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Abstract

The electronic excitations of silver chains with different geometries (linear, circle,

arc and zigzag chains) have been investigated at the time-dependent density functional

theory level, by solving the equation of motion of the reduced single-electron density

matrix in the real-time domain. A scaling parameter 0 ≤ λ ≤ 1 has been introduced

to adjust the two-electron contributions during propagation in the time domain in a

way that allows us to distinguish different electronic excitations — plasmon and single-

particle excitations. The dipole responses, in particular the plasmon resonances of these

metallic chains to an external δ-pulse, show a strong dependence on their geometric

structures. In most cases, the dipole responses of these chains possess great tunability

when altering their geometric parameters — the radius of the circle and arc chains,

and the bond angle of the zigzag chains. Some excitations in these chains also show a

wide tunable excitation energy range, more than 1 eV, making it possible to fine-tune

the excitations of the metallic chains at an atomic scale.

Keywords: metallic chains, electronic excitations, plasmon, time-dependent density func-

tional theory

1 INTRODUCTION

Compared to higher-dimensional systems, quasi-one-dimensional metallic chains are believed

to possess unique properties because the electrons can move rather freely in the one dimen-

sion defined by the arrangement of the atoms but finite and very limited extension in the

other two dimensions.1 Due to their simple geometric structures and the unique behaviour of

the electronic motions, metallic chains have been extensively investigated in recent years —

their formation,2–4 geometries,1,5–7 stabilities,1,8–10 electronic structures,1,5,6,8–10 conductiv-

ity11 and spectroscopic properties12–15 have all been studied. Especially, the plasmons (col-

lective oscillations of the conduction electrons)16 in these artificial metallic chains have also
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received particular attention. Yan et al. studied the electronic excitations of sodium, potas-

sium and silver linear chains at the time-dependent density functional theory (TDDFT)

level.12,13 Similar study of the dipole responses of gold chains Au2n (n = 1, 2, · · · , 10) was

reported by Lian et al.14 at the TDDFT level in the frequency domain using the linear re-

sponse method, but limited to a finite energy range. We recently implemented the real-time

TDDFT method in a tool package TDRsp,17 in which the reduced single-electron density

matrix is propagated according to the Liouville-von Neumann equation after an impulse ex-

citation. The corresponding dipole responses in the frequency domain (optical absorption)

can be retrieved using a subsequent Fourier transformation. The use of time propagation

allows us to access a wide frequency range and in particular to access states of high energy,

difficult to reach using conventional response theory in the frequency domain. By utilizing

this method, we have successfully investigated the electronic excitations of three noble-metal

chains — copper, silver and gold — with up to 26 atoms at the TDDFT level.18

In a recent work, Bernadotte et al. proposed a scaling approach analysis19 to distinguish

plasmons and single-particle excitations in molecules, in which a scaling parameter 0 ≤ λ ≤ 1

was introduced in order to adjust the two-electron contributions in the TDDFT eigenvalue

equations. By tracking the dependence of individual excitations on the λ parameter, they

successfully discriminated plasmon and single-particle excitations in different systems such as

metal chains and clusters.19,20 In a study of electronic excitations in different gold nanowires,

Piccini et al.21 employed this idea of a scaling approach analysis to discriminate different

electronic excitations. We will here use the scaling approach analysis in real-time TDDFT,

allowing us to reveal different excitations, in particular the plasmons in different metallic

chains, from the real-time TDDFT calculation.

The study of plasmons in metallic chains can rationalize the occurence surface plas-

mons appearing in higher-dimensional systems. For instance, various surface-enhanced spec-

troscopies16 have become active research areas both experimentally and theoretically, be-

cause understanding the interaction of plasmon resonances on the metallic surface with
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atoms/molecules adsorbed on the surface is needed in order to understand the mechanisms

that govern these surface-enhanced spectroscopies. Moreover, in order to utilize the full po-

tential of metallic nanomaterials in different applications, their plasmons must be tunable, for

instance at nanometre scale or subnanometre scale.12 In the aforementioned studies, different

electronic excitations have been observed in the metallic chains and shown to be tunable by

changing the chain length. Yan et al. also demonstrated the possibility of controlling the

plasmons in a sodium chain by attaching a silver atom at one end of the chain.12

Another important factor that affects the excitations of nanomaterials is their geometric

structures.16,22 Although different geometries of the metallic chains, for example, linear,

zigzag, helix and tetragonal chains, have been investigated theoretically in terms of their

structure, stability and electronic properties,1,5–7 a detailed study of the dipole responses of

these different metallic chains still needs to be explored, in particular at the level of TDDFT.

The purpose of this paper is therefore to provide a detailed and comparative study of

the electronic excitations in the metallic chains with different geometries: circle, arc and

zigzag. We will take the silver chains as an example to demonstrate the shape-dependent

electronic excitations in the metallic chains. We will use the real-time TDDFT method as

implemented in our tool package TDRsp.17 This allows us to obtain a deep understanding of

the different electronic excitations in various metallic chains, of interest both for theoretical

and experimental studies, including different surface-enhanced spectroscopies.

The remainder of this paper is organized as follows: the computational details are de-

scribed in Section 2, followed by results and discussion in Section 3. Our concluding remarks

are given in Section 4.

2 COMPUTATIONAL DETAILS

In this work, we will consider silver chains with three different geometries as shown in Fig. 1:

circle, arc and zigzag. To exclude other factors that could affect the electronic excitations,
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we have fixed the internuclear distance between the silver atoms at the experimental value

of 2.89 Å23 in all the different silver chains. As such, the number of atoms in the chains, the

radius R of the circle and arc chains (or their curvature 1/R), and the bond angle θ of the

zigzag chains become the key structural factors affecting the electronic excitations of these

chains.

O
x

y

z

R

arc (circle)

linear chain

zigzag chain
θ

Figure 1: Schematic drawing of metallic chains with different structures studied in current
work.

As in our previous study on plasmon resonances in linear noble-metal chains,18 we

have chosen to propagate the reduced single-electron density matrix D(t) according to the

Liouville-von Neumann equation in the real-time domain18

i
∂D(t)

∂t
= [F(t) + V(t)]D(t)−D(t) [F(t) + V(t)] , (1)

using orthogonal basis sets. Here F(t) is the Fock matrix defined as

F(t) = h + G(D(t)), (2)

with h the one-electron Hamiltonian and with G contains different two-electron contributions

such as Coulomb and exchange-correlation contributions.
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The matrix V(t) represents the external perturbations as

V(t) =
∑
A

εA(t)A, (3)

with A being the dipole moments along, for instance, the x, y and z directions as defined in

Fig. 1. For the case of a δ-pulse as studied here, εA(t) = εδ(t).

To further discriminate between single-particle and plasmon excitations, we employ the

scaling approach analysis of Bernadotte et al.19,20 rewriting the Fock matrix as

Fλ(t) = h + (1− λ)G(D0) + λG(D(t)), 0 ≤ λ ≤ 1, (4)

where D0 is the density matrix of the ground state determined from the self-consistent

field calculation (i.e., before the δ-pulse is applied) and thus G(D0) represents the ground-

state two-electron contributions. The parameter λ is introduced to scale the two-electron

contributions G(D(t)) during the time propagation. Obviously, Fλ(t) = F(t) in Eq. (2) for

λ = 1, and Fλ(t) = h+G(D0) = F(0) for λ = 0 as two extreme cases of the parametrization

in Eq. (4). In the latter case, the Fock matrix is during the propagation fully represented

by that of the ground state, and the electron–electron interactions after the δ-pulse have

been applied are completely suppressed. By adjusting the λ parameter, different types of

electronic excitations can be distinguished:19,20 those whose excitation energies are sensitive

to the scaling factor λ may belong to plasmonic excitations, whereas the others can be

classified as single-particle excitations whose excitation energies show slight dependence on

the parameter λ.

These different electronic excitations can be obtained from the absorption spectrum,

which is described by the dipole strength function S(ω) at frequency ω 24

S(ω) =
4παfsω

3ε
Tr [Imα(ω)] , (5)

6



where αfs is the fine-structure constant, ε is the strength of the external δ-pulse (which is

chosen as 0.05 eV/bohr in this study), and α(ω) the complex polarizability tensor obtained

from the Fourier transformation of its time-dependent counterpart α(t).

The time-dependent polarizability tensor α(t) can be calculated from D(t), which is

obtained by the fourth-order Runge-Kutta method with a time step of 0.02 a.u. and a

total propagation time of 1500 a.u. The propagation of the density matrix D(t) has been

performed by the TDRsp library,17 in which the two-electron contributions G(D(t)) of the

Fock matrix are calculated through callback functions to a local version of the Dalton

program.25

All calculations in this work have been performed at the TDDFT level using the Perdew-

Wang 91 exchange–correlation functional.26 The pseudopotential of the Stuttgart/Cologne

group ECP28MWB (derived at the quasi-relativistic level) has been employed, together with

the corresponding effective core potential basis set (7s7p5d)/[5s5p2d].27

3 RESULTS AND DISCUSSION

3.1 Circle Chains

The dipole responses of circle chains Ag2n (n = 5, 6, · · · , 11) and two linear chains Ag12

and Ag22 (two topmost) are shown in Fig. 2(a) and (b), in which the radii of the circle

chains are also given in the parentheses. As observed also in the case of linear metallic

chains,18 the dipole responses of the circle chains can be divided in two different classes

corresponding to the external δ-pulse polarized (a) parallel with the circle chains (named

as parallel mode hereafter) and (b) perpendicular to the chains (named as transverse mode

hereafter), respectively.

As seen from Fig. 2(a) and (b), there are similarities between the dipole responses of the

linear and circle chains:

1. As is the case for the first peak of the linear chains in the longitudinal mode, the first
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n = 10
(9.237 Å)
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Figure 2: Top: the dipole responses of Ag2n (n = 5, 6, · · · , 11) circle chains and two linear
chains Ag12 and Ag22 (topmost) to an external δ-pulse with strength 0.05 eV/bohr and
polarized along (a) x and (b) z directions. Bottom: the dipole responses of the Ag18 circle
chain to the same external δ-pulse polarized along (c) x and (d) z directions with different
scaling parameter λ.
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peak X1 of the circle chains is red-shifted with the increasing chain radius as shown in

Fig. 2(a), and its intensity increases when the circle chain becomes larger;

2. The peak X6 splits for circle chains with smaller radii (Ag10 and Ag12), and stays almost

fixed at 4.46 eV for chains with larger radii, being very similar to the corresponding

excitation energy in the case of longer linear chains, 4.44 eV.18 For shorter linear chains,

such as Ag2, Ag4 and Ag6, the split of this peak was also observed in our previous

study;18 As will be discussed below, this peak may involve a mixing of plasmon and

single-particle excitations, and the disappearance of the split of this peak could be due

to the much more excitations involved in the larger circle and longer linear chains;

3. For circle chains with larger radii (Ag16–Ag22), the energy of the first two peaks Z1

and Z2 in the transverse mode are slightly blue-shifted with increasing chain radius

(as shown in the inset of Fig. 2(b)), as also observed in the case of linear chains for

increasing chain lengths.18

However, there are also obvious differences between the dipole responses of the circle and

linear chains, in particular in the longitudinal mode. Using the Ag22 chains as an example,

the energy of the X1 peak in the circle chain is slightly larger than that of the linear chain,

whereas the intensity of this peak is much higher in the linear chain as can be seen from

Fig. 2(a). We also notice that peaks X2–X5 in the circle chain are less intense than those in

the linear chain.

In Fig. 2(c) and (d), we also present the dipole responses of the Ag18 circle chain to the

same external δ-pulse but with different scaling parameters λ (see Eq. (4)). Peaks X1, X6,

Z1 and Z2 are sensitive to the scaling parameter λ and are blue-shifted with increasing λ

values. Within the random-phase approximation, Bernadotte et al. have got the following

plasmon dispersion of a noninteracting homogeneous electron gas model19

ω2
plas(q) =

4πe2ρ0
m

λ+ ν2Fq
2, (6)
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where e, ρ0 and m are respectively the electron charge, the electron density and the (effective)

electron mass. νF and q are the Fermi velocity and the wavevector of the excitation. This

plasmon dispersion clearly demonstrates the blue shift of plasmons with the increasing λ

values. For the real complicated system and the TDDFT calculations, although the plasmon

dispersion is different from this simple model, the blue shift behavior of the plasmon is also

expected.19

Piccini et al.21 further demonstrated that a characteristic of plasmon resonances is the

mixing of many configurations’ transitions. In the top panel of Fig. 3, the fluctuations of the

occupation numbers of different molecular orbitals (MOs) in the Ag18 circle chain are shown

for these four peaks, calculated from the equation18,28

∆nµ(ω) = diag
[
C†0P

µ (D(ω)−D0)C0

]
, (7)

with C0 being the MO coefficients before the δ-pulse is added, and Pµ the operator projecting

the density matrix onto some atomic orbitals ξµ.

From the fluctuations of the occupation numbers of the different MOs (red open bars)

in Fig. 3, we see that more than one MO transition is involved in peaks X1, X6, Z1 and Z2

in the Ag18 circle chain, in particular in the case of the peaks Z1 and Z2. As such, except

for the peak X6 (which may involve a mixing of plasmon and single-particle excitations, see

the discussion of Fig. 5 in Section 3.2), others can safely be assigned as plasmon resonances.

Moreover, by projecting the density matrix onto the atomic d orbitals, as shown in the blue

bars in Fig. 3, we find that the X6 peak is the first one in the parallel mode that involves

d electron, in agreement with our observation for linear chains.18 In the transverse mode,

there are in most cases d → p transitions in each resonance, as also observed in the linear

chains.18

In the lower panel of Fig. 3, we have also plotted the induced electron densities of the

peaks X1, X6, Z1 and Z2 in the Ag18 circle chain as well as those of the corresponding peaks
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in the Ag18 linear chain. The induced electron density at the space point r is calculated

according to

ρinduced(r, ω) = Tr [(D(ω)−D0) Ω(r)] , (8)

where ω is the excitation frequency of the peak, and Ωµν(r) = χ∗µ(r)χν(r) is the overlap

distribution between the atomic orbitals. The induced electron densities were calculated

using the Gen1Int library,29 and were visualized by the ParaView program30 with a step size

0.02×max (|ρinduced|). Values close to zero, as defined by the threshold 0.1×max (|ρinduced|)

was also used in order to avoid clutter in the figures, unless stated otherwise. From these

induced electron densities, similar patterns are observed for the circle and linear chains for

each peak, explaining the similarities of the dipole responses of these two different metallic

chains.

However, being a closed curve of high symmetry, the circle chains do possess some dif-

ferent characteristics of the electronic excitations than the linear chains. This is clearly

demonstrated by the induced electron densities in the transverse mode (peaks Z1 and Z2),

for which the induced electron densities of the circle chains are more symmetric along the

circumference, whereas differences between the end and central parts of the linear chains can

easily be seen for the different electronic excitations. In contrast, the induced electron den-

sities of the circle chains in the parallel mode, such as the peaks X1 and X6, can be divided

into two identical parts along its diameter, as shown by the red dashed line in Fig. 3, the

induced electron density in each part showing a similar pattern as that of the corresponding

peak in the linear chain. The stronger spatial confinement in the circle chains explains why

the energy of the peak X1 in the Ag2n circle chain is higher than that of the corresponding

linear chain. It is therefore interesting to compare the dipole responses of the Ag2n circle

chain with that of the Agn+1 linear chain. As shown in Fig. 2(a) and (b), the dipole responses

of the Ag12 linear chain is only slightly larger than the Ag22 circle chain.

To briefly summarize: Bending a linear chain into a circle does not introduce new reso-

nances in the absorption spectrum, but makes the first few peaks, for instance, X1, Z1 and
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Z2 blue shifted in the circle chains, demonstrating the shape dependence of the electronic

excitations in these metallic chains.

3.2 Arc Chains

As for the circle and linear metallic chains, the number of atoms is an important parameter

in the dipole responses of the arc chains. The calculated dipole responses of the Ag2n

(n = 2, · · · , 8) arc and Ag18 circle (topmost) chains when exposed to an external δ-pulse

and polarized along x (left), y (middle) and z (right) directions are shown in the top panel

of Fig. 4. The radii of these arc chains are chosen to be those of the Ag18 circle chain,

R ≈ 8.32 Å. In Figure 4, the dipole responses of the Ag16 arc chain are exposed to the same

δ-pulse but with the scaling parameter λ = 0 has also been shown by the red dashed lines.

As is the case for the circle chains, the excitation energies obtained with λ = 0 are generally

lower than those with the full two-electron contribution (λ = 1). In particular, the peaks

X1, X′1, X6, Y1, Y6, Z1 and Z2 show a much stronger dependence on the change of the λ

parameter, suggesting that these may be considered plasmon resonances.

From the spectra in Fig. 4, it is clear that the dipole responses of the arc chains in the y

and z directions converge as the Ag18 circle chain with increasing number of atoms. However,

this is not the case in the x direction — even the dipole response of the Ag16 arc chain shows

apparent differences from that of the Ag18 circle chain. In particular, the first peak X1 is

blue shifted from the Ag16 arc chain to the Ag18 circle chain by adding only two more atoms.

In order to rationalize this observation, we plot in the lower panel of Fig. 4 the induced

electron densities of the peaks X1 and X′1 of the Ag16 arc chain in three-dimensional space

as well as those in the xy plane. In the latter case, only the densities with the absolute value

not less than 0.5 × max (|ρinduced|) are shown. The induced electron densities of the peaks

X1 and X′1 of the Ag16 arc chain are more similar to those of the linear chains than the circle

chains — we can clearly distinguish the central and end parts of the electronic excitations

in the arc chains. As such, there seems to be no reason for the dipole responses of these arc
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chains along the x direction to resemble those of the Ag18 circle chain.

From the induced electron densities in the xy plane, we also notice the different character-

istics of the peaks X1 and X′1. X1 involves mainly excitations in the central part of the chain,

as is the case for the first longitudinal peak in the linear chains.18 The peak X′1, however,

involves excitations on a few atoms in the central part of the chain as well as excitations in a

few atoms close to the edges of the chain. As will be shown later, the different characteristics

of the peaks X1 and X′1 affect their behaviour when the chain gradually changes from a circle

to a linear structure.

Another important factor that affects the excitations of the arc chain is its radius R (or

equivalently its curvature 1/R). In Fig. 5, we give the dipole responses of the Ag18 arc, circle

and linear chains to an external δ-pulse polarized along x (left), y (middle) and z (right)

directions. From bottom to top are the dipole responses of the circle (R ≈ 8.32 Å), arc

(R = 8.5, 8.6, 8.7, 8.8, 8.9, 9, 10, 12, 15, 20, 25, 30, 40, 50, 60 Å) and linear (R = ∞ Å) chains,

respectively. The most striking changes in the dipole responses of these arc chains with

increasing radius are (i) the split of the peak X1 around R = 8.6 Å, in which the first split

peak (still named as X1) becomes stronger while the second peak X′1 gradually disappears,

(ii) the disappearance and reformation of the peak X2, (iii) the disappearance of the peaks

Y1 and Y2, and (iv) the change of the peak Y3 from an almost parallel mode in the arc

chains (see the layout of the arc chain in Fig. 1) to the transverse mode in the linear chain.

In contrast, the dipole response to the δ-pulse polarized along the z direction is almost

unaffected by the change of the radius in these arc chains.

In Figure 5, we have also shown the dipole responses with scaling parameter λ = 0, of

the arc chains with radius R = 10, 60 Å and the linear chain. The peaks X1, Y1, Y3, Z1 and

Z2 show a clear dependence on the λ parameter, suggesting that they may be considered

plasmon resonances. X3 has very different profiles between λ = 0 and λ = 1 for the arc

chain with R = 10 Å. In the case of the arc chain with R = 60 Å and the linear chain,

calculations give almost identical profiles with λ = 0 and λ = 1. Also shown in Fig. 6(a),
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S
(ω

)
(a

.u
.)

Figure 5: The dipole response of Ag18 arc, circle and linear chains to an external δ-pulse
with strength 0.05 eV/bohr and polarized along x (left), y (middle) and z (right) directions.
From bottom to top are the dipole responses of the circle chain (R ≈ 8.32 Å), different
arc chains and the linear chain (R = ∞ Å), in which the red dashed lines are the dipole
responses of the arc chains with R = 10, 60 Å and the linear chain to the same δ-pulse but
with the scaling parameter λ = 0.
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the energy difference of the peak X3 between λ = 0 (green triangles) and λ = 1 (blue

diamonds) becomes smaller and smaller when the chain changes from the circle to the linear

structure. In a study of linear gold chains, Piccini et al. have observed similar absorption

spectra from TDDFT calculations and molecular orbital transitions.21 It is not clear that

we can attribute the peak X3 to single-particle excitations in the arc chain (R = 60 Å) and

the linear chain. Instead we note that in the work by Bernadotte et al.19 strong mixing

of plasmon and single-particle excitations was observed in a given energy range for a linear

chain of 20 gold atoms, and in this case a clear-cut classification of the excitations as either

plasmon or single-particle excitations is not possible. For this reason, we conclude that the

excitations around the peak X3 in these silver chains — independently of whether they are

arc, circle or linear — involve a mixing of plasmon and single-particle excitations. It is easier

to distinguish these two different excitation classes in the circle and arc chains (for arcs with

large curvature, for instance > 0.0375 Å−1 as shown in Fig. 6(a)) than the linear and arc

chains with a smaller curvature.

In Fig. 6, we can see the evolution of the energy positions of the individual peaks in the

circle, arc, and linear chains. Except for the peak Y3, these excitation energies are in most

cases quickly red-shifted towards the value of the linear chain. However, as shown in Fig. 5,

except for the z direction, the absorption profiles of the dipole responses of the arc chains

become similar to those of the linear chain only after their curvatures are close to zero. To

understand this observation, we plot in Fig. 7(a) and (b), respectively, the induced electron

densities of the peaks X1, Y1 and Y3 of the arc chains with radius R = 10 and 60 Å. Let

us first consider the X1 peak in the x direction, which is split into two peaks X1 and X′1

around R = 8.6 Å. The latter X′1 peak becomes stronger with increasing radius, but quickly

disappears again for R ≥ 12 Å, and its excitation energy is almost constant at 1.47 eV for

arc chains with radius 8.6 < R ≤ 12 Å. In contrast, the peak X1 is gradually red-shifted and

becomes stronger with increasing radius. When we earlier discussed arc chains having the

same radius R ≈ 8.32 Å but different number of atoms, we also noted the strong peak X′1,
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Figure 6: Energy positions of individual peaks to the δ-pulse polarized along the (a) x, (b)
y and (c) z directions, respectively.
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in particular in the Ag16 arc chain (see Fig. 4). Comparing the induced electron densities

of the peaks X1 and X′1 in these two different cases, as shown in the bottom panel of Fig. 4

(Ag16 arc chain with R ≈ 8.32 Å) and Fig. 7(a) (Ag18 arc chain with R = 10 Å), one

can immediately notice their similarities — the peak X1 mostly involves excitations in the

central part of the chain, whereas X′1 involves excitations happening in a few atoms in the

central part and a few atoms close to the edges of the chain. As such, the peak X1 is more

sensitive to the length and geometry of the chain, showing quantum confinement effects with

red-shifted excitation energies when increasing the radius of the arc chain. It also becomes

much stronger when the arc chain becomes more “linear” since there will be more atoms in

the central part involved in the excitations. This is illustrated by the maximum absolute

values of the induced electron densities in the arc chains with R = 10 and 60 Å (Fig. 7(a)

and (b)), 0.012 and 0.026 respectively — the latter more than twice as large as the former.

Due to the characteristic of its electronic excitations, the peak X′1 does not show a strong

dependence on the radius of the arc chain, making its excitation energy almost constant and

its dipole strength only slowly increase with increasing radius, until it finally is covered by

the rapidly increasing strength of the X1 peak.

The disappearance of peaks Y1 and Y2 can also be understood from their induced electron

densities. Taking Y1 as an example, its induced electron densities (see Fig. 7(a) and (b))

are signficantly reduced when the radius is changed from 10 Å to 60 Å. We also notice

the involvement of d → p transitions in the Y1 peak as seen from the fluctuations of the

occupation numbers of the MOs in Fig. 7(c), also being reduced as the arc chain becomes

more “linear”, eventually being hidden in the transverse mode of the linear chain. In contrast,

the intensity of the Y3 peak does not vary a lot, but its profile changes gradually to that

of the Z1 peak (T1) in the linear chain. This can also be seen from its induced electron

densities: compared to the induced electron densities of the arc chain with radius R = 10 Å,

the induced electron density of the arc chain with R = 60 Å resemble to a much greater

extent that of the T1 peak in the linear chain (see Fig. 3).
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Figure 7: (a): the induced electron densities on the xy plane of peaks X1 and X′1, and the
induced electron densities of peaks Y1 and Y3 of the Ag18 arc chain with radius R = 10 Å.
(b): the induced electron densities of peaks X1, Y1 and Y3 of the Ag18 arc chain with
radius R = 60 Å. In (a) and (b), only the densities with the absolute value not less than
0.5×max (|ρinduced|) are shown. (c): the fluctuations of the occupation numbers of the MOs
(total: red open bars, d orbitals: blue bars) of peak Y1 of the Ag18 arc chains with the radius
R = 10 and 60 Å.
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Summarizing our findings for the arc chains, we recall that both the size (number of

atoms) and geometric structure (radius or curvature) of the arc chains are important for

their electronic excitations. This allows interesting energy ranges for photon absorption to

be accessed either by altering the size or the shape of the metallic chains.

3.3 Zigzag Chains

Finally we will consider zig-zag chains, still taking the 18 silver atom chain as an example to

demonstrate the shape dependence of the electronic excitations in these chains. The dipole

responses to an external δ-pulse of different Ag18 zigzag chains and the linear chain are shown

in Fig. 8(a), in which the δ-pulse is polarized along x, y and z directions from left to right,

and from bottom to top in each panel are the dipole responses of the linear (θ = 180◦) and

different zigzag chains with bond angle θ as 170◦, 160◦, · · · , 60◦, respectively.

In contrast to the circle and arc chains, the dipole responses of the zigzag chains show

obvious differences compared to the linear chain, not only in the x and y directions but

also in the z direction. In particular, there are new peaks arising in the y (peak Y1) and z

(peak Z1) directions in the zigzag chains, which together with peaks X1, Y2 and Z2 are more

sensitive to the scaling parameter λ — as can be seen by comparison to the dipole responses

from calculations with λ = 0, the red dashed lines in Fig. 8(a). The peak X3 may involve,

as discussed in the previous section, the mixing of plasmon and single-particle transitions so

that the spectra from calculations with λ = 0 and λ = 1 resemble each other around the X3

peak.

As shown in Fig. 8(b), most peaks become blue shifted when the bond angle θ decreases

from 180◦ (linear chain) to 60◦, except for peaks X3 and Y2. The former is almost constant

at about 4.5 eV and involves d → p transitions (from its fluctuations of the occupation

numbers of the MOs, not shown here), very similar to the peak L3 in the linear chain, and

X6 and X3 in the circle and arc chains. The Y2 peak instead shows a red shift with decreasing

bond angle θ, opposite of what is observed for Y1. The different behaviours of peaks Y1 and
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Figure 8: (a): dipole responses of different Ag18 zigzag chains and the linear chain to an
external δ-pulse with strength 0.05 eV/bohr and polarized along x (left), y (middle) and z
(right) directions. From bottom to top are respectively the dipole responses of the linear
(θ = 180◦) and zigzag (θ = 170◦, 160◦, · · · , 60◦) chains, in which the red dashed lines are the
dipole responses of the linear chain and zigzag chains with θ = 110◦ and 60◦ to the same
δ-pulse but with the scaling parameter λ = 0. (b): energy positions of individual peaks to
the δ-pulse with respect to the bond angle θ.
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Y2 can be qualitatively understood from their different induced electron densities shown in

Fig. 9. In particular, the electronic excitations in the Y1 peak are mostly localized on the

ends of the chain, whereas the Y2 peak shows a clearly delocalized picture.
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Figure 9: From top to bottom: the induced electron densities of the peaks X1 and X3 of the
Ag18 zigzag chain with bond angle θ = 110◦, the induced electron densities of the peaks X1,
X3, Y1 and Y2 of the Ag18 zigzag chain with θ = 60◦, and the induced electron densities on
the xy plane of the peaks Y1 and Y2 and that on the xz plane of the peak Z1 of the Ag18

zigzag chain with θ = 60◦. The fluctuations of the occupation numbers of the MOs (total:
red open bars, d orbitals: blue bars) of the peak Z1 in the Ag18 zigzag chain with θ = 60◦

are also shown at the bottom right corner.

From a consideration of the induced electron densities of the peaks X1 and X3, for ex-

ample, one can also view the zigzag chains as double linear chains with the two end parts

localized on different chains. Therefore, one may imagine that decreasing the bond angle θ

corresponds to the decrease of length of the double linear chains and the decrease of inter-

nuclear distance in each of the double linear chains, both of which will result in a blue shift

of the excitation energies of some peaks.
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Finally, we note the appearance of the new peak Z1 in the z direction (the transverse

mode), whose excitations also involve the d electrons as shown from the fluctuations of the

occupation numbers of the MOs in Fig. 9. Moreover, from its induced electron density shown

in Fig. 9, we can clearly observe the collective excitation picture. As such, the zigzag chains

provide us a new peak with collective excitations in transverse mode but with even lower

excitation energy comparing with the linear, circle and arc chains. This also suggests that

interesting optical properties may be found in, for instance metallic planes,31 multiple layers

of a metal sheet or thin-films of metal atoms.

4 CONCLUSIONS

We have shown that great flexbility in tuning of electronic excitations in metallic chains is

possible by altering their geometric structures. Different structures of silver chains — circle,

arc and zigzag chains — have been investigated at the TDDFT level, demonstrating the

tunability of their electronic excitations by simply altering their geometric parameters: the

radius of the circle and arc chains, and the bond angle of the zigzag chains.

New dipole responses have arisen in the arc and zigzag chains. Some of these even have

as wide a tunable excitation energy range as 1 eV, as shown in Fig. 6(a) and Fig. 8(b).

In particular, the zigzag chains have shown fine-tunable optical properties as illustrated in

Fig. 8(b) — the excitation energies of individual peaks change smoothly as a function of the

bond angle. All these unique properties make it possible to control the excitations of these

chains at an atomic scale — for instance by manipulating atoms with the scanning tunneling

microscope.

The study of the zigzag chains also suggests that future work could be carried out on two-

dimensional metallic planes, multiple layers of a metal sheet or thin-films of metal atoms, just

name a few. New and interesting optical properties may be found in these low-dimensional

metallic systems.
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