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Abstract

The ecology of small rodent food selection is poorly understood, as mammalian herbivore food selection theory has mainly
been developed by studying ungulates. Especially, the effect of food availability on food selection in natural habitats where
a range of food items are available is unknown. We studied diets and selectivity of grey-sided voles (Myodes rufocanus) and
tundra voles (Microtus oeconomus), key herbivores in European tundra ecosystems, using DNA metabarcoding, a novel
method enabling taxonomically detailed diet studies. In order to cover the range of food availabilities present in the wild,
we employed a large-scale study design for sampling data on food availability and vole diets. Both vole species had
ingested a range of plant species and selected particularly forbs and grasses. Grey-sided voles also selected ericoid shrubs
and tundra voles willows. Availability of a food item rarely affected its utilization directly, although seasonal changes of diets
and selection suggest that these are positively correlated with availability. Moreover, diets and selectivity were affected by
availability of alternative food items. These results show that the focal sub-arctic voles have diverse diets and flexible food
preferences and rarely compensate low availability of a food item with increased searching effort. Diet diversity itself is likely
to be an important trait and has previously been underrated owing to methodological constraints. We suggest that the
roles of alternative food item availability and search time limitations for small rodent feeding ecology should be
investigated.
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Introduction

Current understanding of mammalian herbivore foraging

ecology is mainly based on studies focusing on ungulates; see for

example [1,2] and [3]. Other herbivores with a central role in

many ecosystems, such as small rodents, have been less studied.

Small rodents are non-ruminant herbivores with fast digestion,

invest greatly in reproduction and little in growth, generally have a

high risk of predation and are often territorial [4–6]. They can

therefore be expected to have different nutritional needs and face

different trade-offs both physiologically and behaviorally than

ungulates. Due to such differences in trade-offs, small rodent

functional responses, i.e. the relationship between food intake and

food availability [7], are also likely to differ from those developed

using ungulates as empirical models [8]. Functional response

models can improve the understanding of how herbivores select

their food and thus aid in predicting how they may cope with

current vegetation changes, as well as how they may themselves

affect vegetation. A range of parameters have been suggested to be

incorporated into functional response models for herbivores

[2,9,10]. However, to target those parameters that are important

determinants of small rodent functional responses, more explor-

atory empirical work is required to assess which processes shape

their food selection in the wild.

Within a food item category such as plant species or genus,

small rodent functional responses to food availability have been

studied experimentally [8,9,11,12]. In these studies, food avail-

ability has, unavoidably, been found to increase food intake.

However, various processes such as handling time, bite size or

plant spacing have been shown to have the potential to regulate

this relationship [9,11,12]. Even though feeding trials using single

food items may identify mechanisms that operate in the wild, the

value of a food item to an animal is relative to what else is available

[13–15]. Studies investigating how the availability of alternative

food items impacts on consumption of other food items by small

rodents are, however, scarce [16–18]. These studies experimen-

tally demonstrate that availability of a high-quality food item can

reduce the consumption of a low-quality food item. In natural
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environments, a range of food items of different quality are

available and the composition of vegetation may vary greatly.

However, small rodent functional responses to the spatially and

temporally variable food availability in the setting of complex

natural plant communities remain unexplored.

Grey-sided voles (Myodes rufocanus) and tundra voles (Microtus

oeconomus) are among the key herbivores of subarctic tundra

ecosystems [19] where they greatly modify tundra vegetation

during their cyclic population density peaks [20–23]. During

recent decades, their cyclic population dynamics have dampened

in many areas [24]. While changes in winter climate have mainly

been suggested to cause these changes in population dynamics, the

role of concurrent vegetation changes is unclear [19,24–26].

However, any evaluation of such bottom-up effects in tundra food

webs is severely hampered by the current gaps in knowledge of

vole diets and how diet is affected by food availability.

Grey-sided voles are considered to prefer Vaccinium myrtillus but

to also feed on forbs during summer [27,28], while tundra voles

are considered to feed primarily on monocotyledons, with an

increased proportion of Equisetum and forbs during the summer

[29–31]. These generalizations are mostly based on microhisto-

logical analysis of ingested material [28–31] and observations of

feeding signs on vegetation [27]. However, taxonomic resolution

of microhistological studies of small rodent diets is limited [32],

whereas feeding signs of vegetation give limited information on

proportional abundance of different food items in diets.

We analyzed stomach contents of grey-sided voles and tundra

voles using DNA metabarcoding [33,34]. This novel methodology

has lately opened new avenues of herbivore diet studies, as it

enables analysis of large numbers of samples and identification of

the ingested plants at a detailed taxonomic level [32,35–39]. We

used a spatially extensive study design, spanning across two river

catchment areas and two habitats and sampled vole diets and

vegetation composition in common locations over two seasons.

Thus, we were able to study the impact of food availability on diets

and selectivity both at a taxonomically more detailed level than

previous studies and across the range of food availability variation

present in natural habitats of voles.

We first compared vole diets to vegetation in order to determine

which food plants were selected for. We then investigated how vole

diets and selectivity were related to availability of food plants. We

analyzed these relationships using both plant families and plant

functional groups, and use hereafter the term ‘‘food item’’ to

describe any plant group. We predicted that the proportion of any

preferred food item in diets would increase with its availability but

that it also would be affected by availability of alternative food

items. We further predicted that selectivity for a food item would

also be affected by availabilities of both the food item in question

and alternative food items.

Plant families allowed the most precise taxonomic units for diet

and vegetation comparison. Plant functional groups coarsely

reflect plant nutrient content and digestibility and allowed

grouping of plants according to their presumed nutritional value

for herbivores [40,41]. By analyzing vole feeding habits using both

taxonomic and ecological groupings we aimed to both perform a

taxonomically detailed analysis of vole diet and to evaluate how

the different food item units reflect vole feeding ecology.

Materials and Methods

Study Area
This study took place at Varanger peninsula, (70uN, 31uE),

Finnmark, North-Eastern Norway (Figure 1). Two prominent

habitat types of the area, dwarf-shrub heaths and meadows with

scattered willow (Salix spp.) thickets harbor different vegetation

and small rodent communities. Vegetation in the heath is mostly

dominated by Empetrum nigrum s. lat. but also Betula nana and

Vaccinium myrtillus are frequent. Field layer of the meadow

vegetation is more diverse and dominated by grasses (e.g. Avenella

flexuosa, Deschampsia cespitosa), forbs (e.g. Rumex acetosa, Trollius

europaeus, Viola spp.), vascular cryptogams (mainly Equisetum spp.),

deciduous shrubs (mainly Salix spp.), sedges and rushes (e.g. Carex

bigelowii, Carex aquatilis coll., Juncus filiformis) and mosses. Average

(and range) total plant biomass during this study was 525 g/m

(280–1056 g/m) in the heath habitat and 206 g/m (82–439 g/m)

in the meadow habitat (see details on biomass measurements

below). Biomass ranges for plant functional groups are shown in

Figure 2.

In heath habitats, grey-sided voles (Myodes rufocanus) are the most

common small rodent species, whereas in the meadow habitats

tundra voles (Microtus oeconomus) dominate the small rodent

community [26,42]. In addition to voles, Norwegian lemmings

(Lemmus lemmus) are found in the area during their outbreak years.

Small rodent populations in the region have cyclic population

dynamics with high-amplitude peaks every 4–5 years [43,44] and

this study included a summer season peak in 2007. In addition to

small rodents, semi-domesticated reindeer are abundant in the

study area, whereas other mammalian herbivores are scarce. More

detailed descriptions of the study area can be found in [22,42,45]

and [45].

Study Design
In order to cover the range of variation in vegetation

composition present at Varanger peninsula, we used a large-scale

study design encompassing two river catchment areas; Komagelva

(KO) and Vestre Jakobselva (VJ). In both river catchments, we

established sampling grids (15615 m) in equal numbers in both

meadows and heaths (Figure 1). The sampling grids were selected

to represent the range of variable field layer species compositions

of both habitats. In total, KO had 12 sampling grids per habitat

and VJ had 13. The distance between neighboring grids had a

range of 160–2200 m, while the two most distant grids were

40 km apart. In order to measure food availability in the

immediate habitat of each vole individual, we used the same

study design for both vole trapping and plant biomass analysis.

Population dynamics of voles differ between the focal river

catchments [22,42] and both vole species had lower densities in VJ

compared to KO (Table 1).

Vole Trapping; Samples for Diet Analysis
In order to obtain samples for diet analysis, we conducted snap-

trapping of voles in each sampling grid according to [46]. To

estimate changes in diet during the growing season, the trapping

was done twice, with the first period occurring between 22nd and

24th July and the second period occurring between 3rd and 5th

September. Each trapping event consisted of 600 trap nights per

habitat, with 12 traps in each grid, 25 grids and trapping over 2

nights. The traps were baited with raisins (Vitis vinifera) and oat

flakes (Avena sativa). Voles were dissected and their stomachs stored

in 70% ethanol until diet analysis.

Snap-traps were required, as the rodent trapping was part of a

project where also the Norwegian lemmings were studied.

Norwegian lemmings are hard to trap with live-traps, a

phenomenon which has been repeatedly observed by different

research groups [47]. In another study using live-traps, only one

lemming was caught despite a large trapping effort (ca 6,000 trap-

nights every year) and the occurrence of two small rodents peaks

Rodent Diet Variation
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(2007 and 2011, resulting .10, 000 trapped voles) (Ims and

Yoccoz unpublished data).

Vegetation Composition; Food Availability Data
Vegetation of each grid was sampled during the peak of the

growing season, i.e. between 22nd July and 8th August. We

established 13 vegetation sampling plots (0.560.5 m) in each grid

(Figure 1) and estimated the biomass of all vascular plant species

present in the plots using a non-destructive point intercept method

[48,49] with 20 pins in each plot. We then converted the point

intercept counts to biomass estimates (g/m) for each grid, by first

converting the hits to biomass per plot using calibration described

in [50]. In another study across northern Norwegian landscapes,

encompassing similar habitats as the current study, plant growth

form was found to be the most important predictor for both

vegetative and flowering phenology of plants [51]. Hence, the

phenology of biomass in our study area could be expected to fairly

similar in both river catchements. To account for the temporal

changes in biomass we included the effect of season to our

analyses.

Ethics Statements
The study area is part of Varangerhalvøya National Park. No

permit was required for the non-destructive vegetation sampling,

as only destructive use of vegetation is prohibited in the national

park (FOR-2006-12-08-1384, Regulation of Varangerhalvøya

nationalpark protection plan). Vole trapping was conducted as

part of the ‘‘Arctic fox in Finnmark’’ project (http://www.fjellrev-

finnmark.uit.no/), which was initiated, financed and approved by

The Norwegian Directorate of Nature Management (DN). The

DN is the legal Norwegian authority that licenses sampling of all

vertebrate wild life species for scientific purposes (LOV 1981-05-

29 nr 38: Lov om jakt og fangst av vilt (viltloven) http://www.

lovdata.no/cgi-wift/ldles?doc = /all/nl-19810529-038.html&26)

and regulation about sampling wildlife for scientific or other specific

purposes (FOR-2003-03-14-349 Forskrift om innfanging og in-

nsamling av vilt for vitenskapelige eller andre særlige formal http://

www.lovdata.no/for/sf/md/md-20030314-0349.html). No specific

permit was issued for this project, but sampling protocol was

approved by the DN. No protected species were sampled.

Diet Analysis
Stomach contents of grey-sided voles trapped from heath

habitat (n = 82) and tundra voles trapped from meadow habitat

(n = 67) were analyzed for spermatophyte (i.e. seed plant) content.

Part of the dataset is published by [32], who described in detail the

DNA metabarcoding methods used (see Table S1 for additional

details on the datasets). In summary, spermatophyte plant DNA

was amplified from a sample of each voles stomach content using

primer pair g-h, which targets the P6-loop of chloroplast trnL

(UAA) intron [52]. Samples from different individuals were

thereafter individually tagged, pooled to one sample and

pyrosequenced. The resulting sequences were sorted to individual

voles based on the tags and compared to two taxonomic reference

Figure 1. Study location and design. The study was conducted in two river catchment areas; Vestre Jakobselva (VJ) and Komagelva (KO), in low-
arctic tundra zone of north-eastern Norway. We established 26 (VJ) and 24 (KO) sampling grids (15 m615 m), distributed in pairs in heath and
meadow habitat throughout major parts of each catchment. In each sampling grid, we estimated plant biomass in 13 plots and small rodent density
with 12 traps, 3 per grid corner.
doi:10.1371/journal.pone.0068128.g001
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libraries to identify which taxon they belonged to. We first used a

library containing sequences of 842 arctic vascular plants [53]

(accession numbers GQ244527 - GQ245667 in GenBank).

Thereafter, we compared sequences which could not be satisfac-

torily identified to sequences retrieved from GenBank (available at

http://www.ncbi.nlm.nih.gov/genbank/). For each vole individ-

ual, we thus achieved a count of sequences belonging to different

taxa. To make data from different vole individuals comparable, we

transformed these counts to proportions of different taxa in an

individuals’ stomach content, hereafter termed as ‘‘diet propor-

tions’’.

Quantitative use of DNA metabarcoding data is potentially

hampered by several technical issues [38]. However, based on a

comparison with traditionally used microhistological method [32],

DNA metabarcoding reflects well the actual proportions of

spermatophytes in vole diets. We also verified that diet at the

vole population level, measured as food item proportions, did not

differ greatly from diets determined by frequency of occurrence

(i.e. percentage of vole individuals which had ingested the taxa in

question), as recommended by [37] (Tables S2 and S3). Moreover,

a taxon may be over-represented in a DNA metabarcoding dataset

if it has a short target DNA-region in comparison to other

simultaneously analyzed taxa [54]. We therefore also confirmed

that the most abundant taxa did not have clearly shorter target-

DNA regions than other taxa. Both frequencies of occurrence and

lengths of the targeted DNA region are given in Tables S2 and S3.

Figure 2. Vole diets, selectivity and food availability based on plant functional groups. To the left grey-sided voles (Myodes rufocanus,
n = 81) and heath vegetation, to the right tundra voles (Microtus oeconomus, n = 66) and meadow vegetation. Upper panels show proportions in diets,
middle panels selectivity index and lower panels proportions in vegetation biomass. Selectivity index has been calculated as ratio between diet and
vegetation proportions using compositional analysis; see methods for details. Index values above zero indicate preference whereas values below zero
avoidance. Black line represents median, boxes first and third quartiles, whiskers either maximum values or 1.5 times interquartile range (whichever is
smaller) and points outliers. Numbers below vegetation proportions represent the actual range of biomass (g/m) per group.
doi:10.1371/journal.pone.0068128.g002
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We removed two vole individuals from the dataset prior to the

analyses. One of these was a grey-sided vole that had seemingly

eaten only one plant species, an unlikely result which could easily

be due to low DNA quality of the sample. The other was a tundra

vole whose diet was composed 99% of Pinus sylvestris, a species not

present in the study area. Rather than representing a new species

in the region’s flora, such a result is probably caused by errors

during the analyses [38].

The reference libraries we used included a different range of

species than those present in the study area. We therefore checked

for potential mis-identifications and adjusted the sequence

assignments based on taxa present in Northern Fennoscandia

[55]. Taxa which are not found in the region were assigned to

their next higher taxonomic level (e.g. Cerastium maximum was

assigned to Cerastium sp. and Gaylussacia sp. to Ericaceae).

Adjustments were also made to more specific taxa, i.e. when a

genus (or family) was represented by only one species (or genus), it

was assigned to this representative (e.g. Bistorta sp. was assigned to

Bistorta vivipara and Betulaceae were assigned to Betula spp.).

Sequences originally assigned to Vaccinium alaskense, which is not

found in the region were grouped together with those assigned to

Vaccinium myrtillus. These species are almost identical at the DNA

region we used for identification but differ from other Vaccinium

species of Northern Fennoscandia, namely Vaccinium uliginosum and

Vaccinium vitis-ideae (accession numbers GQ245635-GQ245641 in

GenBank).

Definitions of Food Item Groups
For analysis at plant functional group level we classified plants

as forbs, grasses, sedges and rushes, deciduous shrubs, ericoid

shrubs, or hemiparasites. The grouping was primarily based on

nutritional characteristics [40,56] as well as responses to herbivory

in the focal ecosystem [22,57]. However, we grouped all ericoid

shrubs together as less than half of the sequences within Ericaceae

were identified at a detailed enough level to allow distinguishing

between deciduous and evergreen shrubs. The deciduous shrubs -

group was thus composed of Betulaceae and Salicaceae. Only a

few non-ericoid evergreens (Pyrolaceae, Pinaceae, Cupressaceae)

were recorded in the diets and each of them occurred only in one

vole individual (Tables S2 and S3). These taxa compose a very

small fraction of the biomass (on average 0.003% and 0.4% in

heaths and meadows respectively) and we therefore excluded them

from all analyses. We also excluded data on vascular spore plants

(i.e. Equisetum and ferns) from the analyses, as the primer pair g-h is

designed particularly for spermatophytes and does not reflect well

the abundance of other plant groups.

For analyses based on taxonomic units, we grouped the plants at

family level in order to be able to include majority of the data. For

example, 36% of sequences identified to Ericaceae in grey-sided

voles diets could not be identified to genera (Tables S2 and S3).

However, for two families we had sufficient data to refine the

analyses to species level. One of these, Cornaceae is represented in

Northern Fennoscandia by only one species (Chamaepericlymenum

suecica). The other family for which we achieved species level

resolution was Ranunculaceae for tundra voles. Ranunculus acris

coll. was the only representative in the meadow grids and

Ranunculus sp. constituted 99% of Ranunculaceae in tundra vole

diet. We therefore used data on Ranunculus acris coll. in all analyses

of Ranunculaceae in tundra vole diets and selectivity.

Statistical Analysis
Food selection: compositional analysis. To determine

selectivity we used compositional analysis of centered log-ratio

transformed proportions [58] of food items in individual diets and

available vegetation, at both plant family and functional group

level. The centered log-ratio transformation was implemented by

function named ‘‘clr’’ in in the R library compositions [59]. As

food availability data we used for each vole individual, the biomass

proportions from the grid in which it was trapped. The selectivity

index was calculated as clr(diet proportions) -clr(available propor-

tions) [58]. To test whether selectivity for different food items was

significantly different, we used compana -function in adehabitat-

library of R, which computes pairwise significances in preference

among food items using Wilks lambda [60]. Results of these

significance tests are presented in Tables S4, S5, S6, S7, while

diets, food availability and selectivity index values are shown in

Figures 2 and 3.

Both the data for diet and available food contained zeros, which

have to be replaced to enable compositional analysis [58]. We

followed recommendations given by [58], replacing zeros with a

value three orders of magnitude smaller than any observed used

proportion (0.000077) to the diet proportions. This very small

replacement value ensured that minute amounts of detectable

DNA were not included in the analysis. We excluded plant families

which never occurred in diets from the compositional analysis at

family level, as their combined biomass was on average ,1% in

heaths and 2% in meadows. We replaced zero availability in a

given grid with average biomass of the food item in question in the

same habitat and river catchment. When a food item was not

recorded within a river catchment, we used average biomass of the

habitat across river catchments. Campanulaceae and Apiaceae

were never recorded in the heath habitat, even if they were

recorded in the diets of two grey-sided voles. We replaced zero

availability in these families by an order of magnitude smaller

value than the smallest observed proportion of any family in the

heath. We included sequences of trap bite (Avena and Vitis) in

calculations of food item proportions in stomach contents, but

excluded them from further analyses.

Variability in diets and selectivity: linear mixed effect

models. We evaluated whether I) the proportion of a food item

in diet and II), selectivity for it were related to vegetation

composition using linear mixed effect models implemented by

lmer-function from lme-4 library of R [61]. In order to target

important food items and retain sufficient sample size for the

models, we modeled separately the response of each food item

which was both selected for and eaten by at least ca. 50% of the

individuals of a given vole species. For grey-sided voles these were

the functional group forbs and families Ericaceae, Polygonaceae,

Poaceae, Salicaceae and Cornaceae, while for tundra voles they

were the functional group forbs and families Polygonaceae,

Poaceae, Ranunculaceae and Salicaceae. No other functional

group than forbs had several families which were eaten so

Table 1. Vole density index during 2007 at Varanger
peninsula.

Grey-sided vole Tundra vole

summer autumn summer autumn

Vestre Jakobselva 3.21 (1.95) 8.97 (1.88) 2.56 (0.89) 3.53 (1.14)

Komagelva 7.64 (2.61) 14.58 (2.32) 14.24 (2.92) 27.43 (4.34)

Vole density index during 2007 in two river catchments at Varanger peninsula,
based on snap-trapping, measured as individuals per 100 trapnights per
sampling grid (mean and SE). Data for grey-sided voles is from heath grids only,
for tundra voles meadow grids only. Vestre Jakobselva had 13 sampling grids
per habitat, Komagelva 12.
doi:10.1371/journal.pone.0068128.t001
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commonly that they could be tested separately. For all of these

food items, we modeled separately proportions in diets and the

selectivity index score. For diets, we used logit transformed

proportions as the response variable, avoiding zeros by adding a

value which was an order of magnitude smaller than the smallest

value of the respective predictor variable, while selectivity index

scores were already at logit-scale.

For each response variable, we created two alternative models.

The first model included as predictors a) biomass of the food item

itself and b) biomasses of other substantially eaten food items at

family level (i.e. those listed above). However, to better fit data

with the voles feeding ecology, we only used biomass of palatable

deciduous Vaccinium species as predictor instead of Ericaceae. For

grey-sided voles, Salicaceae was omitted from models which

included Polygonaceae, as their biomasses in vegetation were

highly correlated. In the alternative model we replaced the

predictor(s) forb families by the forb functional group, leaving the

response variable at family level. In all of these models, we

evaluated the spatial variability of diets and selectivity in two ways,

using river catchment (KO and VJ) as a fixed effect and grid

identity as random effect. In addition, we included season (autumn

and summer) as a fixed effect. When random effect variance was

estimated as zero, we removed the term and present a model with

fixed effects only (using lm-function of R). We then selected the

better model using likelihood ratio test (model parameters

estimated using ML) [62]. When neither model was significantly

better, we show the model with less parameters. We present the

final mixed effect models with model parameters estimated using

REML. In addition to statistically significant effects (defined as

95% confidence intervals not encompassing zero), we included in

our interpretation close-to-significant trends which seemed

biologically interesting. These are statistically defined as having

95% confidence intervals crossing zero by ,0.05 and an effect size

of .0.15. After fitting fixed terms of the models, we calculated the

proportion of remaining variance explained by random variable

‘‘grid identity’’ (i.e. grid variance/(grid variance+residual vari-

ance)) [62].

In each model, we removed those individuals which had a

combination of zero availability and zero use of the response food

item. We checked models for outliers and removed one heath grid

Figure 3. Vole diets, selectivity and food availability based on plant families. To the left grey-sided voles (Myodes rufocanus, n = 81) and
heath vegetation, to the right tundra voles (Microtus oeconomus, n = 66) and meadow vegetation. Upper panels show proportions in diets, middle
panels selectivity index and lower panels proportions in vegetation biomass. Selectivity index has been calculated as ratio between diet and
vegetation proportions using compositional analysis; see methods for details. Index values above zero indicate preference whereas values below zero
avoidance. Black line represents median, boxes first and third quartiles, whiskers either maximum values or 1.5 times interquartile range (whichever is
smaller) and points outliers. Plant families are grouped according to functional groups.
doi:10.1371/journal.pone.0068128.g003

Rodent Diet Variation

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e68128



where Polygonaceae biomass was approximately 8 times that of

any other grid (thus removing two grey-sided vole individuals). We

also verified that models showed constant variance of the residuals

and approximate linearity between the fitted and observed values.

For models with random effects we estimated significance of the

fixed parameters with 95% confidence intervals (Markov Chain

Monte Carlo estimation with 100 000 replicates using mcmcsamp

-function) [61], while for models without random effects we used

the confint-function of R. We used the software R for all analyses

[63].

Results

Diets
At the level of plant functional groups, diet of the grey-sided

voles was dominated by ericoid shrubs, followed by forbs (Figure 2).

Deciduous shrubs and grasses were also eaten but less commonly

(Figure 2). Within ericoid shrubs, i.e. within the family Ericaceae,

deciduous species Vaccinium uliginosum (9%) and Vaccinium myrtillus

(8%) were the most commonly identified but also everegreen

shrubs, mainly Empetrum nigrum s. lat. (6%) were found (Table S2).

Within the functional group of forbs, most abundantly eaten

families were Cornaceae (10%, represented by Chamaepericlymenum

suecica) and Polygonaceae (9%, represented mainly by Rumex sp.)

(Figure 3, Table S2). Grey-sided voles had also consumed a range

of other forb families at a lower proportion, many of which

occurred in only a few individuals (Figure 3, Table S2). Species

richness of grey-sided voles diet (n = 82 vole individuals) was 28 at

species level, 37 at genera level and 23 at family level (Table S2).

At the level of plant functional groups, the diet of tundra voles

was markedly dominated by forbs, followed by deciduous shrubs

and grasses (Figure 2). The functional group of forbs was

dominated by family Polygonaceae (45%, represented mainly by

Rumex sp.) (Figure 3). While the family Ranunculaceae was also

commonly eaten (12%), the mean proportion of other forb families

was low and many of them occurred in only a few individuals

(Figure 3, Table S3). Species richness of tundra vole diet

(n = 67 vole individuals) was 26 at species level, 35 at genera level

and 23 at family level (Table S3).

Selectivity
Both vole species had the strongest selection for forbs (Figure 2,

Tables S4 and S5). After forbs, grey-sided voles selected for ericoid

shrubs and thereafter grasses, whereas tundra voles selected for

grasses and thereafter deciduous shrubs (Figure 2, Tables S4 and

S5). The patterns of selectivity at functional group level differed

somewhat from those at plant family level. For example, only one

forb family, namely Polygonaceae, was more often selected than

Poaceae (i.e. grasses), a pattern found for both vole species

(Figure 3, Tables S6 and S7). Also within the functional group of

deciduous shrubs both vole species showed a similar pattern;

Salicaceae was relatively preferred whereas Betulaceae was the

least preferred (Figure 3, Tables S6 and S7).

Spatio-temporal Variation of Diets and Selectivity
Both vole species showed temporal and spatial variation in their

feeding habits. During summer, grey-sided voles had higher

proportions of Poaceae and forbs, especially Polygonaceae in their

diets than during autumn (Table 2). During autumn, they selected

more for Ericaceae than during summer (Table 3). Tundra vole

diets and selectivity were less modified by season than that of grey-

sided voles but tundra voles also selected for Polygonaceae more

during summer than autumn (Tables 4 and 5). Spatial variability

in diets and selectivity was measured at two scales; river catchment

and sampling grid. Of these, river catchment had little effect on

the vole diets and selectivity (Tables 2, 3, 4, 5). Only grey-sided

voles use of Poaceae varied at the scale of river catchment, with

diet proportions and selectivity being higher at VJ than at KO

(Tables 2 and 3). However, both vole species showed spatial

variability in diet proportions and selectivity at the scale of

sampling grids, based on percentage of residual variance explained

by grid identity (Tables 2, 3, 4, 5).

Impact of Availability on Diets and Selectivity
We found few clear effects of biomass of a food item (i.e.

availability) on its use (Tables 2, 3, 4, 5). The sole statistically

significant effect was that tundra voles were more selective for

Ranunculaceae when its biomass was higher (Table 5). In addition

we found one non-significant trend whereby grey-sided voles’

selectivity for Salicaceae decreased with its biomass (Table 3).

However, use of several food items decreased with the availability

of alternative food items (Tables 2, 3, 4, 5). For grey-sided voles,

selectivity for Polygonaceae decreased with biomass of other forbs

and Polygonaceae proportion in diets had a similar trend (Tables 2

and 3). Moreover, increasing biomass of Salicaceae tended to

decrease the proportion of Cornaceae in the diets of grey-sided

voles (Table 2). For tundra voles, selectivity for Poaceae decreased

when biomass of Salicaceae increased and had a similar trend with

biomass of Polygonaceae (Table 5). We also found opposite

patterns in grey-sided voles, i.e. use of a food item increasing with

the availability of alternative food items (Tables 2 and 3). Of these,

both diet proportions and selectivity for Polygonaceae increased

when biomass of Poaceae increased, whereas diet proportions of

Cornaceae increased with biomass of Salicaceae (Tables 2 and 3).

Some of these indirect effects, both negative and positive ones,

were caused by changes in the biomass of food items which were

on average less selected for than the response food item.

The use of different forb families responded differently to their

respective biomass, biomass of alternative food items and season

(Tables 2, 3, 4, 5). However, combined biomass of forbs better

predicted the consumption of other food items than those of

separate forb families. Only the selectivity of tundra voles for

Poaceae was slightly better predicted by a model which included

biomass of Polygonaceae and Ranunculaceae as predictor

variables than with a model using combined forb biomass

( = 3.62, d.f. = 1, p = 0.06).

Discussion

Both grey-sided voles and tundra voles consumed a diverse

range of food items. Although diets and selectivity varied

seasonally and spatially, the biomass of a food item had little

effect on its use but sometimes influenced the use of other food

items. Together, these results show that both vole species exhibit

flexible feeding ecology.

New Insights into Vole Diets
Most studies on the interactions between grey-sided voles and

vegetation have focused on Vaccinium myrtillus, which has been

considered as the most important food item of this species [64–68].

However, our results show that during the snow-free period the

species has a diverse diet which includes, in addition to V. myrtillus,

a range of different herbaceous food items. We also found

surprisingly much V. uliginosum (on average 9% of diets, eaten by

50% of individuals), even if it is relatively rare in the heath

vegetation (2% of biomass in average), indicating that it is selected

much more than previously observed (similar numbers for V.

myrtillus are 8% in diets, eaten by 68% of individuals, 20% of

Rodent Diet Variation
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biomass in average). Interestingly, V. uliginosum and E. nigrum have

been suggested to be unpreferred species and eaten only when

population densities are high [69]. Further, they have been

suggested to produce toxins and therefore to have a negative

impact on vole population growth rate even if they constitute only

a small proportion of diets [69]. We found additional support for

this hypothesis for V. uliginosum, which inclusion in the diets of

grey-sided voles increased with population density. V. uliginosum

was found in 25% of the individuals in VJ during summer while

corresponding values were 42%, 45%, 62% for VJ autumn, KO

summer, KO autumn, respectively (in comparison to population

density index in Table 1). For E. nigrum, on the other hand, we

found no such pattern (proportion of individuals that had ingested

it, in same order as above, were 70%, 34%, 50% and 75%). Still,

as we observed both of these plant species to be eaten by more

than half of the studied grey-sided voles during a peak year, it is

possible that these food items play a role in the population

dynamics of this vole species at the Varanger Peninsula.

For tundra voles, we found forbs to dominate diets and be

highly selected for, unlike previous microhistological stomach

content studies which have emphasized the use of especially

Eriophorum and Equisetum [29–31]. Such discrepancies between

studies are probably partly due to differences in availability

resulting in different diets. For example, forbs were abundant and

Eriophorum absent in our study grids, whereas forbs were rare and

Eriophorum abundant in habitats where tundra vole diets have been

studied before [29–31]. Moreover, in similar habitats the closely

related field voles (Microtus agrestis) have also been found to have

diets dominated by dicotyledons [70], and in a cafeteria-test

tundra voles showed a preference for forbs [71]. As Eriophorum was

not included in that test, it remains unclear whether plant

availability modifies only vole diets or also preferences. In

addition, different methodology may contribute to differences in

results. While results based on microhistological methods have a

tendency to overestimate monocots, the DNA metabarcoding

method used in this study possibly underestimates Equisetum

[32,52,72]. In spite of such methodological discrepancies, habi-

tat-specific food availability is likely to be an important determi-

nant of tundra vole diets.

Both vole species selected for highly palatable functional groups,

i.e. forbs and grasses, indicating that vole food preferences are

related to plant nutritional quality [41,56,73]. However, within

plant functional groups different families and species were eaten

and selected to a very different degree. For example, some forb

species were rarely eaten even if their availability did not greatly

differ from that of other, more commonly consumed species.

Moreover, the use of forb families responded differently to biomass

and season. Different nutritional value may explain such

differences but because only few measurements of energy,

nutrients or secondary metabolites in subarctic forb species exist

[64,74,75], we cannot judge the importance of different nutritional

characteristics for voles. Within the functional group deciduous

shrubs, both vole species preferred willows (Salix spp.) but avoided

birches (Betula spp.), a pattern consistent with palatability of these

taxa as well as previous food selection studies of voles [76,77].

Thus, more detailed patterns of food quality than those reflected

by plant functional groups, as defined in this study, seem to direct

food preferences of voles. However, field measurements of detailed

food-selection units have limitations especially when the food items

are scarce. For example, grey-sided voles preferred forbs as a

functional group even though at family level most forbs were

seemingly not preferred, a pattern which could simply be due to

Table 2. Effect of food availability, season and river catchment on grey-sided vole diets.

Predictors Responses

Polygonaceae (n = 52)
Cornaceae
(n = 63) Ericaceae (n = 79) Poaceae (n = 79)

Salicaceae
(n = 59) forbs (n = 79)

Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI

fixed effects

intercept 26.01 27.86, 24.11 25.89 28.31, 23.58 0.51 20.45, 1.47 29.35 211.02, 27.47 26.42 28.53, 24.51 23.84 25.39, 22.14

Polygonaceae 0.11 26.76, 7.63

Cornaceae 0.26 20.27, 0.84 22.17 24.41, 0.07

Poaceae 0.17 0.01, 0.34 20.18 20.45, 0.11 20.04 20.11, 0.03 0.04 20.10, 0.22 20.03 20.23, 0.13 0.06 20.08, 0.21

Salicaceae 0.23 20.02, 0.53 20.01 20.10, 0.07 0.08 20.08, 0.25 20.09 20.27, 0.07 0.09 20.08, 0.23

decidious Vaccinium 20.007 20.05, 0.03 0.02 20.04, 0.09 0.01 20.006, 0.03 0.01 20.02, 0.04 0.005 20.02, 0.04 0.005 0.03, 0.03

forbs 20.30 20.62, 0.02 20.61 21.61, 0.28 20.04 20.36, 0.28 0.02 20.26, 0.42 0.13 20.14, 0.44

season (summer) 3.26 0.99, 5.59 1.06 21.46, 3.63 20.90 22.04, 0.23 1.91 0.10, 4.01 1.11 20.57, 3.91 2.30 0.31, 3.90

river catchment (VJ) 1.28 21.67, 4.24 21.95 26.59, 2.36 0.80 20.52, 2.12 3.38 0.74, 5.94 21.04 23.86, 1.80 0.23 22.18, 2.53

random effects

grid 3.65e205 (n = 17, ,1%) 2.87 (n = 15, 31%) NA (n = 19) 1.65 (n = 19, 17%) 1.64 (n = 19, 28%) 1.51 (n = 19, 17%)

residual 3.55 4.23 2.16 3.71 2.65 3.35

Parameter estimates of linear mixed effect models for the effect of food availability (biomass g/m), season and river catchment on grey-sided vole stomach content
proportions. Intercept is calculated for autumn, Komagelva (KO) and mean biomass of all continuous predictor variables. ‘‘Est.’’ refers to regression coefficients,
measured at logit-scale. Random effects are presented as standard deviations, sample size (n) referring to the number of grids included in the analysis, % values to the
percentage of residual variance assigned to grid. Estimates with bold indicate that 95% CI does not include 0, with italics that 95% CI includes zero at most 0.05 and
effect size is .0.15. Models where data were insufficient to evaluate the random effect (NA), have been calculated as linear regressions with fixed effects only. ‘‘Forbs’’ as
predictor variable represents availability of the functional group of forbs, except for models which have a forb family (Polygonaceae, Cornaceae) as response variable.
For these, biomass of the respective family is excluded from that of forbs and used as a separate predictor. Empty cells indicate that predictor variable in question has
not been included in the model. See Material and Methods for details.
doi:10.1371/journal.pone.0068128.t002
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Table 3. Effect of food availability, season and river catchment on grey-sided vole selectivity.

Predictors Responses

Polygonaceae (n = 51) Cornacea (n = 61) Ericaceae (n = 75) Poaceae (n = 76) Salicaceae (n = 58) forbs (n = 77)

Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI

fixed effects

intercept 8.34 5.78, 10.90 3.91 0.22, 7.71 7.41 6.66, 8.15 22.23 25.54, 1.37 4.14 21.61, 12.70 4.86 0.66, 9.32

Polygonaceae 24.93 214.28, 4.42

Cornaceae 0.43 20.39, 1.38

Poaceae 0.23 0.02, 0.45 20.29 20.73, 0.16 20.02 20.09, 0.04 0.03 20.27, 0.36 20.08 20.43, 0.20 0.03 20.15, 0.23

Salicaceae 0.33 20.07, 0.79 20.03 20.10, 0.04 0.16 20.17, 0.48 20.23 20.54, 0.04 0.05 20.16, 0.24

deidious Vaccinium 20.01 20.06, 0.04 0.03 20.07, 0.13 0.004 20.009, 0.02 0.01 20.05, 0.08 20.01 20.06, 0.06 0.003 20.03, 0.04

forbs 20.58 21.01, 20.16 21.02 22.57, 0.34 20.04 20.17, 0.09 20.03 20.66, 0.57 0.03 20.44, 0.74 0.11 20.28, 0.51

season (summer) 2.39 20.82, 5.60 1.25 23.10, 5.42 21.12 22.0, 20.22 3.22 20.22, 7.32 1.93 20.88, 6.68 0.63 21.90, 2.89

river catchment (VJ) 0.16 23.78, 4.09 23.00 210.33, 3.57 0.45 20.60, 1.51 5.94 0.83, 11.00 22.18 26.79, 3.05 20.88 23.95, 2.19

random effects

grid NA (n = 17) 3.97 (n = 15, 24%) NA (n = 19) 3.30 (n = 19, 18%) 4.39 (n = 19, 40%) 1.50 (n = 19, 9%)

residual 4.62 7.12 1.68 6.98 5.45 4.58

Parameter estimates of linear mixed effect models for the effect of food availability (biomass g/m), season and river catchment on grey-sided vole selectivity, i.e.
difference between stomach content and biomass proportions. Intercept is calculated for autumn, Komagelva (KO) and mean biomass of all continuous predictor
variables. ‘‘Est.’’ refers to regression coefficients, measured at logit-scale. Random effects are presented as standard deviations, sample size (n) referring to the number of
grids included in the analysis, % values to the percentage of residual variance assigned to grid. Estimates with bold indicate that 95% CI does not include 0, with italics
that 95% CI includes zero at most 0.05 and effect size is .0.15. Models where data were insufficient to evaluate the random effect (NA), have been calculated as linear
regressions with fixed effects only. ‘‘Forbs’’ as predictor variable represents availability of the functional group of forbs, except for models which have a forb family
(Polygonaceae, Cornaceae) as response variable. For these, biomass of the respective family is excluded from that of forbs and used as a separate predictor. Empty cells
indicate that predictor variable in question has not been included in the model. See Material and Methods for details.
doi:10.1371/journal.pone.0068128.t003

Table 4. Effect of food availability, season and river catchment on tundra vole diets.

Predictors Responses

Polygonaceae (n = 66) Ranunculaceae(n = 62) Poaceae (n = 66) Salicaceae(n = 66) forbs (n = 66)

Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI

fixed effects

intercept 21.54 23.21,0.05 27.50 210.08, 24.95 23.20 24.51, 21.86 24.17 26.48, 21.71 21.33 24.41, 1.93

Polygonaceae 0.04 20.13, 0.21

Poaceae 0.01 20.01, 0.04 20.02 20.06, 0.03 20.0004 20.02, 0.02 20.02 20.06, 0.02 0.008 20.01, 0.03

Salicaceae 20.01 20.04, 0.007 0.01 20.02, 0.04 20.003 20.02, 0.01 20.002 20.03, 0.03 0.0004 20.02, 0.02

Ranunculus 0.77 20.18, 1.72

forbs 0.01 20.05, 0.08 20.05 20.21, 0.09 20.02 20.07, 0.03 20.05 20.14, 0.05 0.03 20.03, 0.08

season (summer) 0.96 20.67, 2.57 1.17 21.36, 3.80 20.47 21.79, 0.90 20.12 22.46, 2.28 0.61 20.78, 1.99

river catchment (VJ) 2.09 21.71, 6.03 0.92 24.98, 6.82 20.14 23.06, 2.82 22.98 28.72, 2.06 1.50 21.45, 4.44

random effects

grid 5.28e205 (n = 21, ,1%) 5.85e205 (n = 21, ,1%) 3.02e-05 (n = 21, ,1%) 1.93 (n = 21, 16%) 1.71e-05 (n = 21, ,1%)

residual 3.18 4.85 2.64 4.39 2.72

Parameter estimates of linear mixed effect models for the effect of food availability (biomass g/m), season and river catchment on tundra vole stomach content
proportions. Intercept is calculated for autumn, Komagelva (KO) and mean biomass of all continuous predictor variables. ‘‘Est.’’ refers to regression coefficients,
measured at logit-scale. Random effects are presented as standard deviations, sample size (n) referring to the number of grids included in the analysis, % values to the
percentage of residual variance assigned to grid. Estimates with bold indicate that 95% CI does not include 0, with italics that 95% CI includes zero at most 0.05 and
effect size is .0.15. Models where data were insufficient to evaluate the random effect (NA), have been calculated as linear regressions with fixed effects only. ‘‘Forbs’’ as
predictor variable represents availability of the functional group of forbs, except for models which have a forb family (Polygonaceae, Ranunculaceae) as response
variable. For these, biomass of the respective family is excluded from that of forbs and used as a separate predictor. Empty cells indicate that predictor variable in
question has not been included in the model. See Material and Methods for details.
doi:10.1371/journal.pone.0068128.t004

Rodent Diet Variation

PLOS ONE | www.plosone.org 9 June 2013 | Volume 8 | Issue 6 | e68128



different forbs being available to different individuals. Plant

functional groups have mainly been studied from a plant

ecological perspective [40,41,56,73] and only few attempts have

been made to evaluate them based on herbivores ecology

[22,78,79]. However, small rodent food-selection units may be

best reflected by plant functional groups defined from a herbivores

perspective.

Previous analyses of diets of small rodents have used methods

that are constrained to a taxonomically coarse resolution. Using

DNA metabarcoding we were able to reveal that both vole species

had remarkably diverse diets in terms of consuming a large

number of plant taxa. In fact, diet diversity as such may be an

important attribute of vole diets, as it is in general acknowledged to

be an important determinant of herbivore performance [15,80].

Accordingly, [81] found that species richness of vascular plants in

the sub-arctic habitats of grey-sided voles was the most important

predictor of female reproductive success. It therefore seems likely,

that increased understanding of the role of food item diversity for

small rodents should reveal previously unknown aspects of

vegetation-small rodent interactions.

Small Rodent Functional Responses
Several earlier studies on mammalian herbivore food selection

have indicated that availability, both absolute and relative of a

preferred food item may increase its use [13,82]. Seasonal effects

were common even though we found that the biomass of a food

item had little effect on its consumption. Nutrient content of

herbaceous plants decreases towards the end of the growing season

[73–75,83]. Moreover, while berries produced by ericoid shrubs

are more palatable than leaves of these plants they are available

only in the autumn [51]. The seasonal changes in grey-sided voles

feeding habits, i.e. the decrease of forbs and grasses in diets and

increased selectivity for Ericaceae from summer to autumn, thus

seem to be related to availability of good-quality food. However, at

the resolution of our data, season was best seen as qualitative

‘‘index’’ of changing availability of good-quality food. In addition

to availability of a food item, availability of alternative good-

quality food items may modify consumption by voles [18]. Our

results indicate that a food item which has such indirect effects

does not have to be more preferred at the population level. For

example, tundra voles selected less for grasses (Poaceae) when the

biomass of willows (Salicaceae) increased, even though at

population level they preferred grasses to willows. We therefore

suggest that the effect of alternative food item availability for small

rodent functional responses should be further evaluated. More-

over, based on the seasonal changes of voles’ diets and selectivity,

relative differences of nutritional quality between different food

items are probably important determinants of such effects.

The spatial effects we found, i.e. voles from the same study grids

having more similar diets and preferences than those from

different grids, suggest that voles from same local environment

are more likely to make similar food choices than voles from

different environments. In addition to food characteristics, small

rodent feeding habits can be affected by competition and

predation risk [6] which could therefore contribute to spatial

variation in feeding habits. Vole population densities, especially

those of tundra voles, differed drastically between the river

catchments (Table 1). However, diets and selectivity differed little

between river catchments and therefore intraspecific competition

seems unlikely to have caused the spatial patterns we observed at

grid level. On the other hand, population density of Norwegian

lemmings was higher in VJ where vole densities were lower

(Table 1) [22,84]. Interspecific competition with lemmings may

therefore have masked some of the effects of intraspecific

competition on vole diets. That food biomass had little effect on

diets and selectivity does not support the idea that the spatial

Table 5. Effect of food availability, season and river catchment on tundra vole selectivity.

Predictors Responses

Polygonaceae (n = 65) Ranunculaceae(n = 62) Poaceae (n = 66) Salicaceae(n = 66) forbs (n = 66)

Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI Est. 95% CI

fixed effects

intercept 8.50 7.14, 9.95 3.19 20.36, 6.75 5.90 4.01, 7.78 4.97 1.73, 8.34 8.10 6.93, 9.26

Polygonaceae 0.04 20.10, 0.18 20.17 20.34, 0.02

Poaceae 0.001 20.02, 0.03 20.02 20.08, 0.03 20.004 20.03, 0.03 20.03 20.09, 0.02 20.001 20.02, 0.02

Salicaceae 20.01 20.03, 0.007 0.02 20.02, 0.06 20.03 20.06, 20.006 20.01 20.05, 0.03 0.004 20.01, 0.01

Ranunculus 1.33 0.02, 2.64 0.20 20.41, 0.81

forbs 0.02 20.04, 0.07 20.12 20.32, 0.09 20.06 20.18, 0.08 0.04 20.01, 0.08

season (summer) 1.99 0.56, 3.23 1.50 22.19, 5.20 0.41 21.64, 2.45 20.56 23.94, 2.67 1.08 20.18, 2.17

river catchment (VJ) 0.76 22.38, 4.25 1.94 25.99, 9.86 23.40 27.54, 0.74 24.90 212.95, 1.85 0.75 21.69, 3.48

random effects

grid 1.25 (n = 20, 21%) NA (n = 21) NA (n = 21) 2.25 (n = 21, 12%) 1.31 (n = 21, 28%)

residual 2.41 6.55 3.79 6.19 2.10

Parameter estimates of linear mixed effect models for the effect of food availability (biomass g/m), season and river catchment on tundra vole selectivity, i.e. difference
between stomach content and biomass proportions. Intercept is calculated for autumn, Komagelva (KO) and mean biomass of all continuous predictor variables. ‘‘Est.’’
refers to regression coefficients, measured at logit-scale. Random effects are presented as standard deviations, sample size (n) referring to the number of grids included
in the analysis, % values to the percentage of residual variance assigned to grid. Estimates with bold indicate that 95% CI does not include 0, with italics that 95% CI
includes zero at most 0.05 and effect size is .0.15. Models where data were insufficient to evaluate the random effect (NA), have been calculated as linear regressions
with fixed effects only. ‘‘Forbs’’ as predictor variable represents availability of the functional group of forbs, except for models which have a forb family (Polygonaceae,
Ranunculaceae) as response variable. For these, biomass of the respective family is excluded from that of forbs and used as a separate predictor. Empty cells indicate
that predictor variable in question has not been included in the model. See Material and Methods for details.
doi:10.1371/journal.pone.0068128.t005
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effects would be caused by food availability either. Still, food item

biomass may not necessarily reflect all vegetation characteristics

which are important for determining vole feeding habits. For

example, a plant species’ nutritional quality may vary, both

temporally, spatially and also between plant parts [83–85].

Moreover, positive responses of vole selectivity on availability,

evaluated via responses to biomass and season, suggest that voles

do not compensate low availability with increased selectivity. This

in turn indicates that voles invested little effort in searching and

selecting the most preferred food. It is well established that

perceived predation risk reduces time herbivores, including small

rodents, spend foraging in dangerous habitats [6,86]. Nevertheless,

the interplay between food availability and perceived predation

risk, ‘the landscapes of food and fear’, remains poorly understood

[86,87]. In tundra habitats vegetation cover is generally low and

predation risk high, especially during small rodent population-

peak years [88]. Flexible feeding habits of voles could thus at least

partly be an adaptation to minimize time spent searching for food,

as emphasized by [89] and [90]. The spatial variation of diets and

selectivity which we observed are therefore probably caused by a

combination of local vegetation characteristics and search time

limitations due to predation risk. Both plant quality and search

time limitations have been included in some functional response

models for herbivores [2,10] and we suggest that examining the

roles of these parameters for small rodent functional response

models should be attempted.

While we here show that the population level patterns in feeding

habits of voles are flexible, it is possible that vole individuals are

more conservative. At least some of the changes in vole diets are

related to changes in gut morphology [91,92], indicating that

individual voles may have physiological limitations related to

switching quickly between highly different diets. However, little is

known about the flexibility of vole diets at individual level, and it is

unclear how fast and drastically individual voles may change their

diets.

Methodological Considerations
While few of the observed effects of food item biomass on

stomach content were statistically strong, we are confident that

these patterns indeed reflect the relationships between voles and

their food. The methods we used to estimate food item use and

availability, i.e. stomach contents and biomass of plants, have

certain shortcomings. Most importantly, food passes quickly

through the digestive system of voles [5] and stomach contents

therefore give a snapshot of the vole diet during the last hour. In

addition, food item availability to voles may be poorly represented

by average g/m biomass of plant species. For example, some food

items might reach a height which makes them unavailable for

small-statured herbivores like voles and hence average biomass

may differ from what is available for voles. Finally, we measured

plant biomass during the peak of growing season but sampled vole

diets during early and late growing season. Due to seasonal

increase of biomass, this may have led to underestimation of

selectivity in the summer in comparison to the autumn. However,

the only seasonal increase of selectivity was that of grey-sided voles

for Ericaceae, which can be well explained by an increase in the

availability of berries. That we were able to relate patterns of diets

and selectivity to patterns of food availability, such as the biomass

of alternative food items or the seasonal changes in availability, in

spite of biological and technical noise in the data indicates that

those patterns are probably stronger in reality than suggested by

our analyses. This explanation is supported by the difference

between grey-sided voles and tundra voles, as the sample size was

higher and the observed patterns both more abundant and

statistically stronger for grey-sided voles. We therefore recommend

a larger sample size and a more adapted way of measuring food

availability for future studies on small rodent functional responses.

Such larger sample size could be achieved by analyses of fecal

samples, to avoid lethal methods. For example, DNA metabarcod-

ing coupled with radiotelemetry could provide repeated individ-

ual-level data on diets, together with targeted locations for food

availability estimates. Such estimates could be achieved by

adjusting the point intercept method to better represent the

vegetation actually available for small rodents, by for example

counting only hits up to 10 cm from ground level and separating

between leaves and woody plant parts.

Conclusions
We conclude that voles have diverse diets and flexible food

preferences. Thus, viewing food preferences as a fixed ranking of a

few species is likely to be insufficient for understanding small

rodent feeding ecology. Diet diversity as such may be a functional

trait of small rodent diets that previously has been underrated in

the literature because of methodological constrains. Moreover, our

results suggest that in order to understand small rodent functional

responses, the roles of alternative food items and search time

limitations should be further investigated.
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46. Myllymäki A, Paasikalio A, Pankakoski E, Kanevo V (1971) Removal

experiments on small quadrats as a means of rapid assessment of the abundance
of small mammals. Ann Zool Fennici 8: 177–185.

47. Jensen PM, Stenseth NC, Framstad E (1993) Trappability of Norwegian
lemming (Lemmus lemmus). In: Stenseth NC, Ims RA, editors. The biology of

lemmings. London: Academic Press. 547–554.
48. Jonasson S (1988) Evaluation of the point intercept method for the estimation of

plant biomass. Oikos 52: 101–106.
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