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Abstract–A special case of the bivariate renewal process is investigated. It is supposed, that this process is 
considered while the second component has a positive value. The algorithm for a calculation of the 
corresponding time’s density is presented. In addition, a case of preventive renewal is considered. Such renewal 
takes place when the value of the second component is positive but is less than a fixed level. The following 
characteristics are investigated: distribution of the number of such renewals, the density of the time of the failure, 
etc. Numerical examples illustrate the given presentation.  
Keywords: distribution of a failure time, preventive renewals.  

1. INTRODUCTION 
The bivariate renewal process is a natural extension of the univariate renewal process, 

which is well presented in the literature [1, 2]. A general theory for renewal processes of two 

dimensions is developed initially in the papers [3, 4]. Bivariate generating functions and bivariate 

Laplace transforms of these processes are derived. However, explicit forms of analytical solutions 

are unknown, except in the case of the exponential distribution.  

In this connection, various approximations for the computation were supposed. A 

simple approximation for the two-dimensional renewal function, based only on the first two 

moments of the variables and their correlation coefficient, is considered in paper [5]. Many 

investigations about various approximations are described in papers [6-10]. 

Generalizations on multivariate renewal processes can be found in papers [11-14]. 

Bivariate renewal processes have wide applicability in a variety of areas. In the paper 

[5] it is noted, that many warranties of a product’s or service’s quality “are often two 

dimensional, such as an automobile warranty that guarantees repair up to a certain time and 

mileage after the sale.” Bivariate renewal processes are efficiently used in maintenance 

policies and reliability [6, 15-19]. 
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This study considers a special case of the general bivariate renewal model. As is usual, it is 

supposed that (X, Y), (X1 , Y1), (X2 , Y2) ,..., are independent identically distributed continuous 

random binary vectors. The component X is positive and is interpreted as a time. The 

component Y has arbitrary values and is interpreted as a stock. The pair (X, Y) has the density 

𝑓𝑓(𝑥𝑥,𝑦𝑦), 𝑥𝑥 ≥ 0, −∞ < 𝑦𝑦 <  ∞. It is assumed that the mean value of 𝑌𝑌𝑛𝑛 is negative: 

 𝜇𝜇 = 𝐸𝐸(𝑌𝑌) = ∫ 𝑦𝑦 ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 < 0.∞
0

∞
−∞   (1) 

Let 𝛽𝛽 > 0 be an initial stock at a zero time and 

 (𝑇𝑇𝑛𝑛,𝑅𝑅𝑛𝑛) = (0,𝛽𝛽) + ∑ (𝑋𝑋𝑚𝑚,𝑌𝑌𝑚𝑚), 𝑛𝑛 = 1, 2, …𝑛𝑛
𝑚𝑚=1  .  (2) 

The sequence (𝑇𝑇1,𝑅𝑅1), (𝑇𝑇2,𝑅𝑅2), … is considered while 𝑅𝑅𝑛𝑛 > 0.  

Definition 1. An interrupted bivariate renewal process is a sequence  

(𝑇𝑇1,𝑅𝑅1), (𝑇𝑇2,𝑅𝑅2), … ,(𝑇𝑇𝑛𝑛,𝑅𝑅𝑛𝑛), 

where 𝑅𝑅𝜂𝜂 > 0, 𝜂𝜂 = 1, … ,𝑛𝑛 − 1,  𝑅𝑅𝑛𝑛 ≤ 0 . 

We will say a failure occurs when  𝑅𝑅𝑛𝑛 ≤ 0. Let 𝑇𝑇(𝛽𝛽) be a time till the failure: 

𝑇𝑇(𝛽𝛽) = min
𝑛𝑛

{𝑇𝑇𝑛𝑛:𝑅𝑅𝑛𝑛 ≤ 0}. 

The first half of this paper is devoted to the investigation of the distribution of 𝑇𝑇(𝛽𝛽) in 

detail and then the following generalization is considered. A preventive level α, 0 < α < β, is 

assigned. If an accumulated stock 𝑅𝑅𝑛𝑛 is positive but less than α, then the store is renewed up 

to initial level β. Here, a preventive renewal process is discussed.   

The content of this paper is then organized into the following sections. Section 2 is 

dedicated to the distribution of the failure time. Some computational aspects are considered in 

Section 3. Section 4 contains a numerical example, a case of the preventive renewals is 

presented in Section 5, and Section 6 contains concluding remarks.  

2. DISTRIBUTION OF THE FAILURE TIME  
Let 𝑔𝑔𝑛𝑛(𝑡𝑡, 𝑟𝑟) be the density of (𝑇𝑇𝑛𝑛 ,𝑅𝑅𝑛𝑛) jointly with probability that 𝑅𝑅𝜂𝜂 >  0 for η = 1,…, 

n. Then for 𝑡𝑡 ≥ 0, 𝑛𝑛 = 2, 3, …   

 𝑔𝑔1(𝑡𝑡, 𝑟𝑟) = �𝑓𝑓(𝑡𝑡, 𝑟𝑟 − 𝛽𝛽), 𝑟𝑟 >  0,
0,    otherwise.    (3) 

𝑔𝑔𝑛𝑛(𝑡𝑡, 𝑟𝑟) = ��� 𝑔𝑔𝑛𝑛−1(𝜏𝜏,𝜌𝜌)𝑓𝑓(𝑡𝑡 − 𝜏𝜏, 𝑟𝑟 − 𝜌𝜌) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,
∞

0

𝑡𝑡

0

  𝑟𝑟 >  0,

0,     otherwise.

 

Let for 𝑡𝑡 ≥ 0 
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 𝐹𝐹𝑌𝑌(𝑡𝑡, 𝑦𝑦) = ∫ 𝑓𝑓(𝑡𝑡, 𝜌𝜌)𝑑𝑑𝑑𝑑,𝑦𝑦
−∞   −∞ < 𝑦𝑦 < ∞,  (4) 

and 𝑔𝑔𝑛𝑛∗ (𝑡𝑡) be the density of the time, when the zero level is reached, jointly with probability 

that it arises for the first time on the n-th jump:  

𝑔𝑔1∗(𝑡𝑡) = 𝐹𝐹𝑌𝑌(𝑡𝑡,−𝛽𝛽), 

 𝑔𝑔𝑛𝑛∗(𝑡𝑡) = ∫ ∫ 𝑔𝑔𝑛𝑛−1(𝜏𝜏,𝜌𝜌)𝐹𝐹𝑌𝑌(𝑡𝑡 − 𝜏𝜏,−𝜌𝜌)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,∞
0

𝑡𝑡
0   𝑛𝑛 = 2, 3, ….   (5) 

Now we have the following expressions for the density h(t) and the cumulative 

distribution function H(t) of the random variable 𝑇𝑇(𝛽𝛽): 

 ℎ(𝑡𝑡) = ∑ 𝑔𝑔𝑛𝑛∗(𝑡𝑡), 𝑡𝑡 ≥ 0,∞
𝑛𝑛=1   (6) 

 𝐻𝐻(𝑡𝑡) = ∫ ℎ(𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡
0 = ∑ ∫ 𝑔𝑔𝑛𝑛∗(𝜏𝜏)𝑑𝑑𝑑𝑑, 𝑡𝑡 ≥ 0.𝑡𝑡

0
∞
𝑛𝑛=1   (7) 

These formulas allow the calculation of the expectation 𝐸𝐸�𝑇𝑇(𝛽𝛽)� and the variance 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑇𝑇(𝛽𝛽)� of the time until the failure T(𝛽𝛽).  

The probabilities that the n-th jump takes place without the failure are calculated as 

follows: 

 𝑃𝑃𝑃𝑃𝑛𝑛 = ∫ ∫ 𝑔𝑔𝑛𝑛(𝑡𝑡, 𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.∞
0

∞
0   (8) 

The probability that the failure takes place on the n-th jump:  

   𝑃𝑃𝑃𝑃𝑛𝑛∗ = ∫ 𝑔𝑔𝑛𝑛∗(𝑡𝑡)𝑑𝑑𝑑𝑑.∞
0   (9) 

3. SOME ASPECTS OF COMPUTATIONS 
The computational difficulties increase as the jump’s number rises. This is caused by 

multiple convolutions in the formulas. Consequently, a special approach is adopted which will 

be described for the n-th jump. 

First, the densities 𝑔𝑔𝑛𝑛−1(𝑡𝑡, 𝑟𝑟), 𝑡𝑡 ≥ 0, 𝑟𝑟 ≥ 0, for the previous jump are presented by the 

matrix 𝐺𝐺 = �𝐺𝐺𝜂𝜂,𝜃𝜃� of the dimension nmax ⨉ rmax. Continuous values t and r are replaced by 

the lattice points (𝜂𝜂,𝜃𝜃). Next, a mesh width Δ > 0 is chosen, and let  ωt = Δ×nmax,  ωr = 

Δ×rmax. The point (𝜂𝜂, 𝜃𝜃) corresponds to the two-dimensional interval (𝜂𝜂Δ , (𝜂𝜂 + 1)Δ) ×  

(𝜃𝜃Δ , (𝜃𝜃 + 1)Δ). The value 𝐺𝐺𝜂𝜂,𝜃𝜃 in this point is defined as follows: 

𝐺𝐺𝜂𝜂,𝜃𝜃 =  
1
2

(𝑔𝑔𝑛𝑛−1(𝜂𝜂Δ,𝜃𝜃Δ) + 𝑔𝑔𝑛𝑛−1(𝜂𝜂Δ, (𝜃𝜃 + 1)Δ)),   

 𝜂𝜂 = 0, . . . ,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 1,   𝜃𝜃 = 0, … , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1.  (10) 
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The matrix G is stored in computer’s memory and is used instead of the 

function 𝑔𝑔𝑛𝑛−1(𝑡𝑡, 𝑟𝑟). An essential value 𝑔𝑔𝑛𝑛−1(𝑡𝑡, 𝑟𝑟) is defined as follows:  

 𝑔𝑔�𝑛𝑛−1(𝑡𝑡, 𝑟𝑟) = 𝐺𝐺𝜂𝜂,𝜃𝜃, if   𝑡𝑡 ∈ (𝜂𝜂Δ, (𝜂𝜂 + 1)Δ],   𝑟𝑟 ∈ (𝜃𝜃𝜃𝜃, (𝜃𝜃 + 1)𝛥𝛥 ],   𝑡𝑡, 𝑟𝑟 ≥ 0.  (11) 

The correctness of such a change is verified by comparison of two integrals: 

 ∫ ∫ 𝑔𝑔�𝑛𝑛−1(𝑡𝑡, 𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜔𝜔𝑟𝑟
0

𝜔𝜔𝑡𝑡 
0  𝑎𝑎𝑎𝑎𝑎𝑎 ∫ ∫ 𝑔𝑔𝑛𝑛−1(𝑡𝑡, 𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝜔𝜔𝑟𝑟

0
𝜔𝜔𝑡𝑡
0   (12) 

whose values must be very close.  

Now the density 𝑔𝑔𝑛𝑛(𝑡𝑡, 𝑟𝑟) can be calculated using the density 𝑔𝑔�𝑛𝑛−1(𝑡𝑡, 𝑟𝑟) instead of 

𝑔𝑔𝑛𝑛−1(𝑡𝑡, 𝑟𝑟). The probability (9) that the critical level is reached on the n-th jump is calculated 

as follows: 

  𝑃𝑃𝑃𝑃�𝑛𝑛
∗ = � �� 𝑔𝑔�𝑛𝑛−1(𝜏𝜏, 𝑟𝑟)𝐹𝐹𝑌𝑌(𝑡𝑡 − 𝜏𝜏,−𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜔𝜔𝑟𝑟

0

𝑡𝑡

0

𝜔𝜔𝑡𝑡

0

. 

Analogously, calculation of the cumulative distribution function H(t) by the formula (7) 

requires considerable computation time. This time can be decreased if the density h(t) is 

presented by a linear combination of two easily calculated densities d1(t) and d2(t) with a 

coefficient 𝜒𝜒, 0 < 𝜒𝜒 < 1, namely: 

 ℎ𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) = 𝜒𝜒𝑑𝑑1(𝑡𝑡) + (1 − 𝜒𝜒)𝑑𝑑2(𝑡𝑡),   𝑡𝑡 ≥ 0.  (13) 

The coefficient χ is chosen thus to minimize the criterion: 

 ∫ �ℎ(𝑡𝑡) − �𝜒𝜒𝑑𝑑1(𝑡𝑡) + (1 − 𝜒𝜒)𝑑𝑑2(𝑡𝑡)��
2∞

0 𝑑𝑑𝑑𝑑.  (14)  

It is easy to demonstrate that the optimal value is the following: 

 𝜒𝜒 = ∫ �ℎ(𝑡𝑡)−𝑑𝑑2(𝑡𝑡)��𝑑𝑑1(𝑡𝑡)−𝑑𝑑2(𝑡𝑡)�𝑑𝑑𝑑𝑑∞
0

∫ �𝑑𝑑1(𝑡𝑡)−𝑑𝑑2(𝑡𝑡)�2𝑑𝑑𝑑𝑑∞
0

.  (15) 

Now the cumulative distribution function H(t) can be calculated by formula (7) using 

ℎ𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) instead of h(t). 

Some additional details regarding calculations are as follows. The density h(t) is defined 

as an infinite sum (6). Obviously, a finite number nmax of addends is only used. The result is 

a lower border (frontier) for the density h(t) and the cumulative distribution function H(t) (see 

formulas (6) and (7)).  

The cumulative distribution function of the failure’s time jointly with the probability 

that the failure arises on the n-th jump is defined as follows: 
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 𝐻𝐻𝑛𝑛(𝑡𝑡) = ∫ 𝑔𝑔𝑛𝑛∗(𝜏𝜏)𝑡𝑡
0 𝑑𝑑𝑑𝑑.  (16) 

Note that 

 𝐻𝐻(𝑡𝑡) = ∑ 𝐻𝐻𝑛𝑛(𝑡𝑡), 𝑡𝑡 ≥ 0.∞
𝑛𝑛=1   (17)  

The expectation 𝐸𝐸�𝑇𝑇(𝛽𝛽)� and variance 𝐸𝐸�𝑇𝑇(𝛽𝛽)� are calculated by means of (6) or (7): 

𝐸𝐸�𝑇𝑇(𝛽𝛽)� = � 𝑡𝑡ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑
∞

0
= � 𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)

∞

0
=  −  � 𝑡𝑡𝑡𝑡�1 − 𝐻𝐻(𝑡𝑡)�

∞

0
= � �1 − 𝐻𝐻(𝑡𝑡)�

∞

0
𝑑𝑑𝑑𝑑, 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑇𝑇(𝛽𝛽)� = � �𝑡𝑡 − 𝐸𝐸�𝑇𝑇(𝛽𝛽)��
2
ℎ(𝑡𝑡)𝑑𝑑𝑑𝑑.

∞

0
 

The infinite upper limits of a sum and an integral are substituted by the finite numbers nmax 

and 𝜔𝜔𝜔𝜔, which gives the following result for 𝐸𝐸�𝑇𝑇(𝛽𝛽)�, for example: 

 𝐸𝐸�𝑇𝑇(𝛽𝛽)� = ∫ ∑ �𝐻𝐻𝑛𝑛(𝜔𝜔𝜔𝜔) − 𝐻𝐻𝑛𝑛(𝑡𝑡)�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛=1 𝑑𝑑𝑑𝑑𝜔𝜔𝑡𝑡

0 .  (18) 

4. EXAMPLE  
A case is considered, where c < 0, σ > 0, λ > 0 and 

 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝜆𝜆2 𝑥𝑥𝑒𝑒−𝜆𝜆𝜆𝜆 1
√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2
�𝑦𝑦−𝑐𝑐𝑐𝑐

𝜎𝜎
�
2
� ,   𝑡𝑡 ≥ 0, −∞ < 𝑦𝑦 < ∞.  (19)  

Further with respect to formula (4) 

𝐹𝐹𝑌𝑌(𝑡𝑡,𝑦𝑦) = �𝑓𝑓(𝑡𝑡,𝜌𝜌)𝑑𝑑𝑑𝑑 =

𝑦𝑦

−∞

� 𝜆𝜆2 𝑡𝑡𝑒𝑒−𝜆𝜆𝜆𝜆
1

√2𝜋𝜋 𝜎𝜎
𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
�
𝜌𝜌 − 𝑐𝑐𝑐𝑐
𝜎𝜎

�
2
� 𝑑𝑑𝑑𝑑 = 

 

𝑦𝑦

−∞

 

 = 𝜆𝜆2 𝑡𝑡𝑒𝑒−𝜆𝜆𝜆𝜆𝜙𝜙 �𝑦𝑦−𝑐𝑐𝑐𝑐
𝜎𝜎
� ,   𝑡𝑡 ≥ 0,   −∞ < 𝑟𝑟 <  ∞,  (20)  

where 𝜙𝜙(… ) is the cumulative distribution function of the standard normal distribution.  

Let 𝐺𝐺𝐺𝐺( 𝑦𝑦) be a cumulative distribution function of the accumulated stock during an 

interval between two jumps: 

𝐺𝐺𝐺𝐺( 𝑦𝑦)  = � 𝐹𝐹𝑌𝑌(𝑡𝑡,𝑦𝑦)𝑑𝑑𝑑𝑑,
∞

0

  −∞ < 𝑦𝑦 <  ∞. 

Numerical results are then presented for the following data: λ = 1, c = -1, σ = 1, β = 2. 

The infinite limit ∞ of sums is replaced by nmax = 22 for a time and by rmax = 12 for a stock, 

and the mesh width Δ = 0.5 is chosen. Therefore ωt = Δ × nmax = 11 and ωr = Δ × rmax = 6. 

Firstly, note that the mean value of 𝑌𝑌𝑛𝑛 is negative (see (1)): 

𝜇𝜇 = 𝐸𝐸(𝑌𝑌𝑛𝑛) = � 𝑦𝑦 � 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  −1.986.
∞

0

∞

−∞

 

The graph of the function 𝐺𝐺𝐺𝐺( 𝑟𝑟) is presented in Fig. 1. 



 6 

 
Figure 1. Cumulative distribution function 𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡, 1) = 𝑔𝑔𝑛𝑛∗ (𝑡𝑡 ∣ 1). 

 
The density 𝑔𝑔1(𝑡𝑡, 𝑟𝑟) of the random pair (𝑇𝑇1,𝑅𝑅1) for the first jump is calculated by 

formula (3). The probability that the critical level is not reached is the following: 

     𝑃𝑃𝑃𝑃1 = � � 𝑔𝑔1(𝑡𝑡, 𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜔𝜔𝑟𝑟 

0

𝜔𝜔𝑡𝑡

0

= 0.548. 

The probability of the contrary event equals 0.452, which can be found as follows: 

𝑃𝑃𝑃𝑃1∗ = � 𝐹𝐹𝑌𝑌(𝑡𝑡,−𝛽𝛽)𝑑𝑑𝑑𝑑

𝜔𝜔𝑡𝑡 

0

= � � 𝑓𝑓(𝑡𝑡, 𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

−𝛽𝛽

−𝜔𝜔 

𝜔𝜔𝑡𝑡 

0

= 0.452. 

The following results have place for the second jump: 

     𝑃𝑃𝑃𝑃2 = � � 𝑔𝑔2(𝑡𝑡, 𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜔𝜔𝑟𝑟

0

𝜔𝜔𝑡𝑡 

0

= 0.195, 

𝑃𝑃𝑃𝑃2∗ = � 𝑔𝑔2∗(𝑡𝑡)𝑑𝑑𝑑𝑑

𝜔𝜔𝑡𝑡 

0

= 0.352. 

Therefore, the probability that the second jump occurs equals 0.195 + 0.352 = 0.547. The true 

value is 0.548. The difference 0.548 – 0.547 = 0.001 is a computational error. For the third 

jump, we then have: 

     𝑃𝑃𝑃𝑃3 = � � 𝑔𝑔3(𝑡𝑡, 𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜔𝜔𝑟𝑟

0

𝜔𝜔𝑡𝑡 

0

= 0.066, 

𝑃𝑃𝑃𝑃3∗ = � 𝑔𝑔3∗(𝑡𝑡)𝑑𝑑𝑑𝑑

𝜔𝜔𝑡𝑡 

0

= 0.129. 

Now the computational error no longer exists: 0.195 – (0.066 + 0.129) = 0.   

As mentioned above, the computational difficulties increase as the jump's number n rises. 

Consequently, for the fourth jump, the approach adopted has been described in Section 3. 

First, the density 𝑔𝑔3(𝑡𝑡, 𝑟𝑟) is replaced by the two-dimensional matrix of the dimension nmax ⨉ 

rmax = 22 ⨉ 12. Table 1 contains a main sub-matrix G3 of this matrix, having the dimension 

11 ⨉ 9. 

6− 4− 2− 0 2
0

0.2

0.4

0.6

0.8

1

GF y( )

y
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Table 1. Sub-matrix G3. 

G3

0

0

4.646 10 5−
×

3.405 10 4−
×

1.094 10 3−
×

2.123 10 3−
×

3.032 10 3−
×

3.392 10 3−
×

3.118 10 3−
×

2.43 10 3−
×

1.61 10 3−
×

0

0

5.64 10 5−
×

3.786 10 4−
×

1.144 10 3−
×

2.082 10 3−
×

2.766 10 3−
×

2.864 10 3−
×

2.443 10 3−
×

1.761 10 3−
×

1.069 10 3−
×

0

0

6.015 10 5−
×

3.831 10 4−
×

1.072 10 3−
×

1.823 10 3−
×

2.243 10 3−
×

2.165 10 3−
×

1.712 10 3−
×

1.137 10 3−
×

6.367 10 4−
×

0

0

5.855 10 5−
×

3.539 10 4−
×

9.18 10 4−
×

1.429 10 3−
×

1.637 10 3−
×

1.472 10 3−
×

1.066 10 3−
×

6.487 10 4−
×

3.448 10 4−
×

0

0

5.269 10 5−
×

2.959 10 4−
×

7.107 10 4−
×

1.018 10 3−
×

1.081 10 3−
×

9.011 10 4−
×

5.941 10 4−
×

3.292 10 4−
×

1.691 10 4−
×

0

0

4.3 10 5−
×

2.24 10 4−
×

4.977 10 4−
×

6.641 10 4−
×

6.519 10 4−
×

5.005 10 4−
×

3.036 10 4−
×

1.58 10 4−
×

7.552 10 5−
×

0

0

3.226 10 5−
×

1.555 10 4−
×

3.198 10 4−
×

3.971 10 4−
×

3.617 10 4−
×

2.547 10 4−
×

1.441 10 4−
×

6.934 10 5−
×

3.081 10 5−
×

0

0

2.228 10 5−
×

9.919 10 5−
×

1.884 10 4−
×

2.178 10 4−
×

1.832 10 4−
×

1.202 10 4−
×

6.264 10 5−
×

2.785 10 5−
×

1.151 10 5−
×

0

0

1.415 10 5−
×

5.845 10 5−
×

1.022 10 4−
×

1.1 10 4−
×

8.583 10 5−
×

5.197 10 5−
×

2.495 10 5−
×

1.025 10 5−
×

3.926 10 6−
×









































:=

 

The matrix G3 is stored in computer’s memory and is used instead of the function 

𝑔𝑔3(𝑡𝑡, 𝑟𝑟) calculation. Also, the function 𝑔𝑔3(𝑡𝑡, 𝑟𝑟) is replaced by the function 𝑔𝑔�3(𝑡𝑡, 𝑟𝑟), which is 

calculated by formula (11). The correctness of such a change is verified by comparison of two 

integrals from (12). The first integral 

� � 𝑔𝑔�3(𝑡𝑡, 𝑟𝑟) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜔𝜔𝑟𝑟 

0

𝜔𝜔𝑡𝑡

0

= 0.0659 

is very close to above obtained value 0.066 of the second integral. 

Now the density 𝑔𝑔4(𝑡𝑡, 𝑟𝑟) can be calculated using the density 𝑔𝑔�3(𝑡𝑡, 𝑟𝑟) instead of the 

density 𝑔𝑔3(𝑡𝑡, 𝑟𝑟). The probability that the critical level is reached on the fourth jump is as 

follows: 

𝑃𝑃𝑃𝑃4∗ = � � � 𝑔𝑔�3(𝜏𝜏, 𝑟𝑟)𝐹𝐹𝑌𝑌(𝑡𝑡 − 𝜏𝜏,−𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.043.

𝜔𝜔𝑟𝑟

0

𝜔𝜔𝑡𝑡

0

𝜔𝜔𝑡𝑡

0

 

The probability  𝑃𝑃𝑃𝑃4 that the critical level is not reached equals 0.023.  

We act analogously for the fifth step and the following results are achieved: 𝑃𝑃𝑃𝑃5∗ =

0.014,  𝑃𝑃𝑃𝑃5 = 0.008.   

The probability that the critical level will be reached during five jumps equals 0.452 + 

0.352 + 0.129 +0.043 +0.014 = 0.990. This probability is close to one and thus we can do no 

more than 5 steps. 

Graphs of the densities 𝑔𝑔1∗(𝑡𝑡),  𝑔𝑔2∗(𝑡𝑡), 𝑔𝑔3∗(𝑡𝑡) and 𝑔𝑔4∗(𝑡𝑡) are presented in Fig. 2, where 

 𝑔𝑔𝑔𝑔𝑔𝑔(t) = 𝑔𝑔𝑖𝑖∗(𝑡𝑡). The densities ℎ(𝑡𝑡) = ∑  𝑔𝑔𝑛𝑛∗(𝑡𝑡), 𝑡𝑡 ≥ 0,5
𝑛𝑛=1  of the time 𝑇𝑇(𝛽𝛽) until the failure, 

are also presented. 
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0 2 4 6 8 10
0

0.1

0.2

0.3

h t( )

t
  

Figure 2. Densities 𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) and h (t). 
 

The expectation and the variance of the time 𝑇𝑇(𝛽𝛽) until the failure is 𝐸𝐸(𝑇𝑇(𝛽𝛽)) = 3.624 

and 𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇(𝛽𝛽)) = 3.107.  

At this stage, approximation of the cumulative distribution function H(t) of the time 

𝑇𝑇(𝛽𝛽) is necessary. To achieve this, the density h(t) is represented by means of easily 

calculated functions. In the case considered here, a linear combination of a normal density 

with a coefficient  χ,  0 < 𝜒𝜒 < 1, and a gamma density with a coefficient 1 − 𝜒𝜒, was used, 

namely:  

ℎ𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) = 𝜒𝜒
1

𝑠𝑠√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
�
𝑡𝑡 − 𝜇𝜇�
𝑠𝑠

�
2

� + (1 − 𝜒𝜒)�𝜆̃𝜆𝑡𝑡�
𝛾𝛾−1 𝜆̃𝜆

𝛤𝛤(𝛾𝛾)
𝑒𝑒−𝜆𝜆�𝑡𝑡 , 𝑡𝑡 ≥ 0. 

The parameters 𝜆̃𝜆, 𝛾𝛾, 𝜇𝜇� and s are determined by such a way that both densities have the same 

expectation and variance. It is known that 𝜇𝜇�  =  𝐸𝐸(𝑇𝑇(𝛽𝛽)) = 3.624, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇(𝛽𝛽)) = 3.107, 𝑠𝑠 =

�𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇(𝛽𝛽)) = √3.107 = 1.763. Further 

𝜆̃𝜆 =  
𝐸𝐸(𝑇𝑇(𝛽𝛽))
𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇(𝛽𝛽)) =

3.624
3.107 

= 1.166, 𝛾𝛾 = 𝐸𝐸(𝑇𝑇(𝛽𝛽))2
1

𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇(𝛽𝛽)) = 4.226. 

The coefficient χ is calculated by formula (15) and equals 0.899. Fig. 3 demonstrates graphs 

of the density h(t) and of the approximated density ℎ𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡). We can see the close 

approximation.  

0 2 4 6 8 10
0

0.1

0.2

hApp t( )

h t( )

t
 

Figure 3. Density h(t) and its approximation hApp(t). 
 

0 2 4 6 8 10
0

0.05

0.1

0.15

gR1 t( )

gR2 t( )

gR3 t( )

g4 t 1,  ( )

t
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Using the resulting approximation, the cumulative distribution function of the time 

𝑇𝑇(𝛽𝛽) can be calculated as follows: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡) = �ℎ𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃)𝑑𝑑𝑑𝑑 =
𝑡𝑡

0

 

= ��𝜒𝜒
1

𝑠𝑠√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
�
𝜃𝜃 − 𝜇𝜇�
𝑠𝑠

�
2

� + (1 − 𝜒𝜒)�𝜆̃𝜆𝜃𝜃�
𝛾𝛾−1 𝜆̃𝜆

𝛤𝛤(𝛾𝛾)
𝑒𝑒−𝜃𝜃𝜆𝜆�� 𝑑𝑑𝑑𝑑 =

𝑡𝑡

0

 

= 𝜒𝜒𝜒𝜒 �
𝑡𝑡 − 𝜇𝜇�
𝑠𝑠

� + (1 − 𝜒𝜒)
1

𝛤𝛤(𝛾𝛾)
� �𝜆̃𝜆𝜃𝜃�

𝛾𝛾−1
𝑒𝑒−𝜃𝜃𝜆𝜆�

𝑡𝑡

0
𝑑𝑑𝑑𝑑𝜆̃𝜆 = 

= 𝜒𝜒𝜒𝜒 �
𝑡𝑡 − 𝜇𝜇�
𝑠𝑠

� + (1 − 𝜒𝜒)
1

𝛤𝛤(𝛾𝛾)
� 𝑢𝑢𝛾𝛾−1𝑒𝑒−𝑢𝑢
𝜆𝜆�𝑡𝑡

0
𝑑𝑑𝑑𝑑, 𝑡𝑡 ≥ 0. 

The corresponding graph is presented in Fig. 4. 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

Happ t( )

t
 

Figure 4. Approximation of the cumulative distribution function Happ(t). 
 

5. PREVENTIVE RENEWALS 
Now consideration is given to the above described modification of the presented model. 

A preventive level α, 0 < α < β, is assigned. If the current jump gives an accumulated stock 

𝑅𝑅𝑛𝑛 which is positive but less than α, then the stock is renewed up to initial level β. Here, we 

consider a preventive jump or a preventive renewal and the desire to calculate the earlier 

considered characteristics for such conditions. 

Further, the following random variables are considered for the initial level β and the 

preventive level α: 

• 𝑇𝑇(𝛼𝛼,𝛽𝛽) is the time of reaching the zero-level, that is to say a failure time;  

• 𝑇𝑇∗∗(𝛼𝛼,𝛽𝛽) is the time of first reaching the α-level without the failure,      

𝑃𝑃{𝑇𝑇∗∗(𝛼𝛼,𝛽𝛽) < ∞} < 1 ; 

• 𝑁𝑁(𝛼𝛼,𝛽𝛽) is the number of preventive renewals until the zero-level is reached. 
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The above presented methods of an approximation for a calculation of corresponding 

distributions will be used. 

As defined earlier, let 𝑔𝑔𝑛𝑛(𝑡𝑡, 𝑟𝑟 ∣ 𝛼𝛼), 𝑟𝑟 > 0, be the density of (𝑇𝑇𝑛𝑛,𝑅𝑅𝑛𝑛) jointly with 

probability 𝑅𝑅𝜂𝜂 > 0 for 𝜂𝜂 = 1, … ,𝑛𝑛. In addition, the density 𝑔𝑔𝑛𝑛∗∗(𝑡𝑡 ∣ 𝛼𝛼) with respect to the time 

t for the n-th jump, when 𝑅𝑅𝜂𝜂 > 0 , 𝜂𝜂 = 1, … ,𝑛𝑛 − 1,  and 0 < 𝑅𝑅𝑛𝑛  ≤ 𝛼𝛼  is introduced. In this 

case the component 𝑅𝑅𝑛𝑛 only reaches the value 𝛼𝛼  and initial value β is renewed (i.e., a 

preventive renewal takes place). 

Then for 𝑡𝑡 ≥ 0  

 𝑔𝑔1(𝑡𝑡, 𝑟𝑟 ∣ 𝛼𝛼) = �𝑓𝑓(𝑡𝑡, 𝑟𝑟 − 𝛽𝛽), 𝑟𝑟 > 0 ,
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,   (21) 

𝑔𝑔1∗∗(𝑡𝑡 ∣ 𝛼𝛼) = � 𝑔𝑔1(𝑡𝑡,𝜌𝜌 ∣ 𝛼𝛼)𝑑𝑑𝑑𝑑
𝛼𝛼

0
= � 𝑓𝑓(𝑡𝑡,𝜌𝜌 − 𝛽𝛽)𝑑𝑑𝑑𝑑

𝛼𝛼

0
= 

 = ∫ 𝑓𝑓(𝑡𝑡, 𝜌𝜌 − 𝛽𝛽)𝑑𝑑(𝜌𝜌 − 𝛽𝛽)𝛼𝛼
0 = 𝐹𝐹𝑌𝑌(𝑡𝑡,𝛼𝛼 − 𝛽𝛽) − 𝐹𝐹𝑌𝑌(𝑡𝑡,−𝛽𝛽),  (22) 

 𝑔𝑔𝑛𝑛(𝑡𝑡, 𝑟𝑟 ∣ 𝛼𝛼) = ∫ ∫ 𝑔𝑔𝑛𝑛−1(𝜏𝜏, 𝜌𝜌 ∣ 𝛼𝛼)𝑓𝑓(𝑡𝑡 − 𝜏𝜏, 𝑟𝑟 − 𝜌𝜌)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +  ∞
𝛼𝛼

𝑡𝑡
0    

 +∫ 𝑔𝑔𝑛𝑛−1∗∗ (𝜏𝜏 ∣ 𝛼𝛼)�𝑓𝑓(𝑡𝑡 − 𝜏𝜏, 𝑟𝑟 − 𝛽𝛽)�𝑑𝑑𝑑𝑑,𝑛𝑛 = 2, 3, …𝑡𝑡
0 ; 𝑟𝑟 > 0,𝑛𝑛 = 2, 3, …,     (23) 

𝑔𝑔𝑛𝑛∗∗(𝑡𝑡 ∣ 𝛼𝛼) =  � 𝑔𝑔𝑛𝑛(𝑡𝑡, 𝜌𝜌 ∣ 𝛼𝛼)𝑑𝑑𝑑𝑑
𝛼𝛼

0
= 

 = ∫ ∫ 𝑔𝑔𝑛𝑛−1(𝜏𝜏,𝜌𝜌 ∣ 𝛼𝛼)�𝐹𝐹𝑌𝑌(𝑡𝑡 − 𝜏𝜏,𝛼𝛼 − 𝜌𝜌) − 𝐹𝐹𝑌𝑌(𝑡𝑡 − 𝜏𝜏,−𝜌𝜌)�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +  ∞
𝛼𝛼

𝑡𝑡
0   (24) 

+�𝑔𝑔𝑛𝑛−1∗∗ (𝜏𝜏 ∣ 𝛼𝛼)�𝐹𝐹𝑌𝑌(𝑡𝑡 − 𝜏𝜏,𝛼𝛼 − 𝛽𝛽) − 𝐹𝐹𝑌𝑌(𝑡𝑡 − 𝜏𝜏,− 𝛽𝛽)�𝑑𝑑𝑑𝑑, 𝑛𝑛 = 2, 3, … .
𝑡𝑡

0

 

As defined earlier, 𝑔𝑔𝑛𝑛∗(𝑡𝑡 ∣ 𝛼𝛼) is the density of the time when the zero level is reached, 

jointly with probability that it arises on the n-th jump, is as follows for 𝑡𝑡 ≥ 0: 

𝑔𝑔1∗(𝑡𝑡 ∣ 𝛼𝛼) = 𝐹𝐹𝑌𝑌(𝑡𝑡,−𝛽𝛽), 

 𝑔𝑔𝑛𝑛∗(𝑡𝑡 ∣ 𝛼𝛼) = ∫ ∫ 𝑔𝑔𝑛𝑛−1(𝜏𝜏, 𝜌𝜌 ∣ 𝛼𝛼)𝐹𝐹𝑌𝑌(𝑡𝑡 − 𝜏𝜏,−𝜌𝜌)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +  ∞
𝛼𝛼

𝑡𝑡
0     

  + ∫ 𝑔𝑔𝑛𝑛−1∗∗ (𝜏𝜏 ∣ 𝛼𝛼) 𝐹𝐹𝑌𝑌(𝑡𝑡 − 𝜏𝜏,− 𝛽𝛽)𝑑𝑑𝑑𝑑, 𝑛𝑛 = 2, 3, … .𝑡𝑡
0    (25) 

It is necessary to also introduce some computational aspects. The procedure described 

in Section 3 is applied to the density 𝑔𝑔𝑛𝑛(𝑡𝑡, 𝑟𝑟,𝛼𝛼) and the density 𝑔𝑔𝑛𝑛∗∗(𝑡𝑡 ∣ 𝛼𝛼). The matrix G of 

the values  𝑔𝑔𝑛𝑛(𝑡𝑡, 𝑟𝑟,𝛼𝛼)  for r > α is stored analogously, but the vector 𝐺𝐺∗∗ is used for values 

𝑔𝑔𝑛𝑛∗∗(𝑡𝑡 ∣ 𝛼𝛼). 
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Let 𝑃𝑃𝑃𝑃𝑛𝑛,𝑃𝑃𝑃𝑃𝑛𝑛∗∗,𝑃𝑃𝑃𝑃𝑛𝑛∗ be the probabilities that the n-th jump does not have a renewal, has a 

preventive renewal, and gives a failure, correspondingly: 

 𝑃𝑃𝑃𝑃𝑛𝑛 = ∫ ∫ 𝑔𝑔𝑛𝑛(𝑡𝑡, 𝑟𝑟 ∣ 𝛼𝛼)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,∞
𝛼𝛼

∞
0   (26) 

 𝑃𝑃𝑃𝑃𝑛𝑛∗∗ = ∫ 𝑔𝑔𝑛𝑛∗∗(𝑡𝑡 ∣ 𝛼𝛼)𝑑𝑑𝑑𝑑∞
0 ,  (27) 

 𝑃𝑃𝑃𝑃𝑛𝑛∗ = ∫ 𝑔𝑔𝑛𝑛∗(𝑡𝑡 ∣ 𝛼𝛼)𝑑𝑑𝑑𝑑.∞
0   (28) 

The obvious identity 

 𝑃𝑃𝑃𝑃𝑛𝑛 +  𝑃𝑃𝑃𝑃𝑛𝑛∗∗ +  𝑃𝑃𝑃𝑃𝑛𝑛∗ = 𝑃𝑃𝑃𝑃𝑛𝑛−1 +  𝑃𝑃𝑃𝑃𝑛𝑛−1∗∗ , 𝑛𝑛 = 2, 3, …,  (29) 

allows the control of the precision of calculations. 

Now we have the following expressions for the density h(t ∣ 𝛼𝛼) and its cumulative 

distribution function 𝐻𝐻(𝑡𝑡 ∣ 𝛼𝛼) of the random variable 𝑇𝑇(𝛼𝛼,𝛽𝛽): 

 ℎ(𝑡𝑡 ∣ 𝛼𝛼) = ∑ 𝑔𝑔𝑛𝑛∗ (𝑡𝑡 ∣ 𝛼𝛼), 𝑡𝑡 ≥ 0,∞
𝑛𝑛=1   (30) 

 𝐻𝐻(𝑡𝑡 ∣ 𝛼𝛼) = ∫ ℎ(𝜏𝜏 ∣ 𝛼𝛼)𝑑𝑑𝑑𝑑, 𝑡𝑡 ≥ 0.𝑡𝑡
0   (31) 

The renewal function ℎ∗∗( 𝑡𝑡 ∣ 𝛼𝛼 ) for preventive jumps is the following:  

 ℎ∗∗( 𝑡𝑡 ∣ 𝛼𝛼 ) = ∑ 𝑔𝑔𝑛𝑛∗∗(𝑡𝑡 ∣ 𝛼𝛼), 𝑡𝑡 ≥ 0.∞
𝑛𝑛=1   (32) 

Let us calculate expectations of the random variables 𝑇𝑇(𝛼𝛼,𝛽𝛽) and 𝑁𝑁(𝛼𝛼,𝛽𝛽): 

 𝐸𝐸�𝑇𝑇(𝛼𝛼,𝛽𝛽)� = ∫ 𝑡𝑡ℎ(𝑡𝑡 ∣ 𝛼𝛼)𝑑𝑑𝑑𝑑∞
0 = ∫ (1 − 𝐻𝐻(𝑡𝑡 ∣ 𝛼𝛼))𝑑𝑑𝑑𝑑∞

0 ,  (33) 

 𝐸𝐸�𝑁𝑁(𝛼𝛼,𝛽𝛽)� = ∫ ℎ∗∗( 𝑡𝑡 ∣ 𝛼𝛼 )𝑑𝑑𝑑𝑑∞
0 .  (34)  

Now the following optimization problem can be formulated. Let a cost of preventive 

renewal equal 𝑐𝑐∗∗ > 0. On the other hand, a reward of the size φ is assigned for a unit time 

until a failure (a reaching of zero level). A mean reward until the failure is calculated as 

follows: 

 𝑅𝑅(𝛼𝛼) = 𝜑𝜑 𝐸𝐸�𝑇𝑇(𝛼𝛼,𝛽𝛽)� −  𝑐𝑐∗∗𝐸𝐸�𝑁𝑁(𝛼𝛼,𝛽𝛽)�,   0 <  𝛼𝛼 <  𝛽𝛽.  (35) 

The criterion 𝑅𝑅(𝛼𝛼) is calculated by means of the formulas (33) and (34). The preventive level 

α1 is better than the level α2 , if 𝑅𝑅(𝛼𝛼1) > 𝑅𝑅(𝛼𝛼2). 

6. EXAMPLE (CONTINUE) 
Results of calculations for α = 1 are now presented. Two-dimensional densities (19) 

give the following probability (26) that the level α is not reached for the first jump: 𝑃𝑃𝑃𝑃1 =

0.296. The probability (27) that the first jump ends with a renewal is  𝑃𝑃𝑃𝑃1∗∗ = 0.252. The 

probability (28) that the first jump ends with a failure is 𝑃𝑃𝑃𝑃1∗ = 0.452. This coincides with 

earlier presented results. Table 2 contains these probabilities for many jumps. The last two 

rows allow a verification of the identity (29). 
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Table 2. Probabilities 𝑃𝑃𝑃𝑃𝑛𝑛, 𝑃𝑃𝑃𝑃𝑛𝑛∗∗,  𝑃𝑃𝑃𝑃𝑛𝑛∗ for α = 1 
 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 
𝑃𝑃𝑃𝑃𝑛𝑛  0.296 0.154 0.083 0.045 0.025 0.015 

 𝑃𝑃𝑃𝑃𝑛𝑛∗∗ 0.252 0.131 0.068 0.036 0.020 0.012 
𝑃𝑃𝑃𝑃𝑛𝑛∗ 0.452 0.262 0.134 0.070 0.036 0.018 

𝑃𝑃𝑃𝑃𝑛𝑛 +  𝑃𝑃𝑃𝑃𝑛𝑛∗∗ 0.548 0.285 0.151 0.081 0.045 0.027 
𝑃𝑃𝑃𝑃𝑛𝑛 +  𝑃𝑃𝑃𝑃𝑛𝑛∗∗+𝑃𝑃𝑃𝑃𝑛𝑛∗ 1.000 0.547 0.285 0.151 0.081 0.045 

 
The probability that the critical level will be reached during six jumps equals 0.452 + 

0.262 + 0.134 + 0.070 + 0.036 +0.018 = 0.972. The mean number of renewals equals 0.252 + 

0.131 + 0.068 + 0.036 + 0.020 + 0.012 = 0.519. 

Calculations for the second jump were performed by main formulas (23)–(25). An 

approximated approach is applied for calculations beginning from the third jump. As 

described earlier, we set Δ = 0.5, nmax = 22, rmax = 12, 𝜔𝜔𝑡𝑡 = Δ × nmax, and 𝜔𝜔𝑟𝑟 = Δ × rmax = 

6. The previous (second) density 𝑔𝑔2(𝑡𝑡, 𝑟𝑟 ∣ 1) is presented by the matrix of the dimension 

nmax ⨉ rmax = 22 ⨉ 12. Table 3 contains a main sub-matrix G2 of this matrix, having the 

dimension 11 ⨉ 9. 

Table 3. Sub-matrix G2 of the density 𝑔𝑔2(𝑡𝑡, 𝑟𝑟 ∣ 1) 

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

9 10 4−
×

4.68 10 3−
×

9.259 10 3−
×

0.012

0.011

8.179 10 3−
×

5.135 10 3−
×

2.753 10 3−
×

1.279 10 3−
×

5.185 10 4−
×

1.845 10 4−
×

0

9.913 10 4−
×

4.622 10 3−
×

8.22 10 3−
×

9.327 10 3−
×

7.94 10 3−
×

5.446 10 3−
×

3.122 10 3−
×

1.527 10 3−
×

6.454 10 4−
×

2.373 10 4−
×

7.63 10 5−
×

0

9.206 10 4−
×

3.83 10 3−
×

6.123 10 3−
×

6.299 10 3−
×

4.9 10 3−
×

3.087 10 3−
×

1.628 10 3−
×

7.32 10 4−
×

2.832 10 4−
×

9.483 10 5−
×

2.764 10 5−
×

0

7.299 10 4−
×

2.683 10 3−
×

3.842 10 3−
×

3.579 10 3−
×

2.55 10 3−
×

1.483 10 3−
×

7.24 10 4−
×

3.009 10 4−
×

1.073 10 4−
×

3.291 10 5−
×

8.733 10 6−
×

0

4.984 10 4−
×

1.606 10 3−
×

2.045 10 3−
×

1.716 10 3−
×

1.121 10 3−
×

6.001 10 4−
×

2.721 10 4−
×

1.052 10 4−
×

3.489 10 5−
×

9.853 10 6−
×

2.388 10 6−
×

0

2.945 10 4−
×

8.362 10 4−
×

9.297 10 4−
×

6.97 10 4−
×

4.185 10 4−
×

2.044 10 4−
×

8.576 10 5−
×

3.111 10 5−
×

9.647 10 6−
×

2.525 10 6−
×

5.6 10 7−
×

0

1.537 10 4−
×

3.844 10 4−
×

3.654 10 4−
×

2.42 10 4−
×

1.307 10 4−
×

5.878 10 5−
×

2.258 10 5−
×

7.704 10 6−
×

2.249 10 6−
×

5.492 10 7−
×

1.137 10 7−
×

0

7.156 10 5−
×

1.555 10 4−
×

1.282 10 4−
×

7.332 10 5−
×

3.474 10 5−
×

1.403 10 5−
×

4.938 10 6−
×

1.587 10 6−
×

4.386 10 7−
×

1.005 10 7−
×

1.942 10 8−
×













































  

Now we can calculate function 𝑔𝑔�2(𝑡𝑡, 𝑟𝑟 ∣ 𝛼𝛼) and use one instead of the function 𝑔𝑔2(𝑡𝑡, 𝑟𝑟 ∣

𝛼𝛼), analogously to formula (23). The correctness of such a change is verified by comparison 

of two integrals: 

 � � 𝑔𝑔2(𝑡𝑡, 𝑟𝑟 ∣ 𝛼𝛼)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜔𝜔𝑟𝑟

α

𝜔𝜔𝑡𝑡

0

= 0.154   and  � � 𝑔𝑔�2(𝑡𝑡, 𝑟𝑟 ∣ 𝛼𝛼) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 

𝜔𝜔𝑟𝑟

α

𝜔𝜔𝑡𝑡

0

0.156. 
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It can be seen that the difference is not large. 

Analogously we act with respect to the density 𝑔𝑔2∗∗(𝑡𝑡 ∣ 𝛼𝛼) . It is stored as the vector 𝐺𝐺∗∗, 

whose 14 elements are presented in Table 4.  

Table 4. Vector 104×𝐺𝐺∗∗ of the density 𝑔𝑔2∗∗(𝑡𝑡 ∣ 1) 

i 0 1 2 3 4 5 6 
𝐺𝐺𝑖𝑖∗∗ 5.6 39.5 110 200 240 240 190 

i 7 8 9 10 11 12 13 
𝐺𝐺𝑖𝑖∗∗ 130 79 41. 19 7.6 2.7 0.8 

 

As 

� 𝑔𝑔2∗∗(𝑡𝑡 ∣ 𝛼𝛼)𝑑𝑑𝑑𝑑

𝜔𝜔𝑡𝑡

0

= 0.131  and � 𝑔𝑔�2∗∗(𝑡𝑡 ∣ 𝛼𝛼)𝑑𝑑𝑑𝑑

𝜔𝜔𝑡𝑡

0

= 0.13, 

the function 𝑔𝑔�2∗∗(𝑡𝑡 ∣ 𝛼𝛼) instead of function 𝑔𝑔2∗∗(𝑡𝑡 ∣ 𝛼𝛼)  can be used. The same procedure is 

used for the density  𝑔𝑔2∗(𝑡𝑡 ∣ 𝛼𝛼). Its values are stored as the vector 𝐺𝐺∗, which is presented in 

Table 5. 

Table 5. Vector 104 × 𝐺𝐺∗ of the density 𝑔𝑔2∗(𝑡𝑡 ∣ 𝛼𝛼) 

i 0 1 2 3 4 5 6 
𝐺𝐺𝑖𝑖∗ 1.72 15.5 56.5 130 220 229 340 

i 7 8 9 10 11 12 13 
𝐺𝐺𝑖𝑖∗ 310 260 200 150 100 72 48 

i 14 15 16 17 18 19 20 
𝐺𝐺𝑖𝑖∗ 32 21 14 9.1 5.9 3.8 2.4 

 

Using functions 𝑔𝑔�2(𝑡𝑡, 𝑟𝑟 ∣ 𝛼𝛼),  𝑔𝑔2∗∗(𝑡𝑡 ∣ 𝛼𝛼), and 𝑔𝑔2∗(𝑡𝑡 ∣ 𝛼𝛼), all functions, related to the third 

jump, can be calculated. This procedure is applied also for the remaining jumps. Fig. 5 

contains graphs of the densities 𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡, 1) = 𝑔𝑔𝑛𝑛∗(𝑡𝑡 ∣ 1) of failure’s time on the n-th jump, n 

=1,…, 5. The density h(t ∣ 1) of the failure’s time 𝑇𝑇(1, 2) is also presented. 

         
Figure 5. Functions 𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡, 1) = 𝑔𝑔𝑛𝑛∗ (𝑡𝑡 ∣ 1) and  ℎ(𝑡𝑡, 1). 

 

0 5 10
0

0.05

0.1

0.15

gR1 t( )

gR2 t 1,  ( )

gR3 t 1,  ( )

gR4 t 1,  ( )
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t
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The expectation, the variance, and the standard deviation of this time are 𝐸𝐸(𝑇𝑇(1, 2)) =

3.993,  𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇(1, 2)) = 4.356, and 𝜎𝜎(𝑇𝑇(1, 2)) = 2.087. As established earlier, for the case 

with α = 0 we have 𝐸𝐸�(𝑇𝑇(𝛽𝛽)) = 3.624. The difference between the expectations expressed in 

percent is  3.993−3.624
3.624

100% = 10.2%.  

An approximation of the density h(t ∣ 1) is performed as earlier and gives the following 

result: 

ℎ𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) = 0.908 (0.917𝑡𝑡)2.66  
0.917
𝛤𝛤(3.66)

𝑒𝑒−0.917𝑡𝑡 + 

+(1 − 0.908)
1

√2𝜋𝜋 2.087
𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
�
𝑡𝑡 − 3.993

2.087
�
2

� , 𝑡𝑡 ≥ 0. 

Graphs of the densities h(t ∣ 1) and hApp(t) are presented in Fig. 6. 

 
Figure 6. Densities h(t ∣ 1) and its approximation hApp(t). 

 

Now it is possible to perform a calculation by formula (31). Corresponding graph is 

presented in Fig.7. 

 
Figure 7. Cumulative distribution function H(t). 

 
In addition, some results for the case α = 0.5 are presented, which allows comparison of 

the results for three cases: α1 = 0, α2 = 0.5, and α3 = 1. Table 2 presented earlier is replaced by 

Table 6.  

Table 6. Probabilities 𝑃𝑃𝑃𝑃𝑛𝑛, 𝑃𝑃𝑃𝑃𝑛𝑛∗∗,  𝑃𝑃𝑃𝑃𝑛𝑛∗  for  α2 = 0.5 
 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 

𝑃𝑃𝑃𝑃𝑛𝑛  0.422 0.183 0.085 0.040 0.019 0.009 

0 2 4 6 8 10
0

0.1

0.2

hApp t( )

h t 1,  ( )

t

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

Happ t( )

t
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 𝑃𝑃𝑃𝑃𝑛𝑛∗∗ 0.126 0.063 0.028 0.013 0.006 0.003 
𝑃𝑃𝑃𝑃𝑛𝑛∗ 0.452 0.301 0.134 0.060 0.027 0.012 

𝑃𝑃𝑃𝑃𝑛𝑛 +  𝑃𝑃𝑃𝑃𝑛𝑛∗∗ 0.548 0.246 0.113 0.053 0.025 0.012 
𝑃𝑃𝑃𝑃𝑛𝑛 +  𝑃𝑃𝑃𝑃𝑛𝑛∗∗+𝑃𝑃𝑃𝑃𝑛𝑛∗ 1.000 0.547 0.247 0.113 0.052 0.024 

 
The probability that the critical level will be reached during five jumps equals 0.452 + 

0.301 + 0.134 + 0.060 + 0.027 = 0.974. This probability for six jumps equals 0.974 + 0.012 = 

=0.986. The expectation of failure’s time 𝐸𝐸�(𝑇𝑇(𝛼𝛼2,𝛽𝛽)) = 3.865. As a reminder, 𝐸𝐸�(𝑇𝑇(𝛽𝛽)) =

3.624 for the case α = 0 and 𝐸𝐸�(𝑇𝑇(𝛽𝛽)) = 3.993 for the case α = 1. The mean number of 

renewals 𝐸𝐸�𝑁𝑁(𝛼𝛼2,𝛽𝛽)� =  0.239. 

The above three preventive levels: α1 = 0, α2 = 0.5, and α3 = 1 were considered. Let us 

now consider the optimization criterion (35), using  𝜑𝜑 = 1, and various values of  𝑐𝑐∗∗ . The 

following expressions occur: 

𝑅𝑅(𝛼𝛼1) =  𝐸𝐸�𝑇𝑇(𝛼𝛼1,𝛽𝛽)� = 3.624, 

𝑅𝑅(𝛼𝛼2) =  𝐸𝐸�𝑇𝑇(𝛼𝛼2,𝛽𝛽)� −  𝑐𝑐∗∗𝐸𝐸�𝑁𝑁(𝛼𝛼2,𝛽𝛽)� = 3.865 − 0.239 𝑐𝑐∗∗,   

𝑅𝑅(𝛼𝛼3) =  𝐸𝐸�𝑇𝑇(𝛼𝛼3,𝛽𝛽)� −  𝑐𝑐∗∗𝐸𝐸�𝑁𝑁(𝛼𝛼3,𝛽𝛽)� = 3.993 − 0.519 𝑐𝑐∗∗.   

The level 𝛼𝛼1 is better than the level 𝛼𝛼2 , if 

 𝑐𝑐∗∗ >
1

0.239
(3.865 − 3.624) = 1.008.   

The level 𝛼𝛼3 is better than the level 𝛼𝛼2 , if 

 𝑐𝑐∗∗ < ∞
1

0.519 − 0.239
(3.993 − 3.865) = 0.457. 

Also, (0, 0.457), (0.457, 1.008), and (1.008, ∞) are the intervals of  𝑐𝑐∗∗, for which the optimal 

levels are α3, α2, and α1. 

7. CONCLUSION 
The bivariate renewal process (𝑇𝑇𝑛𝑛,𝑅𝑅𝑛𝑛) is investigated for a special case, where this 

process is considered while the second component (a stock) has a positive value. A failure 

occurs if a nonpositive value of the stock takes place. A calculation of a density of failure’s 

time is performed.  

Further, the following generalization is considered. A preventive level α, 0 < α < β, is 

assigned. If an accumulated stock 𝑅𝑅𝑛𝑛 is positive but less than α, then the stock is renewed up 

to initial level β. We talk about preventive renewal here. Characteristics investigated for the 

presented case include: a distribution of a number of preventive renewals, a density of the 

failure’s time, etc. The problem of the optimal level α is also discussed.  
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Some computational techniques, supported by MathCAD software, are used for a 

realization of calculations. Numerical examples illustrate the results obtained and reported.  
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