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Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic
media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We
extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive
equations that require only the number of photons as input. In particular, we derive the first explicit
expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This
work is one of the required steps in making the calculation of these higher-order absorption properties
possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901563]

I. INTRODUCTION

Established as a theoretical concept by Göppert-Mayer,1

multiphoton absorption has gained a lot of interest in the
last three decades. After its first experimental realization,2

two-photon absorption was the first nonlinear absorption ef-
fect to receive large interest. Promising applications of two-
photon absorption include 3D optical storage3 and multipho-
ton microscopy.4 Also higher-order absorption properties up
to five-photon absorption have been realized experimentally.5

These effects are of particular interest for frequency upcon-
version of infrared lasers to the visible and UV parts of the
spectrum.6

Applications of multiphoton absorption require not only
strong lasers but also molecular materials with large nonlin-
ear optical absorption cross sections.7, 8 To support the design
of these materials, the development of theoretical methods for
the treatment of nonlinear absorption is of large interest. The
first quantum-chemical treatment of two-photon absorption
dates back to the 1980s.9, 10 Olsen and Jørgensen introduced
the two- and three-photon transition moments as residues of
the quadratic and cubic response functions, respectively.10

Expressions for four-photon absorption were reported by An-
drews and Ghoul.11

The calculation of two-photon absorption properties has
been implemented for single- and multiconfigurational self-
consistent field (SCF) theory,12 density-functional theory13 as
well as for coupled-cluster theory.14–16 Implementations of
three-photon absorption have also been realized.17–19 An im-
plementation of higher-order multiphoton absorption proper-
ties at the SCF level of theory is in preparation in our group.20

Calculations treat molecules fixed in space, whereas ex-
periments on multiphoton absorption are usually carried out
in solution and thus involve a dynamic ensemble of randomly
oriented molecules. The molecule can be oriented in a large
number of different ways on the timescale of the experiment.
Comparison of theory and experiment therefore requires that
also the computed values are averaged over all possible ori-

a)daniel.h.friese@uit.no

entations. This rotational averaging is a general problem in
the treatment of nth-order response properties calculated as
nth-rank tensors.21–23 The rotational averaging of such tensors
has been thoroughly investigated, leading to expressions for
up to eighth-rank tensors by Andrews and co-workers.11, 24, 25

Wagnière has discussed even-rank tensors up to rank ten.26

From these studies, formulas for the rotational average of
two-, three-, and four-photon absorption cross sections have
been derived.11

In the following, we will present a general scheme for
rotational averaging of multiphoton absorption tensors. The
approach builds on the work by Andrews and co-workers24, 25

and the work by Wagnière.26 The main aim of the present
work is to combine existing theories in a way that can eas-
ily be implemented and extended to higher-rank tensors. We
will in this paper therefore focus on the derivation of simple
and compact equations. Even though the focus will be on rota-
tional averaging of multiphoton absorption cross sections, our
findings will also be useful for the averaging of other even-
rank tensors because most of the assumptions that we will
make are of general nature. An example of another applica-
tion of our results is in the rotational averaging of m-photon-
induced fluorescence tensors27 with no limitation on m. Our
approach is limited to linearly polarized photons. For other
polarizations, rotational averaging of the absorption proper-
ties becomes more involved as will become clear in Sec. IV.

The remainder of this article is organized as follows: In
Secs. II and III, we will present the basic theory of multipho-
ton absorption and rotational averaging of tensors. In Sec. IV,
we will treat the polarization tensor for the special case of lin-
early polarized photons. In Secs. V and VI, we will present the
ingredients for the rotational averaging of m-photon absorp-
tion cross sections of arbitrary order. Concluding remarks are
given in Sec. VII.

II. MULTIPHOTON ABSORPTION THEORY

In this section, we will review the necessary the-
ory of multiphoton absorption. Following Andrews and
Thirunamachandran,24 a general observable δ of a molecule

0021-9606/2014/141(20)/204103/8/$30.00 © 2014 AIP Publishing LLC141, 204103-1
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is obtained from a product of the elements of two tensors

δ =
∑
i1...in

A
[n]
i1...in

P
[n]
i1...in

, (1)

where A[n]
i1...in

is an nth-rank tensor in three-dimensional space
representing an external influence on a molecule whose re-
sponse to this influence is described by an nth-rank tensor in
three-dimensional space P[n]

i1...in
. Expressing this in terms of

light absorption by a molecule, A[n]
i1...in

describes the polariza-

tion of the incident photon(s) and P[n]
i1...in

is the corresponding

transition strength tensor. The indices i on A[n]
i1...in

and P[n]
i1...in

here denote that the tensors are defined in a space-fixed coor-
dinate system and can be either x, y or z.

In the following, we will represent the number of ab-
sorbed photons in multiphoton absorption with m, whereas
the rank of the corresponding transition strength tensor P[n]

i1...in

is n, with n = 2m.
Multiphoton-absorption properties can be calculated

from residues of response functions as shown by Olsen and
Jørgensen.10 They can also be expressed using quasienergy
derivative theory (see, e.g., Ref. 28). A density-based formal-
ism for calculating residues at the level of time-dependent
density-functional theory has been developed by Thorvaldsen
et al.29 The general expression for the transition strength ten-
sor P[n]

i1...in
for m-photon absorption in response theory is

P[n]
i1...in

= lim
ω

m+1+...+ω
n
→ω

f

(ωm+1 + ... + ωn − ωf )

×〈〈Xi1
; Xi2

...Xi
n
〉〉ω

i1
...ω

i
n

, (2)

where Xi1
...Xi

n
are perturbations with corresponding frequen-

cies ω1...ωn, with the frequencies being related through

ω2 + ω3 + ... + ω2m = −ω1, (3)

and therefore sum to zero. ¯ωf is the excitation energy from
the electronic ground state to an excited state f. For details
on multiphoton-absorption response theory, we refer to the
literature.30

The m-photon absorption strength corresponds to the
residue of the response function of order n. However, as
shown in Ref. 29, the expression for the transition strength
P[n] decomposes to a product of two transition moments S[m],
which are tensors of rank m in three-dimensional space. These
transition moments S[m] are complex conjugates of each other
in SCF-based theory and correspond to the residues of the
response function of order m + 1, significantly reducing the
complexity of the expressions. The elements of the transition
strength tensor P[n] can thus be expressed as a product of the

elements of S[m] and S̄[m]

P
[n]
i1...i2m

= S
[m]
i1...im

S̄
[m]
i
m+1...i2m

, (4)

where the bar indicates complex conjugation, This was also
shown by Olsen and Jørgensen in 1985.10

It is important to note that the response function of order
m + 1 suffices for the calculation of the transition moments of
m-photon absorption for SCF-based theories. However, when
it comes to rotational averaging we have to treat the product
of two complex conjugate transition moments, which is a ten-
sor of rank n. We will therefore throughout this paper discuss
rotational averaging of even-rank tensors in general.

III. ROTATIONAL AVERAGING OF TENSORS

In this section, we will review the basic theory of rota-
tional averaging of tensors.

In Eq. (1) we assumed that the polarization tensor and
the transition strengths are described in the same coordinate
system. This is only appropriate if the molecules are fixed in
space, e.g., in a crystal. If we are dealing with an isotropic
sample (e.g., a solution, a neat liquid or a gas), the transition
strength P[n] is described in a molecule-fixed coordinate sys-
tem. In this case, calculated and experimental results can only
be compared if the calculated numbers have been rotationally
averaged as discussed in the Introduction. The final result of
rotational averaging will be an expression in which the de-
pendence of the transition tensor P[n] on the molecule-fixed
coordinate system has been eliminated and where all quanti-
ties are expressed in a space-fixed coordinate system.

Before performing the rotational averaging, we express
the two components of Eq. (1) in two different coordinate
systems: a space-fixed one for the polarization tensor A[n]

i1...in

with the indices ip, and a molecule-fixed one for the transi-

tion strength tensor P[n]
λ1...λn

with the indices λq. Elements of
the tensors in the two coordinate systems are connected by a
string of Li

p
,λ

q
-variables24 such that

P
[n]
i1...in

=
∑

λ1...λn

Li1λ1
...Li

n
λ

n
P

[n]
λ1...λn

. (5)

The string of L-type variables is a product of direction cosines
of the angle between the space- and the molecule-fixed coor-
dinate systems.24 The string has n elements: one for every
molecule-fixed index of the tensor P[n]

λ1...λn
that needs a trans-

formation to the space-fixed coordinate system. We note that
also elements Li

p
,λ

q
with p �= q can appear. The elements Li

p
λ

q

can be expressed as elements of the Euler angle matrix L as
used for rotational averaging in Ref. 31

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos(φ)cos(θ )cos(ψ) sin(φ)cos(θ )cos(ψ) −sin(θ )cos(ψ)
−sin(φ)sin(ψ) +cos(φ)sin(ψ)

−cos(φ)cos(θ )sin(ψ) −sin(φ)cos(θ )sin(ψ) sin(θ )sin(ψ)
−sin(φ)cos(ψ) +cos(φ)cos(ψ)

cos(φ)sin(θ ) sin(φ)sin(θ ) cos(θ )

⎞
⎟⎟⎟⎟⎟⎟⎠

, (6)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.242.136.38 On: Mon, 23 Feb 2015 16:44:56



204103-3 Friese, Beerepoot, and Ruud J. Chem. Phys. 141, 204103 (2014)

where the first index of Li
p
,λ

q
refers to the polarization tensor

A[n]
i1...in

and the second index to the transition strength tensor

P[n]
λ1...λn

. Therefore, for light polarized in the z-direction (∀p :
ip = z), only the elements Lzx, Lzy, and Lzz are needed.

Following Monson and McClain,21 we can rewrite
Eq. (1) using Eq. (5)

δ =
∑

i1...in,λ1...λn

A
[n]
i1...in

Li1λ1
...Li

n
λ

n
P

[n]
λ1...λn

, (7)

where the first factor contains elements of the nth-rank tensor
A[n]

i1...in
with polarization information, the last factor contains

elements of the nth-rank tensor P[n]
λ1...λn

with the molecular in-
formation and the factor in the middle Li1λ1

...Li
n
λ

n
contains

the orientational information.21

We note that the variable δ in Eq. (7) has not been ro-
tationally averaged yet. To compute the rotational average
(which we will denote as 〈δ〉 in the following), we have to
perform rotational averaging over each string of L-type vari-
ables. This can be done by integrating the string Li1λ1

...Li
n
λ

n

over all three rotational angles24

I
(n)
i1...in,λ1...λn

= 1

8π2

∫ 2π

φ=0

∫ π

θ=0

∫ 2π

ψ=0
Li1λ1

...Li
n
λ

n
sinθ dφ dθ dψ,

(8)

yielding rotational averages of strings of L-type variables,
which are elements of the 2nth-rank tensor I(n). We here dis-
tinguish between the superscript [n] for a tensor of rank n and
the superscript (n) for a quantity that is used for the rotational
averaging of a tensor of rank n.

Andrews and Thirunamachandran have shown how ele-
ments of I(n) can be obtained as a product of one vector with
space-fixed coordinates f(n), one coefficient matrix M(n), and
one vector with molecule-fixed coordinates g(n)24

I
(n)
i1...in,λ1...λn

= (f(n))T M(n)g(n). (9)

The elements of the two vectors f(n) and g(n) are both
strings of m Kronecker deltas. The number of Kronecker delta
strings in f(n) and g(n) (i.e., the length of the vectors f(n) and
g(n)) increases rapidly with the rank of the tensor. The number
of strings Nn is listed in Table I and determines the number of
elements of the two vectors and of the matrix M(n), which is

TABLE I. Number of Kronecker delta strings Nn to be evaluated for differ-
ent tensor ranks n, i.e., the length of the vectors f(n) and g(n).

Corresponding
n Nn absorption property

2 1 One-photon
4 3 Two-photon
6 15 Three-photon
8 105 Four-photon
10 945 Five-photon
12 10 395 Six-photon
14 135 135 Seven-photon

an Nn × Nn matrix, and can be calculated as

Nn = n!

2m (m)!
(10)

=
m∏

i=1

(2i − 1), (11)

which is a product of all odd numbers smaller than n. Equa-
tion (11) is useful for our aim of finding a simple and universal
approach for rotational averaging of any even-rank tensor.

To obtain the indices of the Kronecker delta strings, An-
drews and Thirunamachandran introduced a scheme using so-
called standard tableaux.24 This method is very appropriate
for a thorough mathematical understanding of the fundamen-
tal theory. However, we choose to reformulate their scheme in
a different way:

� Generate all permutations of a row containing all in-
dices from 1 to n once.

� Select all strings that fulfill the following conditions:

1. The numbers in every index pair are in ascending
order, e.g., 5, 1; 2, 3; 4, 6; 7, 8 vanishes and 1, 5;
2, 3; 4, 6; 7, 8 remains.

2. All indices in odd-numbered positions are in as-
cending order, e.g., 1, 2; 4, 5; 3, 6; 7, 8 vanishes
and 1, 2; 3, 6; 4, 5; 7, 8 remains.

� Interpret every index pair as the two indices of one
Kronecker delta, e.g., 1, 2; 3, 5; 4, 6; 7, 8 →
δ12δ35δ46δ78.

In principle, all allowed permutations can be generated
computationally using this scheme. However, such an imple-
mentation is inefficient since it generates and tests also a large
number of permutations that do not fulfill the two conditions
and are therefore superfluous. We will later show that an ex-
plicit evaluation of all possible permutations is not needed
to derive explicit expressions for the rotational averaging of
higher-order cross sections for multiphoton absorption. Nev-
ertheless, this scheme is very helpful for setting up the rules
needed for the determination of the contraction coefficients,
which will be done in Sec. VI.

The coefficients of the matrix M(n) in Eq. (9) can be de-
termined by evaluating the Kronecker delta strings in f(n) and
g(n) as explained in Ref. 24.

For a fourth-rank tensor, Andrews’ approach yields the
following expression for the elements of I(n):

I (4) =

⎛
⎜⎝

δi1i2
δi3i4

δi1i3
δi2i4

δi1i4
δi2i3

⎞
⎟⎠

T

1

30

⎛
⎜⎝

4 −1 −1

−1 4 −1

−1 −1 4

⎞
⎟⎠

⎛
⎜⎝

δλ1λ2
δλ3λ4

δλ1λ3
δλ2λ4

δλ1λ4
δλ2λ3

⎞
⎟⎠ ,

(12)

whereas for a sixth-rank tensor we obtain24

I (6) = (f(6))T M(6)g(6), (13)

where M(6) is a 15 × 15 matrix and where the 15 elements
of the vectors f(6) and g(6) are Kronecker delta strings. The
expressions of f(6), M(6), and g(6) from Ref. 24 are given in the
Appendix.
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We can think of the vectors f(n) and g(n) as operators that
act on the elements of A[n]

i1...in
and P[n]

λ1...λn
, respectively. Indeed,

the matrix M(n) and the vectors f(n) and g(n) in Eq. (9) have the
same form for every element of I(n). Each Kronecker delta in
f(n) and g(n) evaluates whether two of the indices of A[n]

i1...in
and

P[n]
λ1...λn

are equal or not. For instance, the string δλ1λ3
δλ2λ4

δλ5λ6

is 1 only if the first and the third, the second and the fourth and
the fifth and the sixth index of the transition tensor P[n]

λ1...λn
are

the same. This holds for the elements P
[n]
ababcc where the first

Kronecker delta describes the positions of the indices a, the
second the positions of the indices b and the third the positions
of the indices c. The indices a, b and c can independently of
each other be either x, y or z.

The indices on P[n] determine the indices on S and S̄ as
shown in Eq. (4), for instance,

P
[n]
ababcc → S

[m]
abaS̄

[m]
bcc . (14)

We note that this procedure leads to the same number of pairs
of equal indices on S[m] as on S̄[m] (one pair in the exam-
ple above). For three indices on S[m] and three indices on
S̄[m] (corresponding to three-photon absorption) the number
of index pairs can be either 0 or 1. This will be relevant in
Sec. VI.

I(n) can thus be interpreted as an interface between the po-
larization tensor A[n]

i1...in
on the left-hand side and the transition

moments P[n]
λ1...λn

on the right-hand side. A rotationally aver-
aged variable can thus be written as Eq. (9) multiplied from
the left by elements of A[n]

i1...in
and from the right by elements

of P[n]
λ1...λn

〈δ〉 = ∑
i1...in,λ1...λn

A
[n]
i1...in

I (n)P
[n]
λ1...λn

(15)

= ∑
i1...in,λ1...λn

A
[n]
i1...in

(f(n))T M(n)g(n)P
[n]
λ1...λn

, (16)

where A
[n]
i1...in

(f(n))T and g(n)P
[n]
λ1...λn

are evaluated first.

IV. THE POLARIZATION TENSOR FOR LINEARLY
POLARIZED PHOTONS

In this section, we will show how the use of linearly
polarized light simplifies Eq. (16) for the rotational averag-
ing of tensors. In particular, we will use the theory of rota-
tional averaging from Sec. III to derive the well-established
expressions for the rotationally averaged one-photon (OPA)
and two-photon absorption (TPA) cross sections.

The nth-rank polarization tensor A[n]
i1...in

is obtained as the
tensor product of all involved polarization vectors and their
complex conjugates.32 Therefore, it is the tensor product of
outer form of n three-dimensional vectors. For photons that
are linearly polarized perpendicular to the propagation direc-
tion, the polarization vector p is a unit vector in the z direction
and equal to its complex conjugate. For A[2]

i1,i2
, corresponding

to one-photon absorption, we obtain

A[2]
i1,i2

= p ⊗ p̄ =
⎛
⎝ 0

0
1

⎞
⎠ ⊗

⎛
⎝ 0

0
1

⎞
⎠ =

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠ , (17)

which yields a matrix with just one nonzero element A[2]
zz . For

A[4]
i1...i4

, corresponding to two-photon absorption, the resulting

fourth-rank tensor also has only one nonzero element, A[4]
zzzz.

In general, only one element of A[n]
i1...in

is nonzero when all
photons are linearly polarized. If all photons are polarized per-
pendicular to the propagation direction, this element is A

[n]
zn .

This leads to a major simplification in the following. If there
are more nonzero elements of the tensor A[n]

i1...in
, the expres-

sions become much longer and the evaluation becomes more
complex.

We recall at this point that the tensor I(n) is of rank 2n
and has two sets of indices ip and λq, which correspond to
the space-fixed and the molecule-fixed coordinate systems,
respectively. The elements of A[n]

i1...in
f(n) can only be nonzero

for nonzero elements of A[n]
i1...in

, i.e., for element A
[n]
zn . For the

one-photon absorption case, this corresponds to

∑
i1,i2

A
[2]
i1,i2

f(2) =
∑
i1,i2

⎛
⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎠ δi1,i2

= 1. (18)

In general, summation over all elements of A[n]
i1...in

for the case
of completely linearly polarized light results in only one non-
vanishing contribution. In this contribution, all indices in are z
and thus all elements of the vector f(n) are unity.21 Thus, when
evaluating Eq. (16), A

[n]
zn

(
f(n)

)T
reduces to a summation of all

the elements of the product of the matrix M(n), the right-hand
side vector g(n) and the molecular tensor P[n]

λ1...λn
, so that

A[n]
zn (f(n))T M(n)g(n)P[n] =

N
n∑

i=1,λ1...λi

(M(n)g(n)P[n]
λ1...λi

)i . (19)

Exploiting these properties of the tensor A[n]
i1...in

, we can
formulate expressions for the rotational averaging of the dif-
ferent multiphoton absorption properties. Rotational averag-
ing of the one-photon absorption strength thus gives us the
following expression:

〈δOPA〉 =
∑

a

(1)T
1

3
(1)

(
SaS̄a

)
(20)

= 1

3

∑
a

SaS̄a, (21)

which is equal to the familiar expression of taking the trace of
P[2]

λ1,λ2
and dividing by three. The factor 1

3 results from solving
the integral in Eq. (8) using the elements Lzx, Lzy or Lzz for the
L-type variables.

Using Eq. (12) we obtain for the rotationally averaged
two-photon absorption strength

〈δTPA〉 =
∑
ab

⎛
⎜⎝

1

1

1

⎞
⎟⎠

T

1

30

⎛
⎜⎝

4 −1 −1

−1 4 −1

−1 −1 4

⎞
⎟⎠

⎛
⎜⎝

SaaS̄bb

SabS̄ab

SabS̄ba

⎞
⎟⎠
(22)

= 1

15

∑
ab

(SaaS̄bb + SabS̄ab + SabS̄ba). (23)
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This is the expression for the rotational average of two-
photon absorption cross sections as introduced by Monson
and McClain.21 Assuming that the transition moments S and
S̄ are symmetric, this expression can be further simplified to11

〈δTPA〉 = 1

15

∑
ab

(2SabS̄ab + SaaS̄bb). (24)

Corresponding expressions for 3PA and 4PA have been de-
rived in the literature.11

Comparing Eqs. (21) and (24), we note that in both cases
the expressions for the rotationally averaged observable have
been reduced to a sum of contractions of the tensor P[n]

λ1...λn

and multiplication with a prefactor, which we will call ζ n. In
Secs. V and VI, we will treat the prefactor and the contrac-
tions separately, with the goal of obtaining an expression for
rotational averaging of even-rank tensors of arbitrary order.

V. THE PREFACTOR ζ n

The prefactor ζ n can be obtained from either of two
equivalent approaches: from the summation of the elements
of each column of M(n) as shown in Eq. (19), or from the
integral in Eq. (8). We will use the latter approach, follow-
ing Wagnière,26 to derive an expression for the prefactor for
rotational averaging of even-rank tensors of arbitrary order
assuming linearly polarized light in the z-direction.

If all L-type variables in the integral in Eq. (8) are the
elements Lzz of the Euler matrix in Eq. (6), the integral reduces
to

I
(n)
zn,zn = 1

8π2

∫ 2π

φ=0

∫ π

θ=0

∫ 2π

ψ=0
cosn θ sin θ dφ dθ dψ (25)

= 1

n + 1
. (26)

In principle, the string of L-type variables that needs to be in-
tegrated can be a combination of the elements Lzx, Lzy, and Lzz
of the Euler matrix in Eq. (6) for linearly polarized light in the
z-direction. However, for many combinations, the outcome of
the integral is zero. The nonzero elements are those in which
all indices λp occur as pairs, e.g., xxyyzz and not xxxyzz. The
combinations that give zero are automatically identified and
discarded by interpreting every index pair as the two indices
of one Kronecker delta, as described in Sec. III, and can thus
be disregarded here. For all combinations of Lzx, Lzy, and Lzz

that lead to a nonzero outcome, the element of I(n) can be
written as

I
(n)
zn,λ1...λn

= 1

n + 1

kλ1...λn

Nn

, (27)

with kλ1...λn
being the number of Kronecker delta strings in

g(n) that are one for the indices λ1...λn. For the special case in
Eqs. (25) and (26), all Kronecker delta strings give one and
kλ1...λn

= Nn.
To obtain an expression for ζ n, we have to divide the el-

ement of I(n) by kλ1...λn
to avoid double-counting terms in the

contractions in Sec. VI. The prefactor ζ n can thus be obtained
from n and Nn (Eq. (11)) giving an expression that can be used

for even-rank tensors of any order:

ζn =
I

(n)
λ1...λn

kzn,λ1...λn

= 1

Nn(n + 1)
=

m∏
i=1

1

(2i + 1)
, (28)

where the only input needed is the number of involved pho-
tons m. Note the similarity between Eqs. (11) and (28). The
denominator of the prefactor ζ n is the product of all odd num-
bers equal or less than n + 1.

VI. THE CONTRACTION COEFFICIENTS

Having evaluated the expression for the prefactor ζ n for
any order n, we now consider the contraction of the transition
tensor elements for the different levels of multiphoton absorp-
tion. For TPA, only a very slight degree of systematization is
required based on the assumption that the transition tensors
are symmetric (see Eqs. (23) and (24)). The contractions for
higher-rank tensors are more involved.

The number of contractions involved in the rotational av-
eraging of an nth-rank tensor is Nn and this number increases
dramatically with n, see Eq. (11) and Table I. Nevertheless,
the number of different contractions is reasonably small due
to the index symmetry of the transition tensors.11 Indeed, we
end up with two different contractions for TPA and 3PA, three
different contractions for 4PA and 5PA, four different contrac-
tions for 6PA and 7PA, and so on. The different contractions
can be distinguished by the number of pairs of equal indices
on S or S̄. For instance, Saabc has one pair of equal indices a
while Sabcd has none. In Eq. (24), the first term SabS̄ab gives
the contractions with all different indices on S and S̄ (with
contraction coefficient 2) whereas the second term SaaS̄bb

gives the contractions with one pair of the same indices on
both S and S̄ (with contraction coefficient 1). In the follow-
ing, the coefficient for the contraction will be named Cm

i , with
i the number of pairs with equal indices in S and S̄ so that the
coefficients for 4PA for instance will be C4

0 , C4
1 and C4

2 .
The determination of the contraction coefficients Cm

i can
be performed using a simple mathematical scheme as ex-
plained below, using the two formulas

Cm
0 = m!, (29)

Cm
i = m!

∏2i−1
j=0 (m − j )

(2i)2(i!)2
1 ≤ i ≤ m+1

2 , i ∈ N, (30)

where the only input needed is the number of involved pho-
tons m. To explain this scheme, we will first reformulate the
conditions for the contributing Kronecker delta strings to con-
ditions for the indices on S and S̄ using the relation between
the Kronecker delta strings and the indices on S and S̄ (see
Sec. III). Condition 1 ensures that we cannot interchange
the indices in a pair, e.g., there is just one allowed permu-
tation SaaS̄bb. Condition 2 ensures that the first of the two
occurences of every index are in ascending order, e.g., SbaS̄ab

vanishes and SabS̄ab remains as the first a needs to come be-
fore the first b.

The number of pairs of the same indices i on S and S̄ is
always the same. However, the positions of the indices on S
are more constrained than those on S̄. Indeed, when we know
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the positions of the index pairs on S, there is only one way of
arranging the indices that are not part of a pair: in ascending
order (condition 2). For the number of permutations of the in-
dices on S we thus need to consider only the positions of the
paired indices. The positions of the indices on S̄, on the other
hand, are more free. Condition 2 only holds for the first oc-
currence of an index and thus only for the indices that occur
as a pair on S̄. There is no constraint on the indices on S̄ that
are not part of a pair because these are the second occurrences
of the index. It is thus convenient to calculate the number of
allowed permutations of S and S̄ separately. The total num-
ber of contractions is the product of the number of allowed
permutations of S and S̄.

For Cm
0 — where S and S̄ contain no pair with the same

indices — it follows from condition 2 that the indices of S
can be written in only one way, which is in ascending order.
The number of permutations of the indices for S̄ is m! giving
1 · m! for Cm

0 . For Cm
1 — where S and S̄ contain one pair with

the same indices — S can be written in m(m − 1)/2 ways:
m(m−1) is the number of positions where the pair can be and
the division by 2 follows from condition 1. The only con-
straint on the indices of S̄ is that the indices that form the
pair cannot be interchanged (condition 1), giving m!/2 pos-
sible permutations of the indices on S̄. For Cm

i — where S
and S̄ contain i pairs with the same indices — the number of
permutations is

∏2i−1
j=0 (m − j )/(2i i!) for S and m!/(2ii!) for

S̄. The denominators ensure that the first occurrences of an
index from a pair are ordered in ascending order (following
from condition 2) by dividing by i! and excludes interchang-
ing two indices that form one pair (following from condition
1) by dividing by 2i.

Our scheme thus allows rotational averaging of multi-
photon absorption tensors of arbitrary order. The coefficients
for the different contractions up to 7PA (computed using Eqs.
(29) and (30)) are given in Table II.

Combining the values from Table II with the correspond-
ing prefactors obtained from Eq. (28), we obtain the follow-
ing expressions for the rotational average of the first seven
m-photon absorption cross sections:

〈δOPA〉 = 1

3

∑
a

SaS̄a, (31)

〈δTPA〉 = 1

15

∑
ab

(2SabS̄ab + SaaS̄bb), (32)

〈δ3PA〉 = 1

35

∑
abc

(2SabcS̄abc + 3SaabS̄bcc), (33)

TABLE II. Contraction coefficients Cm
i for different levels of multiphoton

absorption with m the number of absorbed photons and i the number of pairs
of equal indices on S and S̄.

Cm
i m

1 2 3 4 5 6 7

Cm
0 1 2 6 24 120 720 5040

Cm
1 - 1 9 72 600 5400 52920

Cm
2 - - - 9 225 4050 66150

Cm
3 - - - - - 225 11025

〈δ4PA〉= 1

315

∑
abcd

(8Sabcd S̄abcd +24SaabcS̄bcdd + 3SaabbS̄ccdd ),

(34)

〈δ5PA〉 = 1

693

∑
abcde

(8SabcdeS̄abcde + 40Saabcd S̄bcdee

+15SaabbcS̄cddee), (35)

〈δ6PA〉 = 1

3003

∑
abcdef

(16Sabcdef S̄abcdef + 120SaabcdeS̄bcdeff

+90Saabbcd S̄cdeeff + 5SaabbccS̄ddeeff ), (36)

〈δ7PA〉= 1

6435

∑
abcdefg

(16SabcdefgS̄abcdefg + 168Saabcdef S̄bcdefgg

+210SaabbcdeS̄cdeffgg + 35Saabbccd S̄deeffgg). (37)

In these equations, the coefficients of the contractions have
been ordered such that Cm

0 comes first and the other coeffi-
cients follow in ascending order. Additionally, for 3PA and
higher, the greatest common factor of all coefficients has
been factorized out and combined with the denominator of
ζ n, namely, 3 for 3PA and 4PA, 15 for 5PA, 45 for 6PA, and
315 for 7PA. The expressions for the rotational average of
five-, six-, and seven-photon absorption cross sections are
here reported for the first time. Indeed, their derivation is
made significantly easier by the general scheme introduced
in this work.

VII. CONCLUDING REMARKS

We have presented a scheme for rotational averaging
of multiphoton absorption cross sections of arbitrary order.
Moreover, we have derived the first explicit expressions for
the rotational average of five-, six-, and seven-photon ab-
sorption cross sections. All necessary expressions can be de-
rived using only the number of involved photons as input.
Our scheme can be implemented straightforwardly to allow
for rotational averaging of any even-rank tensor provided
linearly polarized light is used. The outcome of this work
is required for the calculation of higher-order multiphoton
absorption properties of isotropic samples.
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APPENDIX: INTERMEDIATES FOR SIXTH-RANK
TENSORS

In this appendix, we repeat the expressions for f(6),
g(6), and M(6) from Ref. 24 for the rotational averaging of
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sixth-rank tensors.

f(6) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δi1,i2
δi3,i4

δi5,i6

δi1,i2
δi3,i5

δi4,i6

δi1,i2
δi3,i6

δi4,i5

δi1,i3
δi2,i4

δi5,i6

δi1,i3
δi2,i5

δi4,i6

δi1,i3
δi2,i6

δi4,i5

δi1,i4
δi2,i3

δi5,i6

δi1,i4
δi2,i5

δi3,i6

δi1,i4
δi2,i6

δi3,i5

δi1,i5
δi2,i3

δi4,i6

δi1,i5
δi2,i4

δi3,i6

δi1,i5
δi2,i6

δi3,i4

δi1,i6
δi2,i3

δi4,i5

δi1,i6
δi2,i4

δi3,i5

δi1,i6
δi2,i5

δi3,i4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A1)

g(6) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δλ1,λ2
δλ3,λ4

δλ5,λ6

δλ1,λ2
δλ3,λ5

δλ4,λ6

δλ1,λ2
δλ3,λ6

δλ4,λ5

δλ1,λ3
δλ2,λ4

δλ5,λ6

δλ1,λ3
δλ2,λ5

δλ4,λ6

δλ1,λ3
δλ2,λ6

δλ4,λ5

δλ1,λ4
δλ2,λ3

δλ5,λ6

δλ1,λ4
δλ2,λ5

δλ3,λ6

δλ1,λ4
δλ2,λ6

δλ3,λ5

δλ1,λ5
δλ2,λ3

δλ4,λ6

δλ1,λ5
δλ2,λ4

δλ3,λ6

δλ1,λ5
δλ2,λ6

δλ3,λ4

δλ1,λ6
δλ2,λ3

δλ4,λ5

δλ1,λ6
δλ2,λ4

δλ3,λ5

δλ1,λ6
δλ2,λ5

δλ3,λ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A2)
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M(6) = 1

210

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

16 −5 −5 −5 2 2 −5 2 2 2 2 −5 2 2 −5

−5 16 −5 2 −5 2 2 2 −5 −5 2 2 2 −5 2

−5 −5 16 2 2 −5 2 −5 2 2 −5 2 −5 2 2

−5 2 2 16 −5 −5 −5 2 2 2 −5 2 2 −5 2

2 −5 2 −5 16 −5 2 −5 2 −5 2 2 2 2 −5

2 2 −5 −5 −5 16 2 2 −5 2 2 −5 −5 2 2

−5 2 2 −5 2 2 16 −5 −5 −5 2 2 −5 2 2

2 2 −5 2 −5 2 −5 16 −5 2 −5 2 2 2 −5

2 −5 2 2 2 −5 −5 −5 16 2 2 −5 2 −5 2

2 −5 2 2 −5 2 −5 2 2 16 −5 −5 −5 2 2

2 2 −5 −5 2 2 2 −5 2 −5 16 −5 2 −5 2

−5 2 2 2 2 −5 2 2 −5 −5 −5 16 2 2 −5

2 2 −5 2 2 −5 −5 2 2 −5 2 2 16 −5 −5

2 −5 2 −5 2 2 2 2 −5 2 −5 2 −5 16 −5

−5 2 2 2 −5 2 2 −5 2 2 2 −5 −5 −5 16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A3)
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