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We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability
tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolar-
izability gradients to explore the importance of electron correlation effects, as described by DFT, on
hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis
isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing
us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these
structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational fre-
quencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron
correlation effects are of minor importance for the hyper-Raman intensities. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4896606]

I. INTRODUCTION

The phenomenon of hyper-Raman scattering (HRS) was
first proposed theoretically in the late 1950s.1 It is a non-
linear scattering process where two incident photons of fre-
quency ω stimulate the emission of a photon of frequency
2ω ± ωt, where ωt is a frequency associated with a vibra-
tional transition in the system being studied. The process can
thus be considered an inelastic scattering process related to
the second-harmonic generation effect. In non-resonant HRS,
which is the subject of this work, the frequency 2ω ± ωt is
well separated from any electronic transitions in the system.
Hyper-Raman scattering was first observed experimentally in
the 1960s.2 Because it is the geometrical variations of the
molecular first hyperpolarizability that govern the HRS spec-
tral intensities, HRS represents a scattering process with dif-
ferent selection rules than that of regular Raman spectroscopy.
For the latter spectroscopy, the geometrical variations of the
molecular polarizability is the governing quantity. The scat-
tering process and the involvement of the first hyperpolar-
izability in HRS allow for the enhancement of other vibra-
tional modes than those observed, for instance, in infrared
absorption or Raman spectroscopy.3–5 Furthermore, HRS is
well suited for the study of low-frequency vibrational modes,
which has traditionally been a difficult region for other spec-
troscopies because of instrumental limitations, although we
note that these limitations are gradually being lifted in the
case of (chiroptical) Raman spectroscopy.6

Hyper-Raman scattering is not as well known or fre-
quently used as, e.g., infra-red (IR) or Raman spectroscopy,
mainly because the signal is significantly weaker than the

corresponding Raman signal due to its multiphoton nature
(it is typically several orders of magnitude weaker than non-
resonant Raman scattering7). Furthermore, the experimental
setup for the HRS is more complicated than a regular Raman
instrument. The literature on experimental HRS is therefore
rather limited, though it is in principle accessible with any
experimental equipment designed to measure hyper-Rayleigh
scattering.

The calculation of hyper-Raman cross sections requires
the calculation of first-order geometrical derivatives of the
molecular first hyperpolarizability with respect to displace-
ments along the normal coordinates of the system. This cor-
responds to a fourth-order quasi-energy derivative and carries
substantial computational complexity. A few theoretical stud-
ies of HRS have been presented in the literature, and in partic-
ular Champagne and co-workers8–10 have pioneered the theo-
retical calculation of HRS spectra. More recently, Ågren and
co-workers have also presented theoretical studies of HRS.5

However, all analytic calculations of the hyperpolarizabil-
ity gradients in previous studies have been restricted to the
Hartree-Fock (HF) level of theory.

In this work, we use recent developments in the ana-
lytic calculation of molecular properties11–13 to present the
first analytic calculations of hyperpolarizability gradients at
the density-functional theory (DFT) level. We apply the new
methodology to the calculation of hyper-Raman spectra for
the all-trans and 11-cis isomers of retinal. These systems have
been selected in part because of the availability of experi-
mental data for the all-trans isomer,14 but also because these
systems would allow us to theoretically explore the sensitiv-
ity of HRS to structural differences, in this particular case to
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cis/trans isomerism. We will also explore the importance of
electron correlation effects, as described by DFT, for the HRS
scattering cross sections.

The rest of the paper is organized as follows: We first give
an introduction to the theory of HRS and the computational
approach used to calculate the required first-order geometrical
derivatives of the first hyperpolarizabilities, with special em-
phasis on the exchange–correlation (XC) contributions. We
then give some details of the hyper-Raman calculations on the
retinal isomers studied, before turning to a discussion of the
results of the calculations. Finally, we give some concluding
remarks.

II. THEORY

The foundations of hyper-Raman spectroscopy, the cal-
culation of HRS cross sections, and the evaluation of the rel-
evant geometrical hyperpolarizability derivatives have been
discussed previously.5, 8–10 As the main difference between
DFT and HF will be in the evaluation of the exchange–
correlation contributions, we will here follow our earlier ex-
position of the analytic evaluation of the gradients of the
first hyperpolarizability at the HF level,5 providing an outline
of the general energy-derivative theory framework but with
the main focus given to the new and nontrivial exchange–
correlation contributions. However, in order to establish the
notation and provide the background for the quantities we
need to evaluate, we first give a brief introduction to the ex-
pressions for the HRS cross sections.

A. Hyper-Raman scattering cross sections

When a sample is exposed to an incident laser field of
frequency ω and intensity I0, the Stokes hyper-Raman inten-
sity at the frequency (2ω − ωt) for a vibrational transition t of
frequency ωt is given by8–10

IhR,t (2ω − ωt ) ∝ NI2
0(2ω − ωt )

4|〈�init|β(ω, Q)|�fin〉|2,
(1)

where we have introduced the initial and final states of the
system |� init〉 and |�fin〉, respectively, N denoting the pop-
ulation of the ground state. β(ω, Q) is here the first hyper-
polarizability at the frequency ω, and it is a function of the
nuclear displacements along the normal coordinates Q. We
use the Born–Oppenheimer approximation to write the initial
and final states as products of pure vibrational and electronic
states, neglecting vibronic couplings which may, however, be
important close to or at electronic resonances. If (2ω − ωt)
is detuned from electronic resonance, the electronic state of
both the initial and final state can be taken to be the ground
state, so that we can integrate over the electronic degrees of
freedom to obtain

IhR,t (2ω − ωt ) ∝ NI2
0(2ω − ωt )

4|〈n|β(ω, Q)|p〉|2. (2)

In Eq. (2), the initial and final vibrational states are denoted by
|n〉 and |p〉, respectively. Also introduced is the electronic first
hyperpolarizability β of the electronic ground state, where
we have indicated that the electronic hyperpolarizability is
a function of the frequency of the incoming light ω and the

nuclear positions Q. The vibrational potential and geometry
dependence of the first hyperpolarizability can be expanded
in a Taylor series around the equilibrium geometry with re-
spect to displacements along the normal modes Qi of the sys-
tem. Using Greek subscripts for Cartesian axes, the expan-
sions around the equilibrium geometry can be written

βαβγ (Q) = β
0
αβγ +

∑
a

[(
∂βαβγ

∂Qa

)
eq

Qa

+ 1

2

∑
b

((
∂2βαβγ

∂Qa∂Qb

)
eq

QaQb

+ 1

3!

∑
c

(
∂3βαβγ

∂Qa∂Qb∂Qc

)
eq

QaQbQc + · · ·
)]

,

(3)

and

V (Q) = V
(0)

eq + 1

2

∑
a

∑
b

(
V

(2)
eq, abQaQb

+ 1

3!

∑
c

V
(3)

eq, abcQaQbQc + · · ·
)

, (4)

where the ith order derivative of the energy at the equilibrium
geometry is V

(i)
eq,···. We note that V

(1)
eq, a = 0 since the expan-

sion is carried out at the equilibrium geometry. In the present
work, we use the double-harmonic approximation,8 where the
expansions in Eqs. (3) and (4) are truncated after the first-
and second-order derivatives, respectively. The latter trunca-
tion means that the vibrational wavefunctions correspond to
harmonic oscillator wavefunctions.

With these expansions and truncations, Eq. (2) can in the
double-harmonic approximation be written as

IhR,t (2ω − ωt )

∝ NI2
0(2ω − ωt )

4

(
∂β(−2ω; ω,ω)

∂Qt

)2

eq

|〈n|Qt |p〉|2. (5)

From the properties of the harmonic oscillator vibra-
tional wavefunctions, the only nonzero contributions in
Eq. (5) come from transitions between neighboring vibra-
tional states,15 i.e., states that differ by at most one vibrational
quantum. By considering the polarization of the incoming and
scattered light, Eq. (5) can be further specialized to the final
expressions9, 10 for the hyper-Raman scattering cross sections
for either vertically (V) or horizontally (H) plane-polarized
incident light, respectively, at the frequency (2ω − ωa)

IV V
hR,a(2ω − ωa)

∝ N¯I2
0

(2ω − ωa)4

2ωa[1 − exp(−¯ωa/kT )]
〈β̃ ′2

ααα(ω,Qa)〉, (6)

and

IHV
hR,a(2ω − ωa)

∝ N¯I2
0

(2ω − ωa)4

2ωa[1 − exp(−¯ωa/kT )]
〈β̃ ′2

αββ (ω,Qa)〉, (7)
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where the second index in VV and HV means that we consider
only the vertically plane-polarized scattered light. Here, k de-
notes the Boltzmann constant and T the temperature, which
enter into the Boltzmann term in Eqs. (6) and (7) in order to
take the population of the excited vibrational states into ac-
count. In Eqs. (6) and (7), we have also introduced the aver-
ages 〈β̃ ′2

ααα(ω,Qa)〉 and 〈β̃ ′2
αββ(ω,Qa)〉, which, defining

β ′
αβγ ≡

(
∂βαβγ (−2ω; ω,ω)

∂Qa

)
eq

, (8)

can be expressed as

〈
β̃ ′2

ααα

〉 =1

7

x,y,z∑
α

β ′2
ααα

+ 1

35

x,y,z∑
α,β �=α

(
4β ′2

ααβ + 2β ′
αααβ ′

αββ + 4β ′
βααβ ′

ααβ

+ 4β ′
αααβ ′

ββα + β ′2
βαα

)
+ 1

105

x,y,z∑
α,β �=α,γ �=α,β

(
4β ′

ααββ ′
βγ γ + β ′

βααβ ′
βγ γ

+ 4β ′
ααββ ′

γ γβ + 2β ′2
αβγ + 4β ′

αβγ β ′
βαγ

)
(9)

and

〈
β̃ ′2

αββ

〉 = 1

35

x,y,z∑
α

β ′2
ααα

+ 1

105

x,y,z∑
α,β �=α

(
4β ′

αααβ ′
αββ − 6β ′

αααβ ′
ββα

+ 8β ′2
ααβ + 9β ′2

αββ − 6β ′
ααββ ′

βαα

)
+ 1

105

x,y,z∑
α,β �=α,γ �=α,β

(
3β ′

αβββ ′
αγ γ − 2β ′

ααγ β ′
ββγ

− 2β ′
ααββ ′

βγ γ + 6β ′2
αβγ − 2β ′

αβγ β ′
βαγ

)
. (10)

From these equations, it is clear that in order to perform a
hyper-Raman analysis by Eqs. (6) and (7), the normal modes
of the system and their (harmonic) fundamental vibrational
frequencies must be determined. Furthermore, the hyperpolar-
izability derivatives appearing in Eqs. (8)–(10) must be calcu-
lated. We now turn to the analytic evaluation of the gradient of
the first dipole hyperpolarizability in an atomic-orbital-based
approach.

B. The gradient of the first hyperpolarizability

In earlier theoretical studies of hyper-Raman spectra,5, 8, 9

with the exception of one study in which also the (static) first
hyperpolarizability gradients were calculated at the Møller–
Plesset (MP) level of theory,10 HRS spectra have been cal-
culated using gradients of the first hyperpolarizability calcu-
lated at the HF level. We here extend these earlier studies to
evaluate the importance of electron correlation effects on the
hyper-Raman scattering cross sections as described by DFT,

presenting the first analytic implementation of the first hy-
perpolarizability gradient at the DFT level. The implementa-
tion is formally an extension to the DFT level of theory of
the approach we have used for HF wave functions.5 However,
we have recently implemented an open-ended formulation16

of response theory. The theoretical treatment of the routines
in this implementation11 allows the identification and evalua-
tion of contributions to perturbed Fock and density matrices
and the various contributions to a given response property in
a recursive manner, where the principal limitation on which
properties that can be calculated stems from the limitations
of associated routines for perturbed 1-electron and 2-electron
integrals and routines for exchange–correlation contributions.
Thus, even though we here for simplicity will present the
working equations for the first hyperpolarizability gradients,
with a particular emphasis on the exchange–correlation con-
tributions, the theoretical treatment of the routines in the
present implementation is much more generic and does not
require a tailored routine for the evaluation of this property.

A linear response property 〈〈A; B〉〉ω
b

can be expressed
as a time-averaged quasienergy Lagrangian perturbation-
strength derivative16 Lab

〈〈A; B〉〉ω
b
= d{L̃a(D̃, t)}T

dεb

∣∣∣∣
{ε}=0

= Lab ; ωa = −ωb,

(11)
where εb denotes a perturbation strength, superscripts denote
perturbation-strength differentiation with respect to perturba-
tions a and b (and in general also other perturbations) with as-
sociated frequencies ωa and ωb, D̃ is the density matrix con-
sidered at general perturbation strengths (in general, a tilde
will be used when considering a quantity at general perturba-
tion strengths, and no tilde is used when the quantity is eval-
uated at zero perturbation strengths). The braces {}T denote
time-averaging over a full period of the applied perturbation.
In Eq. (11), we have introduced the quasi-energy Lagrangian
gradient

L̃a(D̃, t)
{Tr}

T= Ẽ0,a − S̃aW̃, (12)

where
{Tr}

T= is used to denote that we take the trace of the matrix
products on the right-hand side and perform time averaging
of the quantities over a period of the applied perturbation. In
Eq. (12), the overlap integral matrix S and generalized energy-
weighted density matrix W were also introduced, where

W̃ = D̃F̃D̃ + i
2

( ˙̃DS̃D̃ − D̃S̃ ˙̃D
)
. (13)

Here, the dot in ˙̃D denotes time differentiation, and the Kohn–
Sham matrix F̃ in the presence of an external electric field
was introduced, and is given by

F̃ = h̃ + G̃γ (D̃) − F · μ̃ + F̃xc. (14)

In Eq. (12), the Kohn-Sham energy Ẽ in the presence of an
external electric field F was also introduced, and is given as

Ẽ
{Tr}

T= (
h̃ − F · μ̃ + 1

2 G̃γ (D̃)
)
D̃ + Ẽxc[ρ̃(D̃)] + h̃nuc. (15)

The energy Ẽ is dependent on the density matrix, D̃, and both
Ẽ and D are in general dependent on the applied perturbations,
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and any differentiation of the energy may therefore entail ap-
plications of the chain rule involving D̃. It is for this pur-
pose that the zero superscript in Ẽ0,a is introduced, denoting
the number of such applications of the chain rule, so that, in
general

Em,abc = ∂m+3E
(∂DT)m∂εa∂εb∂εc

. (16)

In Eqs. (14) and (15), we introduced the one-electron integral
matrices h̃ and F · μ̃, where μ is the electric dipole integral
matrix. We have also introduced the two-electron integral ma-
trix with γ -scaled exchange contribution

G̃
γ
μν(M) =

∑
αβ

Mβα(g̃μναβ − γ g̃μβαν), (17)

the nuclear potential contribution h̃nuc, and the exchange-
correlation potential matrix F̃xc, in the adiabatic approxi-
mation connected to the exchange–correlation energy density
ε̃xc(ρ̃(r)) through

(F̃xc)μν =
∫

dr
∂ε̃xc(r)

∂ρ̃(r)

∂ρ̃(r)

∂D̃νμ

. (18)

We also introduced the exchange–correlation energy
Ẽxc[ρ̃(D̃)]. The scaling factor introduced in Eq. (17) allows
us to include Hartree–Fock theory (γ = 1), non-hybrid DFT
(γ = 0) as well as hybrid DFT theories in which γ can take
intermediate values between these two extremes, in the same
theoretical framework.

In general, response properties can be expressed as
quasienergy Lagrangian derivatives Labc. . . evaluated at zero
perturbation strength

La
{Tr}

T= E0,a − SaW, (19)

〈〈A; B〉〉ω
b
= Lab

{Tr}
T= E0,ab + E1,aDb − SabW − SaWb,

(20)

〈〈A; B,C〉〉ω
b
,ω

c
= Labc

{Tr}
T= E0,abc + E1,acDb

+E1,abDc + E2,aDbDc

+E1,aDbc − SabcW − SabWc

− SacWb − SaWbc. (21)

We note that the expressions for the response properties
in Eqs. (19)–(21) are said to follow the (n + 1) rule. Other
choices of rule are in general possible,17, 18 but are not the best
choice for the first-order geometrical derivative of the molec-
ular first hyperpolarizability β(−2ω; ω, ω), which is the per-
tinent property in the present work. This is due to the fact
that the n + 1 rule allows us to avoid evaluating perturbed
densities with respect to nuclear displacements. This is ad-
vantageous in cases where a different level of theory is used
for determining the molecular force field and the hyperpolar-
izability gradients for large molecules, because the number
of atomic displacements grows linearly with the number of
atoms in the molecule, whereas the number of electric-field-
perturbed densities that need to be determined remains fixed.

In this work, we will, for instance, for the HF calculations use
different levels of theory for the force field (B3LYP) and the
hyperpolarizability gradients (HF). Moreover, we note that
basis set requirements for force fields may differ from those
of the hyperpolarizability gradients.

Let us denote a geometrical perturbation arising from the
Cartesian displacement of one of the atoms by g, and let fi
denote an electric dipole perturbation i. Furthermore, let ẼHF
denote the HF energy, where

ẼHF

{Tr}
T= (

h̃ − F · μ̃ + 1
2 G̃γ (D̃)

)
D̃ + h̃nuc, (22)

so that Ẽ = ẼHF + Ẽxc[ρ̃(D̃)]. A given component of the prop-
erty tensor ∂β(−2ω;ω,ω)

∂g
can then be written as

Lgf1f2f3

{Tr}
T= Egf1f2f3

HF + Exc[ρ(D)]gf1f2f3 − SgWf1f2f3 , (23)

where

Egf1f2f3
HF = E1,gf1

HF Df2f3 + E1,gf2
HF Df1f3 + E1,gf3

HF Df1f2

+E1,g
HF Df1f2f3 + E2,g

HF Df1f2 Df3 + E2,g
HF Df1f3 Df2

+E2,g
HF Df1 Df2f3 , (24)

where simplifications due to the fact that some of the con-
tributions are independent of the electric dipole perturbations
have been made, and f1, f2, and f3 represent electric dipole
perturbations of frequency −2ω, ω, and ω, respectively, and

E1
HF

{Tr}
T= h − F · μ + Gγ (D̃), (25)

E2
HF

{Tr}
T= Gγ . (26)

The differentiation and subsequent evaluation of Wf1f2f3 in
Eq. (23) is handled with the use of recursion in the open-
ended response property implementation.11 The appropriate
terms can be obtained from a straightforward differentiation
of Eq. (13). We will not present here the method for the evalu-
ation of the perturbed density and Fock (and overlap) matrices
used in the evaluation of the terms in Eq. (23), but we note that
they are readily obtained.11, 16 In the following, we will show
how the exchange–correlation contribution Exc[ρ(D)]gf1f2f3 is
determined.

C. Exchange–correlation contributions to the gradient
of the first hyperpolarizability

We define the XC energy Exc[ρ(r)] as the integral over a
local function εxc(r) that depends on the density n(r) and its
Cartesian gradient ∇n(r) according to

Exc =
∫

dr εxc(n(r),∇n(r)). (27)

To simplify the notation, we collect the density variables

n(r) =
∑
μν

�μν(r)Dνμ, (28)

and

∇n(r) =
∑
μν

(∇�μν(r))Dνμ, (29)
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in a generalized density vector ρ(r). The XC energy and the
XC potential matrix in Eq. (18) are integrated on a numerical
grid defined by a set of suitably chosen grid points ri and grid
weights wi according to

Exc ≈
∑

i

wiεxc(ρ(ri)), (30)

(Fxc)μν ≈
∑

i

wi

∂εxc(ρ(ri))

∂ρ(ri)

∂ρ(ri)

∂Dνμ

=
∑

i

wivxc(ri)(�ρ)μν(ri). (31)

The generalized overlap distribution vector (�ρ)μν contains
in our case

(�)μν = χ∗
μχν, (32)

and

(∇�)μν = (∇χ∗
μ)χν + χ∗

μ(∇χν), (33)

where χμ is a Gaussian basis function. When differentiating
the XC energy and the XC potential matrix, we ignore the
contributions from grid-weight derivatives.

For the implementation of analytic hyperpolarizability
gradients using Kohn–Sham DFT, we form the XC energy

density derivative ε
gf1f2f3
xc ,

ε
gf1f2f3
xc = ∂εxc

∂ρ
ρgf1f2f3 + ∂2εxc

∂ρ2
[ρgρf1f2f3 + ρf1ρgf2f3

+ ρf2ρgf1f3 + ρf3ρgf1f2 ]

+ ∂3εxc

∂ρ3
[ρgρf1ρf2f3 + ρgρf2ρf1f3 + ρgρf3ρf1f2

+ ρf1ρf2ρgf3 + ρf1ρf3ρgf2 + ρf2ρf3ρgf1 ]

+ ∂4εxc

∂ρ4
ρgρf1ρf2ρf3 . (34)

This expression is not explicitly programmed, but we obtain
the contributions directly from the XCFUN program12, 13 by
forming a generalized density Taylor series expansion which
is internally contracted with the Taylor expansion of the XC
functional.

In order to construct the generalized density Taylor series
expansions, we evaluate the following generalized perturbed
densities for a block of grid points:

ρf Tr= �ρDf , (35)

ρff Tr= �ρDff , (36)

ρfff Tr= �ρDfff , (37)

ρg Tr= �
g
ρD, (38)

ρgf Tr= �
g
ρDf , (39)

ρgff Tr= �
g
ρDff , (40)

ρgfff Tr= �
g
ρDfff . (41)

These generalized perturbed densities are internally con-
tracted with the XC functional expansion. This approach is
also used to form differentiated vxc contributions.

III. COMPUTATIONAL DETAILS

To illustrate the performance of the code and investigate
the importance of electron correlation effects, we consider
the hyper-Raman spectra of two isomers of retinal: all-trans-
retinal and 11-cis-retinal. These systems were studied at both
the HF and DFT levels of theory using the Turbomole-TZV2P
basis set.19 For DFT, the functionals BLYP,20–22 B3LYP,23, 24

PBE,25, 26 and PBE027 were used. The geometry optimiza-
tions of the two systems were carried out using the DAL-
TON quantum chemistry program.28 The molecular Hessians
were calculated at the optimized geometries, from which the
harmonic vibrational frequencies and normal modes of the
systems were identified. Due to the well-known deficiencies
in the prediction of harmonic vibrational frequencies at the
HF level of theory, we have for the HF calculations used the
B3LYP geometry and B3LYP harmonic frequencies, and we
have used the B3LYP normal modes in the transformation of
the calculated HF hyperpolarizability Cartesian geometrical
derivatives into the normal-mode basis (vide infra).

Calculations of the first-order geometrical derivatives
of the molecular first hyperpolarizability using Cartesian
displacements were carried out using the aforementioned
general open-ended response code, which in the present im-
plementation utilizes the general framework of the DALTON

program in the determination of, for instance, the perturbed
density matrices using the linear response solver of Jørgensen
et al.29 One-electron integral contributions were provided by
the GEN1INT program.30, 31 Two-electron contributions were
obtained using the existing functionality of DALTON. For the
DFT calculations, exchange–correlation contributions were
provided by the XCFUN program,12, 13 using an in-house in-
tegrator. However, the exchange–correlation contribution to
the unperturbed density and Fock matrices was calculated us-
ing the existing functionality of DALTON. The Cartesian
gradients of the first hyperpolarizability were transformed
to normal-mode basis and subsequently used for the cal-
culation of hyper-Raman scattering cross sections. For the
HF response property calculations, the B3LYP geometries
were used, and the B3LYP normal modes were used for the
transformation to normal-mode basis, as mentioned above,
whereas for the DFT calculations, the response property cal-
culations and normal mode transformations were done with
optimized geometries and vibrational analyses using the spe-
cific DFT exchange–correlation functional.

IV. RESULTS AND DISCUSSION

Before discussing the HRS spectra, let us first consider
the excited states and absorption spectrum of the all-trans-
retinal. The experimental absorption spectrum of all-trans-
retinal shows a maximum at about 375 nm with a tail extend-
ing as far into the long wavelength region as 425 nm.14 Our
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FIG. 1. Hyper-Raman spectra for all-trans-retinal: (a) Experimental resonance hR spectrum at room temperature in cyclohexane at an incident wavelength of
800 nm, (b)–(e) Computed spectra at 293 K, incident wavelength 946 nm, VV polarization: (b) B3LYP geometry and vibrational analysis and HF response, (c)
B3LYP, (d) PBE0, (e) BLYP, (f) PBE. Each computed spectrum is normalized to highest-intensity peak and uses a FWHM of 15 cm−1. Frequency axis in cm−1.
The experimental results are adapted with permission from Mizuno et al., J. Phys. Chem. A 106, 3599 (2002). Copyright (2002) American Chemical Society.

DFT calculations all predict two low-lying excited states, of
which one of the states is one-photon forbidden. In the case
of the hybrid functionals B3LYP and PBE0, the lowest state
at about 420 nm (417 nm and 420 nm for B3LYP and PBE0,
respectively) has a high oscillatory strength, whereas for the
non-hybrid functionals, the second state absorbs strongly at
502 nm for both BLYP and PBE. The underestimation of
the excitation energies for the non-hybrid functionals and the
(slight) overestimation of the excitation energies for the hy-
brid functionals is in agreement with the expected perfor-
mance of DFT in predicting excitation energies.32, 33 Indeed,
to some extent the hybrid functionals perform better than

could have been expected for such a highly conjugated sys-
tem as all-trans-retinal, as we see no signs of the hyperpolar-
izability breakdown often observed with non-hybrid or hybrid
functionals for conjugated systems.34

Since our theoretical calculations show that the first ab-
sorption band corresponds to an isolated electronic state, the
tail observed in the experimental absorption spectrum is due
to either vibronic or solvent effects. Indeed, the experimental
HRS profiles at the double wavelength show no signs of res-
onance for wavelengths longer than 790–800 nm. As such,
the experimental HRS spectra recorded at 800 nm are off-
resonance HRS spectra and well suited for comparison with
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our calculated spectra if these are also calculated off reso-
nance. Because of the errors in our calculated excitation en-
ergies, our calculations would display two-photon resonance
effects at an excitation energy of 800 nm, and we have for this
reason calculated the HRS spectra for incident wavelengths
of 946 and 1064 nm, respectively, corresponding to a dual-
wavelength laser based on Nd:YAG and Nd:YVO4 crystals,
respectively.35

In Figure 1, the results of the hyper-Raman calculations
assuming VV polarization for a wavelength of 946 nm are
shown for all-trans-retinal. Included in the figure is also the
experimental HRS spectrum in cyclohexane, obtained at an
incident wavelength of 800 nm. We have also performed cal-
culations assuming HV polarization and observe no signifi-
cant differences in the calculated relative scattering cross sec-
tions, though there are differences in the absolute scattering
cross sections. As our calculations are performed without tak-
ing solvent effects into consideration, there are limitations on
how directly we can compare the theoretical and experimental
spectra. Nevertheless, the comparison may give some indica-
tion of the accuracy that can be expected for different compu-
tational levels.

From Fig. 1 we see that there is, to a somewhat vary-
ing extent, qualitative agreement between experiment and our
theoretical results, both for HF and DFT, irrespective of the
choice of XC functional. It is worth noting that the HF results
are closest to experiment, being almost in quantitative agree-
ment with the experimental results. However, this is likely to
be fortuitous, and may be due to accidental cancellation of
errors arising, for instance, from the neglect of solvent ef-
fects. We emphasize that these results have been obtained
using B3LYP harmonic vibrational frequencies, and the ac-
curacy probably would be poorer had the HF normal modes
been used instead.

Of the DFT functionals, the functionals that include or-
bital exchange (B3LYP and PBE0) show the best agree-
ment with experiment. Indeed, the largest difference be-
tween the B3LYP and the HF results is the appearance of
a high-frequency shoulder (not observed experimentally) on
the strongly scattering vibrational band around 1600 cm−1

in the B3LYP calculations. In the case of the non-hybrid
generalized gradient approximation (GGA) functionals used
(BLYP and PBE), the agreement is at best qualitative. For
these functionals, several strong features appear around 1600
cm−1, observed neither experimentally nor for the HF and hy-
brid functional results, and the agreement with experiment for
lower-frequency features is also poorer than for the HF and
hybrid functional calculations. The origin of these differences
could either be in the calculated harmonic force field11 or
be due to near-resonance effects since the second and one-
photon active excited state at 502 nm corresponds to an in-
coming one-photon wavelength of about 1000 nm for these
GGA functionals. Nevertheless, these results suggest that the
non-hybrid GGA functionals are not suitable for reproducing
the hyperpolarizability gradients needed for the calculation of
the hyper-Raman scattering cross sections.

DFT has been shown to have problems for calculat-
ing electric hyperpolarizabilities of conjugated systems.34

However, it has been shown that these problems can to a

FIG. 2. Hyper-Raman spectra for all-trans-retinal: (a)–(c) Computed spectra
at 293 K, incident wavelength 1062 nm, VV polarization: (a) B3LYP geom-
etry and vibrational analysis and HF response, (b) B3LYP, (c) BLYP. Each
spectrum is normalized to its highest-intensity peak and uses a FWHM of 15
cm−1. Frequency axis in cm−1.

large extent be mitigated by the use of long-range-corrected
functionals.36 The good agreement between our B3LYP and
PBE0 results and experiment for the HRS spectra suggests
that hybrid functionals are capable of accounting for the
changes in the electronic structure of the molecule as probed
by the HRS scattering cross sections. This may be due to the
fact that the HRS scattering cross section probes the varia-
tion in the first hyperpolarizability during a vibrational motion
and not the first hyperpolarizability itself. Thus, even though

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.242.136.57 On: Sun, 12 Oct 2014 12:06:30



134107-8 Ringholm et al. J. Chem. Phys. 141, 134107 (2014)

TABLE I. Intensities, frequencies, and classification of the normal modes of all-trans-retinal that have strongest
intensities in the computed hyper-Raman spectra at the HF and DFT (B3LYP) level. Frequencies from the
DFT/B3LYP vibrational analysis. Intensities given as the percentage of the mode with the strongest intensity
at the same level of theory. Results reported for an incident wavelength of 946 nm using VV polarization.

Mode Freq. (cm−1) Int. (HF) Int. (B3LYP) Motion

1 1719 2.8 13.4 Terminal HCC angle bend
2 1671 0.4 7.3 Ring C–C stretch
3 1655 2.3 17.7 Carbon backbone bond length alternation
4 1643 4.1 13.4 Carbon backbone bond length alternation (mainly alkene)
5 1616 100.0 100.0 Carbon backbone bond length alternation (mainly alkene)
6 1604 9.4 4.7 Carbon backbone bond length alternation (mainly alkene)
7 1493 0.9 6.5 Ring methyl scissor motion
8 1368 5.5 2.0 Alkene HCC angle bend
9 1355 1.2 4.7 Alkene HCC angle bend
10 1305 9.3 6.1 Alkene HCC angle bend
11 1231 17.0 11.7 Alkene HCC angle bend
12 1200 4.9 1.1 Complete backbone bond length alternation
13 1188 14.6 7.2 Complete backbone bond length alternation
14 1133 2.1 5.1 Complete backbone bond length alternation
15 1037 3.2 4.5 Methyl torsion
16 1025 11.7 8.9 Methyl torsion
17 1005 1.6 4.2 H out-of-plane wiggle (with some methyl wiggle)
18 992 1.6 4.9 H out-of-plane wiggle (with strong methyl wiggle)

the first hyperpolarizability itself may be overestimated by
DFT, the changes in the hyperpolarizability during a vibra-
tional motion are qualitatively correct, thus leading to good
results for the calculated HRS scattering cross sections.

In Figure 2, results for all-trans-retinal in the VV polar-
ization obtained with an incident wavelength of 1064 nm are
presented. We note that only minor differences compared to
the 946 nm results of Figure 1 can be seen, suggesting that the
choice of frequency for the incident light under nonresonant
conditions only has a minor effect on the spectral intensities.
However, there are changes in the relative intensities of the

(artificial) bands that in the DFT calculations constitute the
spectral features around 1600 cm−1 in the case of BLYP, even
changing which peak in this band is the most intense. From
Eq. (6), we note that the intensity scales as (ω − ωa)4, sug-
gesting that for even longer wavelengths of the incident light,
the relative intensity of the peaks would be expected to fa-
vor low-energy vibrational transitions due to the quenching of
the high-energy modes, assuming that the hyperpolarizability
derivatives do not change significantly, which is not expected
as electronic resonances are less likely for longer wavelengths
of the incident light.

TABLE II. Intensities, frequencies, and classification of the normal modes of 11-cis-retinal that have strongest
intensities in the computed hyper-Raman spectra at the HF and DFT (B3LYP) level. Frequencies from the
DFT/B3LYP vibrational analysis. Intensities given as the percentage of the mode with the strongest intensity
at the same level of theory. Results reported for an incident wavelength of 946 nm using VV polarization.

Mode Freq. (cm−1) Int. (HF) Int. (B3LYP) Motion

1 1717 3.5 15.1 Terminal HCC angle bend
2 1670 0.9 9.1 Carbon backbone bond length alternation
3 1651 2.3 36.0 Carbon backbone (alkene) bond length alternation
4 1633 8.1 9.7 Carbon backbone (alkene) bond length alternation
5 1610 100.0 100.0 Carbon backbone (alkene) bond length alternation
6 1587 4.9 4.9 Carbon backbone (alkene) bond length alternation
7 1492 1.4 6.4 Ring methyl scissor motion
8 1480 6.4 4.4 Alkene HCC angle bend
9 1379 14.8 9.6 Alkene HCC angle bend
10 1311 12.0 9.4 Alkene HCC angle bend
11 1236 13.3 12.0 Alkene HCC angle bend
12 1163 6.2 3.8 Complete backbone bond length alternation
13 1112 4.7 10.3 Carbon backbone shift/bond length alternation
14 1044 8.3 10.1 Methyl torsion
15 1030 5.4 3.8 Methyl torsion
16 1010 6.4 3.5 Methyl torsion
17 1000 3.5 9.4 H out-of-plane wiggle
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FIG. 3. Hyper-Raman spectra for 11-cis-retinal: (a)–(c) Computed spectra
at 293 K, incident wavelength 946 nm, VV polarization: (a) B3LYP geom-
etry and vibrational analysis and HF response, (b) B3LYP, (c) BLYP. Each
spectrum is normalized to its highest-intensity peak and uses a FWHM of 15
cm−1. Frequency axis in cm−1.

In Tables I and II, we have collected and classified the
normal modes of all-trans- and 11-cis-retinal that have the
largest intensities in the calculated hyper-Raman spectra in
Figures 1–3. It is clear that the majority of the most intense
bands arise from vibrations involving the conjugation path-
ways. In the cases involving methyl group torsions or hy-
drogen wiggles, these are also attached to the conjugation
pathway.

For 11-cis retinal, there are no experimental results to
which we can compare our computed results. Nevertheless,

considering the importance of this structural isomerism in bi-
ological systems,37 it is of interest to explore to what extent
HRS will be sensitive to these structural differences. We re-
port our calculated results at the HF, B3LYP, and BLYP levels
of theory at a wavelength of ω = 946 nm with VV polar-
ization in Figure 3. The computed spectra show roughly the
same variation in features as the corresponding spectra for the
all-trans isomer. Using the HF results as a basis for compar-
ison, we note that the spectra for the two isomers are fairly
similar, except for the 1000–1400 cm−1 region which appears
more sensitive to the structural characteristics of the two iso-
mers and thus might be used as a fingerprint region. However,
for the most interesting, dominant HRS cross sections, the
intensity pattern remains invariant to the cis/trans isomerism
for all functionals, further supporting that this insensitivity to
cis/trans-isomerism in a conjugated backbone may be a gen-
eral characteristic of the HRS spectra.

V. CONCLUDING REMARKS

We have presented the first analytic implementation and
calculations of the gradients of the first electronic hyperpo-
larizability at the density-functional level of theory. We have
used a recent implementation of the open-ended, atomic-
orbital-based quasienergy derivative framework of Thor-
valdsen et al.16 implemented using recursive programming
techniques.11 In combination with a flexible scheme for eval-
uating differentiated one- and two-electron integrals30, 31, 38, 39

and derivatives of the exchange–correlation functionals based
on automatic differentiation,12 this allows for a very flex-
ible framework for the evaluation of high-order molecular
properties.

We have applied the new code to the study of the hyper-
Raman spectra of all-trans and 11-cis retinal. The best agree-
ment with the experimental, resonant HRS spectrum is ob-
tained using B3LYP vibrational analysis in combination with
HF hyperpolarizability gradient calculations, transforming
the HF hyperpolarizability Cartesian gradients to the normal-
mode basis using the B3LYP normal modes, and using these
transformed quantities in the calculation of the HRS cross sec-
tions. However, the high level of agreement shown for this
method is likely to be accidental, and may in part be due to
cancellation of errors stemming from our neglect of anhar-
monicities and solvent effects. Nevertheless, the rather minor
differences observed between the HF and B3LYP results sug-
gest that correlation effects, as described by DFT, in general
are rather modest for the HRS cross sections, assuming that
the B3LYP vibrational analysis is used with the HF hyperpo-
larizability gradients as done in this work. This finding lends
support to the quality of the results and conclusions drawn in
earlier studies in the literature using HF HRS intensities.5, 8–10

The performance of the non-hybrid GGA functionals BLYP
and PBE is in general poorer, but the origin of this poorer
performance is not clear. It has previously been noted that
the quality of harmonic frequencies and normal modes cal-
culated with GGAs in general is worse than those obtained
using hybrid functionals.40 However, using the B3LYP force
field with the BLYP hyperpolarizability gradients (not shown)
does not lead to qualitative improvements, suggesting that the
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GGA hyperpolarizability gradients are of poorer quality than
hybrid functionals (and Hartree–Fock) when compared to the
experimental observations.

The hyper-Raman spectra of the two isomers are quite
similar, but show differences in the 1000–1400 cm−1 region.
Nevertheless, it is not likely that HRS will be a very attrac-
tive approach for the study of isomerism in these molecules.
The lack of structural specificity in the HRS spectra of these
retinal molecules is due to the fact that the HRS cross sections
are governed by a property that largely probes the conjugation
pathways during the molecular vibrations, and the cis/trans-
isomerism in the middle of the conjugated backbone does not
induce large changes in the conjugation pathways and thus the
gradient of the first hyperpolarizability.

The availability of analytic geometrical derivatives of the
first hyperpolarizability also enables the exploration of pure
vibrational corrections to higher-order polarization properties
such as the second hyperpolarizability. We note that corre-
lation effects have been found to be significant for pure vi-
brational contributions to the first hyperpolarizability,34, 41–45

suggesting that the availability of these analytic derivatives at
the DFT level of theory are more important for pure vibra-
tional corrections than for the case of HRS cross sections.
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