged or the user being covered in juice.

1 https:/fwww.adafruit.com/product/3965
Side 47 av 101



Figure 36: The pump tubing assembly with juice flow directions

The MRPLS pressure sensor is attached to the tubing section after the peristaltic pump to
circumvent this issue. In Figure 36, we can see the internal structure of the tubing for the pump
enclosure. The red line indicates the juice flowing into the pump, and the orange line is the juice
flowing out of the pump and into the drinking tube. The green line is connected to the tube after
the pump and leads directly to the MRPLS pressure sensor. This allows us to measure the

pressure in the drinking tube.

If the user is not drinking from the tube while the pump is running, the pressure will increase.
By attaching the sensor to this part of the tube, we can detect this change in pressure and stop

the pump. When the user bites on the bite valve and begins drinking again, the pressure will

Side 48 av 101



decrease and will again be detected by the sensor. By measuring the sensor readings during
specific events, we can set a minimum and maximum reading for the sensor to ensure that the
pressure never exceeds the set limit. A detailed diagram of the system tubing is described in
section 6.1.4.8.

The sensor communicates with the Raspberry Pi through 1.C on channel 0x13.

6.1.4.3 Barometer/altitude sensor

Figure 37: MPL3115A2 12C Barometric Pressure/Altitude Sensor

The MPL3115A2 12C barometric pressure sensor*? is a chip that measures barometric pressure,
altitude, and temperature, although only barometric pressure is used in this project. The sensor
does the same task as the previous pressure sensor, with the key difference being that this sensor

does not have a port, as visible in Figure 37.

The MRPLS sensor reads pressure relative to the current atmospheric pressure. Since
atmospheric changes as the sensor’s height above sea level changes, for example, if the user
takes the backpack on a mountain trip, the sensor's reading would be different. The standard
pressure at sea level is 1013.25 hPa, but at a height of 500m, the sensor would read 995 hPa.

The atmospheric pressure also changes based on the temperature and humidity.

12 https:/fwww.adafruit.com/product/1893
Side 49 av 101



We use this second pressure sensor to calibrate the MRPLS sensor to counteract this change.
By doing so, we will always be at an approximate zero value when the pressure inside the tube
is the same as the pressure in the atmosphere at the current location. This gives us a relative

reading of the pressure inside the tube compared to the atmospheric pressure.

The sensor communicates with the Raspberry Pi through 12C on fixed channel 0x60. As this

crashed with the motor controller, the motor controller’s channel was changed to 0x61.

6.1.4.4 Adafruit Perma-Proto Board

CHC)

R
(CHC)

@
*®
®®
®®

D o0

2T
2¢ ‘

(CRCRCRCHC)
(CECECRCNC

INT2- SCL._

—
m—_

. ,-.siji-:- .

Figure 38: Adafruit Perma-Proto HAT for Pi'3, before and after adding components

When connecting the sensors and various other parts, it was essential to avoid soldering or
making modifications directly to the Raspberry Pi. If the Raspberry Pi were to fail, replacing it
would require unsoldering all connections and soldering them to the new Raspberry Pi as well

as any other modifications.

Previously, the motor controller was soldered directly to the components, which you can see
some remnants of in the top left corner in Figure 33 on page 45. However, this was difficult to
do and destructive to the integrity of the motor controller. Cables were soldered directly to the

pads rather than in through-hole slots.

By using the Adafruit Perma-Proto board, the pressure sensors, buzzer, and pushbutton could

be connected to the RPi in a non-destructive, secure, and permanent manner, as seen in the right

13 https:/fwww.adafruit.com/product/2310
Side 50 av 101



side of Figure 38. The Perma-Proto is a breadboard-like PCB that allows for “permanent
prototyping”. Almost all the Raspberry Pi’s GPIO pins are exposed to separate PCB pads, and

the bottom section of the board mimics a standard breadboard.

Figure 38 shows how the various components were connected to the Perma-Proto board. In the
top left corner, we can see the cables for the I.C communication protocol, on the pins marked
SCL and SDA, connected to each of the pressure sensors. Each sensor also retrieves ground
and 3.3V from the Perma-Proto board. On the top right side, we can see the cables for the push
button on GPIO pin #21 and the piezo buzzer on the PWM-compatible GPIO pin #109.

6.1.4.5 Peristaltic pump

Figure 39: The peristaltic pump*# in its enclosure

A pump of some kind is required to transfer the juice from the reservoir into the drinking tube.
The pump needed to be small enough to fit in the backpack and have a low voltage and power
consumption to avoid requiring a large battery. It also needed to avoid touching the liquid
directly, such as a centrifugal or gear pump, to prevent juice contamination. A peristaltic pump

meets all these criteria.

1 https:/fwww.adafruit.com/product/3910
Side 51 av 101



Figure 40: The pump with the plastic head removed. The three rollers are visible and are driven from the motor
through a rod that goes through the center of the rollers.

In Figure 40, the pump section behind the plastic covering can be seen. A peristaltic pump is a
positive displacement pump that moves liquid by rotating rollers across silicone tubing,
compressing the tube and forcing the liquid to move forward through the tube. The liquid is
untouched by the pump, keeping it away from contaminating the pump components [47]. Figure

41 shows a frame-by-frame animation of how fluid is passed through the peristaltic pump.

Figure 41: Peristaltic pump mechanism. As the roller turns, the liquid is forced through the tube. [48]

The motor controller drives the pump, allowing juice to be pumped forward or in reverse.
According to the official documentation, the pump is rated for 5V and 6V*°, but running the
motor at 5V gives a lower throughput. However, 5V is a simpler voltage to use, as it is common
in power banks and microcontrollers. Due to the lower throughput, the entire tubing for the

system is made as short as possible to decrease waiting time during the calibration phase.

15 https:/fwww.adafruit.com/product/3910
Side 52 av 101



6.1.4.6 Power bank

Figure 42: Generic 20000 mAh power bank

As a mobile system, multiple devices require power in one way or another, thus requiring a
battery. Initially, the project required a 12V motor, which was fine in a stationary device, but a
mobile device would need a specialized battery and charging circuit to be safe and practical.
When the 5V motor was chosen for the project, a power bank could be used instead, as seen in
Figure 42.

USB power banks have built-in charging, overload, and safety circuitry, alleviating the need
for a custom design. A 20000 mAh power bank was chosen for the project, which could last a
Raspberry Pi between 19 — 20 hours of intensive use,'® which is more than what the RPi in this
project will use on average. 2A of power can be drawn from the power bank, which is more
than enough to power the Raspberry Pi and a single peristaltic pump. The power bank is easy
to connect to the system using USB cables and can be recharged by the user with any USB-C

charger.

16 1010 mA when running “ab -n 100 -c 10", see https://www.pidramble.com/wiki/benchmarks/power-

consumption
Side 53 av 101



Figure 43: The powerbank and charging port mounted inside the backpack

The power bank is mounted securely inside the backpack with double-sided mounting tape and
zip-tied, as seen in Figure 43. A USB-C charging port is mounted on the outside of the backpack
and connected directly to the power bank's input. A cable from the USB port goes to the power
switch on the outside of the backpack and is then split to the motor controller and Raspberry
Pi.

Side 54 av 101



6.1.4.7 Various electronic parts

Figure 44: The pushbutton, power switch, and piezo buzzer.

The backpack has a couple of other parts required for operation, a power switch, a pushbutton,
and a piezo buzzer, as seen in Figure 44.

Figure 45: Modified power switch cable, connected to the RPi and motor controller.
The power switch is connected to a single USB port on the powerbank and to the RPi and the
motor controller, as each requires separate power inputs. The motor controller has a separate
power input for motors requiring a higher voltage than the Raspberry Pi can deliver. As seen in
Figure 45, the power switch was modified to connect to both the Raspberry Pi’s USB-C port

Side 55 av 101



and the motor controller’s terminal block. The cables were soldered together and then covered
in heat shrink to avoid shorting them.

Figure 46: The Molex connector going to the pushbutton and piezo speaker.

The pushbutton and piezo buzzer have short cables connected to them. To make debugging
easier, a Molex connector was used to uncomplicate disconnecting the cables, see Figure 46.
This allowed servicing the Perma-proto board and the other components attached to it much
easier, as seen in the right image of Figure 46.

Although the M-CDS backpack runs autonomously and requires little user feedback, the
pushbutton is used for a few cases requiring user input. The pushbutton attached to the outside
of the backpack is used for four different functions.

Firstly, after the system has booted up and connected to the internet, the piezo speaker will
continuously beep in short intervals to indicate that the system is ready. The user must then

press the button to start the system.

Secondly, during calibration, pressing the button will stop the calibration process. If the user
restarts the system after a dose or initial calibration, there is no need to calibrate the system
again. If the calibration took less time than expected, the user can press the button again to stop

the calibration.

Finally, after the calibration process, the button can be used to shut down the system gracefully
at any time. If the button is pressed during a dose, the system will cancel the dose and shut

down.

Side 56 av 101



The piezo buzzer is the only source of feedback to the user on what the system is currently

doing. Different sounds are associated with different events in the system. An overview of the

various events and sounds can be seen in Table 4.

Table 4: Overview of the different buzzer events and sounds

finished”

Event Sound Length

Boot finished, waiting for | Constant beep with short | Until user presses the
user intervals pushbutton

Event finished (button press | Uplifting “fanfare”, musical | 2 seconds

after  boot, calibration | notes expressing a positive

complete, dose complete) experience

System shutdown Opposite notes of “Event | 2 seconds

Calibration or dose ongoing

Short “beep” every second

Until event is finished

Pressure too high in system

Different “beep” sequence

than calibration/dose

Until user lowers pressure in
system, by biting or sucking

on the bite valve

Fatal error

“Fail” sound effect

3 seconds

Side 57 av 101




6.1.4.8 Silicone tube and tubing adapters

MPRLS
Pressure
Sensor
\
Juice Il . . .
. —7mm — 2.5mm 1D Peristaltic Pump 2.5mm — 7mm ID—=» Drinking tube w/bite valve
Reservoir | (T-split) L
..'/.

Figure 47: A diagram of the tubing connections

The most essential function of the M-CDS backpack is pumping juice safely from a reservoir
into the drinking tube. A couple of challenges had to be solved to use the system properly.

Silicone tubing is used throughout the system as the peristaltic pump uses it, and the food-grade
qualities of silicone tubing are required for this project. Silicone tubing is widely available in
various sizes, so that was not an issue for this project. The tubing connection diagram can be
seen in Figure 47.

However, the different sizes in the silicone tubing posed another issue; how can tubes of
different sizes be connected? The CamelBak system uses tubes with a 7mm ID, whereas the
peristaltic pump and MPRLS sensor use tubes with a 2.5mm ID. Although some adapters are
available for purchase online, they are usually not food grade or must be ordered from online
marketplaces such as eBay or AliExpress from individual sellers rather than a reputable source.
These websites also typically have long shipping times, which would slow down the

development process.

Side 58 av 101



Figure 48: Metal hose adapters, modified adapter on the left.

Metal hose adapters, see Figure 48, were bought to extend the CamelBak tubes but were instead
used as makeshift adapters. The ID of the metal adapters was almost 4.5mm — the OD of the
peristaltic pump silicone tubes. The inside of the adapters was drilled out to fit the silicone
tubes, as seen in Figure 48, which allowed the tubing to fit inside perfectly. This was done at
the adaption from 7mm to 2.5mm ID and from 2.5mm to 7mm ID. As the system had to
withstand high pressure and be completely watertight, a heat shrink was wrapped around the
adapter and tubing to ensure no liquid would escape. The completed adapters wrapped in heat

shrink can be seen in Figure 49.

Figure 49: The heat-shrink wrapped adapters. Top: from reservoir to pump, bottom: from pump to drinking tube

Side 59 av 101



The pump assembly, as seen in section 6.1.4.2, leads to a 2.5mm ID T-split between the
drinking tube and the MRPLS pressure sensor. The pressure sensor is heat-shrink wrapped and

carefully tightened with a zip-tie to ensure the tube does not disconnect.

Figure 50: The MRPLS sensor with the tubing securely attached.

After the peristaltic pump, the only place where the pressure in the system can be relieved is at
the bite valve. If the sensor tubing were to detach, the liquid would follow the path of least
resistance and pour out over the entire hardware setup. Therefore, a watertight connection that

could withstand high pressure was very important.

6.1.5 M-CDS Software
The M-CDS software script is the heart of the entire system. The program is explained in the
following segments in the following sections: Initialization, BG data retrieval, and the dosing

system.

As the system runs headless without any graphical interface or user interaction, it is crucial that
the system only ends if a fatal error occurs. In addition to most exceptions being handled in

code, an error handler will catch the exception and exit gracefully in the case of unhandled

Side 60 av 101



exceptions. This ensures that all threads are ended and that the pump does not run indefinitely.

The program can then be restarted by pressing the pushbutton on the backpack.

6.1.5.1 Initialization
After the watchdog (see section 6.1.3.2) starts the main program, it initializes the database,

hardware, and various threads.

The local SQL.ite database is initialized if it does not exist. This database contains the BG data
from the current session and when doses were given to the user. Then, all necessary hardware
Is initialized, such as the GPIO pins for the button and buzzer, the motor controller, and two
pressure sensors. GP1O pins are accessed using the RPi.GPIO library in Python and the motor

controllers and pressure sensors have publicly available Python libraries.

The script runs a total of four threads for various tasks. Two of the threads are dedicated to
updating the readings from the pressure sensors. The ambient pressure sensor has a slow read
time of up to one second, which, if running on the main thread, would halt the execution of the
entire script. Running this update on a separate thread ensures the main thread is not blocked
often. The MPRLS pressure sensor is also updated on a separate thread, as this sensor needs to
be updated as quickly as possible. Another thread handles the buzzer melodies, as they are
blocking with sleep() function calls to create the melodies, and the last thread runs pump dosing
code. It starts at initialization, but only begins once a dosing event begins by using Python’s

threading.Event().

6.1.5.2 Calibration process

Once everything is initialized, the system then begins the calibration process. When the user
first uses the backpack, all the tubes will be clear of any juice and empty. If the user were to
receive a dose, the juice would have to travel throughout the entire system before the user could
drink anything. This process was measured to take approximately 30 seconds after three tests,

which means the user would have to wait 30 seconds before getting the initial dose of juice.

To circumvent this, we “calibrate” the system by pumping juice for at least 30 seconds. The
user must bite on the bite valve to release pressure within the system and allow juice to flow

freely through the drinking tube. If they stop biting, the pressure sensor will detect an increase

Side 61 av 101



in pressure, and the user will hear a warning sound from the piezo buzzer. When the user bites

the valve again, the pressure will decrease, and the calibration will continue.
After the calibration process, the system reads and retrieves the user’s BG data every minute.

6.1.5.3 BGL data retrieval

In the initial design in section 5.1Feil! Fant ikke referansekilden. mentions a mobile device
for retrieving data from Nightscout and forwarding it to the Raspberry Pi. Due to time
constraints and to simplify the development process, the mobile application was removed from
the implementation and instead replaced with a mobile hotspot that the Raspberry Pi could
connect to directly. This simplified how the Raspberry Pi managed data from Nightscout and

was significantly faster to implement.

The M-CDS script fetches data from Nightscout every minute. The Freestyle Libre 3 CGM
sends data every minute, and most other CGMs send data every five minutes, allowing us to
get the data as soon as possible from the user. [45] When a new, unique data point is retrieved
from Nightscout, it is stored in the local SQL.ite database. The system then checks if a dose is
currently running, in which case we do not need to check for a hypoglycaemic event as we are

already giving the user a treatment. If we are not dosing, we check for a hypoglycaemic event.

The system’s standard thresholds are 106 mg/dl for a low BGL and 90 mg/dl for a dangerously
low BGL. If the user’s BGL is below the low threshold and the Nightscout trend line shows a
decline or lower, we give a dose to the user. If the user’s BGL is below the dangerously low
threshold and the Nightscout trend line is flat or lower, we also give a dose to the user. If their
BGL is low, but the Nightscout trend line displays an up arrow, we can assume that the user’s

BGL will increase shortly.

When the conditions are met for a dose, the database is updated to indicate that a dose was
given on this BG reading, and the dosing thread begins.
6.1.6 M-CDS Dosing system

6.1.6.1 Calculating dose length and amount
Multiple calculations and measurements had to be done on the system to determine how much

juice to dose.

Side 62 av 101



Figure 51: Measuring the tube inaccuracy.

Firstly, the drinking tube is long enough to contain a significant amount of juice. Since the user
can suck the liquid out of the drinking tube, even when the pump is not operating, it is important
to calculate the inaccuracy of each dose. The liquid measured in the tube was approximately

12.5 ml, as seen in Figure 51.

The throughput of the pump also had to be measured to be able to calculate how much liquid
the user would be able to drink per second. After three tests, the average throughput per minute
was approximately 41 ml/min =~ 0.683 ml/s. This is much lower than the 200 ml/min figure the
manufacturer gave,!” but it is not a problem for our system. It is easier for the user to sip the

liquid while in physical activity rather than drinking continuously.

17 https:/fwww.adafruit.com/product/3910
Side 63 av 101



Figure 52: The black currant juice nutritional information

The juice used for the system was black currant juice. This specific brand of black currant juice
(Coop Solbarsirup) contained the most carbohydrates per 1 dl of mixed juice; 13 grams of
carbohydrates, see Figure 52. This meant the user did not need to drink as much juice as other
brands. Since the throughput of the pump is relatively low, any time saved per dose is important.
It was also important to mix the juice at the recommended ratio to keep the flavor consistent,

ensuring that the user would enjoy drinking the juice rather than a highly concentrated mix.

The M-CDS software assumes a dose of 15 grams of carbohydrates for the user. This means
that we need i—i’ ~ 1.153 dl of juice for 15g of carbohydrates. With the error of 12.5 ml —

equivalent to 1.625g of carbohydrates — each dose can be calculated to be approximately
15.8125g + 0.8125g. Figure 53 shows the calculation for the total dose length.

115.3g

~ 2.81 in ~ 2 min 48. = 168.
0.683 ml/s * 60 8135 min min 48.8 seconds 68.8 seconds

Figure 53: Calculating dose length

Side 64 av 101



6.1.6.2 Giving user adose

Warn user to

— D let
take dose (buzzer) Dose complete 0se compiete
No
Have we given a Warn user to
& —Yes—» Wait 15 minutes —BGL falling?-»
dose? take dose (buzzer)

T BGL rising?

Hypoglyaemic event incoming

J Hypoglycaemia
avoided!

Raspberry Pi (RPI)
{controls the dosing system and
interprets data from Nightscout)

Figure 54: Flowchart showing how the dosing process works.

When a dose is required due to oncoming hypoglycaemia, a dose is given based on the 15/15
method, which is the same algorithm House of Carbs uses: intake 15 grams of carbohydrates,
wait 15 minutes, and repeat if necessary. [7] A detailed flowchart showing the dosing process

is seen in Figure 54.

The dosing system works very similarly to the calibration phase. The peristaltic pump will
continuously pump for the required time (168.8 seconds) while the buzzer beeps every second
to indicate that a dose is ongoing. If the user stops drinking, pressure will build up in the system,
and the pump will stop. The buzzer will make a new sound, indicating that the pressure must
be released before continuing. In contrast to the calibration process, the user must suck on the
tube and create “negative” pressure in the system to continue the dose. This ensures that the

user is still drinking rather than just releasing the pressure in the system.

When the dose is finished, the pump will stop, and the piezo buzzer will play a “finished”
melody. The dosing code now waits 15 minutes, and updates from Nightscout are saved to the
database, but no action is taken. If the user’s BGL is still not above the threshold and climbing
after 15 minutes, a new dose is given to the user. If the BGL is above the threshold and climbing,

the hypoglycaemic event has been avoided.
Side 65 av 101



6.2 Backend server
Any user with their own Nightscout instance may use their own server with the M-CDS
backpack, but during user testing, the student’s physical server running the Nightscout instance

and the LibreLinkUp uploader script inside a Docker Compose instance was used.

The LibreLinkUp uploader script is required to get data from the Freestyle Libre sensors into
Nightscout, as Nightscout does not have native plugin support for the Abbott CGMs.
LibreLinkUp is a program meant for diabetes patient’s close contacts, such as family members
or parents, allowing them to see the patient’s BGL on their phone in real-time. Although this
program has a closed API, the developer behind the uploader script has reverse-engineered the
LibreLinkUp API, allowing us to parse the data from LibreLinkUp, and then upload it directly
to a Nightscout Server. The patient must first invite our account as a “follower” of their BG

data, allowing us to access it through LibreLinkUp [49].

If multiple M-CDS backpacks needed to be deployed simultaneously, the same server could be
used by running multiple Docker instances and proxying them through a http server with
proxying capabilities, such as ngnix or Apache2. The Docker Compose file is set up to allow
this quick expansion of the system. A single server can then be used for multiple instances of

Nightscout, as it does not use many resources.

Side 66 av 101



7 Evaluation and Results

7.1 Literature Review

The literature search ended with 11 relevant papers using Al, ML, deep learning or neural
networks to predict future BGLs in T1D patients. Below is a table showing all the studies and
their prediction algorithm's accuracy. The system's accuracy is measured using the root mean
square error (RMSE) and is sorted by prediction horizons (PH) of 15 min, 30 min and 60 min.
Some studies contained other PHs, but these three were the most prevalent. All RMSE

measurements are in mmol/L. Papers that did not test their algorithms in this way were not

included.
Table 5: Overview of the test results from the chosen papers.
Paper | Year | Method Input 15min | 30 min | 60 min
data PH PH PH

[50] 2019 | Clu-RNN (recurrent neural BG N/A 0.322 0.746
network)

[51] 2019 | RNN BG N/A 0.647 N/A

[52] 2020 | Autoregression with Exogenous BG, IOB, N/A 1.081 N/A
inputs (ARX) neural network COB, Heart
(NN) rate

[53] 2021 | 13-GWO-KELM, ensemble BG 0.353 0.918 N/A
learning model

[54] 2021 | Artificial NN regression BG 0.505 N/A N/A

[55] 2021 | Long short-term memory (LSTM) | BG N/A 0.358 0.957
based deep RNN

[56] 2021 | Fine-tuned convolutional neural BG N/A 0.988 1.560
network (CNN)

[57] 2021 | TCN based predictive model BG N/A 1.289 N/A

[58] 2021 | Edge-LSTM model, deep learning | BG N/A 1.060 1.777

[59] 2022 | Random forest (RF) regression BG 0.863 1.532 N/A
model

[60] 2023 | Fast-adaptive and Confident BG N/A 1.035 1.724
Neural Network (FCNN)

Most of these papers use the OhioT1DM dataset to test their algorithms, primarily using only
historical CGM data as training data. The 30 min PH RMSE ranges from 0.332 mmol/L to
1.289 mmol/L. Some papers had open-source code available, with most programmed in Python

using TensorFlow.

Side 67 av 101



7.2 Diabetes Association Research Forum
Unfortunately, the panel gave no new feedback or insights on the system. Some in the panel
instead mentioned that they would most likely not use the system as they already plan their

physical activity well enough.

However, this negative feedback was in fact helpful in designing the system. An important part
of the backpack was to make it as simple and autonomous as possible. The less the patient had
to do, the more likely they would use the system. This was considered during the design and

implementation process, resulting in a system requiring minimal user interaction.

7.3 Interview
As mentioned in section 3.4, the mother and her son (here referred to as subjects A and B) were

interviewed based on the interview guide in that section.
Question #1: How do you manage your diabetes on a daily basis? Equipment, etc.

Subjects A and B use the Dexcom G6 CGM and the Omnipod Dash 780G insulin pump. They
use the Loop iPhone application with the iAPS algorithm to run their insulin pump. Subject A
uses their Fitbit to see their current basal insulin rate and BGL, but manually inputs their carbs
and meals through Loop. Subject B uses an Apple Watch to see the same statistics but has a
simple interface to choose bolus insulin doses for specific meals quickly. This makes it quick

and easy for subject B to set the pump to give an insulin dose.
Both subjects have glucose meters to take finger tests when necessary.
Question #2: Do you manage your diabetes in the same way during physical activity?

They both usually change their pump to give a lower basal insulin rate and smaller bolus insulin

if they were to be physically active after eating a meal.

Question #3: Compared to normal activity, how does your blood sugar fluctuate during

physical activity?

They usually do not experience hyperglycaemia while exercising but have experienced
hypoglycaemia due to exercise or miscalculating how much insulin they needed before physical
acti