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We describe how scale space methods can be used for quantitative analysis of blood glucose concentrations from type 2 diabetes
patients. Blood glucose values were recorded voluntarily by the patients over one full year as part of a self management process,
where the time and frequency of the recordings are decided by the patients. This makes a unique dataset in its extent, though
with a large variation in reliability of the recordings. Scale space and frequency space techniques are suited to reveal important
features of unevenly sampled data, and useful for identifying medically relevant features for use both by patients as part of their
self-management process, and provide useful information for physicians.

1. Introduction

Diabetes type 2 has emerged as a major health concern
in the western world over the last decade, where lifestyle
and diet are considered the most important factors for
the incidence rise. Type 2 diabetes is a complex disease
characterized by both genetic and environmental factors.
Diabetes affects some 220 million persons worldwide where
approximately 90% of the cases are type 2 diabetes [1].
Since these patients require considerable medical attention,
they constitute a significant cost to society, and much effort
is done to provide them with tools that can help patients
administer and monitor their disease and encourage a change
in lifestyle. As such, there exists a multitude of self-help tools
which aim to empower the patients.

One such tool is a mobile phone-based application with
an integrated sensor network that has been developed at
the Norwegian Centre for Integrated Care and Telemedicine
called the Few Touch application [2, 3]. The software con-
stituting the user interface is running on the mobile phone,
enables wireless and automatic recordings of step count data
and blood glucose data, in addition to functionality for users
to input dietary information. The aim of this tool is to help
the patients in the diabetes self management process, and

all data input is done voluntarily. Recorded information can
therefore be sporadic, but this approach is shown to yield a
high degree of participation over a long period of time, and as
such the resulting data set is unique in terms of the extent of
the recording period. Patients typically measure their blood
glucose concentration (BGC) approximately once per day
as part of the self management process, and under the Few
Touch application these values are automatically transferred
to the mobile phone via a Bluetooth adapter at the time
of measurement. In this paper we will exclusively focus on
the BGC values and not consider values reported by step
counters or the dietary registration system. For a variety of
technical and personal reasons, some patients did not record
BGC for the complete period, and we will only consider in
more detail those that record their BGC reliably.

Scale space methods have emerged over the last decade
as a set of statistical techniques for exploring features in
both one- and two-dimensional data on a variety of scales,
in both time and frequency space [4-6]. The fundamental
question asked 1is, in a complicated signal, which features
are “really there” as opposed to features that are simply
artifacts or “noise.” In our case, the BGC values are not
true noise since every data point reflects a true BGC with
a negligible error, but outlier recordings on short time



scales carry no explanatory power, and we are bound to
search for features that emerge on some scale larger than
the typical interval. For a time series or density estimate,
one can attempt to smooth with a range of bandwidths,
and for each bandwidth compute significance intervals to
test for significant derivatives or curvatures. Arguably the
most common such approach is known as SiZer (Significant
Zero-crossing of derivatives) [4], from which several similar
tools have been developed. The usefulness of these tools is
substantial, though remains largely unknown outside the
statistical society.

Scale space methodology has also been applied in
frequency space and within a Bayesian framework, though
only with evenly sampled data sets [6]. Since the BGC values
are very unevenly sampled, even for the “best” patients, this
technique is not presently available for these data.

We have applied the SiZer methodology to a dataset
collected from 12 patients using the Few Touch application
over the course of one full year. The data being sampled
very unevenly still make them well suited for the SiZer
methodology, and allows us to explore periodicities on
frequencies larger than the Nyquist frequency by least squares
fits to sinusoids.

The full data set consists of twelve patients recorded
over the total period from 16 September 2008 through 25
November 2009, a total of 435 days. No patient has recorded
BGC every day, and some have recorded for a shorter period
than the full year. One patient recorded BGC at least once
per day for 373 consecutive days, while four had a longest
consecutive period of less than two weeks.

The paper is organized as follows; in Section2 we
will briefly explain the SiZer methodology which is the
framework within which the further analysis proceeds. In
Section 3 we explore features that emerge when treating the
complete dataset, while in Section 4 we break down the
analysis into individual patients. Section 5 contains analysis
in frequency space, and we conclude in Section 6.

2. The SiZer Methodology

We include a brief overview of the SiZer scheme in this
section, a more comprehensive treatment can be found in
[4, 7], while some extensions and theoretical justifications
exists [5, 6], and several extensions such as a Bayesian
version for scatter plots in two dimensions known as B-
SiZer [8] have been developed within this framework. When
investigating a histogram of values, the canonical way is to
smooth with a Gaussian kernel such that important features
can be extracted [9]. However, this approach is heavily
dependent on the choice of bandwidth, and it is difficult
to know which features are significant or not. A number
of well-founded techniques exist to specify one optimal
data-driven bandwidth, such as the Least-Squares Cross-
Validation (LSCV) algorithm [10] or the Sheather-Jones
algorithm [11]. The latter, which we have used to highlight
some values, attempts to minimize the mean integrated
square error by a direct plug-in mechanism. For details, see,
for example, [9].
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However, it is true that significant structure may emerge
at a variety of scales and that the significant features may
disappear again at different scales. This was early realized in
image processing, where the fact that vision is an inherently
multiscale process has been used to develop applications
of computer vision [12]. Later, the stringent statistical
framework known as SiZer was developed, in which every
relevant scale is investigated for significant gradient (or
curvature), and the results are presented in a typical SiZer
plot, which is a scale space representation of the data
where significant changes at a given combination of scale
and position, or time, are indicated with different colors.
Thus a quick assessment of the data is possible, even in
vastly complicated data set, and the important features can
immediately be identified and investigated further. Thus one
can quickly find important features of the data set, and one
can use these as a tool for hypothesis generation.

We treat a scale space in time, where each location is
denoted by a time ¢ and a scale or bandwidth h. Considering
values recorded at times t;, i = 1,2,...,N, we have a
smoothed density estimator [9]

~ 1 Y
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where Kj(t) is some kernel density such as the Gaussian
kernel,
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Other kernels can be considered, though it is not suspected
that these will reveal much new information. Indeed, the
Gaussian kernel has become a de facto standard for density
smoothes in part due to the fact that the Gaussian kernel is
unique in that it has a monotone decrease of zero crossings of
the derivative smooths with increasing bandwidth [13, 14].
This means that features are monotone in scale space. For
these reasons, we use the Gaussian kernel exclusively in the
following.

The search for the “true” underlying curve f(t) or its
derivative f’(t) has been all but discarded in the literature,

since the estimator fh' (t) for f'(t) is biased. Hence, we rather
compute the scale space version f;(f) = E[f,(t)], where

£, (t) is an unbiased estimator for f, (t) at each time t and
scale h. Hence, we can assume

F) = f(t)

———
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and investigate all values of h rather than try to search for an

~ MN(0,1) (3)

optimal one, and we can find a confidence interval for fAh'(t)
at every point in scale space and determine whether there is
a significant difference from zero at that point.
So for each point (¢, h) in scale space, we wish to test the
hypothesis
Ho : fh,(t) =0

against Hi: f; (1) #0 (4)
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based on the unbiased estimator fh'(t) of f,(t). Hence, we
compute a confidence interval for f; (t),

fi0) = SD[ £ (1], (5)

where g is the quantile discussed below, and the observation
variance Var £, (1)(= [SDLf/(t)]]) is

N
Var| ()] = mz[&;(t— D -KE-0] ()
i=1

with N the number of samples, and K (¢) is the sample mean
of K (t).

This treatment is valid if the normal approximation is
valid, that is, if f, (t) ~ N (f'(t), Var[ f; (t)]) approximately.
The effective sample size (ESS) is defined as

ESS(t,h) = Ky0)

(7)
and the normal approximation is considered valid if and only
if ESS(t,h) = 5. Other regions in scale space are considered
as inconclusive, see [4] for more details.

The quantile g has to be treated with care to correct
for multiple testing [4]. The most straightforward way is to
assume m independent tests such that the quantile becomes

1+(1—a)“’”}

> (®)

q(h) = d>1[

where « is the confidence level and ®(x) is the cumulative
normal Gaussian distribution. We use a = 0.05 throughout.

The number m = m(h) of independent tests is approximated
by

N

- avg,ESS(t, h)’ ©)

This approximation can be improved upon using extreme
value theory as described in [15], which is employed for
the analysis in the current paper. Other ways to correct for
multiple testing exist and have been used in the literature,
such as bootstrapping [4] or false discovery rate (FDR)
[16], but results are typically very similar to those found
by estimating the number of independent test, and for
computational simplicity we use this technique in the
following.

Thus, if the confidence interval we arrive at contains zero,
we conclude no significant gradient and otherwise label the
point as significant positive or negative gradient accordingly.
The data are typically presented as a family plot with smooths
for a variety of bandwidths together with a SiZer plot that
denotes each point in scale space according to the result of the
hypothesis test, or a different designation for those regions
where the effective sample size is too small.

Here we have considered the case where we have a set of
observations at times #; and wish to estimate an underlying
distribution f(t). The same methodology can be applied
to regression problems, as in Section 4. In this case, there
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F1GURE 1: The solid line shows the density estimate T} (), with data
from the full cohort, and shows how readings are spread through the
day. We have used a Gaussian kernel smooth with the data-driven
bandwidth & = 51 min. The dashed line shows the kernel scaled for
visibility. All data are treated as circular statistics.

is a set of observations y; at a given time t;, and we wish
to find any significant structure in how these change in
time. Nonparametric regression involves using a kernel with
bandwidth (or scale) h and compute an estimate of the curve
at a given time ¢ using only those data points that are close
to t, where closeness is defined by the kernel Kj,(t). We use a
local linear smoother

N
ﬁ,(t) = arghrninZ[y,- —(a+ bt — t))]th(ti —t)  (10)

i=1
as an estimator for the conditional regression function
f(t) = E(y;i | ti = t). Using the derivative fh’(t), the same
framework as for the histogram smoother can be applied
to construct a scale space map of the significance in a time
series. In both cases the resulting significance maps are
known as SiZer maps, but we will be careful to point out
when we are using density estimation or kernel regression.

3. Aggregated Data

Taking all patients into account, we analyzed how often they
recorded insulin, at which time of the day and overall trends.
In this section we focus only on the time at which recordings
were done, and not the actual BGC value. Figure 1 shows
how all BGC readings made by the patients are distributed
over 24 hours. This is smoothed by a Gaussian kernel
with bandwidth as recorded by the data-driven bandwidth
returned by the Sheather-Jones algorithm [11] resulting
in a bandwidth of 51 minutes. We have assumed circular
statistics to avoid edge discontinuities at midnight, though
using a Gaussian distribution rather than the more apt but
complicated von Mises distribution since the bandwidth is
much smaller than the period, such that the von Mises and
Gaussian distribution would be virtually identical. That is,
given readings at times t;, i = 1 - - - N, the smooth is

K N
Ty(t) = lim Cx >, > Ki(t = ti + kP), (11)

k=-K i=1
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F1Gure 2: Top: a family plot of the density estimate for the times of
BGC readings for the full cohort over the full project period. Each
line is a Gaussian kernel smooth with increasing bandwidth. The
thick line corresponds to the data-driven bandwidth, & =8.7 days.
Bottom: a SiZer plot of the data in the upper figure. In shades from
light to dark these correspond to (i) significant negative gradient,
(ii) no significant gradient, (iii) not enough data for inference
(does not appear in this particular map), and (iv) significant
positive gradient. The horizontal line corresponds to the data-
driven bandwidth which is displayed in bold in the upper panel.
The dashed white lines visualize four times the bandwidth at each
scale.

where P = 24 h, and the normalizing constant is

- § Slon("5 =) (5]}

=—Ki=1

erf(x) = 2n~ 12 I: exp(—u?)du
(12)

is the standard error function. This accounts for edge effects
and ensures a continuous distribution across midnight. Since
the relevant bandwidths are, by construction of the problem,
much less than the period, h < P, the contribution from the
terms with K > 1 will be negligible. Thus, we use K = 1,
such that the sum over k extends only to the neighboring
nodes (k = —1,0,1) and consider only 0 < ¢t < 24h.
There is a significant peak at around 7:45 AM, with a quick
drop-off, and thereafter a steady decline over the course
of the day. This reflects that most patients take one BGC
reading in the morning as per medical recommendation. A
few measurements are done over the course of the day with a
steady decline in numbers until midnight.

In the upper half of Figure 2 we show a family plot of
all readings through the entire trial period using a kernel
density estimator with Gaussian kernel smooth and different
bandwidths 4. We choose the range of bandwidths such that
we capture all relevant scales, that is, from the smallest scale
at which there is a significance found, to the full range of
the data. Obviously, at the largest end most features of the
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data set are smoothed away, while the smallest bandwidths
show spurious features that are unlikely to be supported by
the data set. Nevertheless, ignoring the falloffs at the ends,
some important features emerge. There is a big decline in
readings at Christmas time, a period where regular routines
tend to be changed. The same effect appears, though with less
prominency in summer. The early abrupt increase is due to
the start of the study, and after this there is a steady decline in
readings. This can be attributed to the effect that the patients
find new technology and gadgets exciting and use it more
frequently initially, while tiring after some period.

Exploring features that emerge on different scales like
these is ideal for the SiZer methodology. Exploring the scale
space with time and scale the relevant axes, each point is
labelled according to (i) significant negative gradient, (ii) no
significant gradient, (iii) not enough data for inference, and
(iv) significant positive gradient. The complete map, known
as the SiZer map, is shown in the bottom half of Figure 2.

The SiZer plot shows the overall negative trend after
an initial steep positive trend, and the two decreases in
frequency are also visible as a light area followed by a dark
area. These appear at different scales, and a scale space
approach is the only way to detect such instances coherently.

4. Blood Glucose Concentration Data

In this section we switch to analysis of the BGC values
attained by the individual patients, and in the remainder
of the paper, we focus on a subset of the patients. Only
patients that have recorded BGC at least once a day for
250 days in total and at least one period of at least 30
days of consecutive days with uninterrupted recordings are
considered. This will ensure to include that only patients
that have recorded BGC over a significant period of time are
included in the further analysis and leaves five patients in the
analysis. All these patients have recorded BGC in the period 1
November 2008 through 13 October 2009, which we will use
for these patients. Additionally, we include one patient that
did not record BGC for the last part of the period, but still
has some interesting structure in the recordings. Considering
each patient’s recording of BGC at a specific time, we get
a time series of the BGC values. A SiZer plot for each of
these patient’s BGC values as a regression analysis is shown
in Figure 3.

There are a number of features emerging in the SiZer
plots that are not immediately apparent from the BGC
readings. Patients no. 1 and no. 6 have an upward trend on
the largest scales, patient no. 2 has a significant downward
trend on the largest scales, while all other patients have
no trend on this scale. It is important to note that many
features that appear as prominent in the family plots are not
significant, while truly significant features can be obscured in
the data. Patient no. 6 is a special case, who did not record
BGC reliably after 20 April 2009, but has a clear upwards
spike in late February to early March. This patient reported
an influenza infection in this period, which is known to raise
BGC in many patients, something that is clearly identifiable
in this singular case. Also, all patients except no. 5 has
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FIGURE 3: The family smooth and SiZer plots of the kernel regression for BGC values in six patients who recorded their BGC reliably from 1
November 2008 through 13 October 2009, except for patient no. 6, who recorded up to 20 April 2009.

a significant increase in BGC in late December, though there
is not always a corresponding significant decrease back to
a normal level. It is likely that this reflects the change in
diet in this period, confounded by a relative sparsity in the
recordings.

An interesting question is whether there is any cor-
relation between the reliability of the recordings for a
patient and their BGC readings. However, analyzing the
twelve patients independently, and collectively, we find little
evidence for such a correlation. To this end, we have visually

and quantitatively investigated relations between average
intervals between readings in a period and if there is a
deviation from the usual pattern of BGC values in that
period.

5. Periodograms

The same ideas as above can be used in the frequency
space to detect significant periodicities at different scales
[6]. However, such techniques have only been developed for
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FIGURE 4: Lomb-Scargle periodogram for patient no. 3 in Figure 3.
The significance levels shown are approximate. This patient has
three significant peaks in the periodogram with periods 1/ f equal
to 85 days, one day, and 12 hours and respective significance
levels P = .018, P = .0088, and P = 2.6-107°. The periodogram is
plotted up to four times the average Nyquist frequency and with an
oversampling factor of five.

evenly sampled data, whereas this is clearly not the case here.
Nevertheless, we can make a Lomb-Scargle periodogram
[17] and do inference on this, though not being a truly scale
space idea. For a time series x; = x(¢;) the Lomb-Scargle
periodogram is

1 [Zj (xj —I) cosw(tj - T)]2

Plor= 267 2. cos2w(tj - ‘r)
, (13)
s [Zj(xj - E) sinw(tj - T)]
2 sin2w(tj - ‘r) )
where
tan(Qwt) = m, (14)

x and 62 are the sample mean and variance of xj, respectively,
and all sums in (13)-(14) run over all j = 1,...,N.
The shift parameter 7 is introduced as to ensure that the
periodogram is independent of an offset in time. This
technique is equivalent to a least squares fit to a sinusoidal
acoswt + Bsinwt. The patient with the most recordings
in our dataset is patient no. 3 in the last section, who
recorded BGC on 390 days, and a total of 1014 recordings.
The Lomb-Scargle periodogram for this patient is shown in
Figure 4. The significance of a peak in the periodogram can
be approximated by [18]

prob(P(w) >z) ~ Me ™%, (15)

where M is the effective sample size, oversampling taken
into account. The significance levels in Figure 4 have been
confirmed by Monte Carlo analysis. This patient has three
significant peaks, where the least significant is at 85 days,
most significant at 12 hours, and one intermediate at 24
hours. The latter is most easily explained as an obvious cycle
over the day.
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The same patterns emerge for other patients, with
one long-term component and the 24h component. Most
patients also have the 12h component, though with some
patients this does not emerge. Note that the spectrogram goes
over much larger frequency scales than the Nyquist frequency
1/2A, A being an average interval between readings. This
is a feature of uneven sampling that allows unaliased spec-
trogram at high frequencies. The long period/low frequency
component likely emerges due to positive autocorrelation at
small time intervals.

6. Conclusions and Future Work

We have shown how scale space methods developed over
the last decade together with information in frequency
space can be used to explore features in BGC variations of
diabetes patients. These techniques answer in a quantitative
way which features of a dataset that really exist in a
statistically meaningful way, even if the emergent features
appear only on a particular scale. The technique avoids the
question of bandwidth selection by investigating all scales
simultaneously. The techniques can be valuable even for
patients and practitioners to evaluate the effect of changes
in lifestyle, medication, or medical aspects of the patient. As
such, many of the significant features that are explored in this
paper remain unexplained because there is no access to the
medical history of the patients, and any conclusions on this
are tentative at best.

The work with the mobile platform will continue further
and will be deployed among type 1 diabetes patients. These
have a more severe condition and record their BGC more
frequently and treats the disease with generally greater
vigilance. As such, dataset from these patients is likely to
contain much more information on their situation, and be
useful for doing a predictive analysis that can be employed
by the patients as a way to quantify their disease and ease
management.

Within a Bayesian framework, one can assume a prior
on the BGC value of a patient, with individually adjustable
parameters, and then based on information on expected food
intake, exercise, and other confounding variables make a
posterior distribution on the patient’s BGC. The sampling
can be made by Gaussian Markov Random Fields [19],
Markov Chain Monte Carlo, or other relevant techniques.

Acknowledgments

The authors are greatly indebted to Dr. Eirik Arsand
for providing them access to the dataset and providing
insight to the paper. Also, they thank the Northern Norway
Regional Health Authority (Helse Nord RHF) for funding
and enabling the research projects, in particular project
ID 3919/HST952-10. The research is performed as part of
Tromse Telemedicine Laboratory, TTL. All patients in the
focus group that have used the Few Touch system are
acknowledged for their participation. Anonymous referees to
the paper have been helpful in improving it.



Computational and Mathematical Methods in Medicine

References

[1] P. Zimmet, K. G. M. M. Alberti, and J. Shaw, “Global and
societal implications of the diabetes epidemic,” Nature, vol.
414, no. 6865, pp. 782-787, 2001.

E. Arsand, The few touch digital diabetes diary—user involved

design of mobile self-help tools for people with diabetes, Ph.D.

thesis, University of Tromso, Tromsa, Norway, 2009.

[3] E. Arsand, N. Andersson, and G. Hartvigsen, “No-touch
wireless transfer of blood glucose sensor data,” in Proceedings
of the Cognitive systems with Interactivie Sensors (COGIS *07),
Societe de I'Electricite, del’Electronique et des Technologies de
I'Information et de la Communication, Stanford University,
Palo Alto, Calif, USA, 2007.

[4] P. Chaudhuri and J. S. Marron, “SiZer for exploration of
structures in curves,” Journal of the American Statistical
Association, vol. 94, no. 447, pp. 807-823, 1999.

[5] T. A. Qigard, H. Rue, and E Godtliebsen, “Bayesian multiscale
analysis for time series data,” Computational Statistics and
Data Analysis, vol. 51, no. 3, pp. 1719-1730, 2006.

[6] S.H. Serbye, K. Hindberg, L. R. Olsen, and H. Rue, “Bayesian
multiscale feature detection of log-spectral densities,” Compu-
tational Statistics and Data Analysis, vol. 53, no. 11, pp. 3746—
3754, 2009.

[7] P. Chaudhuri and J. S. Marron, “Scale space view of curve
estimation,” Annals of Statistics, vol. 28, no. 2, pp. 408—428,
2000.

[8] P. Erast6 and L. Holmstrom, “Bayesian multiscale smoothing
for making inferences about features in scatterplots,” Journal
of Computational and Graphical Statistics, vol. 14, no. 3, pp.
569-589, 2005.

[9] M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman &
Hall/CRC, Boca Raton, Fla, USA, 1995.

[10] M. Rudemo, “Empirical choice of histograms and kernel
density esimators,” Scandinavian Journal of Statistics, vol. 9,
pp. 6578, 1982.

[11] S. J. Sheather and M. C. Jones, “A reliable data-based
bandwidth selection method for kernel density estimation,”
Journal of the Royal Statistical Society Series B, vol. 53, pp. 683—
690, 1991.

[12] T. Lindeberg, Scale-Space Theory in Computer Vision, Kluwer
Academic Publishers, Norwell, Mass, USA, 1994.

[13] B. W. Silverman, “Using kernel density estimates to investigate
multimodality,” Journal of the Royal Statistical Society Series B,
vol. 43, pp. 97-99, 1981.

[14] J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda,
“Uniqueness of the Gaussian kernel for scalespace filtering,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 8, no. 1, pp. 26-33, 1986.

[15] J. Hannig and J. S. Marron, “Advanced distribution theory for
SiZer,” Journal of the American Statistical Association, vol. 101,
no. 474, pp. 484-499, 2006.

[16] L. R. Olsen, S. H. Serbye, and F. Godtliebsen, “A scale-
space approach for detecting non-stationarities in time series,”
Scandinavian Journal of Statistics, vol. 35, no. 1, pp. 119-138,
2008.

[17] J. D. Scargle, “Studies in astronomical time series analysis: II.
Statistical aspects of spectral analysis of unevenly spaced data,”
The Astrophysical Journal, vol. 263, pp. 835-853, 1982.

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.
P. Flannery, Numerical Recipes in Fortran 77, Cambridge
University Press, Cambridge, UK, 2nd edition, 2001.

[19] H. Rue and L. Held, Gaussian Markov Random Fields, Theory
and Applications, Chapman & Hall/CRC, Boca Raton, Fla,
USA, 2005.

[2



