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A B S T R A C T   

The potential application of Lithium Niobate (LiNbO3) crystal is immense, specifically in the domain of meta- 
surfaces and nano-resonators. However, the practical application of LiNbO3 is impeded due to unreliable 
experimental techniques and inaccurate inversion algorithms for material characterization. In the current 
research, material characterization of anisotropic crystal is proposed by exploring the wavefield evolution in the 
spatial and temporal domains. The presented framework has three major components: a physics-based mathe-
matical model (Christoffel equation), a novel experimental technique, and an inversion algorithm based on 
Bayesian filtering. An experimental technique based on Coulomb coupling is devised to visualize the propagation 
of ultrasonic waves in an anisotropic crystal. The crystal is characterized by measuring the directional-dependent 
acoustic wave velocity from the spatial–temporal information of the wave propagation. The anisotropic 
constitutive properties of the crystal are estimated by exploring the wave velocity in the Bayesian filtering al-
gorithm. The proposed algorithm is based on the probabilistic framework that integrates the experimental 
measurement in a physics-based mathematical model for optimal state prediction of stiffness tensor through the 
Bayesian filtering algorithm. In particular, we utilize the unscented Kalman filter (UKF) in conjunction with the 
plane-wave Eigen solution to estimate the constitutive parameters. In the presence of measurement uncertainties, 
the performance of the optimal prediction algorithm is illustrated by comparing the estimated parameter with 
the corresponding theoretical value. The comparison demonstrates that the proposed inversion algorithm is 
efficient and robust and performs satisfactorily even with significant measurement uncertainties.   

1. Introduction 

Lithium Niobate (LiNbO3) is a piezoelectric crystal that is extensively 
used in optical and acoustic applications due to its operational broad-
band frequency and high piezoelectric coupling coefficient [1,2]. 
Recently LiNbO3 has shown promising capabilities for its application in 
nanoscale integrated optics [3], high-Q micro acoustic resonators [4,5], 
optoacoustic circuits [6], fast electro-acoustic- optical modulators [7,8], 
and high-frequency waveguides [9,10]. These excellent features are 
attributed to higher second-order optical-acoustic nonlinearity with low 
losses in the broadband spectrum [11,12]. Despite the fact that LiNbO3 
has the inherent potential to control and modulate non-linear optical 
and acoustic generation, it is still in the nascent stage for practical 
application in domains of metasurfaces, nano-resonators and acoustic 
phononic crystals. One of the reasons attributed to the limited use of 

LiNbO3 in the area of nanophotonic application is the lack of reliable 
experimental investigation for material characterization at the micro-
scale. Moreover, the estimation of the constitutive stiffness tensor of 
LiNbO3 is unreliable due to the poor performance of the inversion al-
gorithm in the presence of experimental inaccuracies and uncertainties. 

In the last several decades, the visualization of bulk acoustic and 
surface acoustic waves (SAWs) in the anisotropic piezoelectric crystal 
has been an active area of research [13–15]. The generation and 
detection of bulk waves and SAWs in piezoelectric crystals with the aid 
of an inter-digital transducer (IDT) have attracted widespread scientific 
interest for signal processing and filtering applications [16–18]. A wide 
range of experimental investigations on SAWs were implemented to 
detect and visualize the SAW field, such as stroboscopic X-ray topog-
raphy and photoemission electron microscopy [19,20], scanning 
acoustic force electron microscopy [21], immersed focusing transducers 
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[22], scanning electron microscopy [23], neutron scattering [24], and 
optical detection [25]. Notable contribution for generating elastic strain 
waves by thermal expansion of phonon using ultra-short (picosecond) 
light pulse technique has gained significant attention [25–28]. These 
strain pulses produce a coherent pulse with longitudinal polarisation 
bulk acoustic waves in the crystal [26,27]. Wolfe (2005) has devised a 
picosecond photoluminescence imaging technique with Laser excitation 
producing a localized source of thermal energy exciting quantized lat-
tice vibration [29]. The developed technique was capable of excitation 
and detection of bulk waves, SAWs and phonons focusing on low tem-
peratures in the crystals. A similar technique was developed by Suga-
wara, et al. (2002) for studying the longitudinal polarised bulk and 
skimming surface phonon focusing pattern in piezoelectric crystals [30]. 
The heat pulse technique relies on the complete understanding of the 
interaction of thermal gradient with phonon vibration at variable tem-
peratures. Moreover, certain materials that are sensitive to thermal 
excitation are not ideally suited for material characterization using the 
pulse heating technique. Grill, et al. (1996) have developed a point- 
focusing ultrasound lens for the excitation and detection of longitudi-
nal and transversal bulk waves in anisotropic crystals [31]. However, 
the focusing ultrasound lens suffers from reverberation due to multiple 
reflections within the lens and causing interference with the waves. This 
reverberation leads to a complicated wave pattern. Experimentally and 
theoretically, the phenomena of phonon focusing in anisotropic crystals 
have been illustrated in detail [29,32]. Every, et al. (2004) have theo-
retically studied the development of bulk waves and phonon caustics 
and its unfolding into characteristic differ patterns through the angular 
spectrum technique [33]. However, the real-time imaging of the bulk 
waves, SAWs and Lamb waves over distances larger than the charac-
teristic length are absent in the literature. Recently, our research group 
has developed a local electric field probe technique for visualizing the 
propagation of bulk waves and SAWs in anisotropic materials [34] by 
overcoming the limitation mentioned in the aforementioned techniques. 

Point contact excitation and detection scheme based on Coulomb 
coupling has been studied for visualization of ultrasonic waves in 
piezoelectric crystals [13]. The Coulomb coupling excites harmonic and 
subharmonic waves that demonstrate several interesting phenomena of 
acoustic waves propagation in isotropic/anisotropic crystal, such as in-
ternal diffraction, phonon focusing, mode conversion due to detecting 
interaction and the metamorphosis of the bulk wave to Lamb wave 
[14,15]. In the anisotropic piezoelectric crystal, the directional evolu-
tion of polarised acoustic wave is a function of elastic constitutive 
tensor. The generalized Christoffel equation provided directional phase 
velocities and polarisation of bulk wave in the direction normal “n” by 
computing the Eigen decomposition of constitutive tensor [32,35]. The 
inversion of the Christoffel equation to recover elastic constitutive 
tensor from measured direction wave velocities are sparse in literature 
[36]. 

Based on the experimental investigation, the challenge is to develop 
a robust inversion algorithm to extract the constitutive properties of 
fully anisotropic ceramics. Cui and di Scalea (2019) have used the 
Simulated Annealing (SA) optimization algorithm and Semi-Analytical 
Finite Element (SAFE) method to identify the elastic properties of 
composite materials using guided wave mode [37]. Balasubramaniam 
(1998) used a phase velocity dispersion curve, and Genetic Algorithm 
(GA) based optimization technique to identify the material properties 
[38]. Recently, Chen, et al. (2021) used a similar approach to estimate 
the elastic constants of the isotropic and transversely isotropic plates 
[39]. It is reported that the high-resolution dispersion curve of Lamb 
wave and constitutive properties of the material were estimated by 
employing the estimation of signal parameters via the rotation invariant 
technique (ESPRIT) followed by particle swarm optimization (PSO). 
These techniques employed various global optimization schemes as an 
inversion algorithm may not always guarantee the global optimum. 
Rautela, et al. (2020), Gopalakrishnan, et al. (2020) have utilized a 
learning-based technique to calculate the material properties [40,41]. 

They trained a supervised deep neural network (DNN) with ultrasonic- 
guided wave modes as input and estimated the elastic properties 
through a neural network model. However, a significant number of 
labelled datasets is required to train such a network to achieve sufficient 
accuracy. Further, the above-mentioned research works do not incor-
porate any uncertainties arising from experimental observations. The 
strategies based on the time of flight (TOF) measurements are often used 
to compute the velocity field of the propagated wave [42,43]. Further, in 
TOF-based strategies, the accuracy of TOF measurement is crucial as the 
erroneous measurement will lead to a considerable error in the esti-
mation of the elastic constants. Generally, the sources of error that arise 
are dispersion phenomena, mode change, interaction with boundaries 
and defects, noise, temperature variations, and systematic error, to 
mention a few [44]. 

On the contrary, the data assimilation techniques such as Kalman 
Filter (KF), Ensemble Kalman Filter (EnKF), Particle Filter (PF), and 
Hierarchical Bayesian Method (HBM) based on the probabilistic 
framework highlights the importance of statistical uncertainties in the 
estimation of system parameters [45–47]. The fact is, in a real-life sce-
nario, the measurements and hybrid simulations are significantly 
affected by noise and/or uncertainties. However, data assimilation 
techniques optimally estimate the parameters by fusing the physics- 
based model with the measurements available from the field experi-
ment. Data assimilation is conceivably-one of the most useful data- 
driven techniques that make optimal use of measurement and numeri-
cal models. 

Lithium Niobate is an anisotropic single crystal most preferable for 
photonic, electronic and sensor applications. It has been extensively 
employed in optical fibres, optical modulators, beam deflectors and thin 
film photonic devices. In these applications, various cuts of Lithium 
Niobate are used. Further, the accurate and complete characterisation of 
the material is essential prior to the usage of the substrate. The piezo-
electric substrates are characterised by elastic, piezoelectric, and 
dielectric material constants. However, the challenge is that crystal 
growth and chemical composition can largely change the acoustical 
physical constants compared to the initial stage of the research and 
development, which can change the velocity of the bulk and guided 
waves. The main thrust of this study is to develop a robust and reliable 
framework that can estimate the constitutive parameters of the crystal 
from the noisy/uncertain velocity profile. We would like to remark that 
the proposed framework is generic that can be extended to estimate the 
constitutive parameters of any other anisotropic material. 

A novel approach based on a non-linear Bayesian filter is proposed to 
estimate the constitutive tensor of anisotropic LiNbO3 crystal from 
wavefield imaging to address the aforementioned research gaps. Point 
contact excitation and detection scheme is explored for visualization of 
the acoustic wave in piezoelectric crystal. One must note that the pro-
posed procedure is modular, so different experimental techniques can 
also be used to create the measurement dataset. The Bayesian filter is a 
probabilistic framework; hence it provides a confidence interval of the 
estimated parameters, which gives an advantage in decision-making. 
Kalman filter is one of the Bayesian filtering techniques widely 
accepted in many engineering disciplines, such as climate prediction, 
spacecraft tracking, and localization of acoustic source emission 
[45,48–50]. In this paper, we used an unscented Kalman filter among 
the Bayesian filter available in the literature. The Kalman filtering 
framework requires a set of physics-based equations and measurement 
equation that depicts the real-world model. 

In the current context, if the constitutive parameter describes the 
state of a system, then the Christoffel equation can be considered the 
measurement equation that relates the state to the measurement. 
However, in practice, these physics-based mathematical equations alone 
do not prescribe the real-world model accurately. For a highly non- 
linear system that is prevalent in a real-world case, a small perturba-
tion of noise and/or uncertainties can lead to significant changes in the 
system’s behaviour, stability, and predictability. Kalman filtering is a 
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technique that attempts to mitigate the effect of noise and uncertainties 
present in the system. The main thrust of the current research is to 
develop a unified framework for the parameter estimation of the stiff-
ness tensor of the piezoelectric material. The idea is to utilize the mea-
surement information, such as the velocity of ultrasonic waves and 
integrate it with the numerical model prediction to better estimate the 
constitutive parameters. Prior to that, the framework of the algorithm is 
calibrated and verified with the FEM simulation data. The current work 
conceives the experimental technique using a local electric field probe in 
conjunction with the Bayesian filter for the estimation of the constitutive 
parameters of an anisotropic piezoelectric material. The schematic 
representation of the overview of the paper accentuating the constitu-
tive parameter estimation framework based on the unscented Kalman 
filter is shown in Fig. 1. 

2. Finite element method simulation 

The main aim of conducting numerical finite element method (FEM) 
analysis is to generate angular velocity maps for anisotropic solids, 
which further be used for calibration of the proposed UKF algorithm. 
The accuracy and efficacy of the UKF algorithm for parameter estima-
tion of Lithium Niobate crystal is benchmarked using FEM velocity 
profile results. The FEM is widely used to simulate ultrasonic wave 
propagation in an anisotropic substrate. The simulation parameters, 
such as material properties and excitation waveform, play a significant 
role in the visualization of transient wave propagation and the modal 
analysis of waves. 

In piezoelectric materials, acoustic wave propagation is governed by 
two systems of equations; (i) the mechanical equation of motion and (ii) 
Maxwell’s equation for electric behaviour. The constitutive character-
istics of piezoelectric materials couple these two systems of equations in 

the elastic range of the material. 

Tij = CijklSkl − ekijEk
Di = eiklSkl + εikEk

(1) 

where, Tij are the stress components, Cijkl the elastic constant, Skl the 
strain, Ek the electric field intensity, eikl the piezoelectric constant, and 
εik the permeability. In typical piezoelectric substrates, the acoustic 
wave propagates five times slower than the electromagnetic waves. 
Hence, one can assume the piezoelectric coupled field as quasistatic. 
Therefore, Maxwell’s equations can be reduced to 

∂Di

∂xi
= 0 (2) 

and 

Ei = −
∂φ
∂xi

(3) 

where, Di are the electric field displacement components and φ the 
electric field potential. The electric charge inside the piezoelectric sub-
strate is assumed to be zero because the substrates are supposed to be 
perfect insulators. The equation of motion can be expressed in the 
absence of internal body force as 

∂Tij

∂xj
− ρ ∂2ui

∂t2 = 0 (4) 

where, ρ is the density of the medium and ui are the displacement 
field components. Further, one can define the components of strain as 

Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

(5) 

Now, substituting the Eqs. (3) and (5) into Eq. (1) and hence Eqs. (2) 

Fig. 1. The general approach for constitutive parameter estimation, emphasizing the unscented Kalman filter framework.  
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and (4) results in a system of coupled wave equations for the electric 
potential and displacement in piezoelectric substrates, 

− ρ ∂2ui

∂t2 + Cijkl
∂2uk

∂xj∂xl
+ ekij

∂2φ
∂xk∂xj

= 0

eikl
∂2uk

∂xi∂xl
− εik

∂2φ
∂xi∂xk

= 0.

(6) 

Conveniently these equations are solved using finite element anal-
ysis. In this work, 3D FEM simulation of ultrasonic wave in the time 
domain is conducted in an anisotropic LiNbO3 crystal using commer-
cially available FEM solver COMSOL Multiphysics 5.6 version. The 
simulated geometry considered here is 8 mm × 8 mm X-cut LiNbO3 
substrate having a thickness of300 μm. Table 1 presents the mean 
theoretical value of the constitutive parameter of LiNbO3 crystal [32]. 
The piezoelectricity physics is added under the electromagnetic struc-
ture interaction menu available in the physics tab of the COMSOL 
Multiphysics program. This adds both Physics nodes and Multiphysics 
nodes. Under the physics nodes, the Solid Mechanics and Electrostatics 
effects are added, and the Piezoelectric effect is considered under the 
Multiphysics coupling node. In Solid Mechanics physics, the low 
reflecting boundary condition is applied at all edges along the bottom 
boundary to absorb the outgoing waves. Thus, no reflection occurs, and 
interference among the waves can be avoided. The electrostatic poten-
tial and ground boundary conditions are added at the top and bottom 
flat surfaces under the Electrostatics physics. The time-dependent 
equations are solved for the low-reflecting boundary given in Eq. (7). 

σ⋅n = − dim
(
ρ, cs, cp

) ∂u
∂t

(7) 

where, n is the unit normal vector at the boundary, cs and cp are the 
speeds of pressure and shear waves respectively, and dim is the me-
chanical impedance matrix. 

dim = ρ cp + cs

2
I (8) 

where, I is the identity matrix. 
The excitation rectangular pulse of 20 ns width at an input voltage of 

10 V is employed as an input excitation signal. The mesh is generated 
with tetrahedral elements. To avoid numerical instability, the integra-
tion time step (Δt) was selected asΔt = 1/

20fmax
, where fmax is the 

maximum frequency that controls the integration time step and element 
size. The maximum element size employed in the simulation is less 
thanλ/5, which corresponds to, five mesh elements per wavelength. 
Here, λ is the shortest wavelength of the ultrasonic wave. However, for 
the convergence study, the maximum mesh element size is kept 
asλ/factor, where the factor at denominator is varied from 1 to 5, cor-
responding to 1 to 5 mesh elements per wavelength. To investigate the 
convergence properties of the FEM model, two metrics are considered: 
(i) the absolute maximum displacement of the output displacement 
signal and (ii) The absolute difference of the energy content in the 
output signal. The maximum displacement along the perpendicular di-
rection of the substrate plane at an arbitrarily chosen point (0, 1, 1) is 
illustrated in Fig. 2(a). This can be observed that the result converges for 
a factor value of more than 2. Fig. 2(b) illustrates the absolute difference 
of the energy content in the output time-domain displacement signals 
for two consecutive mesh element sizes. The outputs are taken from 10 
arbitrarily chosen points on the FEM model for the various mesh element 
sizes. The blue bar in Fig. 2(b) depicts the μ ± σ where μ is average value 
and σ is the standard deviation of the ten samples considered in the 
study. For instance, E(λ/3) indicates the energy of the output signal 
corresponding to the mesh element size ofλ/3. Note that the energy 
difference approaches zero(|E(λ/5) − E(λ/4) |→0 ), that indicates the 
model converges with sufficient accuracy for the mesh element size 
ofλ/5. In the simulation, time-dependent analysis and time-dependent 
solver are used for the solution. The directional-dependent velocity 
profile is extracted and used for UKF code calibration, as discussed in 
Section 6.3. 

3. Experimental technique 

Our group has already presented an extensive overview of the exci-
tation and detection probes fabrication as well as the experimental setup 
[13,51–53]. Fig. 3 shows the schematic diagram of the local electric field 
probe for excitation and detection of ultrasonic waves in piezoelectric 
crystal. 

Two motor-driven translation stages were used in order to position 
the probe and for time-synchronized excitation of ultrasonic waves on 

Table 1 
Value of the constitutive parameters of the LiNbO3 crystal.  

Materials Stiffness (1010N/m2) Density, ρ (kg/m3) 

C11 C13 C14 C33 C44 

Lithium Niobate  20.3  7.5  0.9  24.5 6 4700  

Fig. 2. Illustration of the convergence of the finite element model for various mesh element sizes, (a) variation of absolute maximum displacement with respect to 
the different mesh element sizes, and (b) absolute difference of the energy content in the time domain output signal between two consecutive mesh element sizes. 
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the sample surface. The motors were controlled by a computer via a 
serial interface. For the fabrication of the Coulomb probe, two small 
pieces of optical fibre were glued together with epoxy to form an angle 
of approximately 60 degrees. A steel sphere of 1.57 mm diameter was 
attached and used for the excitation point source at the contact point. 
The other ends of the glass fibres were glued to an Aluminium holder 
and were mounted on the XY translation stages. The steel probe converts 
electromagnetic waves into mechanical waves through the piezoelectric 
coupling property of the anisotropic crystal. The scanner moved the 
probe across the sample surface while the transient signal was registered 
and averaged at every position. In the current experimental setup, the 
detector was stationary and positioned at the centre, whereas the exci-
tation probe emitted acoustic waves at each pixel point. 

The typical scan area was 20 mm × 20 mm, which was centred 
relative to the detector tip below the sample. The acoustic wave was 
excited using a short pulse of 35 ns duration in LiNbO3 (X-cut, 1 mm 
thick, both sides optically polished) crystal. During the time synchro-
nized scan, the received signal was acquired from the opposite side of 
the LiNbO3 crystal with a similar local electric field probe. Later on, the 
received signal was then amplified using a trans-impedance amplifier 

which converts the current into voltage according to an amplifying 
factor. The amplified signal is then acquired by an oscilloscope which 
averages and digitizes the signal. The digitized signal is then recorded 
using a personal computer. Two-dimensional spatiotemporal imaging of 
acoustic wave propagation was rendered using the time-resolved voltage 
data at each pixel point. 

4. Theory 

4.1. Christoffel equation 

The stiffness tensor C is an elementary characteristic of a material. It 
relates stresses and strains within the elastic limit by generalizing the 
three-dimensional Hooke’s law. 

Tij =
∑

mn
CijmnSmn (9) 

where, T is the stress tensor and S is the strain tensor. The general-
ized stiffness matrix C is a second-order tensor, and for non-polar ma-
terial, it is expressed by 6 × 6 matrix. 

Fig. 3. a) Schematic diagram of the signal generation and detection through local electrical field probe, and b) detailed view of local electric field probe setup.  
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C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41

C51

C61

C42

C52

C62

C43

C53

C63

C44

C54

C64

C45 C46

C55

C65

C56

C66

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(10) 

In addition to the information about static deformations, the prop-
agation of the elastic wave in a material is governed by the structural 
form of the stiffness tensor. The evolution and propagation of the lon-
gitudinal and transversal bulk wave in an anisotropic crystal are illus-
trated with the Christoffel equation [54]. 
[
Γij − ρω2δij

]
Uj = 0 (11) 

For a monochromatic wave with frequencyω, polarisation U→ and 
wave vector n propagating through a material of densityρ, then the 
Christoffel matrix Γ is defined as: 

Γij = nmCimnjnj (12) 

The Eq. (11) is a simple Eigenvalue problem that can be solved 
systematically for any value ofn. The Eigenvalue solution consists of 
three frequencies that ultimately lead to the three-phase velocities for 
each value ofn. For LiNbO3, which is a trigonal crystal, in the YZ plane 
polarisation along the X-axis, the velocity of the pure shear wave, u(2)

along the propagation angle ϕ is given by [32] 

u(2) =
1

ρ1/2
{

C66sin2ϕ + C44cos2ϕ + C14sin2ϕ
}1/2 (13) 

The velocity of the Quasi-shear wave, u(1) is described by 

u(1) =
1

(2ρ)1/2
{

P −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Q2 + R

√ }− 1/2 (14) 

The velocity of the Quasi-longitudinal, u(3) wave is described by 

u(3) =
1

(2ρ)1/2
{

P +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Q2 + R

√ }− 1/2 (15) 

where, 

P = C44 + C11sin2ϕ + C33cos2ϕ − C14sin2ϕ
Q = (C44 − C11)sin2ϕ + (C33 − C44)cos2ϕ + C14sin2ϕ

R =
{
(C13 + C14)sin2ϕ − 2C14sin2ϕ

}2
(16)  

4.2. Calculation of wave velocity 

Considering an arbitrary Cartesian coordinate system in the plane of 
an anisotropic substrate, a particular wave mode travelled at time ti from 

a location
(

yi,zi

)
, and it reached the location 

(
yj, zj

)
at timetj. The ve-

locity of a wave along an angle ϕ can be computed as: 

u{k}
ϕ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
yj − yi

)2
+
(
zj − zi

)2
√

(
tj − ti

) (17) 

The velocity is computed repeatedly in several adjacent points along 
a particular radial direction (k = 1, 2,⋯, n) to evaluate the uncertainty 
in the velocity measurement. For anisotropic material, the wave velocity 
depends on the direction of propagation ϕ and can be defined as: 

ϕ = tan− 1

(
zj − zi

yj − yi

)

(18)  

uϕ =
[
u{1}

ϕ , u{2}
ϕ ,⋯, u{n}

ϕ

]
(19) 

where, uϕ is a vector representing a collection of all the velocities 
calculated at various points along the propagationϕ. An illustration of 
the steps involved in the computation of the velocity and the corre-
sponding uncertainty is presented in Fig. 4. It is assumed that the 
probability distribution function of the velocity follows the Gaussian 
distribution. The sample mean, ûϕ and sample variance, σ2

uϕ 
can be 

computed as follows: 

ûϕ =

∑n
k=1u{k}

ϕ

n
(20)  

σ2
uϕ

=

∑n
k=1

(
u{k}

ϕ − ûϕ

)2

(n − 1)
(21)  

5. Unscented Kalman filter 

One of the key components in the development of the proposed 
framework is to estimate the constitutive parameters from the velocity 

Fig. 4. Illustration of the steps involved in the computation of the statistical velocity.  
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profile. This is can be considered as a classical parameter estimation 
problem, and this study proposes to employ the Bayesian filter to ach-
ieve the objective. Bayesian filters utilise Bayesian inference to formu-
late a framework that can be used for parameter estimation. Bayesian 
inference differs from the conventional frequentist approach (e.g., 
maximum likelihood estimation (MLE)). The Bayesian inference takes 
the uncertainty of an event in a single trial as the probability of an event. 
In contrast, the frequentist approach considers it as the proportion of the 
event in probability space, despite the fact that the full posterior esti-
mation in the Bayesian approach is accurate but computationally 
expensive and is often intractable. The first-order Markovian process 
assumption simplifies the computational intricacy. Using assumptions of 
the Markovian model, the recursive Bayesian filter can be established, 
and the Kalman filter emerges [55,56]. The Kalman filter is a particular 
type of recursive Bayesian filter applied for a linear model. The extended 
Kalman filter (EKF) [55] and unscented Kalman filter (UKF) [55,57] are 
advancements over the Kalman filter to apply for non-linear models. In 
this study, UKF is used as a Bayesian filter of choice over the other 
Bayesian filter and the conventional frequentist approach. It is to be 
noted that the UKF is computationally expensive as compared to the EKF 
and MLE; however, the performance of the UKF in the case of non-linear 
systems and small observed data regime is superior [57]. Indeed, pow-
ered by the increased computational resources, the proposed UKF based 
framework results as robust and reliable for the parameter estimation 
task. 

The solution of the Christoffel equation prescribes a set of mathe-
matical models of the velocity of a wave in a material. For instance, the 
governing equation describes the velocity of the Quasi-shear wave in 
Lithium Niobate crystal in the YZ plane given in the Eq. (14) is a complex 
non-linear system. The unscented Kalman filter (UKF) is a versatile filter 
appropriate for complex non-linear systems first developed by Julier and 
Uhlman [58]. It utilizes the concept of unscented transformation to 

approximate the statistics of fairly complex non-linear systems. In the 
unscented transformation, the statistical properties of a random variable 
are approximated by choosing a set of sample points deterministically. 
These points are known as sigma points. Each sigma point is propagated 
through the non-linear systems to apply the non-linear transformation. 
These transformed sets of points represent the statistical properties of 
the transformed random variable. Fig. 5 illustrates how sigma points are 
employed in the unscented transformation to represent a posteriori 
statistic. 

Let us consider a general discrete non-linear dynamic system 
modelled as 

xk+1 = F(xk) + wk
yk = H(xk) + vk

(22) 

where, F : RN↦RN is the vector-valued state prediction function of 
the system, H : RN↦RM is the observation function that transforms a 
state vector into the proper measurement vector. The xk ∈ RN is the state 
variable, yk ∈ RM is the measured value, and wk ∈ RN and vk ∈ RM are 
additive process noise with covariance Q and measurement noise with 
covarianceR , respectively, as in the Eq. (23). The subscript k ∈ N de-
notes the k - th discrete step. 

wk ∼ N (0,Qk)

vk ∼ N (0,Rk)

E
[
wkvT

k

]
= 0

(23) 

It is assumed that the state variable xk ∈ RN obeys a normal distri-
bution with its mean x̂k and covariance Pk denoted byxk ∼ N (x̂k,Pk). 
We also suppose that the initial state,x̂0, is known with the corre-
sponding initial error covariance matrix,P0. The UKF algorithm is dis-
cussed briefly in the following section 5.1. A probabilistic approach to 
the key steps involved within the UKF framework is shown 

Fig. 5. Illustration of unscented transformation of a distribution using sigma points.  

Fig. 6. Schematic presentation of the steps involved in the unscented Kalman filter algorithm.  
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schematically in Fig. 6. 

5.1. Unscented Kalman filter (UKF) algorithm 

Step 1: Calculation of weights for sigma points 

A set of weights W(i) corresponding to each sigma point are defined 
as follows: 

W(0) =
κ

N + κ

W(i) =
1

2(N + κ)
, i = 1, 2, ..., 2N

(24) 

where, the parameter κ is the scaling parameter that controls the 
spread of the sigma point about the mean, x̂k|k and N is the length of the 
state vector. κ can take any positive or negative value such thatN +

κ ∕= 0. In this study, it has been chosenκ = 0. 

Step 2: Define noise 

Define process and measurement noise covariance matrices as: 

Qk = E
[
wkwT

k

]

Rk = E
[
vkvT

k

] (25)   

Step 3: Initialization 

Define the initial state vector and corresponding error covariance 

matrix as: 

x̂0 = E[x0]

P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T ] (26)   

Step 4: Generate the sigma points 

A set of 2N+1 sigma points χ (i)
k are defined as follows: 

χ (0)
k = x̂k,

χ (i)
k = x̂k +

̅̅̅̅̅̅̅̅̅̅̅̅
N + κ

√ ( ̅̅̅̅̅
Pk

√ )

i
,

χ (i+N)

k = x̂k −
̅̅̅̅̅̅̅̅̅̅̅̅
N + κ

√ ( ̅̅̅̅̅
Pk

√ )

i

(27) 

where 
( ̅̅̅̅̅

Pk
√ )

i is the i - th column of the matrix square root of the 
error covariance matrixPk. The weighted covariance matrix of χ is Pk can 
be computed as: 

Pk =
∑2N

i=0
W(i)

k

(
χ (i)

k − x̂k

)(
χ (i)

k − x̂k

)T
(28)   

Step 5: Prediction 

Propagate each sigma points through the prediction model 

χ (i)
k+1|k = F

(
χ (i)

k

)
, i = 0, 1, ..., 2N (29) 

Calculate the mean x̂k+1|k and covariance Pk+1|k of the predicted state 
as given by: 

Fig. 7. Flowchart representing key components of the proposed parameter estimation algorithm.  

Fig. 8. Pseudo-3D representation of the ultrasonic wave propagation on X-cut 300 μm thick LiNbO3 crystal obtained for the finite element method simulation case. 
Each frame dimension is 8 mm × 8 mm. 
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x̂k+1|k =
∑2N

i=0
W(i)χ (i)

k+1|k

Pk+1|k =
∑2N

i=0
W(i)

(
χ (i)

k+1|k − x̂k+1|k

)(
χ (i)

k+1|k − x̂k+1|k

)T
+ Qk+1

(30)   

Step 6: Observation 

Propagate each sigma point through observation 

ψ(i)
k+1|k = H

(
χ (i)

k+1|k

)
, i = 0, 1, ..., 2N (31) 

Calculate the meanŷk+1|k, covariance of predicted outputPyy
k+1, and 

cross-covariance of state and output Pxy
k+1 as given by: 

ŷk+1|k =
∑2N

i=0
W(i)ψ(i)

k+1|k ,

Pyy
k+1 =

∑2N

i=0
W(i)

(
ψ(i)

k+1|k − ŷk+1|k

)(
ψ(i)

k+1|k − ŷk+1|k

)T
+ Rk+1

Pxy
k+1 =

∑2N

i=0
W(i)

(
χ (i)

k+1|k − x̂k+1|k

)(
ψ(i)

k+1|k − ŷk+1|k

)T

(32)   

Step 7: Update 

Compute Kalman gainKk, filtered state mean x̂k+1 and error covari-
ance Pk+1 provided the sensor measurement zk+1 as follows: 

Kk+1 = Pxy
k+1(P

yy
k+1)

− 1

x̂k+1 = x̂k+1|k + Kk+1

(
zk+1 − ŷk+1|k

)

Pk+1 = Pk+1|k − Kk+1Pyy
k+1KT

k+1

(33) 

Fig. 9. The ultrasonic velocity profile computed from finite element method 
simulation in various directions for Lithium Niobate crystal. 

Fig. 10. Pseudo-3D representation of the spatial and temporal evolution of the ultrasonic wave amplitude of images on X orientation 1 mm thick, LiNbO3 crystal at a 
gate width of 35 ns for the experimental case. Each image frame dimension is 20 mm × 20 mm. 
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The UKF is used for the estimation of constitutive parameters of an 
anisotropic crystal. The essential parts of the robust inversion algorithm 
are illustrated in Fig. 7. 

6. Results and discussions 

6.1. FEM simulation results 

The transient time domain signals obtained at various points from 
the simulation are used to visualise the ultrasonic wave in the LiNbO3 
crystal. Fig. 8 shows the visualisation of wave propagation in the LiNbO3 
crystal acquired through FEM simulation. The total acquisition time of 
the temporal images of 1 μs corresponding to 201 time-varying snap-
shots. Each frame of Fig. 8 corresponds to 150 ns in the transient signals. 
The numerical velocity results are incorporated in the UKF algorithm for 
establishing the accuracy of the parameter estimation. 

The Kalman filter utilized the combined information of field mea-
surement and governing mechanistic equation for the estimation of state 
parameters. However, to illustrate the efficiency of the Kalman filter 
algorithm, we measured the velocity at an angular spacing of 15◦

varying from 0◦ to360◦ . 
In Fig. 9, the blue line represents the theoretical velocity profile for 

the Quasi-shear wave in LiNbO3 crystal, which is computed by the Eigen 
solution of the Christoffel equation. Further, the circle legends represent 
the numerical average velocity of the ultrasonic wave calculated along a 
particular direction of propagation. Upon computing discrete velocity in 
different directions, a cubic Hermite interpolation was performed to 
approximate the velocity in all directions. The resulting profile is shown 
by the red dashed line in Fig. 9. However, this approximate velocity 
profile does not require in the UKF framework. 

6.2. Experimental results 

We present the visualization of propagation of the ultrasonic wave in 
LiNbO3 acquired through the Coulomb Coupling method. After the 
acquisition of the transient signals for every position of the scanner, time 
gating was performed to construct the snapshot of the ultrasound waves. 

Fig. 10 shows the pseudo-3D evolution of ultrasonic waves in LiNbO3 
crystal at an excitation gate width of 35 ns. The speed of the ultrasonic 

wave in an anisotropic solid is directional dependent and evident from 
Fig. 10. Each frame of Fig. 10 corresponds to 13.3 μs in the transient 
signal. The brightness of the images indicates wavefront on the crystal 
surface at the corresponding gating time. The velocity of the ultrasonic 
wave in each direction is calculated from the evolution of spatiotem-
poral snapshots. The advantage of the Coulomb coupling technique is it 
provides complete field transient imaging, so it is possible to compute 
the velocity in every direction. 

The theoretical velocity profile computed by the Eigen solution of the 
Christoffel equation for the Quasi-shear wave in LiNbO3 crystal is pre-
sented by the blue line in Fig. 11. The circle legends in Fig. 11 illustrate 
the average experimental velocities calculated in a particular direction 
of propagation. The dashed red line in Fig. 11 shows the interpolated 
velocity profile. 

6.3. Vefification of UKF algorithm using FEM simulation data 

The transient time domain signals obtained at various points from 
the simulation are used to visualise the ultrasonic wave in the LiNbO3 
crystal, as shown in Fig. 8. The velocity of the propagated wave along 
different directions is computed from the simulation data. The consti-
tutive parameters estimation of the crystal from the velocity data is an 
ill-posed inverse problem, and the noisy/uncertain velocity data com-
pounds this challenge. 

Usually, the data obtained from the simulation are more accurate 
and noise-free compared to the data collected from real field experi-
ments. Moreover, in the case of simulation, the parameters to be esti-
mated are known a priori. In general, starting with a problem where the 
solution is known is important to evaluate the performance and verify 
the architecture of the proposed algorithm. Thus, we evaluate the per-
formance of the algorithm by comparing the estimated parameters with 
the known parameters (theoretical value) used in the FEM simulation. 

To illustrate the performance of the UKF in parameter estimation, we 
considered the non-linear characteristic model for Quasi-shear wave 
propagation as expressed in the Eq. (14). We considered that the velocity 
measurements are available in different directions. The objective here is 
to estimate the constitutive parameters accurately by diffusing the 
mathematical model and the experimental measurements available in 
the UKF framework. Fig. 9 shows the variation of mean velocity, û with 
respect to the angle ϕ extracted from the FEM simulation. 

For the parameter estimation using UKF, an augmented state vector x 
is defined as: 

x =

⎡

⎢
⎢
⎢
⎣

x1

x2

x3

x4

x5

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

C11

C13

C14

C33

C44

⎤

⎥
⎥
⎥
⎦

(34) 

Then the state space is formulated as follows: 

ẋ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0

0

0
0

0

⎤

⎥
⎥
⎥
⎦

(35) 

The derivatives with respect to the time of the constitutive param-
eters are all zero because they are assumed to be constant over time. A 
discrete form of the Eq. (35) is given by: 

Fig. 11. The variation of ultrasonic velocity in different directions evaluated 
from the experiment for Lithium Niobate crystal. 
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xk+1 = F(xk)+wk =

⎡

⎢
⎢
⎢
⎢
⎣

x1,k

x2,k

x3,k

x4,k

x5,k

⎤

⎥
⎥
⎥
⎥
⎦
+wk (36) 

where a process noise w has been added. 
If the velocity of the wave propagation in a crystal is measured, the 

observation equation can be expressed as: 

y = u+ v (37) 

where u is the velocity of the wave and v represents the measurement 
noise. 

The vector-valued non-linear function H in Eq. (22) can be defined 
by Eq. (14) written as follows: 

yk = H(xk)+ vk =
1

(2ρ)1/2
{

P −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Q2 + R

√ }− 1/2 + vk (38) 

By combining the Eqs. (16) and (34), the P,Q and R of the Eq. (38) 
are re-written as follows: 

P = x5,k + x1,ksin2ϕ + x4,kcos2ϕ − x3,ksin2ϕ
Q =

(
x5,k − x1,k

)
sin2ϕ +

(
x4,k − x5,k

)
cos2ϕ + x3,ksin2ϕ

R =
{(

x2,k + x3,k
)
sin2ϕ − 2x3,ksin2ϕ

}2
(39) 

To perform the parameter estimation using the UKF, the iteration 
process initiates within the UKF framework by initializing the state 
vector estimate x̂0 and its error covariance matrixP0. It was observed 
that naively applying UKF to data with uncertainty for parameter esti-
mation would often result in incorrect estimation, as the effects of noise 
variance in the data set. Hence, we configure the initial state vector 
estimate x̂0 and the initial covariance matrix P0 to ensure that the UKF 
can be applied as follows: 

Table 2 
Sigma points of the initial state vector in unscented Kalman filter framework for the finite element method simulation case.  

Sigma Point 1 2 3 4 5 6 7 8 9 10 11 

C11

(
× 1010 N/m2

)
10 12.815 10 10 10 10 7.185 10 10 10 10 

C13

(
× 1010 N/m2

)
0.2 0.2 3.015 0.2 0.2 0.2 0.2 − 2.615 0.2 0.2 0.2 

C14

(
× 1010 N/m2

)
0.3 0.3 0.3 0.524 0.3 0.3 0.3 0.3 0.076 0.3 0.3 

C33

(
× 1010 N/m2

)
12 12 12 12 14.815 12 12 12 12 9.185 12 

C44

(
× 1010 N/m2

)
3 3 3 3 3 5.815 5 5 5 5 0.185  

Fig. 12. Constitutive parameter estimation results for the Lithium Niobate crystal for finite element method simulation case. The velocity with uncertainty computed 
from the finite element method simulation is provided to the unscented Kalman filter as a measurement. 

x̂0 =
[
C11,0,C13,0,C14,0,C33,0,C44,0

]T
=
[
10 × 101, 0.2 × 101, 0.3 × 101, 12 × 101, 3 × 101]T GPa

P0 = diag(σ2
C11,0

, σ2
C13,0

, σ2
C14,0

, σ2
C33,0

, σ2
C44,0

) = diag(1.58 × 102, 1.58 × 102, 1, 1.58 × 102, 1.58 × 102) GPa2 (40)   
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where diag(⋅) is a diagonal matrix with arguments along the main 
diagonal. Further, the process noise covariance matrix Q is set to be null, 
since the state x has no superimposed noise. The measurement noise is 
assumed to be a Gaussian white noise process with zero mean and 
covariance matrix R with the terms along the main diagonal are defined 
in the Eq. (21). 

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
u0◦

0
⋮
0

0
σ2

u15◦

◦

⋯

⋯
◦

⋱
0

0
⋮
0

σ2
u360◦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(41) 

Fig. 13. Constitutive parameter estimation results for the Lithium Niobate crystal for the experimental case. The velocity measurement perturbated with uncertainty 
from the experiment is provided to the unscented Kalman filter as a measurement. 

Table 3 
Summary of the constitutive parameter estimation for the finite element method 
simulation case.  

Constitutive 
Parameters 

Theoretical 
Value 

Initial 
Guess 

Estimated Relative % 
Error (±) 

C11 (×

1010N/m2
)

20.3 10  20.47  0.84 % 

C13 (×

1010N/m2
)

7.5 0.2  7.67  2.27 % 

C14 (×

1010N/m2
)

0.9 0.3  0.89  1.11 % 

C33 (×

1010N/m2
)

24.5 12  24.66  0.65 % 

C44 (×

1010N/m2
)

6.0 3  5.99  0.20 %  

Table 4 
Sigma points of the initial state vector in the unscented Kalman filter framework for the experimental case.  

Sigma Point 1 2 3 4 5 6 7 8 9 10 11 

C11

(
× 1010 N/m2

)
13 13.707 13 13 13 13 12.293 13 13 13 13 

C13

(
× 1010 N/m2

)
0.5 0.5 1.207 0.5 0.5 0.5 0.5 − 0.207 0.5 0.5 0.5 

C14

(
× 1010 N/m2

)
0.6 0.6 0.6 5.055 0.6 0.6 0.6 0.6 0.318 0.6 0.6 

C33

(
× 1010 N/m2

)
15 15 15 15 15.707 15 15 15 15 14.293 15 

C44

(
× 1010 N/m2

)
5 5 5 5 5 5.707 5 5 5 5 4.293  

Table 5 
Summary of the constitutive parameter estimation for the experimental case.  

Constitutive 
Parameters 

Theoretical 
Value 

Initial 
Guess 

Estimated Relative % 
Error (±) 

C11 (×

1010N/m2
)

20.3 13  19.86  2.17 % 

C13 (×

1010N/m2
)

7.5 0.5  6.99  6.80 % 

C14 (×

1010N/m2
)

0.9 0.6  0.89  1.11 % 

C33 (×

1010N/m2
)

24.5 15  23.91  2.41 % 

C44 (×

1010N/m2
)

6.0 5  6.001  0.02 %  
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In the context of the general experimental procedure, it is assumed 
that the wave velocity measurements (zk) in different directions are 
available by extracting data at every 150 angular spacing varying from 
00 to 3600. 

zk = {û0◦ , û15◦ ,…, û360◦ }
T (42) 

The UKF algorithm starts by generating eleven (2N+1, here N = 5)
sigma points deterministically based on x̂0 and P0 as defined in the Eq. 
(27). In the following step, each sigma point is employed to compute the 
wave velocity in the directions where field measurements are present. 
The algorithm will correct the initial guess in the first iteration by 

incorporating the innovations 
(

zk+1 − ŷk+1|k

)
(difference between mea-

surement and predicted measurement). This process continues recur-
sively till the truncation criterion is achieved. The truncation criterion is 
achieved in this study by setting the minimum number of iterations to 
50(k = 1,2,...,50). However, one can achieve the truncation criterion by 
defining a tolerance limit ε as the absolute difference between the state 
vector estimates given by two successive Kalman Filter iter-
ations(i.e. x̂k+1 − x̂k < ε). The output of the UKF algorithm is the cor-
rected state vector which is the mean x̂k of the multivariate Gaussian 
distribution with the covariance matrixPk. Specifically, Pk stands for the 
uncertainty in estimating the constitutive parameters at kth step. 

For ease of reference, Table 2 and Table 4 present the generated 
sigma points, χ (i)

0 corresponding to the initial state vector within the UKF 
algorithm. Fig. 12 and Fig. 13 illustrate the parameter estimation results 
in terms of theoretical value and estimated parameters in every itera-
tion. The dashed lines in Fig. 12 and Fig. 13 indicate the 95 % confidence 
interval (CI), implying the actual parameter lies between this interval 
with a probability of more than 0.95. The UKF being a Bayesian filter 
that has the capability to provide a level of confidence for the estimate, 
makes the algorithm superior to the other deterministic algorithms. We 
summarise the estimation of the constitutive parameter and corre-
sponding absolute error in Table 3 and Table 5. It can be observed from 
Table 3 and Table 5 that the maximum error in the estimation of the 
stiffness parameters corresponds to the estimation ofC13, that is less than 
3 %. 

6.4. Parameter estimation using UKF from experimental data 

The performance and verification of the UKF algorithm are first 
examined and presented in section 6.3. To assess the performance of the 
proposed algorithm in the real experimental case, the mean velocity is 
computed from five samples along a particular direction of propagation. 
To that end, the velocity vector with uncertainty shown by circles in 
Fig. 11 is provided as the measurement in the UKF framework. For ease 
of reference, Table 4 shows the generated sigma points, χ (i)

0 corre-
sponding to the initial state vector within the UKF algorithm for the 
experimental case. 

The initial state vector estimate x̂0 and the initial covariance matrix 
P0 is configured to estimate the parameters within the UKF framework 
for the experimental case as follows:   

where diag(⋅) is a diagonal matrix with arguments along the main 
diagonal. 

The state parameter estimation results obtained by the proposed UKF 

algorithm are shown in Fig. 13. Fig. 13 illustrates the parameter esti-
mation results in terms of theoretical value and estimated parameters in 
every iteration. The dashed lines in Fig. 13 indicate the 95 % confidence 
interval. It can be observed that the UKF algorithm provides remarkably 
accurate estimates of the constitutive parameters. As for the parameter 
estimation, C11,C14,C33 and C44 converge more accurately to the cor-
responding theoretical values, as given in Table 1. As forC13, the pro-
posed method acquires an accuracy of around 93 %. The estimation of 
the constitutive parameter and corresponding absolute error is sum-
marised in Table 5. 

From Table 3 and Table 5, two important observations can be drawn: 
(1) the error in the estimation of C44 is least as compared to the other 
parameters for both FEM and experimental cases. The least error in C44 
is due to its sensitivity to the shape of the measured velocity profile and 
C44 is more sensitive; in other words, a slight change in the value of C44 
there is a significant change in the velocity profile shape. Further, the 
rapidity of convergence and the error in the estimate of each parameter 
depends upon their sensitivity to the measurement provided in the UKF 
framework. The parameter C44 performs well in the estimation and has 
the minimum error; on the contrary, the constitutive parameter C13 has 
the maximum error as compared to the rest of the parameters for both 
FEM and experimental cases. However, the performance can further be 
improved by increasing the measurement size, i.e., a better represen-
tation of the velocity profile and by increasing the number of Kalman 
filter iterations. The aim of this work is to estimate the parameters 
optimally in the sparse measurement situation. (2) Some parameters, for 
instance, C11 andC13, are over-estimated for the FEM simulation case but 
under-estimated in the experimental case. The under- and over- 
estimation of these parameters for both cases do not have any physical 
sense. Since the measured velocity profile and the amount of noise/ 
uncertainty present in the measurement for FEM and experimental cases 
are different. Hence, each parameter does not need to follow a similar 
trend to converge its theoretical value in both cases. However, it is worth 
noting that the estimation error for each parameter should lie within the 
acceptable limit. From Table 3 and Table 5, one can observe that the 
parameters converge satisfactorily and the error corresponding to each 
estimation lies within the allowable limit. 

7. Conclusion 

The estimation of the mechanical properties of the anisotropic 
Lithium Niobate (LiNbO3) is conducted using the Coulomb Coupling 
technique and Bayesian filtering. The point contact method based on 
Coulomb coupling is employed for the excitation and detection of ul-
trasonic waves in the LiNbO3 crystal. The spatial–temporal wavefield 
imaging is utilized for the extraction of direction-dependent wave ve-
locity. The direction wave velocity is a function of the stiffness tensor 
and is theoretically computed by a plane wave Eigenvalue solution. The 
stiffness parameter is considered as a state variable and predicted using 
the UKF. At first, the architecture of the inversion algorithm is verified 
with the FEM simulation data, as the true values are known in the case of 
numerical simulation. In this case, the accuracy in the estimation of the 
parameter is more than 97 %. The UKF is a data-driven hybrid technique 

that takes advantage of the data collected from a field experiment in 
conjunction with the physics-informed mathematical model. The pre-
diction results obtained from the UKF technique are compared with the 
theoretical state parameters. The UKF, being a Bayesian filter, accounts 
for measurement uncertainties, thereby providing a confidence level on 

x̂0 =
[
C11,0,C13,0,C14,0,C33,0,C44,0

]T
=
[
13 × 101, 0.5 × 101, 0.6 × 101, 15 × 101, 5 × 101]T GPa

P0 = diag(σ2
C11,0

, σ2
C13,0

, σ2
C14,0

, σ2
C33,0

, σ2
C44,0

) = diag(101, 101, 0.158 × 101, 101, 101) GPa2 (43)   
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the estimate to facilitate the decision-making process. It has been 
demonstrated through the experimental investigation that the velocity 
measurements are sufficient to estimate the parameter with an accuracy 
of more than 93 %. It is worth noting that the velocity of a wave in any 
direction can be extracted from the full-field transient images. However, 
the UKF algorithm needs limited experimental velocity information 
along the angular direction that may even be perturbed by measurement 
uncertainty/noise. Further, the proposed algorithm is generic that uti-
lizes available physics-informed mathematical models and relevant 
experimental techniques with limited measurements. The compatibility 
of different experimental procedures and the suitability of non-linear 
systems within the UKF framework makes the proposed methodology 
robust, reliable and applicable in other real-life scenarios. 
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