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We study the problem of how many different sum of squares decompositions a 
general polynomial f with SOS-rank k admits. We show that there is a link between 
the variety SOSk(f) of all SOS-decompositions of f and the orthogonal group O(k). 
We exploit this connection to obtain the dimension of SOSk(f) and show that its 
degree is bounded from below by the degree of O(k). In particular, for k = 2 we 
show that SOS2(f) is isomorphic to O(2) and hence the degree bound becomes 
an equality. Moreover, we compute the dimension of the space of polynomials of 
SOS-rank k and obtain the degree in the special case k = 2.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Motivation Let V be a complex vector space of dimension n + 1 with basis {x0 . . . , xn} and let d ≥ 0
be an integer. Let f ∈ C[x0, . . . , xn] be a homogeneous polynomial of degree 2d, that is f ∈ Sym2d V . A 
starting case, when f is real, is the problem of computing the global infimum of f , f∗ = infz∈Rn f(z). 
Polynomial optimization problems appear frequently in practice in many different fields, including areas of 
engineering and social science such as computer vision [19,1], control theory [10,12] and optimal design [3]. 
However, even for deg f ≥ 4 this is an NP-hard problem [15]. As such, many methods have been developed 
to approximate f∗. A popular method is to relax the optimization problem:

max
λ∈R

λ s.t. f − λ =
k∑

i=1
g2
i ,

gi ∈ Symd V.
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Clearly, being a sum of squares implies non-negativity. It is well-known that these notions are equivalent in 
two homogeneous variables. However, due to the counter example by Motzkin this is not true in general [16].

In [13], using the duality between moments and sums of squares, Lasserre constructed a hierarchy of semi-
definite programs whose solutions converge to the true infimum f∗. However, in general, the decompositions 
obtained from semi-definite programming are approximate certificates of non-negativity. In recent years 
there has been an increased study on computing exact certificates [18,17]. Hence, one wants to understand 
the algebraic structure of SOS decompositions and the related semi-definite programs.

Prior works Following the classical works of Sylvester [22], the study of so-called Waring decompositions, 
decompositions of homogeneous polynomials by powers of linear forms, is an active area of research. In [7] it 
was proved that any general f ∈ Sym2d V is a sum of at most 2n squares. For fixed n, this bound is sharp for 
all sufficiently large d. The authors of [14] investigate the minimal numbers of squares in a decomposition of 
a generic polynomial in two variables. Then, in [6], the authors give a conjecture on the generic SOS-rank 
of polynomials, see Definition 1.2, in terms of number of variables and degree. On the other hand, in this 
paper we will study generic polynomials of a given SOS-rank.

In this paper, one aim is to analyze the degree of SOS decompositions directly from an algebraic geometry 
point of view. Another aim is to better understand the structure of the SOS decompositions of a given 
polynomial.

Main results We consider SOS decompositions of polynomials of degree 2d.

Definition 1.1. Let f ∈ Sym2d V . The polynomial f has SOS-rank k if k is the minimum number such that 
there exist fi ∈ Symd V such that

f =
r∑

i=1
f2
i .

In this paper, we define and study two varieties related to exact SOS decompositions. The first is defined 
by all polynomials of rank less than or equal to k, with a general point f ∈ SOSk being a polynomial of 
rank k.

Definition 1.2. Let SOSk be the subvariety in Sym2d V obtained from the Zariski closure of the set of all 
SOS-rank k polynomials.

SOSk = {f2
1 + · · · + f2

k | fi ∈ Symd V }.

The generic SOS-rank is the smallest number k such that SOSk covers the ambient space.

Another notion that can be explored is instead of analyzing all polynomials of a given rank, one can seek 
to understand all the different decompositions of the general polynomial f .

Definition 1.3. Let f ∈ SOSk be a generic polynomial. We define the variety of all the SOS decompositions 
of f as

SOSk(f) = {(f1, . . . , fk) ∈
k∏

i=1
Symd V |

k∑
i=1

f2
i = f}.

While we investigate the SOSk(f) variety for all ranks k, in particular we give a complete description of 
the k = 2 case.
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Theorem 1.4. Let f ∈ SOS2 ⊂ Sym2dV , dimV = n + 1 > 2, be a generic polynomial that is the sum of two 
squares. Then, SOS2(f) has two irreducible components isomorphic to SO(2).

Since SO(k) acts on any decomposition using k squares, we have the inequality

dim SOSk(f) ≥ dim SO(k) =
(
k

2

)
.

In Corollary 3.6 we prove a statement which implies the following result.

Theorem 1.5. Let f ∈ SOSk be generic with k ≤ n. Then,

dim SOSk(f) =
(
k

2

)
.

By analyzing the general polynomial in SOS2, we prove a formula for the degree of this variety.

Theorem 1.6. Let N = dim Symd V =
(
n+d
d

)
. The degrees of the varieties of squares and of sum of two 

squares in P (Sym2d V ) are given by

deg(SOS1) = 2N−1, deg(SOS2) =
N−3∏
i=0

(
N+i

N−2−i

)(2i+1
i

) .

Moreover, the dominant map

π :
∏k

i=1 Symd V → SOSk

(f1, . . . , fk) �→
∑k

i=1 f
2
i

has fibers π−1(f) = SOSk(f), so that Theorem 1.5 implies the following.

Corollary 1.7.

dim SOSk ≤ k

(
n + d

n

)
−
(
k

2

)
and equality holds for k ≤ n and a general f ∈ SOSk.

Structure of the paper In Section 2, we begin by recalling some definitions in sums of squares decompo-
sitions, algebraic geometry and commutative algebra. Then, in Section 3 we investigate the variety of all 
possible sums of k-squares decompositions of a given polynomial. We describe the action of the orthogonal 
group of size k on this variety and conjecture that there is an isomorphism between these two objects. We 
provide experimental and theoretical support for this conjecture and conclude by showing that it holds for 
k = 2. Finally, in Section 4 we use the results of Section 3 to prove a formula for the degree of the variety 
of all SOS decompositions of two squares in addition to a upper bound on this degree for k ≥ 3.

2. Preliminaries

Let V be a complex vector space of dimension n + 1. We will denote the n-dimensional projective space 
associated to V by PV .
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Definition 2.1. We define the d-Veronese embedding as the map

νd : PV → P Symd(V ), � �→ �d.

Notice that the map νd is closed [21]. Therefore, we define the d-Veronese variety in P Symd(V ) as the
image of PV under the Veronese embedding νd.

Definition 2.2. A polynomial f ∈ Symd V has rank one, or is decomposable, if f = vd. The rank of a 
polynomial f is defined as the minimum number r ∈ N such that

f =
r∑

i=1
vdi .

In other words, f is the sum of r decomposable polynomials.

Observe that the Veronese variety νd(V ) ⊂ P Symd V consists exactly of the rank one polynomials.

Definition 2.3. Let X be a subvariety of V . The k-th secant variety of X, denoted Σk(X), is defined as the 
Zariski closure of the union of all the k linear subspaces spanned by points in X. That is

Σk(X) =
⋃

x1,...,xk∈X

span{x1, . . . , xk}.

If X = νd(PV ) ⊂ P Symd V , then the generic elements in the k-th secant variety of the Veronese variety 
consist exactly of polynomials of rank k as long the inclusion Σk(νd(PV )) ⊂ P Symd V is strict.

Let U denote Symd V . We can decompose Sym2d U follows:

Sym2 U = Sym2d V ⊕ C,

where C is obtained by plethysm, see [23] for more details. The space C corresponds to the quadrics on U
that vanish on νd(PV ). Moreover, Sym2d V is the degree two piece of the coordinate ring of νd(PV ).

Let {x0, . . . , xn} be a basis of V . Consider a basis w1 = xd
0, w2 = xd−1

0 x1, . . . , wN = xd
n, with N =

(
n+d
d

)
. 

A rank one quadric q in Sym2 U has an expression q = (α1w1 + · · · + αNwN )2, with α1, . . . , αN ∈ C. 
Switching to the coordinates given by V we have

q = (α1x
d
0 + · · · + αNxd

n)2.

This means that rank one quadrics in Sym2 U correspond to square powers in Sym2d V . Furthermore, 
applying the same argument for a rank k quadric f ∈ Sym2 U , we see that f corresponds to a sum of k
squares in Sym2d V .

Notice that if (f1, . . . , fk) ∈ SOSk(f), as defined in Definition 1.3, then for any permutation σ ∈ Sk, 
where Sk is the symmetric group of order k, we have that(

fσ(1), . . . , fσ(k)
)
∈ SOSk(f).

One could desire to remove such “overlapping” points by taking the quotient by Sk. However, there is 
another important group, containing such permutations, that acts on SOSk(f).

Let O(k) be the orthogonal group of order k. Fix a point (f1, . . . , fk) ∈ SOSk(f) and fix the ordering of 
the basis {w1, . . . , wN} of Symd V . Define A to be the k×N matrix whose i-th row is the coefficients of the 
polynomial fi. Then,
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xAtAxt = f.

Let O ∈ O(k), then the action on the left by A preserves the polynomial f . That is,

x(OA)tOAxt = f.

Essentially, such an action leads to a different decomposition (f ′
1, . . . , f

′
k) of f , where f ′

i is the ith row of 
the matrix OA.

Definition 2.4. Let f ∈ Symd V , let {x0, . . . , xn} be a basis of V and let ∂0, . . . , ∂n be the dual basis of V ∨. 
For each m < d, we define the linear map

Wm
f :Symm V ∨ → Symd−m V,

∂i1 · · · ∂im �→ ∂f

∂xi1 · · · ∂xim

.

The matrix corresponding to this linear map is called the catalecticant matrix of f .

We give some cohomological definitions that are going to be used later on. Let S =
⊕

q Symq(V ) be the 
symmetric algebra of V .

Definition 2.5. Let R be a ring and F a free module of rank r over R. Given an R-linear map k : F → R, 
the complex

0 →
r∧
F

ϕr−−→
r−1∧

F
ϕr−1−−−→ . . .

ϕ2−→ F
ϕ1−→ R → 0

is called the Koszul complex associated to k. The maps ϕl are defined as

ϕl(e1 ∧ · · · ∧ e�) =
�∑

i=1
(−1)i+1k(ei)e1 ∧ · · · ∧ êi ∧ · · · ∧ e�,

where the notation êi means that this element is omitted from the product.

Definition 2.6. Let M be a finitely generated graded S-module and let F0, . . . , Fm be the free S-modules 
that give a minimal free resolution of M . That is, there is an exact sequence

0 → Fm → Fm−1 → · · · → F1 → F0 → M → 0,

and the matrices of the maps φi : Fi+1 → Fi have no non-zero constant entry, see [5]. The Betti number 
βi,j is the number of generators of degree j needed to describe Fi. That is, Fi =

⊕
j S(−j)βi,j , where S(−j)

is the j-graded part of S.

Definition 2.7. Let M , N be two graded S-modules and let F• be a free resolution of N . Consider the 
complex F• ⊗M . The Tor groups are defined by

TorSp (M,N) = Hp(F• ⊗M).

The next result shows the relation between the Tor groups of M and the Betti numbers of a free resolution 
of M .
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Proposition 2.8. [8, Section 1] Let m ⊂ S be the maximal ideal m =
⊕

q≥1 Symq(V ) and let k = S/m be the 

residual field. Then, TorSp (M, k)q has rank equal to βp,q.

This connection between the Betti numbers and the Tor groups is important because it correlates the 
Betti numbers with cohomology. This allows us to use semi-continuity on the Betti numbers, as explained 
in the next theorem.

Theorem 2.9. [9, Theorem 12.8] Let f : X → Y be a projective morphism of noetherian schemes. Let F be 
a coherent sheaf on X and flat over Y , in other words, F is a finitely presented OX-module and the functor 
– ⊗OY,f(x) : ModFx

→ ModFx
is exact for every x ∈ X. Then for each i ≥ 0, the function

y �→ dimHi(Xy,Fy)

is upper semi-continuous on Y .

3. The degree of the variety of all SOS decompositions

Let f =
∑k

i=1 f
2
i ∈ C[x0, . . . , xn] be a sum of squares with degree 2d. We consider the variety in the 

ambient space 
∏k

i=1 Sym
d(V ) of all possible SOS decompositions of the given polynomial f .

SOSk(f) = {(f1, . . . , fk) ∈
k∏

i=1
Symd(V )|

k∑
i=1

f2
i = f}

We conjecture the degree of this variety, when n ≥ k, to be the degree of the orthogonal group O(k). In 
[2] the authors give the degree of SO(k), and thus O(k), to be the determinant of the following binomial 
matrix

deg O(k) = 2k det
(((

2k − 2i− 2j
k − 2i

))
1≤i,j≤� k

2 	

)
. (1)

For the case d = 1, the argument simplifies and so we give the following lemma.

Lemma 3.1. Let f ∈ Sym2 V be a quadric of SOS-rank k ≤ n. Then, in the affine setting, the degree of 
SOSk(f) is equal to the degree of O(k).

Proof. With f =
∑k

i=1 f
2
i , n ≥ k implies that we can encode f in a k× (n + 1) matrix, A, whose rows give 

the coefficients of the linear forms fi. Then, with x = (x0, . . . , xn) we have that ‖Axt‖2 = f . Thus, for any 
orthogonal matrix O ∈ O(k) we have that

‖OAxt‖2 = (OAxt)t(OAxt) = xAtOtOAxt = xAtAxt = ‖Axt‖2 = f

Hence, there is an action on the SOSk(f) variety by O(k). Additionally, there are at least two identical 
irreducible components that correspond to detO = ±1.

We now show that up to a change of coordinates and multiplication by an orthogonal matrix, this 
SOS expression is unique. Let A and B be k × (n + 1) matrices encoding SOS decomposition of f . Then, 
up to a change of coordinates, we can ensure that the first k columns are linearly independent and so QR
decompositions can be found. Thus, let A = Q1R1 and B = Q2R2 where Q1, Q2 are k×k orthogonal matrices 
and R1, R2 are k × (n + 1) upper triangular matrices. Then, R1 and R2 also encode SOS decompositions 
of f . By the equation ‖R1x

t‖2 = f we can identify exactly the entries of R1, up to multiplication by ±1
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Table 1
Degree of SOSk(f) for n ≥ k. See formula (1) for the 
degree of O(k).

k Symbolic Formula (O(k)) Formula (SO(k))
2 4 4 2
3 16 16 8
4 80 80 40
5 768 768 384
6 9356 9356 4768
7 - 233232 111616
8 - 6867200 3433600
9 - 393936896 196968448

in the rows, or in other words, up to multiplication by an orthogonal matrix. The same holds for R2 and 
so the decompositions encoded by A and B must be in the same orbit of the action of O(k) on SOSk(f). 
Therefore, there is only one orbit and so the degree of SOSk(f) is equal to the degree of O(k). �

The argument above also works partially for the case d ≥ 2. Once a basis is chosen for Symd V , we can 
construct the matrix in the same way with k rows but 

(
n+d
d

)
columns. Then, the group O(k) acts on the left 

to give new decompositions. However, the QR decomposition no longer implies uniqueness of the orbit. This 
is because there exist relations between the monomials described by the columns of f . In other words, the 
Gram matrix associated to f is not only symmetric but also has a moment structure. Thus, it is no longer 
easy to see that the non-linear equations given by the norm of Axt squared, ‖Axt‖2, have a unique solution.

Experimentally, up to k ≤ 6, we observe a stabilization of the degree of the variety SOSk(f) as the degree 
of f increases. The following table derives from [2, Table 1]. Since the degree of SOS7(f) is at least 233, 232
for a generic f ∈ SOS7, k ≤ 6 is currently the limit for our experimental methods.

The next example shows that the condition n ≥ k is sharp.

Example 3.2. The general plane quartic can be expressed as g2
1 + g2

2 + g2
3 in 63 ways, where gi ∈ Sym2 C3. 

A proof of such result is presented in [4, Theorem 6.2.3]. The idea is to consider the quartic form as the 
determinant of a 2 × 2 matrix whose entries are quadric forms.

The next lemma gives an indication of the connection between k-SOS decompositions and the orthogonal 
group O(k). Indeed, fixing a matrix A0 ∈ Mk×N is equivalent to fixing a sum of squares decomposition of 
rank k of f = xtAT

0 A0x.

Lemma 3.3. Let N ≥ k ≥ 1 be integers and A, A0 ∈ Mk×N be matrices, A0 of maximal rank and consider 
the entries of A as variables xij. Then the variety Y defined by the equation

AtA = At
0A0

is isomorphic to O(k).

Proof. Up to an action of the group of N ×N invertible matrices, GL(N), on the left and O(k) on the right 
of A0, we may suppose without loss of generality that A0 = [Ik 0], with Ik the k×k identity matrix and 0 a 
null matrix of size k×(N−k). Let A = [X0 X1 ], again with X0 a k×k matrix and X1 a k×(N−k) matrix.

In those coordinates, the variety is determined by[
Xt

0X0 Xt
0X1

Xt
1X0 Xt

1X1

]
=

[
Ik 0
0 0

]
.

The first block implies that Xt
0X0 ∈ O(k). Moreover Xt

0X1 = 0 implies that X1 = 0 since X0 is 
invertible. �
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Let f ∈ Sym2d V be a sum of k squares f =
∑k

i=1 f
2
i . Then, f = xAtAxt, where A ∈ Mk×N has the 

coefficients of fi as its i-th row. This gives a natural isomorphism

SOSk(f) ∼= {B ∈ Mk×N |xBtBxt = f}. (2)

Denote the Gram matrix WA = AtA and note that rkWA = k when the above decomposition is minimal. 
The previous lemma implies that O(k) ∼= {B ∈ Mk×N |WB = WA} ⊂ SOSk(f). This, together with the 
isomorphism (2) implies that SOSk(f) can be described by as many copies of O(k) as the number of distinct 
symmetric matrices WA of rank k such that xtWAx = f .

Let f ∈ Sym2d V and N =
(
n+d
d

)
. Notice that the following diagram commutes.

Ck ⊗CN Sym2(CN ) Sym2d V
ϕ

A 
−→ AtA

A 
→xAtAxt

π

B 
−→ xBxt
(3)

We have that SOSk(f) = {A|π(AtA) = f}. Moreover, if B ∈ Imϕ then rkB ≤ k.
The fiber π−1(f) = W0 +C, where W0 is the rank N catalecticant matrix of f such that xWxt = f and 

C is the variety

C = {C0 ∈ SN | xTC0x = 0}.

This means that the problem can be reformulated in terms of the intersection ϕ(Ck ⊗CN ) ∩ (C + W0): 
when this intersection is just a single point, as is the case for k ≤ 6 shown in Table 1, this implies that there 
exists only one C0 ∈ C such that W0 + C0 has rank k. This is equivalent to saying that SOSk(f) consists 
of a single copy of O(k). Thus, we arrive at the following conjecture.

Conjecture 3.1. Let f ∈ Sym2d V be generic of SOS-rank k ≤ n and let N =
(
n+d
d

)
. Then,

SOSk(f) ∼= {A ∈ Ck ⊗CN | AtA = W, xWxt = f} = {A ∈ Ck ⊗CN | AtA = W0 + C0} = O(k).

Of course, if this intersection consists of more than a single point, one would arrive at exactly the number 
of copies of O(k) such that SOSk(f) is isomorphic.

Consider a tuple (f1, . . . , fk) ∈ SOSk(f), we denote the tangent space of SOSk(f) at this point by 
TSOSk(f)(f1,...,fk). Recall that if we consider an orthogonal matrix O ∈ O(k) and Af ∈ Mk×N , then the 
rows of AfO are polynomials giving a k-SOS decomposition of f .

We are interested in understanding the local behavior of this variety. More specifically, we want to show 
that the tangent space TSOSk(f)(f1,...,fk) has dimension equal to the dimension of O(k). This means that 
locally, the variety SOSk(f) is exactly equal to O(k). In order to do that, we can show that the only syzygies 
of a vector (f1, . . . , fk) ∈ SOSk(f) are given by the Koszul syzygies. In the next paragraphs, we further 
explain the concept of Koszul syzygies and how they are related to the tangent space of SOSk(f).

Let Af be the matrix whose rows are the coefficients of f1, . . . , fk. Observe that the map

φ : A �→ xAtAxt − f

gives SOSk(f) as the fiber at zero. Therefore, the tangent space TSOSk(f)(f1,...,fk) is the space generated 
by the nullity of the derivative of φ at the point (f1, . . . , fk). This equivalent to saying that

x(At
fV + V tAf )xt = 0 (4)
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where V ∈ Mk×N . Notice that equation (4) is trivially satisfied when At
fV is a skew-symmetric matrix. A 

syzygy satisfying this equation is a Koszul syzygy of (f1, . . . , fk). If we have that the Koszul syzygies are 
the only syzygies of the point (f1, . . . , fk), we obtain that they span the tangent space at this point. In such 
case, the tangent space has dimension equal to the dimension of O(k).

A more geometric and intuitive explanation can be described by looking at the usual set of coordinates 
instead of matrices. We may see SOSk(f) as the nullity of the map

ϕ : (h1, . . . , hk) �→
k∑

i=1
h2
i − f.

The tangent space TSOSk(f)(f1,...,fk) is computed once again as the space generated by the nullity of the 
derivative of the expression 

∑k
i=1 h

2
i − f at the point (f1, . . . , fk), that is ϕ′(f1, . . . , fk) = 0. This means 

that the tangent space is generated by

k∑
i=1

figi = 0.

The vanishing of this expression by considering tuples (g1, . . . , gk) such that we have pairs i �= j with gi = fj
and gj = −fi is a Koszul syzygy of the vector (f1, . . . , fk). Observe that this corresponds exactly to the 
matrix At

fV being skew-symmetric, where V is the matrix that has gi as the ith-row.

Proposition 3.4. The only syzygies of the vector (xd
0, . . . , x

d
k) are the Koszul syzygies.

Proof. Let A = [I 0] be a matrix as in equation (2) giving a SOS decomposition of f = x2d
0 + · · · + x2d

k

in a basis {xd
0, . . . , x

d
n, . . . }, where I is the k × k-identity matrix. Consider V = [vij ] a k ×N -matrix, then 

∂ϕ(A) = V tA + AtV is the derivative of ϕ. The statement is equivalent to show that x∂ϕ(A)xt = 0 if and 
only if V tA is skew-symmetric.

In this basis, W = V tA + AtV = [vij + vji ], and

xWxt =
k∑

i=1

( k∑
j=1

(vij + vji)xd
j

)
xd
i = 0,

since each monomial coefficient is equal to zero we obtain 2(vij + vji) = 0 as desired. �
The importance of this result is that it guarantees that at the point (xd

0, . . . , x
d
k) the tangent space to 

SOSk(x2d
0 + · · · + x2d

k ) has dimension equal to the number of Koszul syzygies, since they span the null 
space of ϕ′(xd

0, . . . , x
d
k). Moreover, this dimension is exactly equal to the dimension of the tangent space 

of O(k). This implies that locally at the point (xd
0, . . . , x

d
k), the variety SOSk(f) is equal to the subvariety 

O(k) ⊂ SOSk(f). We wish to extend this result to every point (f1, . . . , fk) ∈ SOSk(f). We obtain that this 
can be extended to a vector (f1, . . . , fk) by means of semi-continuity. Indeed, consider the kernel K of the 
map

OPV (−d)k [f1...fk]−−−−−→ OPV

defined by the vector (f1, . . . , fk), where OPV is the sheaf defining PV as a scheme (PV, OPV
). The minimal 

resolution of the kernel, when there are only Koszul syzygies, starts with

. . . → OPV (−2d)(
k
2) → K → 0
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By Proposition 2.8, the Betti numbers βp,p+q of the minimal resolution of K correspond to the rank of 
TorSp (K, k)p+q, this is the component of degree p +q of TorSp (K, k). Since we can correlate the Betti numbers 
with cohomology dimensions using Proposition 2.8, we have by Theorem 2.9 that for a local deformation of 
K, the Betti numbers satisfy semi-continuity. Moreover, since we know that for any other point (f1, . . . , fk)
will have at least the Koszul syzygies, this implies that it will have only them.

Corollary 3.5. Suppose that k ≤ n and f ∈ SOSk is general. Let (f1, . . . , fk) be a vector in (Symd V )×k

giving the decomposition as k sum of squares of a polynomial f . Then the only syzygies of (f1, . . . , fk) are 
the Koszul ones.

Corollary 3.6. Suppose that k ≤ n and f ∈ SOSk is general. We have an isomorphism SOSk(f) ∼= O(k)p, 
for some p ∈ Z+. Note that this does not depend on the degree of f . In particular deg SOSk(f) ≥ deg O(k)
which is computed in Table 1, in fact deg SOSk(f) ≡ 0 mod degO(k).

We notice that the diagram (3) can have its conclusion interpreted in a different manner. Instead of 
considering W0 a maximal rank matrix, one may consider a fixed matrix A0 defining f , and let

SOSk(f) = {BTB + C0 | rank(BTB + C0) = k, BTB = AT
0 A0 and C0 ∈ C}.

Notice that such interpretation means that adding C0 �= 0 is equivalent to changing the O(k) component 
of SOSk(f). Thus, if there exists no other matrix C0 besides 0 such that rank(AT

0 A0 + C0) = k, it implies 
that there exists only one component.

In the next pages we explore this equivalent problem and compare the dimensions of symmetric matrices 
of rank k and C. Although a proof that the only translation by C preserving the rank is 0 is not obtained, 
by a comparison of dimensions we get a clear indicator that we should not expect other solutions.

Let SN
k be the variety of symmetric matrices of size N =

(
n+d
d

)
of rank at most k. Then, for some fixed 

W ∈ SN
k , consider the variety

(S + W )Nk = {B | B + W ∈ SN
k }.

Note that this is indeed a variety as it is defined by the minors of the matrix B + W and moreover, for all 
M ∈ (S +W )Nk , we have that M −W ∈ SN

k . Hence, we can consider this variety a translation of SN
k by the 

matrix W .

(S + W )Nk = SN
k −W.

Recall the variety C = {C0 ∈ SN | xTC0x = 0} and note that the following statement holds:

For a generic W, (S + W )Nk ∩ C = 0 ⇐⇒ For a generic f, deg SOSk(f) = deg O(k).

Firstly, note that since W is symmetric of rank k, there exists a decomposition of the form W = ATA

where A ∈ Mk×N . Then, since every symmetric matrix of size N gives a polynomial, through a moment 
vector x, we obtain a decomposition of xTWx as a sum of k squares as xTATAx. Then, as is discussed 
above, we would obtain equality for Corollary 3.6.

From the translation argument above, we obtain the following equivalences,

(S + W )Nk ∩ C = 0 ⇐⇒ (SN
k −W ) ∩ C = 0 ⇐⇒ SN

k ∩ (C + W ) = W.
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The equations defining C are not general. Each equation specifies that a particular coefficient in the 
expansion of xtBx be zero. Hence, no coefficients of a general f are zero, we have that a generic W is not 
contained in the hyperplanes defined by any of the 

(
n+2d

2d
)

equations defining C.
Let N =

(
n+d
d

)
and let S be the polynomial ring C[xij |1 ≤ i, j ≤ N ]. We set xij = xji and consider 

X = (xij)1≤i,j≤N to be an N × N variable symmetric matrix. For 1 ≤ k ≤ N − 1, we denote by Ik the 
ideal generated by the k + 1 minors of X. It is known that S/Ik is a Cohen-Macaulay normal domain with 
dimension

dimS/Ik = (2N + 1 − k)k
2 .

Then, recall that

Sym2(Symd V ) = Sym2d V ⊕ C.

Thus,

codimC = dim Sym2d V =
(
n + 2d

2d

)
.

The following lemma, through a dimension count, gives further support for Conjecture 3.1.

Lemma 3.7. Let k ≤ n. Then, for all n, d ≥ 1, dimS/Ik < codimC.

Proof. Firstly, note that dimS/Ik is maximal when k = N =
(
n+d
d

)
and that the dimension decreases 

monotonically as k decreases. However, since we restrict to k ≤ n, it suffices to show that dimS/In <

codimC. Now, suppose that d = 1. Then,

dimS/In − codimC =(2(n + 1) + 1 − n)n
2 − (n + 2)(n + 1)

2

=n(n + 3) − (n + 1)(n + 2)
2

= − 1.

Next, consider d ≥ 2. Note that for all n ≥ 1,

(2
(
n+d
d

)
+ 1 − n)n
2 ≤ n

(
n + d

d

)
.

Hence, it suffices to prove that for all d ≥ 2,(
n + 2d

2d

)
> n

(
n + d

d

)
.

We proceed by induction on d. In the base case d = 2 we have,(
n + 4

4

)
− n

(
n + 2

2

)
= (n + 4)(n + 3)(n + 2)(n + 1)

4! − (n + 2)(n + 1)n
2!

= (n + 1)(n + 2)
4! (n2 − 5n + 12).
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It is easy to see that the polynomial n2 − 5n + 12 is positive for all n and so the base case holds. Now, 
assume for some fixed d ≥ 2 that 

(
n+2d

2d
)
> n

(
n+d
d

)
and consider(

n + 2d + 2
2d + 2

)
− n

(
n + d + 1
d + 1

)
= (n + 2d + 2)(n + 2d + 1)

(2d + 2)(2d + 1)

(
n + 2d

2d

)
− n + d + 1

d + 1 n

(
n + d

d

)

= n

(
n + d

d

)(
(n + 2d + 2)(n + 2d + 1)

(2d + 2)(2d + 1)

(
n+2d

2d
)

n
(
n+d
d

) − n + d + 1
d + 1

)

> n

(
n + d

d

)(
(n + 2d + 2)(n + 2d + 1)

(2d + 2)(2d + 1) − n + d + 1
d + 1

)
= n

(
n + d

d

)((
1 + n

2d + 2

)(
1 + n

2d + 1

)
−

(
1 + n

d + 1

))

> n

(
n + d

d

)((
1 + n

2d + 2

)2

−
(

1 + n

d + 1

))

> n

(
n + d

d

)((
1 + 2n

2d + 2

)
−

(
1 + n

d + 1

))
= 0.

Thus, by induction, codimC − dimS/Ik > 0. �
We finish this section by proving that Conjecture 3.1 holds for k = 2.

Theorem 1.4. Let f ∈ SOS2 ⊂ Sym2dV , dimV = n + 1 > 2, be a generic polynomial that is the sum of two 
squares. Then, SOS2(f) has two irreducible components isomorphic to SO(2).

Proof. Let f ∈ Sym2d V be a general polynomial such that f = g2 + h2 = (g + ih)(g − ih). Since n > 2, 
then f general is smooth and by consequence irreducible, thus the factorization is unique (UFD), we have 
for any other g′, h′ such that f = g′ 2 + h′ 2, then λ(g′ + ih′) = g + ih and λ−1(g′ − ih′) = g − ih, or 
λ(g′ + ih′) = g − ih and λ−1(g′ − ih′) = g + ih.

Consider the first set of conditions, then g = g′ λ+λ−1

2 + h′ i(λ−λ−1)
2 and h = g′ λ−λ−1

2i + h′ λ+λ−1

2 . Thus

[
g
h

]
=

[
λ+λ−1

2
i(λ−λ−1)

2
λ−λ−1

2i
λ+λ−1

2

]
︸ ︷︷ ︸

A

[
g′

h′

]
.

Since det(A) = 1 and AAt = I, this corresponds to one component of O(2). Then, the last copy of SO(2) is 
obtained from the other two conditions. �
4. The degree of the variety of the sum of two squares

Let V be a complex vector space of dimension n + 1 and let d ≥ 0 be an integer. Let U = Symd V and 
πC be the projection of Sym2 U = Sym2d V ⊕ C centered at C, that is

πC : Sym2d V ⊕ C → Sym2d V.

Notice that whenever Σk(ν2(U)) ∩C = 0, πC |Σk(ν2(U)) is a well-defined morphism. In such a case, assuming 
πC |Σk(ν2(U)) is an isomorphism, this means that

deg(SOSk) = deg
(
Σk(ν2(U))

)
.
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Theorem 4.1. Following the previous notation we have that

Σ1(ν2(PU)) ∩ C = ∅ and Σ2(ν2(PU)) ∩ C = ∅.

Proof. It is known from the Borel-Weil Theorem, see [23], that whenever X = G/P ⊂ P (Vλ), where G
is an algebraic group and P ⊂ G a parabolic group, then H0(X, P (Vλ(k))) = Vkλ [20]. If we consider 
X = νd(PV ) ⊂ PU and Sym2d V = V2d, we have the short exact sequence

0 → IX → OPU → OX → 0.

Twisting it by OPU (2) and taking the long exact sequence of cohomologies we obtain

0 → H0(IX(2)) → H0(OPU (2)) → H0(X,OX(2)) → 0.

Notice that the last map is a surjection since H0(X, OX(2)) = V2d that is irreducible.
We remark the follow identifications: H0(IX(2)) is given by the quadric forms on the ideal sheaf of X, that 

is, the quadric forms that belong to C. H0(OPU (2)) = Sym2(U) = Sym2(Symd V ) and H0(X, OX(2)) =
Sym2d V .

Assume for the purpose of contradiction that Σ1(ν2(PU)) ∩C �= ∅ and Σ2(ν2(PU)) ∩C �= ∅, this means 
that there exist polynomials f, g ∈ C of respective ranks 1 and 2 in P Sym2 U such that f, g ∈ H0(IX(2)). 
This implies that X is contained in the hyperplane determined by f = l2 and in the union of hyperplanes 
determined by g = l20 + l21 = (l0 + il1)(l0 − il1), where l, l0, l1 are linear forms in PU . However X = ν2(PU)
is not contained in any hyperplane, thus the intersection must be empty. �
Lemma 4.2. The map πC is injective in ν2(PU).

Proof. Let x, y be elements both in ν2(PU). The map is given by

x �→ x,C ∩ Sym2d V.

Thus, the equation πC(x) = πC(y) implies that x,C = y, C. This means that there exists λ ∈ C and c ∈ C

such that x = λy + c. Therefore, x − λy = c ∈ C which is a contradiction since x − λy ∈ Σ2(ν2(U)). �
Lemma 4.3. The projection πC : Sym2(Symd V ) → Sym2d V restricted to the second secant variety of the 
Veronese variety Σ2(ν2(Symd V )) is injective.

Proof. Consider the projection

Symd V × Symd V × Sym2(Symd V ) → Sym2(Symd V ).

Let Ab2(ν2(Symd V )) = {(α, β, g)|α2 + β2 = g} be the abstract Veronese variety that under the projection 
is mapped to Σ2(ν2(Symd V )). Notice that the fiber of this projection on a point g is O(2) by Lemma 4.2.

We may consider a similar projection

Symd V × Symd V × Sym2d V → Sym2d V.

We may define X = {(α, β, f)|α2 + β2 = f} in the same fashion as before. Under this projection we have 
that X is mapped to SOS2 and the fiber on a point f is SOS2(f) = O(2) by Lemma 1.4.
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Notice that the map Sym2(Symd V ) → Sym2d V that corresponds to the change of coordinates w1 =
xd

0, . . . , wN = xd
n is injective when restricted to Σ2(ν2(Symd V )) and so is the induced linear map from Ab2

to X.
Joining those maps into a diagram we obtain:

Ab2

X Σ2(ν2(Symd V ))

SOS2

ψϕ

ξ ζ

From the previous remarks, ϕ is an one-to-one map and the fibers of ψ and ξ are both equal to O(2). Since 
the diagram commutes, we also obtain that ζ is a one-to-one map. �
Theorem 1.6. Let N = dim Symd V =

(
n+d
d

)
. The degrees of the varieties of squares and of sum of two 

squares in P (Sym2d V ) are given by

deg(SOS1) = 2N−1, deg(SOS2) =
N−3∏
i=0

(
N+i

N−2−i

)(2i+1
i

) .

Proof. Since Σk(ν2(PU)) ∩ C = ∅ and πC |Σk(ν2(PU)) is injective for k = 1, 2, it follows deg(SOSj) =
deg(Σj(ν2(PU))). A classical result by Segre [11] states that for any j ≤ N

deg(Σj(ν2(PU))) =
N−1−j∏

i=0

(
N+i

N−j−i

)(2i+1
i

) . �

We notice that in the case of n = 2 and d = 2 Theorem 4.1 is sharp in the sense that for the 3-secant 
variety of ν2(PU) the intersection with C is non-empty. Indeed, one can compute that the intersection of 
Σ1(ν2(PU)) and Σ2(ν2(PU)) with C are empty. Thus, deg(SOS1) = 32 and deg(SOS2) = 126 as expected. 
However, for SOS3 the intersection has codimension 3 in P 5 = PU . When the intersection is non-empty, 
the degree of Σk(ν2(PU)) is still an upper bound for the degree of SOSk.
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