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[1] The storm index SYM-H, the solar wind velocity v, and interplanetary magnetic field
B. show no signatures of low-dimensional dynamics in quiet periods, but tests for
determinism in the time series indicate that SYM-H exhibits a significant low-dimensional
component during storm time, suggesting that self-organization takes place during
magnetic storms. Even though our analysis yields no discernible change in determinism
during magnetic storms for the solar wind parameters, there are significant enhancement of
the predictability and exponents measuring persistence. Thus, magnetic storms are
typically preceded by an increase in the persistence of the solar wind dynamics, and this

increase is also present in the magnetospheric response to the solar wind.

Citation: Zivkovi¢, T., and K. Rypdal (2011), Low-dimensionality and predictability of solar wind and global magnetosphere
during magnetic storms, J. Geophys. Res., 116, A10215, doi:10.1029/2011JA016547.

1. Introduction

[2] Under the influence of the solar wind, the magneto-
sphere resides in a complex, non-equilibrium state. The
plasma particles have non-Maxwellian velocity distribution,
MHD turbulence is present everywhere, and intermittent
energy transport known as bursty-bulk flows occurs as well
[Angelopoulos et al., 1999]. The magnetospheric response
to particular solar events constitutes an essential aspect of
space weather while the response to solar variability in
general is often referred to as space climate [Watkins, 2002].
Theoretical approaches to space climate involve concepts
and methods from stochastic processes, nonlinear dynamics
and chaos, turbulence, self-organized criticality, and phase
transitions.

[3] Self-organization can lead to low-dimensional behav-
ior in the magnetosphere [Klimas et al., 1996; Vassiliadis
et al., 1990; Sharma et al., 1993]. However, power law
dependence observed in the Fourier spectra of the auroral
electrojet (AE) index is a typical signature of high dimen-
sional colored noise indicating multiscale dynamics of the
magnetosphere. In order to reconcile low-dimensional,
deterministic behavior with high-dimensionality, Chang
[1998] proposed that a high-dimensional system near self-
organized criticality (SOC) [Bak et al., 1987] can be char-
acterized by a few parameters whose evolution is governed
by a small number of nonlinear equations. Some magneto-
spheric models, like the one presented by Chapman et al.
[1998], are based on the SOC-concept. Here a system
tunes itself to criticality and the energy transport across
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scales is mediated by avalanches which are power law dis-
tributed in size and duration.

[4] On the other hand, it was suggested by Sitnov et al.
[2001] that the substorm dynamics can be described as a
non-equilibrium phase transition; i.e. as a system tuned
externally to criticality. Here, a power law relation is given,
with characteristic exponent close to the input-output critical
exponent in a second-order phase transition. In fact, it is
claimed by Sharma et al. [2003] that the global features of
the magnetosphere correspond to a first order phase transi-
tion whereas multiscale processes correspond to the second-
order phase transitions.

[5] The existence of metastable states in the magneto-
sphere, where intermittent signatures might be due to
dynamical phase transitions among these states, was sug-
gested by Consolini and Chang [2001], and forced and/or
self-organized criticality (FSOC) induced by the solar wind
was introduced as a conceptual description of magneto-
spheric dynamics. The concept of intermittent criticality was
suggested by Balasis et al. [2006], who asserted that during
intense magnetic storms the system develops long-range
correlations, which further indicates a transition from a less
orderly to a more orderly state. Here, substorms might be the
agents by which longer correlations are established. This
concept implies a time-dependent variation in the activity as
the critical point is approached, in contrast to SOC.

[6] In the present paper we investigate determinism and
predictability of observables characterizing the state of the
magnetosphere during geomagnetic storms as well as during
its quiet condition, but the emphasis is on the evolution of
these properties over the course of major magnetic storms.
The measure of determinism employed here increases if the
system dynamics is dominated by modes governed by low-
dimensional dynamics. Hence, the determinism in most cases
is a measure of low-dimensionality. For a low-dimensional,
chaotic system the predictability measure increases when the
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largest Lyapunov exponent increases, and hence it is really a
measure of un-predictability. For a high-dimensional or
stochastic system it is related to the degree of persistence in
time series representing the dynamics. High persistence
means high predictability.

[7] One of the most useful data tools for probing the
magnetosphere during substorm conditions is the AE minute
index which is defined as the difference between the AU
index, which measures the eastward electrojet current in the
auroral zone, and the AL index, which measures the west-
ward electrojet current, and is usually derived from 12
magnetometers positioned under the auroral oval [Davies
and Sugiura, 1966]. The auroral electrojet, however, does
not respond strongly to the specific modifications of the
magnetosphere that occur during magnetic storms. A typical
storm characteristic, however, is a change in the intensity of
the symmetric part of the ring current that encircles Earth at
altitudes ranging from about 3 to 8 Earth radii, and is pro-
portional to the total energy in the drifting particles that form
this current system [Gonzalez et al., 1994]. The indices Dy,
and SYM-H indices are both designed for the study of storm
dynamics. These indices contain contribution from the
magnetopause current, the partial and symmetric ring current,
the substorm current wedge, the magnetotail currents, and
induced currents on the Earth’s surface. They are derived
from similar data sources, but SYM-H has the distinct
advantage of having 1-min time resolution compared to the
1-hour time resolution of Dy,. Wanliss and Showalter [2006]
have recommended that the SYM-H index be used as a
de facto high-resolution Dy, index. The analysis of these
indices are central to this study. We particularly focus on
SYM-H and SYM-H* which is derived from the SYM-H
when the contribution of the magnetopause current is excluded.

[8] The typical magnetic storm consists of the initial phase,
when the horizontal magnetic field suddenly increases and
stays elevated for several hours, the main phase where this
component is depressed for one to several hours, and the
recovery phase which also lasts several hours. The initial
phase has been associated with northward directed IMF (little
energy enters the magnetosphere), but it has been discovered
that this phase is not essential for the storm to occur [Akasofi,
1965]. In order to define a storm, we follow the approach of
Loewe and Prélss [1997], where the Dy, minimum is a
common reference epoch, the main-phase decrease is suffi-
ciently steep, and the recovery phase is also defined.

2. Data Acquisition

[¢] The SYM-H index data are downloaded from World
Data Center, with 1-min resolution. We also use minute data
for the interplanetary magnetic field (IMF) component B,,
minute data for the solar wind bulk velocity v along the Sun-
Earth axis, as well as flow pressure which is given in nT.
These data are retrieved from the OMNI satellite database
and are given in the GSE coordinate system. Gaps of
missing data in B,, v and flow pressure are linearly inter-
polated from the data which are not missing, while SYM-H
data are analyzed for the entire period. The same result for
the B, and v is obtained when gaps of missing data are
excluded from the analysis.

[10] Data for the period from January 2000 till December
2005 is used to compute general properties of the mag-
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netosphere. In order to analyze storm conditions all the
indices are analyzed during ten intense magnetic storms.
Analyzed storms occurred on 6 April 2000, 15 July 2000,
12 August 2000, 31 March 2001, 21 October 2001,
28 October 2001, 6 November 2001, 7 September 2002,
29 October 2003, and 20 November 2003. These storms
are characterized with Dy; minimum which is in the range
between —150 nT to —422 nT.

[11] The remainder of the paper is organized as follows:
section 3 describes the data analysis methods employed.
Section 4 presents analysis results discerning general statis-
tical scaling properties of global magnetospheric dynamics
using minute data over several years and data generated by a
numerical model which produces realizations of a fractional
Ornstein-Uhlenbeck (fO-U) process. In particular we study
how determinism and predictability of the geomagnetic and
solar wind observables change over the course of magnetic
storms. Section 5 is reserved for discussion of results and
section 6 is for conclusions.

3. Methods

3.1.

[12] The recurrence plot is a powerful tool for the visu-
alization of recurrences of phase-space trajectories. It is very
useful since it can be applied to non-stationary as well as
short time series [Eckmann et al., 1987], and this is the
nature of data we use to explore magnetic storms. Prior to
constructing a recurrence plot the common procedure is to
reconstruct phase space from the time series x(¢) of length N
by time delay embedding [Takens, 1981].

[13] Suppose the physical system at hand is a determin-
istic dynamical system describing the evolution of a state
vector z(¢) in a phase space of dimension p, i.e. Z evolves
according to an autonomous system of 1st order ordinary
differential equations:

Recurrence-Plot Analysis

dz
—=f f:RP >R 1
T 1), 1R R, (M
and that an observed time series x(¢) is generated by the
measurement function g : R — R,

x(1) = g(2(2)). )

Assume that the dynamics takes place on an invariant set (an
attractor) A € R” in phase space, and that this set has box-
counting fractal dimension d. Since the dynamical system
uniquely defines the entire phase-space trajectory once the
state z(f) at a particular time ¢ is given, we can define
uniquely an m-dimensional measurement function:

g: A—R", g(z) = (x(t),x(t +7),...,x(t + (m — 1)7)). (3)

where the vector components are given by equation (2), and
7 is a time delay of our choice. If the invariant set A is
compact (closed and bounded), g is a smooth function and
m > 2d, the map given by equation (3) is a topological
embedding (a one-to-one continuous map) between .4 and
R™. The condition m > 2d can be thought of as a condition
for the image g(.A) not to intersect itself, i.e. to avoid that
two different states on the attractor A are mapped to the
same point in the m-dimensional embedding space R™. If
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Figure 1. B, during quiet condition on September 5, 2001.
(a) B, time series, (b) recurrence plot of the time series
shown in Figure la.

such an embedding is achieved, the trajectory x(f) = g(z)
(where g(z) is given by equation (3)) in the embedding
space is a complete mathematical representation of the
dynamics on the attractor. Note that the dimension p of the
original phase space is irrelevant for the reconstruction of
the embedding space. The important thing is the dimension
d of the invariant set A on which the dynamics unfolds.
[14] There are practical constraints on useful choices of the
time delay 7. If 7 is much smaller than the autocorrelation
time the image of A becomes essentially one-dimensional. If
7 is much larger than the autocorrelation time, noise may
destroy the deterministic connection between the components
of x(#), such that our assumption that z(¢) determines x(¢) will
fail in practice. A common choice of 7 has been the first
minimum of the autocorrelation function, but it has been
shown that better results are achieved by selecting the time
delay as the first minimum in the average mutual information
function, which can be perceived as a nonlinear autocorre-
lation function [Abarbanel, 1996]. Here we use the average
mutual information function to calculate the value of 7.
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[15] The recurrence-plot analysis deals with the trajecto-
ries in the embedding space. If the original time series x(¢)
has N elements, we have a time series of N — (m — 1)7 vectors
x(f) fort=1,2, ..., N— (m — 1)r. This time series constitutes
the trajectory in the reconstructed embedding space.

[16] The next step is to construct a [N — (m — 1)7] X [N —
(m — 1)7] matrix R;; consisting of elements 0 and 1. The
matrix element (7, /) is 1 if the distance is ||x; — x;|| < € in the
reconstructed space, and otherwise it is 0. The recurrence
plot is simply a plot where the points (i, j) for which the
corresponding matrix element is 1 is marked by a dot. For a
deterministic system the radius e is typically chosen as 10%
of the diameter of the reconstructed attractor, but varies for
different sets of data. For a non-stationary stochastic process
like a Brownian motion there is no bounded attractor for the
dynamics, and the diameter is limited by the length of the
data record. The first example of recurrence plot is shown in
Figure 1, obtained from the B, when no storm is present on
5 September 2001. In Figure 2, the recurrence plot is
shown for the B, for the strong storm on 6 April 2000. In
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Figure 2. B, during the strong storm on 6 April 2000.
(a) B, time series, (b) recurrence plot of the time series
shown in Figure 2a.
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Figure 3. (a) Intrinsic mode functions obtained by EMD for B, for the magnetic storm on 6 April 2000,

(b) Dy, for the same event.

both cases, embedding dimension is m = 1 and € ~ 0.4,
which corresponds to 10% of the data range.

3.2. Empirical Mode Decomposition

[17] The empirical mode decomposition (EMD) method,
developed by Huang et al. [1998] is very useful on non-
stationary and nonlinear time series. EMD method can give
a change of frequency in any moment of time (instantaneous
frequency) and a change of amplitude in the system. How-
ever, in order to properly define instantaneous frequency, a
time series should have the same number of zero crossings
and extrema (or they can differ at most by one), and a local
mean should be close to zero. The original time series
usually does not have these characteristics and should be
decomposed into intrinsic mode functions (IF) for which
instantaneous frequency can be defined. Decomposition can
be obtained through the so-called sifting process. This is an
adaptive process derived from the data and can be briefly

described as follows: All local maxima and minima in the
time series s(7) are found, and all local maxima and minima
are fitted by cubic spline and these fits define the upper
(lower) envelope of the time series. Then the mean of the
upper and lower envelope m(?) is defined, and the difference
between the time series and this mean represents the first IF,
h(f) = s(¢) — m(?), if instantaneous frequency can be obtained,
defined by some stopping criterion. If not, the procedure is
repeated (now starting from /() instead of s(7)) until the first
IF is produced. Higher IFs are obtained by subtracting the
first IF from the time series s(z) and the entire previously
mentioned procedure is repeated until a residual, usually a
monotonic function, is left. We use a stopping criterion
defined by Rilling et al. [2003], where n(f) < 0; on 1 —
fraction of the IF, and 7(¢) < 6,, on the remaining fraction of
the IF. Here 7 = m(¢)/a(?), a(¢) is the IF amplitude, and v =
0.05, 8, = 0.05, and 0, = 0.05. By the above definitions, IFs
are complete in the sense that their summation gives the
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Figure 4. (a) Time series representing one component of
the numerical solution of the Lorenz system. (b) Average
displacement vectors V; in each box visited by a 2-dimen-
sional projection of the m = 3 -dimensional embedding
space reconstructed from the time series in Figure 4a.

original time series: s(f) = Y h(f) + R(f) where M is the
number of IFs and R is a residual. In Figure 3a we show
the IFs from EMD performed on the IMF B, during a
magnetic storm on 6 April 2000 (whose time series is
plotted in Figure 2a), while in Figure 3b the D,, index for
the same storm is shown.

[18] In order to study stochastic behavior of a time series
by means of EMD analysis, we refer to Wu and Huang
[2004], who studied characteristics of white noise using
the EMD method. They derived for white noise the rela-
tionship log E,, = —log T,,, where E,, and T,, represents
empirical variance and mean period for the m’th IF. Here,
E,, = (1/N)XN, h(t)*, where h(?) is the m’th IF and T}, is the
ratio of the m’th IF length to the number of its zero cross-
ings. Franzke [2009] analyzed telecommunication indices
and noticed a resemblance to autoregressive processes of the
first order AR(1), which are stochastic and linear processes.
For such processes log E, = (¢ log T,. For fractional
Gaussian noise processes (H < 1) and fractional Brownian
motions (H > 1) we have the connection ( = 2H — 2, where
H is the Hurst exponent, as shown by Flandrin and
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Gongalves [2004]. A useful feature of the EMD analysis
is the possibility of extraction of trends in the time series
[Wu et al., 2007], because the slowest IF components should
often be interpreted as trends. This is an advantage com-
pared to the standard variogram or rescaled-range techni-
ques [Beran, 1994], whose estimation of the scaling
exponents is biased by the trend.

3.3. A Test for Determinism

[19] In this paper we employ a simple test for determin-
ism, developed by Kaplan and Glass [1992], where the
following hypothesis is tested: When a system is deter-
ministic, the orientation of the trajectory (its tangent) is a
function of the position in the phase space. Further, this
means that the tangent vectors of a trajectory which recurs to
the same small “box™ in phase space, will have the same
directions since these are uniquely determined by the posi-
tion in phase space. On the other hand, trajectories in a
stochastic system have directions which do not depend
uniquely on the position and are equally probable in any
direction. This test works only for continuous flows, and is
not applicable to maps since consecutive points on the orbit
may be very separated in the phase space. For flows, the
trajectory orientation is defined by a vector of a unit
length, whose direction is given by the displacement
between the point where trajectory enters the box j to the
point where the trajectory exits the same box. The dis-
placement in m-dimensional embedding space is given
from the time delay embedding reconstruction:

Ax(t) = [x(t+b) —x(t),x(t + 7+ b) —x(t +7),...,
x(t+ (m— 1)1+ b) —x(t + (m — 1)71)], (4)

where b is the time the trajectory spends inside a box. The
orientation vector for the kth pass through box j is the unit
vector w; = Ax (6)/IAx,(f)]. The estimated averaged
displacement vector in the box is

nj

V=S g, (5)

=

where n; is the number of passes of the trajectory through
box j. If the dynamics is deterministic, the embedding
dimension is sufficiently high, and in the limit of vanish-
ingly small box size, the trajectory directions should be
aligned and V; = |V;l = 1. In the case of finite box size, V;
will not depend very much on the number of passes #;,
and V; will converge to 1 as n; — oo. In contrast, for the
trajectory of a random process, where the direction of the
next step is completely independent of the past, V; will
decrease with n; as V; ~ nf”z. In our analysis we will
choose the linear box dimension equal to the mean dis-
tance a phase-space point moves in one time step and set
b =1 time step in equation (4).

[20] In Figure 4b we show displacement vectors V;
averaged over the passes through the box j, for a three-
dimensional embedding of the Lorenz attractor, whose time
series is shown in Figure 4a; in Figure 5b the same is shown
for a random process, in this case a fractional Ornstein-
Uhlenbeck (fO-U) process. These model systems will be used
throughout this paper as archetypes of low-dimensional and
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Figure 5. (a) Time series representing the numerical solu-
tion of the equation for the fO-U process. (b) Average dis-
placement vectors V; in each box visited by a 2-dimensional
projection of the m = 8 -dimensional embedding space
reconstructed from the time series in Figure Sa.

stochastic systems, respectively. The Lorenz system has
the form

dx/dt = a(y — x)
dy/dt = —xz+cx—y (6)
dz/dt = xy — bz,

with standard coefficient values a = 10, b = 8/3, and ¢ = 28,
which give rise to a chaotic flow. The fO-U process is
described by the stochastic equation:

S, = A — ;) + odW,, (7)

where dW; is a fractional Gaussian noise with Hurst expo-
nent H [Beran, 1994]. The drift (A and ©) and diffusion (o)
parameters are fitted by the least squares regression to the
time series of the SYM-H storm index. This will be
explained in more detail in section 4.2.

[21] The degree of determinism of the dynamics can be
assessed by exploring the dependence of V; on n;. In prac-
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tice, this can be done by computation of the averaged dis-
placement vector

L, = <V}>n,:n’ (8)

where the average is done over all boxes with same number n
of trajectory passes. As shown by Kaplan and Glass [1993],
the average displacement of n passes in m-dimensional
phase space for the Brownian motion is

_ 12\ + 1)/2]
&*wiﬁ Tm2)

where I' is the gamma function. The deviation in (V)
between a given time series and the Brownian motion can be
characterized by a single number given by the weighted
average over all boxes of the quantity

©)

—_R?
nj

! i)' )
A(T)Ezjnjznf -rR

(10)

where we have explicitly highlighted that the averaged
displacement (V;)(7) of the trajectory in the reconstructed

100

Figure 6. (a) L,: square symbols are derived from numer-
ical solutions of the Lorenz system, and triangles from these
solutions after randomization of phases of Fourier coeffi-
cients. (b) A(7): diamonds from Lorenz system, and trian-
gles after randomization of phases.
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Figure 7. (a) L,: square symbols are derived from numer-
ical solutions of the fO-U stochastic equation, and triangles
from these solutions after randomization of phases of Four-
ier coefficients. (b) A(7): squares from fO-U equation, and
triangles after randomization of phases.

phase space depends on the time-lag 7. For a completely
deterministic signal we have A = 1, and for a completely
random signal A = 0.

[22] All systems described by the laws of classical (non-
quantum) physics are deterministic in the sense that they are
described by equations that have unique solutions if the initial
state is completely specified. In this sense it seems mean-
ingless to provide tests for determinism. The test described in
this section is really a test of low dimensionality. The test is
performed by means of a time delay embedding, for
embedding dimension m up to a maximum value M, where M
is limited by practical constraints. High M requires longer
time series in order to achieve adequate statistics. A test that
fails to characterize the system as deterministic for m < M in
reality only tells us that the embedding dimension is too
small, i.e. the number of degrees of freedom d of the system
exceeds M/2. Such systems will in the following be charac-
terized as random, or stochastic.

[23] In Figure 6a, we plot L, versus n for a time series
generated as a numerical solution of the Lorenz system.
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Here we use m =3, b =1, 7 = 14 and the box size is of the
order of average distance a phase-space point moves during
one time step. In the same plot we also show the same
characteristic for the surrogate time series generated by
randomizing the phases of the Fourier coefficients of the
original time series. This procedure does not change the
power spectrum or auto-covariance, but destroys correlation
between phases due to nonlinear dynamics. For low-
dimensional, nonlinear systems such randomization will
change L,, as is demonstrated for the Lorenz system in
Figure 6a. We also calculate A versus 7 for these time series
and plot the results in Figure 6b. Again, A(7) for the original
and surrogate time series are significantly different.

[24] For the numerically generated fO-U process, where
m=28,b=1and 7 = 20, we observe in Figure 7 that L, and
A(7) for the original and surrogate time series do not differ,
demonstrating that these quantities are insensitive to ran-
domization of phases of Fourier coefficients if the process is
generated by a linear stochastic equation.

[25] One should pay attention to the nature of the experi-
mental data used in the test of determinism. For low-
dimensional data contaminated by low-amplitude noise or
Brownian motions, the analysis results will depend on the box
size, but the problem is solved by choosing it sufficiently
large. For a low-dimensional system represented by an
attractor of dimension d the results may also depend on the
choice of embedding dimension m. The estimated determin-
ism L,, tends to increase with increasing m until it stabilizes at
L,=1as m approaches 2d. For a random signal there is no
such dependence on embedding dimension, as demon-
strated by example in Figure 8. Here we plot the deter-
minism L3 (L,, when n = 3) versus embedding dimension m
for the Lorenz and fO-U time series. For comparison we
also plot this for transformed SYM-H, tSYM-H, during
magnetic storm times (the transformation and reasons for it
are explained in section 4). It converges to a value less
than 1, and for embedding dimensions higher than for the
Lorenz time series. This indicates that this geomagnetic
index during magnetic storms exhibit both a random and a

1 — o N A
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Figure 8. L; as a function of embedding dimension m
for solution of Lorenz equations (triangles), fO-U process
(squares), and tSYM-H (circles).

7 of 14



A10215

20

~ a)
T
= ,
s 0
@/
[Z=]
_20 I I I I
0 0.5 1 1.5 2
time (min) x 10°
10
T
\a
<
_10 L L L L
0 0.5 1 1.5 2
time (min) x 10°

Figure 9. (a) Increments for the SYM-H index. (b) Incre-
ments for the transformed signal tSYM-H.

deterministic component, and that the dimensionality of
this component is higher than for the Lorenz system.

3.4. A Test for Predictability

[26] In this section we develop an analysis which is based
on the diagonal line structures of the recurrence plot. In our
study we use the average inverse diagonal line length:

D= (r"y=>"1I"P();> P, (11)
! !

where P(/) is a histogram over diagonal lengths:

N -1

P() = (1= Rirjo) (1= Rivajur) [ [ Resagne

ij=1 k=0

For a low-dimensional, chaotic deterministic system (for
which the embedding dimension is sufficient to unfold the
attractor) I' is an analog to the largest Lyapunov exponent,
and is a measure of the degree of unpredictability.

[27] For stochastic systems, the recurrence plots do not
have identifiable diagonal lines, but rather consists of a
pattern of dark rectangles of varying size, as observed in
Figure 1. For embedding dimension m = 1 such a dark
rectangle corresponds to time intervals /; = (¢, t; + At;) on
the horizontal axis and I, = (t,, t, + At,) on the vertical axis,
for which the signal x(¢) is inside the same e-interval
whenever ¢ is included in either /; or I,. In this case the
length of unbroken diagonal lines / is a characteristic mea-
sure of the linear size of the corresponding rectangle, and the
PDF P(/) a measure of the distribution of residence times of
the trajectory inside e-intervals. For self-similar stochastic
processes such as fractional Brownian motions P(/) can be
computed analytically, and I" computed as function of the
self-similarity exponent /. Since the residence time / inside
an e-box increases as the smoothness of the trajectory
increases (increasing /), we should find that I'(h) is a
monotonically decreasing function of 4. In section 4.4 we
compute I'(7) numerically for a synthetically generated
fO-U process and thus demonstrate this relationship between
I" and 4. Hence both I" and % can serve as measures of pre-
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dictability, but I" is more general, because it is not restricted
to self-similar processes or processes with stationary incre-
ments, and applies to low-dimensional chaotic as well as
stochastic systems.

4. Results

[28] Rypdal and Rypdal [2010] show that the fluctuation
amplitude (or more precisely; the one—time step increment)
Ay(f) of the AE index is on the average proportional to the
instantaneous value y(f) of the index. This gives rise to a
special kind of intermittency associated with multiplicative
noises, and leads to a non-stationary time series of incre-
ments. However, the time series Ay(f)/y(¢f) is stationary,
implying that the stochastic process x(f) = log )(f) has sta-
tionary increments. Thus, a signal with stationary incre-
ments, which still can exhibit a multifractal intermittency,
can be constructed by considering the logarithm of the AE
index. Similar properties pertain to the SYM-H index,
although in these cases we have to add a constant ¢, before
taking the logarithm, i.e. x(¢) = log(c; + c;1(¢)) has stationary
increments. Using the procedure described by Rypdal and
Rypdal [2010] the estimated coefficients are ¢; = 0.7725
and ¢, = 0.0397. In Figure 9a we show the increments for
the original SYM-H data, while in Figure 9b we show the
increments for the transformed signal x(¢f), which in the
following will be denoted tSYM-H.

4.1.

[29] In this section, we employ EMD and variogram
analysis to tSYM-H, IMF B, and solar wind flow speed v.
The EMD analysis is used to compute intrinsic mode
functions (IF) for time intervals of 50000 minutes using data
for the entire period from January 2000 till December 2005.
The empirical variance estimates E versus mean period 7 for
each IF component in tSYM-H, B., and v are shown as log-
log plots in Figure 10a. In section 3.2 we mentioned that
Flandrin and Gongalvés [2004] have demonstrated that for
fractional Gaussian noise the slope ¢ is equal to ( =2H — 2,
where H is the Hurst exponent. This estimate for the slope
seems valid for our data as well, as is shown in the figure
from comparison with the variogram, even though the time
series on scales up to 10* minutes are non-stationary pro-
cesses having the character of fractional Brownian motions
[Rypdal and Rypdal, 2010]. The results from the two dif-
ferent methods shown in Figures 10a and 10b are roughly
consistent, using the relations # = H — 1 and ( = 2H — 2,
which implies 24 = (. In practice, we have calculated ¢ from
EMD as a function of 2/ for fractional Gaussian noises and
motions with self-similarity exponent /, and have derived a
relation ¢ = 0.94(2h) + 0.1143.

[30] The variogram represent a second order structure
function:

Scaling of Storm and Solar Wind Parameters

1 N—t

Ve = (N — k) Z(Swrk _Sn)2>

n=1

(12)

which scales with a time-lag k as v, = k**, & is denoted as
self-similarity exponent, and s is a time series. Note that a
Hurst exponent A > 1 implies that the process is a nonsta-
tionary motion, and if the process is self-similar, the self-
similarity exponent is # = H — 1. In our terminology a white
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Figure 10. (a) The empirical variance estimates £ versus
mean period T for each IF component in tSYM-H, B., and
v shown as log-log plots. (b) The variogram -, shown in
log-log plot. In both panels stars are for tSYM-H, diamonds
for IMF B., and triangles for v. Note that a generalization of
the result ( = 2H — 2 of Flandrin and Gongalves [2004]
yields 2h = (.

noise process has Hurst exponent H = 0.5 and a Brownian
motion has H = 1.5.

[31] From Figure 10a we observe three different scaling
regimes for tSYM-H. For timescales less than a few hun-
dred minutes it scales like an uncorrelated motion (% = 0.5).
On timescales from a few hours to a week it scales as an
antipersistent motion (4 = 0.25 — 0.35 depending on analysis
method), and on longer timescales than a week it is close to
a stationary pink noise (4 = 0). Similar behavior was
observed for log AE by Rypdal and Rypdal [2010], but there
the break between non-stationary motion and stationary
noise (where 4 changes from 4 > 0 to /& = 0) occurs already
after about 100 min, indicating the different timescales
involved in ring current (storm) dynamics and electrojet
(substorm) dynamics.

[32] Results for v indicate a regime with antipersistent
motion (4 = 0.25) up to a few hundred minutes, and then an
uncorrelated or weakly persistent motion (4 = 0.5) up to a
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week. On longer timescales than this the variogram indicates
that the process is stationary.

[33] The exponent / for B, can not be estimated from the
variogram since it is difficult to obtain a linear fit to the
concave curve in Figure 10b. The concavity is less pro-
nounced in the curve derived from the EMD method in
Figure 10a and ¢ = 0.47, corresponding to an antipersistent
motion (2 = 0.23), can be estimated on timescales up to a
few hundred minutes. B, becomes stationary already after a
few hundred minutes, which is similar to the behavior in log
AE, as pointed out by Rypdal and Rypdal [2010]. In the
work of Rypdal and Rypdal [2011] the concavity of the
variogram follows from modeling B, as a (multifractal)
Ornstein-Uhlenbeck process with a strong damping term
that confines the motion on timescales longer than 100 min.
Accounting for this confinement the “true” self-similarity
exponent of the stochastic term turns out to be # = 0.5. Thus
the antipersistence derived from the EMD analysis may be a
spurious effect from this confinement. The conclusion of
Rypdal and Rypdal [2011] is that B, and log AE behave as
uncorrelated motions up to the scales of a few hours and

04| p)

100

Figure 11. (a) L,: square symbols are for tSYM-H, and tri-
angles are for this signal after randomization of phases of
Fourier coefficients. (b) A(7): squares is for tSYM-H, and
triangles are after randomization of phases.
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Figure 12. (a) L¢ for IMF B, (squares), v (triangles),
tSYM-H (diamonds), fO-U (stars) computed before, during
and after storm onset. The values for Lg are computed using
12 hour intervals and are averaged over ten different storms.
(b) The D, index averaged over the ten storms.

become stationary on scales longer than this. Moreover, the
stochastic term modeling the two signals share the same
multifractal spectrum. In comparison, tSYM-H and v are
non-stationary motions on scales up to a week before they
reach the stationary regime.

4.2. Change of Determinism During Storm Times

[34] In Figure 11 we show L, and A(7) for tSYM-H and
its surrogate time series with randomized phases of Fourier
coefficients. We observe that L,, and A(7) for the surrogate
time series does not deviate from those computed from the
original tSYM-H, indicating that the dynamics of tSYM-H
is not low-dimensional and nonlinear. The same results are
obtained for IMF B, and flow speed v (not shown here).

[35] In the following analysis we test for determinism in
tSYM-H, B. and v for ten intense storms. The reference
point in our analysis is the storm’s main phase, and then we
analyze all the data spanning the time interval three days
before and three days after the storm in tSYM-H, B, and v.
We compute L, for n = 6 with a time resolution of 12 hours.
The choice of n = 6 from the L, -curve is a compromise
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between clear separation between low-dimensional and
stochastic dynamics and small error bars (which increase
with increasing #). In order to improve statistics for Lg, we
compute determinism using data from all ten storms. This
means that each Ls is computed over 12 hours interval over
10 storms, which gives 12 - 60 - 10 = 7200 points. As a
reference, we compute Lg for the fO-U process, whose
coefficients are fitted by the least squares regression to the
SYM-H index during investigated storms. In all computa-
tions, we use embedding dimension m = 7, time delay 7= 20,
and b = 1. In Figure 12a we plot L¢ for tSYM-H B., v, and
fO-U, and in Figure 12b the D,, index averaged over all ten
storms is plotted, since this index shows precisely when the
storm takes place. We can observe that L is essentially the
same for B,, v and fO-U, and stays approximately constant
during the course of a storm. However, L for tSYM-H
increases during storm time. In order to demonstrate that
the change in Lg is significant, we plot in Figure 13 L, for
tSYM-H, where the triangles are the mean of L, computed
3 days before and after the storm for ten different storms.
These curves represent non-storm conditions. The upper
curve (squares) is the mean over all ten storms computed
at the time of the D, minimum, i.e. it represents the L,-
curve around storm onset.

[36] In addition, we test determinism for the quantity
SYM-H*=0.77 SYM-H-11.9, /Payn [Kozyra and Liemohn,
2003], where P, is the Solar wind’s dynamic pressure.
SYM-H" is a corrected index where the effect of the mag-
netopause current due to P, is subtracted, and thus repre-
sents the ring current contribution to SYM-H. In order to
obtain stationary increments we analyze a transformed index;
tSYM-H*=log(c; +c,SYM-H"), where ¢; = 1.7694, and ¢, =
0.0292. Since some data points are missing in Py,,,, we have
made a linear interpolation over the missing points. It seems
that the interpolation decreases determinism in tSYM-H*,

14
0.8f 1
0.6f 1
. ]
0.4 1
— - . N
02| = T
0 L L L L L
2 4 6 8 10 12

Figure 13. L, for tSYM-H, where the triangles are the
mean of L, computed 3 days before and after the storm
for ten different storms. These curves represent non-storm
conditions. The upper curve (squares) is the mean over all
ten storms computed at the time of the Dy, minimum, i.e.
it represents the L,-curve around storm onset. Many curves
are terminated for n,,,, < 12 because there were no boxes
with more than n,,,, passages of the phase-space trajectory.
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Figure 14. L4 averaged over ten storms for time series
where missing points have been interpolated; tSYM-H
(diamonds), tSYM-H* (stars), \/(Py,) (triangles).

and for reference we compute determinism for the interpo-
lated tSYM-H, where the interpolation is done over the same
points as in tSYM-H”, even though tSYM-H does not have
missing points. In Figure 14 we plot Ls for tSYM-H*, tSYM-
H, and \/(den). We see that the determinism in tSYM-H" is
lower than that in tSYM-H, but it still increases during the
storm. On the other hand +/(Pg,) shows no change in

determinism during storm events.

4.3. Discussion of Results on Determinism

[37] The determinism (as measured by L) of the storm
index tSYM-H and tSYM-H" has been shown to exhibit a
pronounced increase at storm time. A rather trivial expla-
nation of this enhancement would be that it is caused by the
“trend” incurred by the wedge-shaped drop and recovery of
the storm indices associated with a magnetic storm. We test
this hypothesis by superposing such a wedge-shaped pulse
to an fO-U process and compute L. Next, we take tSYM-H
for ten storms and for each set of data subtract the wedge-
shaped pulse (computed by a moving-average smoothing).
The residual signal represents the “detrended” fluctuations.
The result is shown in Figure 15 and reveals that the trend in
fO-U process has no discernible influence on the deter-
minism during the storm while, on the other hand, we
observe that the enhancement of Lg around storm time
persists in the “detrended” fluctuations. This result suggests
that the increasing determinism during storms is a result of
an enhanced low-dimensional component in the storm
indices. As mentioned in section 3.3 for low-dimensional
dynamics, nonlinearity may be important for the measure of
determinism. For a nonlinear, low-dimensional system the
destruction of nonlinear coupling by randomizing phases of
Fourier coefficients will in general reduce the determinism,
while for a linear, stochastic process we will observe no
such effect. But what role will nonlinearity play if it is
introduced in the deterministic terms of a stochastic equa-
tion? The deterministic term in the fractional Langevin
equation representing the fO-U is a linear damping term.
However, the best representation of the damping/drift term
in an fO-U model for tSYM-H is not linear. Following
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Figure 15. Lg: triangles are derived from an fO-U process
with a “storm trend” imposed, diamonds are derived from
the “detrended” tSYM-H.

Rypdal and Rypdal [2011], if y = tSYM-H, the drift term is
given as the conditional probability density 6y(¢, 6f) given
that y(¢) = y:

M(y, 61) = E[éy(t, 61)y(1) = y]. (13)

In fO-U M(y, 6¢) is a linear function of y, but a polynomial fit
to drift term derived from tSYM-H data requires a sixth order
polynomial, confirming the nonlinearity of the tSYM-H
process. This is shown in Figure 16. Next, we test deter-
minism for the nonlinear fO-U process, whose scaling
exponent 7 is estimated from the variogram of tSYM-H, and
where m = 8 and 7 = 10 is used. Figure 17a shows L,, for
numerical realizations of this process compared with the same
analysis after randomization of the phases of the Fourier
coefficients. The result reveals that the nonlinear fO-U pro-
cess is not more deterministic than its randomized version.

x10™

0.8

0.4
y

1.2

Figure 16. The drift term in the fO-U equation computed
from tSYM-H. The smooth solid curve is a six-order poly-
nomial fit.
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Figure 17. L,. (a) Diamonds are derived from numerical
solutions of the nonlinear fO-U. Triangles are from these
solutions after randomization of phases of Fourier coeffi-
cients. (b) Diamonds are derived from numerical solutions
of the nonlinear fO-U with a solution of the x component
ofthe Lorenz system superposed. Triangles are from the latter
signals after randomization of phases.

Next, we form the composite time series x = x; + 1.85x,,
where x; is the solution of the Lorenz system and x,, is the
nonlinear fO-U process, both signals with zero mean and unit
variance. Again, embedding dimension m = 8 is used. Now
the L, -curve is lowered when the phases are randomized, as
shown in Figure 17b, which confirms our conjecture that
determinism is a measure of low-dimensionality.

4.4. Change of Predictability During Magnetic Storms

[38] Even though we deal with a predominantly stochastic
system, its correlation and the degree of predictability chan-
ges in time, and our hypothesis is that abrupt transitions in the
dynamics take place during events like magnetic storms and
substorms. We therefore employ recurrence plot quantifica-
tion analysis as a tool for detection of these transitions.

[39] We compute the average inverse diagonal line length
I'= (I'"") as defined in equation (11), but the same results
can be drawn from other quantities that can be derived from
the recurrence plot [Marwan et al., 2007]. T" can be used as a
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proxy for the positive Lyapunov exponent in a system with
chaotic dynamics, and is sensitive to the transition from
regular to chaotic behavior, as can be shown heuristically for
the case of the Lorenz system, where we use a = 10, b = 8/3,
and c is varied from 20 to 40, such that transient behavior is
obtained. For ¢ = 24.74 a Hopf bifurcation occurs, which
corresponds to the onset of chaotic flows. In Figure 18a we
plot a bifurcation diagram for the x component of the Lorenz
system as a function of the parameter ¢, while in Figure 18b
we show I' for the x component again as a function of the
parameter c¢. Similar results have been obtained from the
longest diagonal length, when applied to the logistic map
[Trulla et al., 1996].

[40] In the following analysis, we use embedding
dimension m = 1, because the results do not seem dependent
on m and because, in the case of stochastic or high-
dimensional dynamics, a topological embedding cannot be
achieved for any reasonable embedding dimension. This fact
demonstrates the robustness of the recurrence-plot analysis,
which responds to changes in the dynamics of the system
even if it is a stochastic or high-dimensional system for
which no proper phase-space reconstruction is possible.

[41] Since reduction in I" means increase of predictability
it may also be a signature of higher persistence in a sto-
chastic signal. This motivates plotting I' and 2/ (computed
as a linear fit from the variogram over the timescales up to
12 hours) for solar wind parameters and magnetic indices.
Figure 19 shows I' for tSYM-H, B., v, tSYM-H* and
detrended tSYM-H averaged over 10 magnetic storms.
Figure 20 shows the same for 2/, but detrended tSYM-H is
not shown since its 2/ changes insignificantly during the
course of the storm. We observe that the increase in the
predictability and persistence does not occur simultaneously
for all observables. While B,, tSYM-H, detrended tSYM-H
and tSYM-H* get the most predictable during or after the
storm’s main phase, solar wind’s flow speed becomes the
most predictable prior to the storm’s main phase. From a
hundred realizations of the fO-U process generated numer-
ically with the coefficients in the stochastic equation fitted to

50

40

Figure 18. (a) x component of the Lorenz system as a func-
tion of the parameter c. (b) T' = (/') as a function of the
parameter c.
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Figure 19. T for tSYM-H (stars), tSYM-H* (circles),
B, (squares), v (upward triangles), detrended tSYM-H
(downward triangles) averaged over ten storms. Error bars
represent standard deviation based on data from these ten
storms. Time origin is defined by the minimum of the aver-
age D, index for the ten storms.

model the tSYM-H signal, we find I" = 0.4 and 24 = 1, in
good agreement with the results obtained from the tSYM-H
time series. The general relationship between I' and % can
also be explored through numerical realizations of fO-U
processes. Figure 21 shows I' computed for varying 4 as a
mean value of 100 realizations of such a process for each 4.
For persistent motions (4 > 0.5) there is a linear dependence

between I' and 4, and a best fit yields
I ~0.72 — 0.57h. (14)

This analysis shows the importance of I' as a universal
measure for predictability: in low-dimensional systems it is
a proxy for the Lyapunov exponent, while for persistent

1.4

1.2} 1

2h

0.87

0.67

O'il?’ -2 -1 0 1 2

days before/after the storm

Figure 20. 24 for tSYM-H (stars), tSYM-H"* (circles),
B, (squares), v (triangles) averaged over the same storms
as in Figure 19.
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Figure 21. T versus & computed from numerical realiza-
tions of the fO-U process.

stochastic motions it is a measure of persistence through
equation (14).

5. Conclusions

[42] The storm index SYM-H and the solar wind obser-
vables (flow velocity v and IMF B,) show no clear sig-
natures of low-dimensional dynamics during quiet periods.
However, low-dimensionality increases in SYM-H and
SYM-H* during storm times, indicating that self-organiza-
tion of the magnetosphere takes place during magnetic
storms. This conclusion is drawn from the study of ten
intense, magnetic storms in the period from 2000-2003.
Even though our analysis shows no discernible change
in determinism during magnetic storms for solar wind
parameters, there is an enhancement of the predictability of
the solar wind observables as well as the geomagnetic storm
indices during major storms. We interpret this as an increase
in the persistence of the stochastic components of the sig-
nals. The increased persistence in the solar wind flow v,
prior to the storm’s main phase could indicate that v is more
important driver than B, during magnetic storms. This is
consistent with a reexamination of the solar wind-magne-
tosphere coupling functions done by Newell et al. [2006],
who found that the most optimal function is of the form
v B sin*(0/2)*?, where 0 = arctan(B,/B.). Also, it has been
shown by Pulkkinen et al. [2007] through numerical simu-
lation, that increased v changes the magnetospheric response
from a steadily convecting state to highly variable in both
space and time.

[43] It has been shown by Nose et al. [2001] that the
plasma sheet is the dominant source for the ring current
based on the similarity in composition of the inner plasma
sheet and ring current regions. During the main phase of the
storm, ions from the plasma sheet are flowing to the inner
magnetosphere on the open drift paths and then move to the
dayside magnetopause. In this storm phase the ring current
is highly asymmetric, as was experimentally shown by
energetic neutral atom imaging [see Kozyra and Liemohn,
2003, and references therein]. During the recovery phase,
ions from the plasma sheet are trapped on closed drift paths,
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and form the symmetric ring current. Therefore, the increase
in determinism of the ring current (SYM-H") during storms
implies increased determinism in the plasma sheet as well.

[44] A magnetic storm is a coherent global phenomenon
investing a vast region of the inner magnetosphere, and
implying large scale correlation. The counterpart of this
increase of coherence is the reduction of the spontaneous
incoherent short timescale fluctuations. Consequently, one
should expect a reduction of the free degrees of freedom
which implies an increase of determinism, i.e. the possible
emergence of a low-dimensionality.

[45] Analysis of predictability shows significant differ-
ences between B, on one hand, and v and SYM-H on the
other. While the former is a non-stationary, slightly anti-
persistent motion up to timescales of approximately 100 min,
and a pink noise on longer timescales, the latter are slightly
persistent motions on scales up to several days and noises on
longer timescales. These differences indicate the different
role the solar wind B, and the velocity v play in driving the
substorm and storm current systems; B, is important in sub-
storm dynamics which will be studied in a separate paper,
while v is a major driver of storms.
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