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1 Introduction and main results

The main purpose of this paper is to present new duality theorems for ma-
troids; see Theorems 1-3 below in this section. We also present duality theo-
rems for more general combinatorial structures that we call demi-matroids; see
Theorems 5 and 6 in Section 2. These new combinatorial structures provide the
natural and exact framework for duality results such as Wei’s celebrated Du-
ality Theorem [14]. The main theorems are applied in Section 3 to the classes
of perfect matroid designs, graphs, transversals, and linear codes over division
rings, in each case yielding a duality theorem for the particular class of objects
in question. One of these duality theorems is a strong poset-code generaliza-
tion of Wei’s celebrated Duality Theorem [14] as well as of previous general-
izations thereof; see Theorem 11. Our derivation of these coding-theoretical
results shows that they are essentially combinatorial in nature. Our results
also shed new light on perfect matroid designs. In particular, we show that
the closed-set cardinalities of a perfect matroid design are uniquely determined
by corresponding cardinalities of the matroid dual; see Theorem 7.

Let M = (E, p) be a matroid with rank k := p(M) on a finite set E of n
elements. For each i =0,...,kand j =0,...,n — k, define

fi=max{|F| : F CE, p(F) =i},

f; ==max{|F| : F CE, p*(F) =3},

and set

S}\’I = {n_fk—lv"'an_fo};
Tag={f5+1,.... fr__1+1}.

The first and simplest of our duality theorems is Theorem 1 below. It states
that the sets Sy and Tar partition the set {1,...,n} and thereby determine
each other.

Theorem 1 Sp; UTy = {1,...,n} and SyyNTay=0.

Ezample 1 The Vdmos matroid M := V3 on E := {1,...,8} is simple, self-
duala non—uniform, and paving, SO (fO,fla f2a f3) = (f(;v ff’ f;y f:;) = (01 1, 27 4)
It follows that Sy = {4,6,7,8} and Tpy = {1,2,3,5}. Thus, Spy U Ty =
{1,...,8} and Sp; N Txr =P, as asserted by Theorem 1.

Theorem 1 is a special case of Theorem 2 below. In order to express the
latter theorem and its companion, Theorem 3, we must introduce some further
notation.

Let P be a partially ordered set (poset) with elements E and order rela-
tion <p. The dual of P is the poset P on E with order relation <+ defined
for all z,y € E by x <5 y if and only if y <p z. For each subset A C E, let
(A)p denote the order ideal {x € E : = <p y for some y € A}. Note that if P
is an antichain (i.e., when P = P), then (A)p = A.
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Forallti=0,...,kand j =0,...,n — k, define
¢f = min{ |(F)p| : FCE, p(F) =i};

¢;™ == min{ |(F)p| : F C E, p*(F) = j};

fF :=max{|E - (E—- F)p| : FCE, p(F) =1i};

f7" = max{|E ~ (E - F)p| : F CE, p"(F) = j}.

Set

P P
SM = {n—fk_l,...,'n—f(f};

P P Px .
Tho={fo " +1,... fir_ +1};

UE = {¢F,....0F};
Vi = {n+1—¢5’_*k,...,n+1 — f’*}.
The main results of this paper are presented in Theorems 2 and 3 below.

Theorem 2 SﬁIUTE={1,...,n} and S]’\DIHTE=(0.
Theorem 3 U,{,’,UVE:{l,...,n} and U]{,’IOVE=@.

Note that Sy = S} and Tar = T4, whenever P is an antichain. Thus, Theo-
rem 1 follows immediately from Theorem 2; an independent proof of Theorem 1
is also to be found in (8]. Theorems 2 and 3 in turn follow from more general
duality theorems for demi-matroids, namely Theorems 5 and 6 in Section 2.

Remark 1 If P is an antichain, then ¢f = i and ¢§’ = j for all integers
i=0,...,kand j =0,...,n —k, s0 U} = {1,...,k} and Vi§ = {k +
1,...,n}. Thus, whereas Theorem 2 implies Theorem 1, Theorem 3 does not
imply any similarly interesting result for matroids. The next section, however,
will introduce more general objects ( “demi-matroids”) for which the associated
generalization of Theorem 3 (Theorem 6) will be shown to be just as interesting
as the associated generalization of Theorem 2 (Theorem 5); see Lemma 4.

2 Wei-type duality theorems for demi-matroids

The duality theorems expressed in Theorems 1-3 are not unique to matroids
but are more generally, and more naturally, satisfied by new combinatorial
objects that we introduce in this section. In particular, a demi-matroid is a
triple (E,s,t) consisting of a finite set £ and two functions s,t : 28 — Ny
satisfying the following two conditions for all subsets X CY C E:

(R) 0<s(X)<s(Y)< Y] and 0<#(X)<HY)< |V
(D) |E — X| - s(E — X) = t(E) — t(X).
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Note that s(@) = t(@) = 0 by (R). Thus, (D) is equivalent to the following
condition:

(D) |E - X| - t(E — X) = s(E) — s(X).

Note that for any matroid A = (E, p) on E, the triple (E, p, p*) is a demi-
matroid. Conversely, if (E, s,t) is a demi-matroid, then s is the rank function
of a matroid M on E if and only if ¢ is the rank function of M*. The following
example shows that demi-matroids properly generalize matroids.

Ezample 2 Suppose that E = {a,b}, and define and s(F) := 1 and s(X):=0
for each subset X = 0, {a}, {b}. The triple (E, s, s) is a demi-matroid but s is
not the rank function of any (poly)matroid on E.

Let D = (E,s,t) be a demi-matroid on E. By (D), s(E) + t(E) = n. Set
k:=s(E).

Lemma 1 s(X —z)>s(X)—-1andt(X —z) >¢(X)—1 forall X CE and
zeFE.

Proof. By (R) and (D),

X —z)=tE)-|E- (X —-z)|+s(F—- (X —x))
>HE)-|E-X|-1+s(E-X)
=tX)-1.

Similarly, s(X —z) > s(X) — 1. a
Let P be a poset as described in the Introduction, and define for each
1=0,...,kand j=0,...,n -k,

P = min{|(X)p| : X CE, s(X)>1i};

7P := min{ [(X)p| : X C E, ¢(X) > j};

ag.

s :=max{|E - (E - X)p| : X CE, s(X) <i};
tF := max{|E — (E - X)p| : X CE, #(X) < j}.

By (R) and Lemma 1, all of the numbers of, 77, sP, and tP are well-defined

and may be given the following equivalent characterizations.
Lemma 2 Foralli=0,...,kand j=0,...,n—k,

of =min{|(X)p| : X CFE, s(X) =1};

75 =min{|(X)p| : X CE, t(X) =j};

si =max{|E —(E—X)p| : X CE, s(X)=1i};
(E -

tF = max{|E - (E - X)p| : X CE, t(X) = j}.

o o

,.UQ
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Remark 2 If P is an antichain, then

sf = max{|X| : X CE, s(X)=i} and tf:max{|X| : X CE t(X)=j}.

If, in addition, M = (E,p) is a matroid on E, then the coefficients aip ,'er

for the demi-matroid D := (E, p,p*) are trivial: ¢f = i and Tf = j for all
relevant i, j.

Lemma 3 The following inequalities hold:

0=Jé’<af<a;<---<af§n;
0=7{<Tf<'rf<~~<'rf_k§n;
0<sf <sf <sf <. <sP =n;

0<tP<tP<tl <. <tf_ =n.

Proof. For any i = 1,...,k, let X C E be a subset such that |(X)p| = of
and s(X) > 4. Then X # 0 since s(X) > 1. Choose an element z € X that is
maximal in P. Then (X —z)p C (X)p. By Lemma 1, s(X —z) > i -1, so
0P, <X = 2)p| < [(X)pl = oF .

The remaining inequalities follow similarly. a

Lemma 3 induces the following Singleton-type bounds.

Corollary 1 Foralli=0,...,k and7=0,...,n—k,

afgn—k+i, Tf5k+j, sf<n—k+i, and t?§k+j.

1

The dual demi-matroid of a demi-matroid D := (E, s,t) is the triple D* :=
(E,t,s). The operation D — D* is clearly an involution, i.e.,

D = (D*)*.

A second fundamental involution on demi-matroids is now presented. For
any real function f : 28 — R, let f denote the function given by

f(X):=f(E) - f(E - X).
Since 7(X) = f(E) - f(E — X) = f(X) — f(0), it follows that if f(@) = 0,

then the operation f — f is an involution, i.e., f = f.
Theorem 4 The triple D := (E,3,t) is a demi-matroid; also, D = D and

£

D*=D".

Proof. Routine veriﬁcation_ shows that D is a demi-matroid. To conclude, note
that D = (E,s,t) = (E,5,t) = D and D* = (E,t,s) = (E,1,3) = (E,5,1)* =
D’ o

The demi-matroid D is called the supplement of D.
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Ezample 8 The supplement of a matroid is not necessarily a matroid. For
instance, consider the matroid M := (FE, p) consisting of a loop and two parallel
elements. Then D := (E, p, p*) is a demi-matroid, so D = (E, 5, p*) is also a
demi-matroid. However, (E,p) is not a matroid, since it would have rank 1
but only contain loops.

Define for alli=0,...,kand j=0,...,n -k,

77 = min{ |(X)p| : X C E, 5(X) > 1};
77
i (E-X)p| : X CE,3(X)<i};
= max{|E - (E - X)p
0

|: X C B, ¥X) < 5}

7P .= min{ |(X)5| : X C E, {(X) > j};
5; = max{|F —
N

Lemma 4 Foralli=0,...,kand j=0,...,n—k,
sten—of_;;  tEn-7h )
of=n—3f . tEn-t,_,,.

Proof. It is easy to show that, for each i =0,...,k,

sf =max{|E - (E-X)p| : X CE, s(X) =i};
- = max{|(X)p| : X CE, 5(X) =1}.

Then
sf =max{|E - (X)p| : X CE, s(E - X) =1}
=n—min{|(X)p| : X CE,35(X)=k—1}
=n- Ef_i .
The remaining identities are proved similarly. a
Set
Spe={n—si_1,...,n=s0};

TE = {tF +1,...tF_ ., +1};

UE = {of,...,0f};

V§:= {'n+1—'rf_k,...,n+1-—'r?}.
Lemma 4 implies the following identities.
Lemma 5 S§ = Ug and TE = Vg.

The strongest results of this paper are Theorems 5 and 6 below. Note that
these results immediately imply Theorems 2 and 3.

Theorem 5 S5UTE = {1,...,n} and SENTE =0.
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Theorem 6 UL UVE = {1,...,n} and USNVE =9.

Proof of Theorems 5 and 6. Assume that cf =n+1— 'rj? ,andlet X C F
be a subset satisfying |(X)p| = ¢f and s(X) > i. Now, set Y := E — (X)p
and note that Y is an ideal in P. Then |(Y)5| = |Y|=n—-0of = 'rjF -1, s0
£(Y) <j - 1. By (R) and (D),

n—k—of +i <t(E) - [{(X)p| +s(X)
<H(E) - ()¢ + (X))
=t(E)—-|E-Y|+s(E-Y)
=t(Y)
<j-1.

P TJF < —2, which
is a contradiction. It follows that ¢f # n+ 1 — ij for all i,j. This proves
Theorem 6.

To prove Theorem 5, apply Theorem 6 to D, and use Lemma 5. a

Similarly, n — (n — k) — 'er+j <i—1.Hence, -1=n-o¢

Ezample 4 For the demi-matroid D := (E, s,t) with E = {a,b,c}, s(E) = 1,
and s(X) =0 for X C E, and an antichain P on E,

SE={1}, TH={23}, UE={3}, and VE={1,2}.

Thus, SE U TDF = {1,2,3} and SEn Tg_= @, as asserted by Theorem 5.
Likewise, Uf UV} = {1,2,3} and U5 NV = 0, as asserted by Theorem 6.
Here we see that Theorems 5 and 6 give results that cannot be obtained directly

from Theorems 2 and 3, since (F, s) and (E,t) are not matroids.

3 Duality theorems for particular classes of objects

The duality theorems (Theorems 1, 2, 3, 5, and 6) presented in the previ-
ous sections may each be applied to numerous classes of objects that induce
matroids and demi-matroids, thus yielding duality theorems for each of these
classes. In this section, we apply these matroid and demi-matroid theorems to
the classes of perfect matroid designs, graphs, transversals, and linear codes.

In the following, let P be a partial order on the set E. It is not difficult to
show that if M is a matroid on E with rank k and coefficients f and ff -
then

n— ff ; =min{|(X)p| : X C E is a union of i cocircuits of M, (F)
none contained in the union of the others};

*

n— f:_’k_j = min{|(X)p| : X C E is a union of j circuits of M, (F”)

none contained in the union of the others}.
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3.1 Perfect matroid designs

A perfect matroid design is a matroid M in which the cardinality of each closed
set is determined uniquely by its rank (see [15, Chapter 12] and [5]). If the
rank of a closed set F' of M is i, then |F| = f;. Theorem 1 immediately implies
the following result.

Theorem 7 The cardinalities of the closed sets of a perfect design matroid M
are uniquely determined by the mazimal cardinalities, for all j, of the j-ranked
closed sets of M*.

3.2 Graphs

Let G be a (multi)graph on n edges E whose spanning forests each contains k
edges, and let P be a poset on E. Recall that a bond of G is a minimal cut-set
of edges of G. Foreach i =1,...,kand j =1,...,n — k, define

bF :=min{|(X)p| : X C E is a union of i bonds of G,

none of which are contained in the union of the others};

cf :=min{|(X)p| : X C E is a union of j cycles of G,

none of which are contained in the union of the others}.

Consider the cycle matroid M := M(G) and its coefficients f and f;_) .
Equations (F) and (F’) immediately imply the following result.
Proposition 1 b =n — ff . and cjF =n- ff;l_j )
Set

Sg=1{bf,...,b(};
Tg::{n+1—c§_k,...,n+1—c?}.

The next result generalizes [3, Theorem 13] and follows immediately from
Theorem 1 and Proposition 1.

Theorem 8 S5 UTE = {1,...,n} and SENTE = 0.

Ezample 5 The graph G below has n = 5 edges F = {1, 2, 3,4, 5}, and each of
its spanning forests has k = 3 edges:
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Let P be the antichain on E. Then (b7, ,b6%) = (2,4,5) and (cf, ) = (3,5).
Set

Sg = {b{)’ bfa bg} ={2,4,5};

Tg:: {n+1 —c?,n+ 1 —c?} = {1,3}.

Then SE U VE ={1,2,3,4,5} and TE N VE =0, as asserted by Theorem 8.

3.3 Transversals

Let A := {A;,..., A} be a multiset of subsets A; C E. A transversal, or
matching, of A is a set T C E of size |T| = |A| for which the elements of T'
may be labeled ey, ..., e, so that e; € A; for each 7 = 1,...,m. A partial
transversalof A is a transversal of a sub-multiset of A. The partial transversals
of A form the independent sets of the transversal matroid of A, denoted by
MI[A] (cf. [13, Section 1.6]). A set X C FE is a plug for Aif X —eis a
partial transversal of A4 for each e € X but X itself is not. Let k denote the
maximal size of a partial transversal of A, that is, the rank of M[A]. For each
1=0,...,k—1and j=1,...,n —k, define

pf == min{|(X)p| : X C E is a union of i plugs for A,

none contained in the union of the others.;

mj-) := max{ |(X)p| : X C F contains a partial transversal of A of size j
but none of size j + 1}.
Set
Sh=1{pl\ i)

Tf:: {m0ﬁ+1,...,mf_1+1}.
Theorem 9 SEUTE ={1,...,n} and SENTE = 0.

Proof. For M := (M[A])* with rank n —k, pf =n—fF_, . and mf = ko_,;,
by (F’). Use Theorem 2. a
Ezample 6 Let E := {a,b,c,d,e} and A := {{a,b}, {a,c},{d},{d}}. Then for
the antichain P on E, S} = {1,3} and T} = {2,4,5}. Therefore, S UT} =
{1,2,3,4,5} and SE nTE = 0, as claimed by Theorem 9.

3.4 Codes over division rings

Let R denote a division ring (possibly a field). The (Hamming) support of each
codeword x := (z1,...,Zn) € R™ and each subset D C R™ are the sets

supp(x):={ie€ E : z; # 0} and Supp(D) := U supp(x) .
xeD
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Let P be a poset on E. The P-weight of each subset D C R™ is defined as
follows:

wtp(D) := |(Supp(D))p|.

Let C be a right linear [n, k] code over R with coordinates E. The dual code
C+ is given as follows:

Ct:={yeR":x-y=0forall xeC}.

For each integer i = 1,...,k (j = 1,...,n —k), define the ith (jth) generalized
P-weight of C (C*) as follows:

df :=min{wtp(D) : DCC, dimD =i};
dPt = min { wtp(D) : DC C*, dimD =j}.

For any subset X C E, the punctured code C\X is the right linear code
obtained by deleting the coordinates X from each codeword of C. Also, C(X)
is the right linear subcode of C consisting of all codewords x € C for which
supp(x) C X. Note that £ = dim C = dim C\ X + dim C(X).

Define the function pc : 2% — Ny by

pc(X) :=dim C\(E - X).

This is the rank function of the vector matroid M¢c = (E, pc). Define pot
similarly for C* and note that p} = pc..

Theorem 10 D¢ := (E, pc, pcL) is a demi-matroid.
Consider the numbers @ and ?j? associated to Dc¢.

Proposition 2 df =5f =n—-sf_, and
Proof. Let D be a right linear [n, i] subcode of C for which wtp(D) = df’(C).
Then for X := Supp(D), pc(X) = k — pc(E — X) = dim D = 4, so df =
wtp(D) = [(X)p| > oF.

Conversely, let X C E be a subset with pc(X) = ¢ and |(X)p| = &7.
Now, C(X) is a right linear subcode of C with dim C(X) =k —pc(E-X) =
pc(X) = 4. Hence, df < wtp(C(X)) < |(X)p| =77

-
It follows that df = 7. Similarly, dj-)’l = Ff , and Lemma 4 concludes
the proof. a

Set
SE = {df,...,df};
TE :={n+1-dD%,.. n+1-dDty.

Theorem 11 SEUTE = {1,...,n} and SENTE =9.

Proof. Use Theorems 5 and 10 together with Proposition 2. a
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Ezample 7 Consider the linear code C generated by the following binary ma-
trix:

10100

01100

00011

Here, R = GF(2), E ={1,2,3,4,5}, n =5, and k = 3. Let P be the partially
ordered set on E, with order relation <p determined by the inequalities 4 <p
1,2,3 <p 5. Then (df, dF, df) = (3,4,5) and (d7'*, dg ) = (4,5), so S5 =
{3,4,5} and TE = {1,2}. Hence, S5 N Te = 0 and S5 UTE = {1,2,3,4,5},
as asserted by Theorem 11.

Theorem 11 above extends slightly the recent poset-code generalization of
Wei’s Duality Theorem by Barg and Purkayastha [2] and Moura and Firer [9].
Their generalization is obtained from Theorem 11 by letting R be a finite field.
This shows that Wei’s Duality Theorem and its above-mentioned generaliza-
tion are essentially combinatorial in nature.

Note also that Theorem 11 does not extend the duality results by Ashikhimin [1]
and Horimoto and Shiromoto [7] for linear codes over Galois- and chain rings.

It remains an open problem to find poset-code generalizations for such results.

3.4.1 Ordered Hamming spaces

The ordered Hamming space, also called the Niederreiter- Rosenbloom-Tsfasman
metric space, is the set of 7 x ¢ matrices R™*¢ over the division ring R endowed
with the metric dy, (x,y) := wtp(x —y) for all X,y € R"™*¢, where

wtr(x) = Zmax{j e{l,...,c} : z;; #0}.

The matrices x € R™¢ are often represented as concatenated vectors, or
blocks, each of length c:

X=(Z11,-+-1T1c} -} Trly---yTre) -

Ordered Hamming spaces were implicitly introduced in [10-12,16]. As first
noted in [4], these spaces may be viewed as poset codes with P,-weight wtp, (x) =
wtr(x), where P, is a poset consisting of a disjoint union of r chains, each cor-
responding to a row (or block) of x; this observation indeed led to the notion
of poset codes. Dualizing the poset P,, one obtains a second weight function
wtr(x) = wtp-(x) given explicitly as follows:

T

wtg(x) = Z(c+1 —min{j € {1,...,¢} : z;; #0}) .

i=1
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Let C C R™° be a right linear [n, k}]-code, where n = rc, and let C+ C R™*¢
be the dual code of C. For each integer i = 1,...,k (j =1,...,n — k), define
the ith left-ordered weight of C (jth right-ordered weight of C1) as follows:

diL - min{th(D) : DCC, dimD =i};
df’L = min{th(D) : DCC*t, dimD = j}.
Set
S& = {dlL,...,d,I;};
TG = {n+1-d%, . ,n+1-dft}.

n—k1*

The following theorem expresses the ordered Hamming space generalization
of Wei’s Duality Theorem and follows immediately from Theorem 11 and the
identities _

S¢=8F and TE=TZ.

Theorem 12 S UTE ={1,...,n} and SE NTE = 0.

The above theorem reduces to Wei’s Duality Theorem [14] when ¢ = 1;
that is, when P is an antichain.

Ezample 8 Consider the linear code C spanned by the following two binary

matrices:
01 11
00 01

In this example, R = GF(2), n = 4, and k = 2. Furthermore, (d¥,d%) =
(dft dft) = (2,4). Then Le = {2,4} and R¢ = {1,3}, s0 Lc NRc = @ and
Lo URe ={1,2,3,4}, as asserted by Theorem 12.
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