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Chapter 1

Introduction

This thesis is comprised of three papers. Each of these papers aim to contribute to
the field commonly referred to as combinatorial commutative algebra —

“...afascinating new branch of commutative algebra created by Hochster
and Stanley in the mid-seventies”([5, p. 207]).

Characteristic of this field is the application of algebraic and/or homological meth-
ods to problems concerning combinatorial objects — such as e.g. simplicial com-
plexes. In the sub-branch occasionally referred to as Stanley-Reisner theory this
is achieved by constructing from the simplicial complex an ideal generated by
monomials corresponding to certain sets of edges, followed by a study of the al-
gebraic properties of this ideal. In Paper 1 we look at the ideal whose generators
correspond to the bases of a matroid, while in Papers 2 and 3 we consider the so-
called Stanley-Reisner ideal, whose generators correspond to minimal nonfaces
(circuits) of the simplicial complex (matroid).

A recurring theme of this thesis is the connection between certain invariants
of a simplicial complex or matroid, and the Betti numbers associated to a graded
minimal free resolution of the derived ideal. Examples of such invariants are the
higher weights, the matroidal polynomials/weight enumerators, or even the iso-
morphism class of the complex itself. Also common to all three papers is that we
look at constructions such as elongations, substructures (skeletons or truncations)
or components (blocks) of a complex, and see how the Betti numbers of these
structures relate to those of the original complex. Although each of the papers are
well within the realm of pure mathematics, there is at least for Papers 1 and 2 a
certain connection to the theory of error-correcting linear codes.



As is common, this introduction contains a discussion of each of the three pa-
pers. However, since these involve concepts and terminology from very different
branches of mathematics, such as graph theory, linear codes, homological algebra,
and of course simplicial complex/matroid theory, we shall begin by giving a brief
introduction to the relevant parts of each of these topics. The intention is that these
introductory sections will be sufficient for a reader with a general background in
pure mathematics to fully comprehend our subsequent discussion of each of the
three papers. In other words, what follows is aimed at establishing terminology
and setting the stage, before we move on to discuss the papers individually.

Throughout the introduction, and throughout much of the papers, we shall let
E be a finite set with n elements. The set E will typically serve as the ground set
for our simplicial complexes and matroids. In most of the examples, and, indeed,
for all practical purposes, E is assumed to be {1,...,n}. Furthermore, let k be a
field, and let S = k|xy,...,x,] be the polynomial ring in n = |E| variables. Crucial
to all three papers is the concept of grading. It therefore seems natural to begin
by recalling the properties of S as a graded k-algebra. Because this concept is so
central to each of the papers, we shall elaborate a bit more on it than on certain
other topics. Same goes for our introduction of matroids. Also throughout, let
No=1{0,1,2,...}, and N} = {(ay,a2,...,a,) : a; € Np}.

1.1 Graded rings and modules

Let R be a commutative ring with unity, and let G be an additive group. We say
that R is G-graded if R = @,c; Rg, where each Ry is an additive subgroup of R
and with the property that Rg R, € Ry, 1¢,.

Similarly, if R is G-graded, a G-graded R-module is an R-module M with the
property that M = @, Mg, where each M is a subgroup of M and Rg Mg, C
Mg, +4,. An R-module homomorphism ¢ : M — M’ between G-graded R-modules
M and M is said to be homogeneous if ¢[Mg] C M.

Let M be a G-graded R-module. A submodule N C M is said to be a G-graded
submodule of M if N, = M, NN induces a G-grading on N.

For g € G we may transform M into the shifted R-module M(g), which is
isomorphic to M when seen as an ungraded module but which has homogeneous
parts M (g), = My .

In the particular case where G = Z and both R; and M; is O for all i < 0 we
shall say that R and M are Ny-graded (although Ny is of course not a group under
addition). Similarly, we refer to Z"-graded rings and modules with nonzero parts



in Nj only, as Njj-graded. These two cases are the important ones to us.

1.1.1 Two gradings on S

For t € Ny, let S; denote the k-vector space with basis the homogeneous polyno-
mials of degree ¢. The direct sum decomposition

S=Ps

teZ

of S as a k-vector space gives S the structure of an Ny-graded k-algebra. This
is the so-called standard Ny-grading of S, and whenever we refer to S as an Ny-
graded ring or module over itself this is the grading we shall be referring to.
Also, S is an Np-graded module over itself. In particular, we have that for
each homogeneous polynomial 4 of degree d the S-linear map from S(—d) to (h)g
defined by 1 +— A is a homogeneous S-module isomorphism.
For monomials of S, we shall employ the standard, abbreviated notation

D S RS

where a = (ay,...,a,) € Nj. In addition to S being Nj-graded, we may also
endow it with an Njj-grading: For a € N{, let S, denote the k-vector space of
rank 1 with basis x*. The direct sum decomposition S = @,z Sa gives S the
structure of an Njj-graded k-algebra. This is the so-called standard Nj-grading
of §, and whenever we refer to § as an Nj-graded ring or module over itself this
is the grading we shall be referring to. An element of S, is called a monomial of
degree a. For each monomial x?, we have that S(—a) and (x*)g are isomorphic as
Nf-graded S-modules under the isomorphism 1 > x?.

By definition, an ideal I of S is said to be homogeneous if there is a generating
set for I consisting of homogeneous polynomials. Furthermore, the ideal [ is
said to be monomial if there is a generating set for / consisting of monomials.
Characteristic for monomial ideals is that they each have a unique set of generators
(up to scalar multiplication) that is minimal in terms of cardinality (see e.g. [39,
Lemma 1.2]).

It is elementary that an ideal of S is monomial if and only if it is an Njj-graded
submodule of S (with the standard grading). Similarly, an ideal is homogeneous
if and only if it is an Ny-graded submodule. Thus, since a monomial ideal is obvi-
ously homogeneous, it is clear that monomial ideals are also Ny-graded. (This is
just a particular case of the fact that every Z"-graded S-module is also Z-graded.)

3



If I C Sis a monomial ideal, then the factor ring S/ is an Njj-graded S-module
with graded parts (S/1)a = Sa/Ia = Sa/(SaNI). Likewise for homogeneous ideals,
in which case S/I is No-graded with (S/I); = S;/I; = S;/(S; NI). The graded S-
modules of interest to us in this thesis are the monomial ideals of S, and their
factor rings.

1.1.2 Graded Betti numbers

Now, if M is a finitely generated, Ny-graded S-module we may find a minimal
generating set for M consisting of homogeneous elements. If {g1,82,...,8-} is
such a generating set and g; has degree d;, then the S-linear map

do:S(—d)DS(—dy) DD S(—d,) — M

that sends the ith basis vector to g; is a homogeneous, surjective homomorphism.
In other words, there is a short exact sequence

9o

0 M Fy < ker(¢o) +— O

where Fyp = S(—d,) ®S(—dr) ®--- B S(—d,).

As ker(¢p) inherits the Ny-grading from Fj, it too is a finitely generated, Ny-
graded S-module. We may therefore find a minimal generating set {g;,g>,...,8s}
for ker(@o) where the jth component of the vector g; is a homogeneous polynomial
of degree d; —dj, for some d!. Letting F; = S(—d}) ®S(—d)) ®--- & S(—d;) we
again have that the map ¢; : F; — ker(¢) sending the ith basis vector to g; is a
homogeneous, surjective homomorphism. Continuing like this, we obtain what is
known as an Ny-graded minimal free resolution of M:

9o 01

Fy « F f2

0 M <

Fz’

Note that this sequence is exact everywhere. Furthermore, that each ¢; maps the
basis vectors of F; to a minimal set of generators of F;_; is equivalent to ker(¢;) C
mF; for each i, where m is the maximal ideal (xj,...,x,) C S. (See e.g. [23,
Lemma A.2.1] for the proof of this equivalence.)

Now let us consider the case when M is not only Ny-graded, but Njj-graded as
well. Similar to before, we let {g1,£2,...,2,} be a minimal generating set - with
8i € My,. If

Fp=S(—a;)®S(—ay)d---dS(—a,),



the S-linear map ¢y : Fp — M that sends the ith basis-vector to g; is an Njj-graded,
surjective S-module homomorphism. In other words, the sequence

0 M 2

Fy < ker(¢p) «—— O

is exact. Since ker(¢y) is an Njj-graded submodule of Fp, it has a minimal set of
generators {g;,82,...,8s} where the jth component of g; is in Sb;—a;, for some
b; € Nj;. Consequently, letting

Fi=S8(=b1) ©S5(=b2) &--- B S(=by)

the S-linear map ¢; : F; — ker(¢p) sending the ith basis vector to g; is a ho-
mogeneous S-module homomorphism onto ker(¢p). Continuing like this, finding
minimal homogeneous generating sets for — and creating grade preserving homo-
morphisms onto — ker(¢;), we obtain an Nfj-graded minimal free resolution of
M.

In the Njj-graded case, let f3;a(M;k) be the number of times S(—a) occurs
in F;, and, likewise, in the Ny-graded case, let f3; j (M;k) be the number of times
S(—j) occurs in F;. That is, let

Fi= @ S(—a)PiaX)

acNj

in the Njj-graded case, and

Fi= @ S(—j)Pui M)

JENy

in the Ny-graded case — with B; o (M; k) and B; j(M; k) nonnegative integers. Since
any two (Np- or Njj-graded) minimal free resolutions are isomorphic [15, Theorem
3.13], the numbers fB; a(M; k) and B; ;(M;k) are unique; they do not depend upon
the particular generators chosen at each step in the construction of the minimal
free resolution — only on the field k.

The (graded) Hilbert syzygy theorem (see e.g. [15, Theorem 3.8]) states that
F;=0forall i > n. The largest p such that F}, # 0 (but F, | = 0) is the length of the
minimal free resolution. By the famous Quillen-Suslin Theorem [44, Theorem 4],
every finitely generated, projective module over a principal domain is free. This
implies that the length p is equal to the projective dimension of M. In fact, we shall
take this length as our definition of projective dimension, and denote it p.d. M.



By considering the No- and Njj-graded minimal generating sets for ker(¢;), it
is easily seen that

BijM:k) =Y PBia(M:;k),

lal=

where |a| = a; +ax + - - - +a,. In particular, we have f3; o(M;k) =0 for all i > n.
Collectively, we refer to {B;a(M;k)} and {B; j(M;Lk)}, respectively, as the Nj-
and Ny-graded Betti numbers of M. The ith ungraded Betti number f;(M;k) is
simply the rank of F;. In other words, we have

BiM:k) =Y Bij(M:k)=) Bia(M;k).

JjeNy aeN’(’)

If, for a fixed i, there is a d such that f3; ;(M;k) = 0 for all j < d, then
Bit1,j+1(M;k) = 0 for all j < d [17, Proposition 1.9]. We therefore have the
following compact way of presenting the Ny-graded Betti numbers:

0 1 p
J| Boj(Mk)  BijiM;k) - By p(M;k)
J+1] Bojri(Msk) Bija(Msk) -+ Bpjipr1(M:k)
k| BoxMi) Bt (M) o Boayp(M:K)

We refer to this as the Betti table of M (over k), and denote it 8 [M; k].

An Ny-graded minimal free resolution is said to be pure if each F; has only
one summand, that is, if each F; is of the form S(— ;)" for some j € Ny and n € N.
A linear resolution is a (pure) Ny-graded minimal free resolution of the form

0 <2 S(—n)"™ L S(— (1)) — o & S(—(rap)" — 0.

Remark. A very important observation is that for a monomial ideal / we have
Bi-1,6(I;k) = Bi5(S/I;k) for all i > 1, while

l,o=0

0, otherwise.

BOp(S/I;lk) = {

Consequently, for a homogeneous ideal I C S we have B;_1 ;(I;k) = B; j(S/I; k)
1,j=0

for all i > 1, while By ;(S/I; k) = {0 %0
0 J .



1.2 Some general concepts and terminology from com-
mutative algebra

In Paper 3 we consider the concept of dimension both for simplicial complexes
and their corresponding algebraic objects. In particular, we use properties of the
Hilbert series to arrive at the main result of that paper. The following is a brief
summary of the concepts touched upon concerning the dimension of algebraic ob-
jects such as rings, modules, and vector spaces; it presents the (standard) notation
employed throughout. To begin with, for a k-module V, we let dimy V denote the
dimension of V as a vector space over k.

If M is a finitely generated Ny-graded S-module, the function H(M,—) : Z —
No defined by H(M, i) = dimy M, is called the Hilbert function of M. The Hilbert
series Hy(t) of M is the formal Laurent series Hy(t) = Yez H(M,i)t'.

The Krull dimension dim R of a commutative ring R is the supremum of
the lengths of all chains of prime ideals. We thus have dimR € Ny Uoo. By
[23, Theorem 6.1.3], there is a Laurent polynomial Qp(¢) = Y5, h;t' such that

Hy(t) = (%‘1 532, , where d = dim (R/ Ann(M)). The coefficients of Qys(¢) form the
so-called h-vector (hy,hyi1,. .. hs) of M.

Also by [23, Theorem 6.1.3], we have that min{i : #; # 0} = min{i : M; # 0}.
In particular, if / C S is a homogeneous ideal then the h-vector of S/I is of the
form (ho,hy,...).

A sequence gi,...,8, € (x1,X2,...,X,) is said to be a regular M-sequence if
gi+1is not a zero-divisoron M /(g M + - - -+ g;M). The depth of M is the common
length of a longest regular M-sequence. By the Auslander-Buchsbaum Theorem
we have

p.d. M +depth M = n.

Naturally, depth R denotes the depth of R seen as an R-module. In general we
have depth R < dim R. In the case of equality, when depth R = dim R, the ring R
is said to be Cohen-Macaulay.

1.3 Simplicial complexes and matroids

There are two complementing ways of seeing and defining a simplicial complex;
one is as a topological space, the other, which we shall adhere to, is as a set con-
struction. Our reason for choosing the latter of these approaches is our particular
interest in those simplicial complexes that are matroids, together with the fact



that we do not in particular concern ourselves with the geometrical or topological
aspects.

A simplicial complex on E is a family A of subsets of E with the property that
if o1 € A and 6, C o], then 06, € A. The elements of A are referred to as faces,
while a subset of X which is not in A is referred to as a nonface. A facet is a
face which is not properly contained in another face, that is, an inclusion maximal
face. If all facets have the same cardinality, we say that the simplicial complex is
pure.

If A and A" are two simplicial complexes, on E(A) and E(A'), respectively,
we say that A and A" are isomorphic, and write A = A’, if there is a bijection
¢ : E(A) — E(A') with the property that ¢[X] € A’ & X € A.

We shall have occasion to consider two dual constructions. The dual complex
A of A is the simplicial complex whose facets are the complements of facets of A.
We shall see this dual a lot — but mostly in a matroid context. The Alexander dual
A* is the simplicial complex defined by

A ={TCE:T¢A.

The dimension dim(o) of ¢ € Ais 1 less than the cardinality of o. In particu-
lar, we have (for a nonempty simplicial complex) that dim(@) = —1. The dimen-
sion of the simplicial complex A itself is dim(A) = max{dim(c) : o is a facet of A}.

Central to Paper 3 is the subcomplex construction referred to as an i-skeleton.
For 0 <i < dim(A), the i-skeleton A(;) of A is defined by

A(i) = {G € A’dlm(G) < i}.

Observe that A(gim(a)) = A. We shall see that the No-graded Betti numbers of
S/IA gma)—1) €an be expressed as a Z-linear combination of those of S/I,.

A shelling of a pure simplicial complex A is a linear ordering A;,A,,...,A; of
its facets such that for each pair of facets A;, A; with 1 <i < j <t there is a facet
Ar with 1 <k < j and an element x € Ay such that

ﬂ«,’ﬂ)tj glkﬂlj:lj\{x}.

The geometric interpretation of this is that each of the facets A;, with 2 <i <1,
intersects with the complex generated by their predecessors in a non-void union
of maximal proper faces. A (pure) simplicial complex which permits a shelling is
said to be shellable.



The simplicial complex A is said to be Cohen-Macaulay over k if the Stanley-
Reisner ring S/15 is Cohen-Macaulay. The complex is said to be Cohen-Macaulay
if it is Cohen-Macaulay over some field. By [48, Theorem 2.5], a shellable sim-
plicial complex is Cohen-Macaulay over every field. A partial converse to this
is [23, Lemma 8.1.5], which says that every Cohen-Macaulay complex is pure.
The Cohen-Macaulay property is relevant to all three papers, although it is most
directly discussed in Paper 3.

1.3.1 The homology spaces

Let .%;(A) denote the set of i-dimensional faces of A, and let k7i(A) be the free
k-vector space on .%;(A). The (reduced) chain complex of A over k is the complex

0 k710 X Fa) Sopme) M Faim@) (&) 0,

where the boundary maps 0; are defined as follows: Given a total ordering on E,
set sign(j, o) = (—1) "1 if jis the rth element of ¢ C E, and let
di(c) =} sign(j,0) (o~ {/}).
JjEo
Extending &; k-linearly, we obtain a k-linear map from k%i(4) to kZi-1(4),

So, for example, if {1,3,5} and {1,3,4} are faces of a simplical complex, and
ar, o €k, then 83(0y{1,3,5} + 0p{1,3,4}) = a1 ({3,5} —{1,5}) + a({3,4} —
{1,4}) + (o1 + 0){1,3}.

The ith (reduced) homology of A over k is the vector space

H;(A; k) = ker(8;)/im(8;41).
It is explained in [23, p. 81] how
dimy A;(A; k) = dimg A’ (A; k),

where dimy H'(A; k) denotes the ith (reduced) cohomology of A over k. Although
we shall not use nor mention cohomology again, it is in general useful to be aware
of the above identity, as some results may only be formulated using one of the two
homologies — while in fact being valid for both.

For X C E, the set {ocNX : 0 € A} is a simplicial complex on X. We denote
this complex Ay and refer to it as the restriction of A to X. The identity (1.1),
below, first appeared in [27], and is normally referred to as Hochster’s formula.

ﬁiﬁ(S/IA;Ik) :dim]kl:[\c\—i—l(Am;]k)- (11)
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It is one of the most celebrated and important results in the intersection between
algebra and combinatorics. One could perhaps describe Hochster’s formula as the
prototypical result of combinatorial commutative algebra, in that it establishes a
connection between an algebraic entity (the Betti numbers of S/I,) and a combi-
natorial/topological one (the homology spaces of A). We shall use it repeatedly
throughout the thesis.

The face numbers fi(A) of a matroid are defined by f;(A) = |.%;(A)|. Not only
are they important to us in their own right, in that we use them to derive our main
result of Paper 2, but their connection (in fact, equivalence) to the Ai-vector of
S/I5 was one of the main reasons research on what is now referred to as Stanley-
Reisner theory begun in the first place. Recall that since min{i : 1;(M) # 0} =
min{i : M; # 0} for a finitely generated Ny-graded S-module M, we in particular
have that the h-vector of S/Ij is of the form (hg,hy,...). By [5, Lemma 5.1.8],
this vector is connected to the face numbers f;(A) as follows:

Zh,‘l‘i =
i

This in turn implies that the i-vector of S/, has length at most dim(A) + 1, and
that for 0 < j < dim(A) + 1 we have

b= Y (1) (")

i=0 J—1

dim(A)+1 . . .
fioy (A)ll<1 i t)dlm(A)-i-]—l.
=0

i

and .
j . :
EIEDY (dlm(A.) +.1 l) h.
i=0 J—

Since S/Ip being Cohen-Macauley puts some bounds on the h-vector, the
above equations imply that A being Cohen-Macauley puts restrictions on f;(A).
This at least partially explains the significance of Cohen-Macaulayness to Stanley-
Reisner theory. Concretely, we have by [5, Theorem 5.1.10] that if A is a Cohen-
Macaulay simplicial complex on E, then

0<hi< (n—dlm(4)+z—2)’
i

for 0 <i < dim(A) + 1. Remarkably, it has been determined precisely which

sequences {f;} that are the face numbers of some simplicial complex; for details,

see [36] and [33].
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The number

Z(A) = —f1(A) + fo(A) = fi(A) + -+ (=)™ £ 4)(A)
is the (reduced) Euler characteristic of A. From [23, p. 102] we see that

dim(A) ' _
Z(A) = Z (—1)' dimy H;(A; k).
i=—1

This is a generalization of Euler’s observation that for a convex polyhedron it is
always the case that fo — f1 + fo = 2.

1.3.2 Matroids

In Papers 1 and 2 we focus solely on those simplicial complexes that are matroids.
These also receive special attention in Paper 3, although the topic of that paper is
slightly more general in nature. Characteristic of matroid theory is that there are
many different axiomatic systems that define a matroid. Thirteen such definitions
are given in a table in the survey article [12], where it is also described how one
can, with relative ease, move back and forth between any two such axiomatic sys-
tems. Although these definitions are all equivalent in the sense that the “matroid”
stays the same, regardless of the definition chosen, they are often not obviously
equivalent. Actually, these often seemingly unrelated sets of axioms, all in fact
representing the same matroid, are one of the biggest strengths of matroid theory.
Not only do they illustrate how a matroid captures some universal properties, to
be found in structures stemming from widely different branches of mathematics,
but it is also frequently the case that something which seems inexplicable using
one axiomatic system, becomes obvious in another.

In this thesis we define a matroid in terms of its independent sets. This is con-
venient both when working with graphs and matrices, as well as with homology
spaces and Betti numbers. One additional advantage of this, from our point of
view, is that the underlying simplicial complex structure of a matroid becomes
immediately apparent.

A matroid M on E is a family I(M) of subsets of E with the property that

e /(M) is a nonempty simplicial complex on E.

e If 7; and I, are both in I(M) and |I;| < |L»|, then there is an x € I, such that
LU{x} eI(M).
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The set I(M) is referred to as the set of independent sets of M, and an element
I € I(M) is said to be independent. In this vein, a dependent set is a subset of E
that is not in I(M). Two matroids M and M’ are said to be isomorphic whenever
their underlying simplicial complexes are, that is, when I(M) = I[(M’)

Matroid theory as a separate subject is a relatively recent one. It was initiated
by Whitney’s fundamental paper [54] of 1935, in which he isolates and studies
the concept of independence as it is encountered in e.g. graph theory and linear
algebra. He coined the term matroid as a set of linearly independent columns of a
matrix, while pointing out that one could

(13

. equally well consider points or vectors in an Euclidean space,
polynomials, etc.”([54, p. 509])

The word “matroid” itself carries an obvious allusion to the more familiar
“matrices” of linear algebra. In fact, due to its motivation and origin from graph
theory and linear algebra, matroid theory borrows much of its terminology, and
many of its examples, from these subjects. That being said, there are a wide
variety of constructions, from different mathematical disciplines, that in one way
or another give rise to a matroid.

The discipline has seen a more or less steadily increasing research interest.
For a short introduction, as well as an account of its early history, we recommend
[56], while a modern and comprehensive introduction is e.g. [42].

There are, together with the already defined set of independent sets, two fam-
ilies of subsets of E that are repeatedly considered throughout this thesis. One is
the set C(M) of circuits of M, and the other is the set B(M) of bases of M. These
may both be defined directly from E by listing suitable axioms, similar to what we
did for I(M), thereby each providing their own definition of a matroid different
from the definition given above. Alternatively, these families may be defined in
terms of /(M) as follows: A circuit is an inclusion minimal dependent set, while
a basis is an inclusion maximal independent set. In other words, the independent
sets of M are the faces of I(M), the circuits are the minimal nonfaces, and the
bases are the facets. It is a fundamental result in matroid theory that all bases have
the same cardinality, making /(M) a pure simplicial complex. That I(M) is also
shellable, was demonstrated in [4, Theorem 7.3.3]. As mentioned at the beginning
of this section, this in turn implies that /(M) is a Cohen-Macaulay complex.

As an example of how the different matroid definitions are all equivalent, note
that if we had chosen to define a matroid in terms of its set of bases, then the
independent sets would be defined as those subsets of E that are contained in
a basis. Similarly, if we had chosen a definition in terms of circuits, then the
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independent sets would be defined as those subsets of E that do not contain a
circuit.

For X C E, we denote the matroid we obtain by restricting /(M) to X by M.
The dual matroid M is the matroid on E whose bases are the complements of the
bases of M, that is,

B(M)={E~B:BecB(M)}.

Or equivalently, M is the matroid whose underlying simplicial complex (M) is
the dual complex /(M) of I(M). It is worth mentioning that the Alexander dual of
I(M) does not necessarily form the set of independent sets of a matroid.

For X C E, the rank function ry; and nullity function ny; are defined by

ry(X)=max{|I|: IC X and I €I(M)}

and
ny (X) = |X| = r(X).
The rank of M itself is r(M) = ry(E). Whenever the matroid M is clear from the

context, we omit the subscript and write simply r and n.
We refer to [42] for the elementary proof that

1. 0<r(X) <X
2. fX CY,then r(X) < r(Y).
3. r(XUY)+r(XNY) <r(X)+r(Y).

In fact, if ¥/ : 28 — Ny is a map satisfying (1)-(3) above, then {X C E : //(X) = |X|}
forms the set of independent sets of a matroid on £ — and this matroid has rank
function /. Thus the rank function offers yet another possible way to define a
matroid.

The rank and nullity function together “form” the Tutte polynomial

tm(X,Y) = Z (X — 1)’(E)—V(X)(Y _ l)n(X),
XCE

which carries information on several important invariants of M. For example, we
have that #37(1,1) counts the number of bases of M, while #37(2,1) is the number
of independent sets. See e.g. [30, Theorem 8.7] for the proof that £)/(X,Y) =
IM(Y , X ) .
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1.3.3 The elongation and truncation of matroids

The elongation of M to rank r(M)+ i is the matroid M) with
IMY) ={X CE:n(X)<i}.

We shall occasionally refer to M;) as the ith elongation of M. We deal with these
elongations in Paper 2, where, amongst other things, we demonstrate that the Betti
numbers of S/I,,) are not quite determined by those of S/Ij.

The ith truncation M(;y of M is the matroid with

I(My) ={1€IM):r(X) <r(M)—i}.
It is straightforward to verify that M(i) =M0) for 0 <i<n—r(M). Note also that
the ith truncation of M is equal to the (r(M) — 1 —i)-skeleton of (M), when the
latter is seen as a simplicial complex. Contrasting the above mentioned result of
Paper 2, we demonstrate in Paper 3 that each of the Betti numbers of S/ In, a-1) isa
Z-linear combination of those of S/I,.

1.3.4 The cycle matroid of a finite graph

We have already alluded to the connection between graphs and matroids, and we
shall now describe this connection in more detail.

If G is a finite graph with n edges, one may, without loss of generality, assume
that its set of edges is E. Let M(G) be the matroid on E whose set of circuits is
C(M)={C CE:Cisacycle}. (See e.g. [42] for a proof that M(G) is indeed
a matroid.) We refer to M(G) as the cycle matroid of G. A matroid which is
isomorphic to the cycle matroid of some graph, is called a graphic matroid. By
Proposition [42, 1.2.9], every graphic matroid is isomorphic to the cycle matroid
of a connected graph. Note that the independent sets of M(G) are those subsets of
E that are forests of G.

Although graphs are far from being a main topic of this thesis, they are, due
to the above connection to matroids, always lurking in the background. In Pa-
per 1, however, we deal explicitly with so-called cactus graphs, which are finite,
connected graphs with the property that no two distinct cycles share an edge.

Cactus graphs are examples of outerplanar graphs. In general, a finite graph
is said to be planar if it can be embedded in the plane. Naively, this means that it
can be drawn without edges crossing (except in vertices). An outerplanar graph
is a graph with the property that if you add a vertex that has an edge to each of
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the existing vertices, then the resulting graph is (still) planar. Clearly, every out-
erplanar graph is planar, while for example Ky, the complete graph on 4 vertices,
is a planar graph that is not outerplanar. Outerplanar graphs were first defined and
studied in [14], and by Theorem 1 of that article it follows that Ky is in fact the
smallest non-outerplanar graph (in terms of number of vertices).

In particular, cactus graphs are outerplanar, and in Paper 1 we have a closer
look at their cycle matroids. Crucial to our arguments there is the concept of a
2-connected component — which translates to the blocks of a matroid (see the next
section).

A proper coloring of the vertices of a graph is one that does not assign the
same color to any pair of neighboring vertices. In an attempt to tackle the famous
Four Color Conjecture (now Theorem), which says that every planar graph has a
proper vertex coloring using at most 4 colors, it was demonstrated in [7] that the
number of proper colorings of a planar graph G using A colors is a polynomial
in A of degree m, where m is the number of vertices in G. The polynomial was
successfully generalized to arbitrary finite graphs in [55]. It is commonly denoted
xc(A), and referred to as the chromatic polynomial of G. Its generalization to
matroids, due to [16] and [46], is the characteristic polynomial p(M,Z) of M
defined by

p(M,Z) = Z (—1)XIZrE)=rX),
XCE

For a simple graph G we have (by e.g. [52, p. 262]) that ¥G(1) = AX9) p(M(G), 1),
where k(G) is the number of connected components of G.

There are several open problems related to the characteristic polynomial of a
matroid. One example is the so-called critical problem of determining, or bound-
ing, the number

min{j € No : p(M,q’) > 0}

for a g-representable (see Section 1.5) matroid M.

Since the characteristic polynomial is equal to one of the polynomials we de-
fine for matroids in Paper 2, the main result of that paper applies to the character-
istic polynomial as a special case. In particular, we shall see that the characteristic
polynomial of M can be expressed in terms of certain Betti numbers associated to
M.

Finally, it is worth pointing out that the Tutte polynomial (of a graph) was
originally conceived as a generalization of the chromatic polynomial (see [51] for
an account of its genesis) — and it is easily verified that p(M,Z) = (—1)"E)gy, (1 —
Z,0).
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1.3.5 The blocks of a matroid

We say that two elements e, f € E belong to the same block of M if e = f or if there
is a circuit of M that contains both e and f. It is demonstrated in [42, Proposition
4.2.2] that the blocks of M constitute a partition of E. A matroid is said to be
connected if this partition consists of a single block. This terminology should be
seen in light of [42, Proposition 4.1.7], which states that if G is a loopless graph
with at least three vertices, none of which are isolated, then M(G) is connected if
and only if G is 2-connected. Thus the inclusion maximal 2-connected subgraphs
of a graph more or less correspond to the blocks of its cycle matroid.

In particular, the blocks of the cycle matroid of a cactus graph stem from either
a cycle or a single edge. We use this observation in Paper 1 to demonstrate that
the set of higher weights determine the Betti numbers of the so-called facet ideal
associated to the cycle matroid of a loop-free cactus graph.

1.4 Stanley-Reisner and facet ideals

A monomial x? is said to be squarefree if a € {0,1}", and a squarefree monomial
ideal is one which is generated by squarefree monomials. Note that x* — Supp(a)
gives a 1 — 1 correspondence between the set of squarefree monomials in S and
subsets of E.

There are in particular two squarefree monomial ideals we shall consider in
this thesis, both of which are derived from a simplicial complex. The Stanley-
Reisner ideal I, is the ideal generated by monomials corresponding to (minimal)
nonfaces of A. That is,

Ih=(x":T¢&A).

Equally of interest to us is the Stanley-Reisner ring S/Ix. We point out, how-
ever, that as long as the object of study is (graded or ungraded) Betti numbers,
it is, in light of Remark 1.1.2, inconsequential whether one considers the ideal
I5 or the ring S/I5. In other words, this is a matter of convention — and what is
most convenient in a particular instance. Note that by [5, Theorem 5.1.4] we have
dim S/Iy = dim(A) + 1.

Although simplicial complexes have been studied in topology ever since Poincaré
used them in [43] to calculate homology groups by way of triangulation, method-
ically studying them in connection to squarefree monomial ideals is a quite recent
idea. The face ideal (now Stanley-Reisner ideal) made its first appearances in the
70’s, in the work of Stanley [49] and Reisner [45]. As mentioned at the beginning
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of this introduction, one could say it all began with the upper bound conjecture
(UBC) — first proposed for polytopes in [41].

Upper Bound Conjecture. Let A be a d-dimensional simplicial complex on E,
and assume that the geometric realization (see e.g. [48]) of A is homeomor-
phic to the d-dimensional sphere S¢. Then f;(A) < f:(C(n,d + 1)) for 1 <i <
d, where C(n,d + 1) is the convex hull of any n distinct points on the curve
{(x,x%,... x4 e RIFL: x e R}

In the above mentioned [49], the connection between the h-vector of S/Ip
and the face numbers {f;(A)} of A is exploited to prove that if the geometric
realization of A is homeomorphic to S? and A is Cohen-Macaulay, then UBC
holds for A. Since it followed from results in [45] that every simplicial complex A
whose geometric realization is homeomorphic to the dim(A)-dimensional sphere
is in fact Cohen-Macaulay, the UBC was thereby solved.

The facet ideal . (A) is defined by

F(A) = (x° : 0 is a facet of A).

From the outset, it is important to be aware that the facet ideal is also a Stanley-
Reisner ideal; an elementary proof that

can be found in e.g. [23, Lemma 1.5.3] or in Paper 1.

It is clear that each of these ideal constructions establish a 1 — 1 correspon-
dence between squarefree monomial ideals of S and simplicial complexes on E.
We also point out that both constructions reverse inclusions, in that

Al §A2<=>¢5/\(A2) gﬂ(Al)

and
A QA2<:>IA2 gIAl.

Both the set of facets and the set of minimal nonfaces are examples of so-called
clutters on E (see e.g. [42]), the definition of which is a set of subsets of E with the
property that no subset is properly contained in another. Ideals generated by (the
squarefree) monomials corresponding to a clutter — which is the case for both the
facet and the Stanley-Reisner ideal — are extensively studied in the survey paper
[40] (which contains several new results as well). Their focus lies in particular on
these ideals’ algebraic properties such as the
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“...Cohen-Macaulayness property, the stability of associated primes,

and the connection between torsion-freeness and combinatorial problems”([40]).

They also investigate numerical invariant such as projective dimension, depth, and
Krull dimension. Several of these topics are highly relevant to this thesis, although
they do not explicitly study Betti numbers the way we do.

Regarding our S-modules .% (A), I, and S/Ix, we shall in particular be in-
terested in their graded minimal free resolutions. Something that immediately
sets these apart from those of a general S-module, is that their nonzero Betti
numbers all lie in squarefree degrees, that is, by [39, Corollary 1.40], we have
Bi.o(S/Ia;k) = 0 for all o € Nj~ {0,1}". Furthermore, it is clear that for a
Stanley-Reisner ideal (and thus also for a facet ideal) the N{j-graded (and thus
also the Ny-graded) Betti numbers in homological degree 0 are independent of the
base field k — as these simply correspond to the minimal nonfaces.

By a slight abuse of notation, we denote the Stanley-Reisner and facets ideals
of a matroid M by Iy and 7 (M), instead of I3y and F (I(M)). In fact, we
shall frequently treat M as a simplicial complex, both in our notation and in our
reasoning, although it is, strictly speaking, the set I(M) of independent sets which
is a simplicial complex. Observe that the (minimal) generators of Ij; correspond
to the circuits of M, while the generators of .% (M) correspond to the bases.

By the famous Eagon-Reiner Theorem [18, Theorem 3], the ideal I has linear
resolution if and only if the Alexander dual A* is Cohen-Macaulay over k. But
if M is a matroid then (M")* = M is a matroid, and hence Cohen-Macaulay. We
conclude from (1.2) that the facet ideal of a matroid has linear resolution. By the
same reasoning, it follows from [18, Corollary 5] that the Betti numbers of this
linear resolution is independent of the base field k. Thus, since

{|B<M>|, j=r(M)

:BO,]( (M): k) 0, otherwise

the Ny-graded and ungraded Betti numbers of .% (M) contain precisely the same
information. This explains the notation of Paper 1, where we write simply f3; —
omitting any reference to either the base field k or the shift ;.

Since their proofs go through otherwise unchanged if considering the chain
complex over some field in place of over Z, it follows from [4, Proposition 7.4.7
and Theorem 7.8.1] that

dimkl:li(M; Ik) = {0



By Hochster’s formula, we conclude that also the Betti numbers associated to the
Stanley-Reisner ideal of a matroid are independent of k.

Summarizing, we see that when it comes to matroids all Betti numbers are in-
dependent of base field, and, in addition, their facet ideals have linear resolutions.

1.4.1 The ith skeleton ideal

It was demonstrated in [26, Corollary 2.6] that
depth §/Iy = max{j : A(;) is Cohen-Macaulay}. (1.3)

Wishing to obtain a similar result for arbitrary monomial ideal, the Stanley-Reisner
ideal of a skeleton is generalized elegantly in [25] and [24]. We shall briefly de-
scribe (a slightly simplified version of) the construction as it is found in those
papers, of the so-called jth generalized skeleton ideal. In Paper 3 we give a coun-
terexample showing that our main result of that paper — concerning Betti numbers
of Stanley-Reisner rings of skeletons — does not necessarily hold for the gen-
eralized skeleton ideals. Throughout this subsection we let a(i) denote the ith
coordinate of a € Nj,.

For a,b € Nj we say that a < b if a(i) < b(i) for 1 <i < n. Clearly, this
constitutes a partial order on Njj. Let / C S be a monomial ideal with (unique)
minimal generating set {x*',...,x*}, and let g € Njj be such that a; < g for all
1 <i < r. Define the characteristic poset PSg/ ;of S /I with respect to g to be

pge’/l ={beNj:b<g,b #a; forall i}.

For b € NJ, let p(b) = |i : b(i) = g(i)|. It is demonstrated in [25, Corollary 2.6]
that dim S/I = max{p(b) :b € PE/I}.

The jth generalized skeleton ideal I; is the ideal generated by {x*!,...,x* } U
{xP:b c NZ p(b) > j}. By [24, Corollary 2.5] these ideals form a chain

I=1;C1l3 1 C---ChhCS

with the property that S/I; is Cohen-Macauley for all j < depth S/I, and that
depth S/I = max{;j : §/I; is Cohen-Macauley}. In other words, these ideals suc-
cessfully generalize (1.3). Furthermore, in the special case [ = Iy andg=(1,1,...,1),
we have [; = IA(;‘)'
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1.5 Linear codes

We have already mentioned how matroids capture the notion of independence
familiar from linear algebra. A natural implication would seem to be that to each
set of vectors, over some field, there corresponds a matroid. This is true, and,
in particular, it is true for a set of vectors forming the columns of a matrix. The
following is perhaps the most typical and intuitive of matroid constructions.

Let A be an m X n matrix over k, and label the columns of A by elements of
E. If we take as independent sets those subsets of E that correspond to a set of
k-linearly independent columns, this constitutes a matroid on E. We call this the
vector matroid of A, and denote it M(A). A matroid is said to be representable
over k if it is isomorphic to a vector matroid of some matrix with coefficients in
k. One of the most active areas of research in matroid theory is that of determining
which (isomorphism) classes of matroids are representable over which fields. In
this thesis, the aim is different; we shall only consider those vector matroids that
stem from a linear code.

By definition, a g-ary linear [n,k|-code C is a k-dimensional subspace of [Fy.
The elements of C are referred to as words. Each set of k linearly independent
words form the rows of a generator matrix G of C. Such a matrix by definition
has the property that C = {xG : x € IF];} A parity check matrix H for C is an
(n — k) x n matrix with the property that Hw' = 0 if and only if w € C. The
dual code of C is the orthogonal complement C=. It is easily verified that H is a
parity check matrix for C if and only if it is a generator matrix for C-. Since we
shall only consider linear codes, over finite fields, we shall by “code” always be
referring to a linear g-ary code — for some prime power g.

The support Supp(w) of a word w is a subset of {1,...,n} with the property
that i € Supp(w) if and only if the ith coordinate of w is nonzero. The weight
wt(w) of w is defined by wt(w) = | Supp(w)|.

The minimum distance of C is

d = min{wt(w) : w € C . {0} }.

This number is very important when it comes to the actual encoding of messages,
as a large minimum distance implies that the code is efficient at detecting errors
in transmission.

If D is a subcode of C, we define

Supp(D) = |J Supp(w).

weD
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For 1 <i <k, the ith generalized Hamming weight of C is
di(C) = min{|Supp(D)| : D C C and dimg, (D) = i}.

These were first studied in [22] and [34]. For example, it was demonstrated in
[22] (and, independently, in [53]) that d; < d; ;1. In [53] it is explained how the
set of generalized Hamming weights of a code completely determines that code’s
performance on a wire-tap channel of type II, and Ashikmin, Barg and Litsyn
states in [2] that

“Knowing generalized weights is of importance in the analysis of
cryptographic resistance of codes in the wire-tap channel, estima-
tion of trellis complexity, design of codes for the switching multiple-
access channel, etc”(p. 1258).

In the above mentioned article [53], by Victor Wei, a close relation is found
between the generalized Hamming weights of C and those of C*. The following
identity is now commonly referred to as Wei-duality:

{di(C):1<i<k}={1,....n}~{n+1—-d;(CH):1<i<n}.

Since the generalized Hamming weights are strictly increasing, Wei-duality im-
plies that the weights of a code are determined by those of its dual code. Note also
that d = d;(C). A recent effort to find upper bounds for d;(C) for different types
of linear codes is [2].

Inspired by the generalized Hamming weights of a linear code, an analogous
invariant for matroids was first introduced in [37]: The higher weight hierarchy
{diM):1<i<n—r(M)} of M is defined by

di(M) =min{|X|: X CE and n(X) = i}.

Also in [37], it is demonstrated that these matroidal higher weights satisfy the
same Wei-duality as their code predecessors, that is, we have

{diM):1<i<n—r(M)}={1,....n}~{n+1—-d;(M):1<i<r(M)}.

The matroidal higher weights are a topic of all three papers. For example, in
regard to the next section (on elongation and truncation) we demonstrate that the
higher weights of M determine both those of its elongations (Paper 2) and those
of its truncations (Paper 3).
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If G and G’ are two generator matrices for the linear code C, then M(G) =
M(G'). The same goes for parity-check matrices, of course. We may therefore
speak of the matroid corresponding to a generator (or parity-check) matrix of
C, and write M(G) and M(H) without giving specific generator or parity-check
matrices G and H.

Thus, to a linear code C there naturally correspond two matroids: M(G) and
M(H). We shall mostly consider M(H), but this is insignificant since duality
results abound and M (H) = M(G). It is readily checked that r(M(G)) = dim(C),
and r(M(H)) = dim(C*). Note also that the above mentioned generalization in
[37] is a good one, in the sense that d;(M(H)) = d;(C).

For0 < j<m,letAc ;= |{w € C:wt(w) = j}|. The weight enumerator of C
is the bivariate, homogeneous polynomial

n
We(X,Y) =Y Ac;x" v/,
J=0
The weight enumerator has practical applications. For example, it is shown in [31,
Proposition 1.14] that the probability of undetected error on a g-ary symmetric
channel with cross-over probability p is equal to W (1 — p, q%l) —(1—p)". More

immediately clear, however, is that Wc(1,0) = Aco = 1 and We(1,1) = [C| = ¢*.
The weight enumerator has been generalized in several interesting ways. For
example, the generalized weight enumerator WC(V) (X,Y) of C is defined by

k
WC(r) (X,Y) = z:A(Cr)anzYz7
i=0
where A(Cr) = |{D C C: dimp, (D) = i}|. Itis easily verified that We(X,Y) =

WC(O) (X,Y)+(g— 1)WC(1)(X,Y). Note also that d;(C) = min{i :Ag) # 0}.
Most relevant to Paper 2 of this thesis, however, is the generalization to a
q -ary extension of C.

1.5.1 Extension codes

Let Q = ¢" for some r > 1. Then C ®p, Fy is an [n,k]-code over Fp. Since a
generator matrix for C is also a generator matrix for C ®, Fg, the code C ®r, Fo
is isomorphic to the code whose words are all the IFp-linear combinations of words
of C. Let Ac j(Q) be defined by Aco(Q) =1 and

Ac,j(Q) = {w € C@r, Fo : wi(w) = j}|
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for 1 < j <n. Itis clear from e.g. [31] (or Paper 2) that Ac ;(Q) is a polynomial in
0, and it is thus referred to as the jth weight polynomial of C. These polynomials
were extensively studied in [22] and [34]. The extended weight enumerator, first
introduced in [31], is

We(X,Y,0) = ZACJ 0)X" Iy,

By definition then, we have We (X, Y, Q) = Wegy, 7, (X,Y). Although the extended
weight enumerator had not been introduced yet, it follows from [22, Theorem 3.2]

that »

c(1,Y,q") ZZA Hq —ql))Y’.
i=0j= =0

As a side note, we point out that a set of vectors in Iy, is linearly independent
over I, if and only if they are linearly independent over F,-. This implies that the
matroid associated to a parity check matrix of C is the same as the one associated
to a parity check matrix of C®p, Fgr. (This is equivalent to our above remark that
you can choose a generator matrix for C ®p, 4 with entries in C.)

In Paper 2 we (further) generalize the polynomials Ac j(Q) and W¢(X,Y, Q)
to matroids, and, as our main result, demonstrate that they are determined by the
Np-graded Betti numbers associated to elongations.

1.6 About the papers

What follows is a discussion of the contents of each of the three papers. We first
give a brief summary of our main results, and then provide some context in terms
of earlier, related results. In all three papers the examples and counterexamples
were usually found using MAGMA (see [1]).

1.6.1 Paper1

Our main result is that the Betti numbers associated to an Ny-graded minimal
free graded resolution of .% (M) are determined by those associated to Ny-graded
minimal free resolutions of the facet ideals .7 (B;) C k[x; : j € B;] C S of blocks
of M.

Note first that if B is a block in M then .# (B) may be considered as an S-ideal
through its embedding S.% (B). Furthermore, since S is flat over k[x; : j € B], we
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have that 3;(.% (B)) = Bi(S-% (B)). In a slightly more general setting, we write S =
k[X;Y], let M; be a k[X| module and M, a k[Y] module. We explicitly construct
an Np-graded minimal free resolution of

(S Qk[x] M) ®s (S QK[y] M,).

By induction, this clearly extends to any finite number of modules M; C k[X;].
Our main result then follows by:

1. Observing that
(S@wpx) 1) ®s (S @x(y)J) = (SI)(ST)
for ideals I C k[X] and J C k[Y]. And

2. Establishing that
F (M) =T]SZ(B).
B

Our original intention was to investigate the connection between Betti numbers
associated to .% (M) and the set of higher weights of M — analogous to what was
done for the Stanley-Reisner ideal in [28]. A first indication that the Betti num-
bers associated to the facet ideal carry less information than those of the Stanley-
Reisner ideal is the classic [18, Proposition 7], which implies that .% (M) has
linear resolution. This is in itself a fact we use repeatedly.

In [28] it is demonstrated that

di(M) =min{j : B; ;(S/In; k) # 0}.

A similar result can not be hoped for when it comes to the facet ideal. There are
plenty of examples of pairs of matroids with equal Betti numbers but different
generalized Hamming weight hierarchy. One such example is given at the end of
the paper. In our specific example, the matroids are cycle matroids of outerplanar
graphs.

For a subclass of outerplanar graphs called cactus graphs it does however hold
true that the Betti numbers determine the higher weight. As we worked to demon-
strate this, it became apparent that it would be useful and interesting to isolate and
generalize certain parts of our proof. Observing that circuits and single edges of
a cactus graph constitute the blocks of its cycle matroid, we thus discovered our
more general main result in an attempt to describe the Betti numbers of such a
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cycle matroid. The result concerning cactus graphs we now consider as an appli-
cation of our main result.

Complementing our main result, we also demonstrate that knowing the higher
weight hierarchy of each of the blocks enables one to calculate the higher weights
of M itself easily by way of

dl(M) :min{dej(Bj) . .Zlkj = i}.
j=

J=1

Previous work on the algebraic properties of facet ideals (of simplicial com-
plexes) include Faridi’s [19], where the graph theoretical concept of a tree is gen-
eralized to simplicial complexes. Extending a result from [47] on the edge ideal
of a graph, it is demonstrated that the facet ideal of a simplicial tree has so-called
sliding depth. As a result, the Rees ring (see e.g. [5, p. 182]) of such a facet ideal
is seen to be both normal and Cohen-Macaulay ([19, Corollaries 3.9 and 3.12]). In
[20] the theory of simplicial trees are developed further. The concept of a grafted
simplicial complex is introduced, and it is demonstrated that such complexes are
Cohen-Macaulay. Also in [20] can be found a generalization of Konig’s Theorem
(equivalent to the perhaps better known Hall’s Marriage Theorem) of graph theory
to simplicial trees.

The thread is picked up by Zheng in [57], where both the term “facet ideal”
and “tree” has been adopted and these concepts are further investigated. The
contents of this paper is closer to that of ours, in that it deals more directly with
Np-graded minimal free resolutions and their Betti numbers — although mostly
those associated to the facet ideal of a simplicial tree. It is demonstrated that if the
facet ideal of a simplicial tree 7" has linear resolution (such trees are referred to as
linear), then .7 (T) is pure and connected in codimension 1 (see e.g. [23, p. 161]
for a definition). If 7 is a d-dimensional linear simplicial tree with m facets, then,
by [57, Corollary 3.10], its associated Betti numbers are

m, i=1

i(S/F -
Pis/#(1)) {Zdim(a)_d—l (m(io))’ 122,

where m(0) = [{T € Fgim(a)(T) : 0 C 7}|. Also, it is demonstrated in [57, Propo-
sition 3.6] that if 7" is pure and connected in codimension 1 (although not neces-
sarily linear), then

1+ Y Biiva(S/F(T);k) =0.

i>0
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Lastly, one could say that Paper 1 contributes to the work done by Morey and
Villarreal in [40] for edge ideals of clutters. For although the facet ideal is but one
type of “clutter ideal”, we consider that looking at the connection between Betti
numbers of edge ideals and those of substructures of the clutter (in our case, the
blocks) would be interesting in general.

1.6.2 Paper 2

For a matroid M on E, we introduce the univariate polynomials Py o(Z) = 1 and

Py ;j(Z Z Z W'Z"M for1 <j<n.
lo|=jY<0

This is a good generalization of Ac ; in the sense that if C is a linear code with
parity check matrix H, then Ac ;(Q) = Py(m), ;(Q@). Another property of Py ;, im-
mediate from the definition, is that d;(M) = min{j : deg Py ; = i}.

Analogous to how W¢(X,Y, Q) is defined in terms of the polynomials Ac ;,
we use our generalized weight polynomials Py ; to define an entirely matroidal
enumerator of M by

u(X,Y,Z) ZPM, Z)X"'Y.

This way, we have the desired
We(X,Y,0) = Wy (X,Y,0).

In [31] it is demonstrated that the the polynomial W¢(X,Y, Q) is equivalent to
the Tutte polynomial of M(H). We extend this result to arbitrary matroids and
their matroid enumerator, establishing

Wit (X,Y,Z) = (X — YY"y, (X %—YUY ) |

Y’ X-

and
tM(XJY) = (X - 1)7(n7r(M))XnWM(1,X717 (X - 1>(Y_ 1))

As in Greene’s [21], this immediately yields a MacWilliams identity for matroid
enumerators.
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Our main result is that the coefficients of Py ; can be expressed as a Z-linear
sum of the Betti numbers associated to the Stanley-Reisner ideals of elongations
of M. We find that the coefficient of Z in Py j is equal to

n

(=1 (Bisy-n) = Bullyyn))- (1.4)

i=0

The first observation en route to this result is that the constant term of Py, is
equal to (—1)"*!1%(M). By Hochster’s formula and two results by Bjorner that
combined imply

D7) =
gz )
0, i#r(M),
we have
()" g (M) = (=1)" M e (). (1.5)

Equation (1.5), expressing the constant term of Py , as a Betti number, constitutes
the base case of our argument. In order to find the remaining coefficients of Py ,
we reduce to the above base case using elongations of M. This can be done for
Py,j with 1 < j < n as well, by considering restrictions M o to subsets o C E with
|o| = j. The end result is the above stated (1.4).

A somewhat similar argument tells us that the generalized weight polynomial
of M determines that of M) very directly through

PM(Z) —I—PM(O)(Z— 1)
7 .

Py (Z) =

This in turn implies d;(M1)) = d; 1 (M), for 1 <i < n(M) — 1.

Using the identity r3;(X) = ry(E \X) + |X| — ry(E) it is readily verified that
p(M,Z) = Py ,(Z). Thus an immediate consequence of our main result is that the
characteristic polynomial of M can be expressed in terms of the Betti numbers of
M and its elongations, the precise expression being

p(M.Z) = lznlo (i(—l)i(ﬁi,n(lMuw) - ﬁun(IM(/))))Zl-

i=0

Towards the end of the paper we give counterexamples demonstrating that
a) the Betti numbers of elongations are needed in our expression (2) - the Betti
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numbers of M do not suffice by themselves. And b) the generalized weight poly-
nomials do not determine the Betti table of M, not to mention the Betti table of all
its elongations.

There has been quite some research on the weight enumerator of a g-ary lin-
ear code. To begin with only the univariate version Zweczm(w) = Wc(1,Z) was
considered, but this is insignificant since We(X,Y) = X"Wc(1,YX 1), There are
in particular two very influential early results, both of which have strongly in-
fluenced later research efforts. One is the MacWilliams identity, named after the
British mathematician Jessie MacWilliams. She demonstrated in 1963 [38, The-
orem 2.8] that Wz (1,2) = ¢*(1+ (¢ — 1)Z)"Wc(1 or, equivalently,
that

 Traz):

Wer (X,Y) =g *We(X+(g— 1)V, X —Y). (1.6)

We shall refer to similar results — linking versions of enumerators of dual struc-
tures — as MacWilliams-type identities.

The other is Greene’s Theorem. In 1976, Curtis Greene demonstrated ([21,
Corollary 4.5] that

X X - 1Y
We(X, ) = (X =)0 (7, %) , (1.7

thus establishing an elegant connection between the weight enumerator of C and
the Tutte polynomial of M(H ), where H is a parity check matrix for C. We shall
refer to results giving enumerators as an evaluation of some Tutte polynomial as
Greene-type identities. Greene’s first application of (1.7) was to give a new and
much shorter proof of the MacWilliams identity; a method which is emulated in
most later generalizations of (1.6).

In [22], Helleseth, Klgve, and Mykkeltveit explicitly find the weight enumer-
ator of various cyclic codes, of different block lengths. The paper also contains
several more general results on the weight enumerator. For example, they demon-
strate that

n j—1 N
Wess v, (1L2) =Y Y [(a" —d)ArZ, (1.8)
i=0 j=01=0
which is equivalent to Klgve’s
k j—l
WC@]Fq q" 1 Z Z q _q )7
j=01=0

of [35].



By applying MacWilliams identity on (1.8), Klgve demonstrates that

. 0l & . 1—7
; ;W Ci (1,7) = q_’k(H—(qr—l)Z) (;}[”]J‘WC(])“’W))’

where [r]; = H{:—O (¢" — ¢'). From this equation he manages, in [34, Theorem
2.6], through lengthy but direct computations, to find an expression for Wéi) (1,Z2)

in terms of Wc(r)(l,Z) — thus establishing a MacWilliams type duality for each
r. A considerably shorter proof (of a homogeneous version) can be found in [30,
Theorem 8.8].

In [3], Barg studies what he refers to as the mth support weight enumerator:

D"(x) =Y D'x'
i=0

where D" (x) =YY" H;.":_Ol (" — qi)Al(ftC). Although he does not explicitly state
that the mth support weight enumerator of C is equal to the weight enumerator
of C®p, Fgn, it follows from [35, Lemma 4] that D™ (Y) is equal to what in the
terminology of [30], [31] and Paper 2 is denoted W¢(1,Y,¢™). Barg argues that
the function (1 —u) Ku*="D™(u) is a so-called Tutte-Grothendieck invariant of
M(H) — where H is a parity check matrix for C. Since (by e.g. [13, Theorem
6.2.2], or the original [11]) every Tutte-Grothendieck invariant is an evaluation of
the Tutte polynomial, this enables Barg to establish that

m k. n—k 1_|_(qm_1)u 1
D"(u) = (1 —u)ku zM< - u)

As pointed out in [30, p. 59], however, this result is actually equivalent to Greene’s
original theorem, since C ®p, Fy» has a generator matrix with coefficients in Fy. A
proof of the converse result, that the extended weight enumerator determines the
Tutte polynomial, is found in [30, Theorem 8.5]. As an immediate consequence
of the above Greene’s theorem for extended weight enumerators, Barg also es-
tablishes a MacWilliams-type identity between D%, (u) and D¢ (u) — analogous
to how Corollary 4.1 follows immediately from Theorem 4.1 in our paper. In [3,
Theorem 3] Barg gives bounds on |C| in terms of the numbers A¥(C) and so-called
Krawtchouk numbers P} (i) = L] (’) ("~ ’) (g"— 1),

. = . . .
In [8], Britz introduces a “finer” generalized weight enumerator A, in n vari-

ables, defined by
AP Gz = Y AY T 2
E'CE icE'
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where A'") |{D C C: dimy(D) = r,Uwep Supp(w) = E'}|. Britz’s [10, Theorem

E
7] is a MacWilliams identity relating A(Cr) (21,22, ,2n) and A(C? (21,22, yZn)s

this result generalizes several earlier results, in that setting z; = Z for all i re-

duces the identity in [10, Theorem 7] to the MacWilliams identity for the general-

ized weight enumerators Wc(r) (1,Z) and WC(? (1,Z), while in addition setting r = 1

yields MacWilliams’s original identity for the (regular) weight enumerator.

Britz’s efforts at generalizing weight enumerators and Greene- and MacWilliams-
type identities for codes culminate in [10, Theorem 24], which, although a bit too
technical to restate here, is

“...the most general MacWilliams-type identity for linear codes over
fields and which generalizes almost all previous such generalizations
of the MacWilliams identity”([10, p. 4350]).

Generalizing weight enumerators to matroids, instead of the above described
generalizations to finer enumerators of (occasionally larger) codes, was first done
in [9]. The generalized coboundary polynomial Wy;(A,X,y) of M, in 2n+ 1 vari-
ables, is defined by

Wy(A,x,y) = Y p(M.T:2)x">Ty",
TCE

where p is the characteristic polynomial and M.T is the contraction M/(E \T)
(see e.g. [42]). This polynomial generalizes the standard weight enumerator of a
code C in the sense that if G is a generator matrix, each y; = Z and each x; = 1,
then

WAﬁI(G)(anay) = WC(17Z)

Recently, several new results have been found by Jurrius. As mentioned in
Section 1.5.1 it was first demonstrated in [22, Theorem 3.2] that, for codes, the
extended weight enumerator can be expressed as a sum of the generalized weight
enumerators. A converse to this was demonstrated by Jurrius in [30, Theorem
2.25]. Jurrius also demonstrates that the Tutte polynomial of M (H) is an evalua-
tion of the extended weight enumerator — thereby strengthening Greene’s classic
[21, Corollary 4.5] to a complete equivalence. These two equivalence are in turn
used to prove a third one, namely that the set of generalized weight enumera-
tors and the Tutte polynomial completely determine each other (see [30, Theorem
8.6]). In [29] Jurrius determines the generalized and extended weight enumerator
of the g-ary simplex code and the g-ary first order Reed Muller code.
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1.6.3 Paper3

This paper is in a sense a continuation of the results of Paper 2; for matroids, the
operations of truncation and elongation should be regarded as opposites. Indeed,
there is the identity M = M.

As we have seen, truncation is but the more general concept of i-skeleton —
applied to those simplicial complexes that are matroids. Where we in Paper 2 were
investigating the connection between the matroidal weight enumerator and the
Betti numbers of Stanley-Reisner ideals of elongations of M, we here consider the
relationship between Betti numbers of a Stanley-Reisner ring of a d-dimensional
simplicial complex A and those of its skeletons.

Our main result is that the Betti numbers of S /IA(

Z-linear sum of the Betti numbers of S/I.

4 can be expressed as a

Bi.i(S/1a:k), j<d+i—1
Bii(S/ a3 ) = § Brasi(S/In k) = Birasi(S/Ins k) + ("4 1) 8, j=d+i,
0, i>dti—1
where
5— Yoo (=0t (L ) B(S/Iak), 1<i<n—d 1.9)
0, i>n—d. '

It follows from [26, Corollary 2.6] that
p.d. S/Ip <p.d. S/IA(d_]) <p.d.S/I\+1.

(The rightmost inequality follows from our main result as well.) Also, applying
Hochster’s formula to the definition of a skeleton, we find that B; j(S/Ix;k) =
Bi.j(S/1n,_, 3 k) forall i and j <d+i—1. Since B; ;(S/Ia;k) = O for all i and
j > d+i+ 2, we thus conclude that if

0 1 »
011 Bia(S/Iak) - Bpp(S/Iask)
11O Bia(S/iask) - Bpp+1(S/Iask)

d+1[0 Buaa(S/Ink) - Byprart (S/IxiK)
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is the Betti table of §/I4, then the Betti table of S/I,, ,, is

0 | p p+1
0|1 Bi1(S/Iak) --- By.p(S/1as k) 0
110 Bia(S/Iak) -+ Bpp+1(S/Iask) 0

d—1|0 BLd(S/IA;lk) ﬁp,p+d_1(S/IA;ﬂ{) 0

— where the *’s remain to be found.
From properties (in [23, Chapter 6]) of the Hilbert series we derive

d+1 n

;) fia Q) (1 =0)"" =} (= 1)} Bij(S/Ias k)t
1= J

i=0

and
n

d
L fim ) (=) = L 1) B (8 Y
= J

i=0

Applying techniques from calculus on the above equations we demonstrate that

Bia+i(S/1Iay_) k) = Bia+i(S/1a:k) = Bi-1,a+i(S/Ia: k) + <n .ill 1) 6 (1.10)
for all 0 <i < n, where 9§ is as in (1.9) above.

From equation (1.10) it follows that p.d. S/IA(d_l) < p.d.S/Iy+ 1. This in
turn is sufficient to show, by the Auslander-Buchsbaum Theorem, that A¢;_y) is
Cohen-Macaulay whenever A is.

Since a matroid’s ith truncation corresponds to the (d — i)-skeleton of its un-
derlying simplicial complex, our main result extends immediately to truncations
of matroids. In contrast, the concept of matroid elongation does not have a canon-
ical generalization to simplicial complexes. We do however have a result, specif-
ically for matroids, analogous to our main result applied to truncations: In [28] it
is demonstrated that

Bi.c(S/In) #0 <= o is inclusion-minimal with ny (o) =1,
from which it follows that for i > 1 we have
Bij(S/Im) #0 <= Bi—1,;(S/Iy;m)) #0.
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In other words, the Betti table of /1,1 looks like the Betti table of S/Ij; with its
second column removed — but only in terms of zeros and nonzeros.

As explained at the beginning of Section 1.4, studying the Betti numbers of
Stanley-Reisner rings is equivalent to studying Betti numbers of squarefree mono-
mial ideals. Good sources of known results on this topic is [39] or the slightly
more specialized [23] and [48]. A modern classic is the previously mentioned
theorem by Eagon and Reiner from ’96, which says that /5« has linear resolution
if and only if S/I is Cohen-Macauley (for a proof, see e.g. [39, Theorem 5.56],
or the original one in [18]).

A question of continuous interest is under which conditions the (graded or
ungraded) Betti numbers of /I, are independent of the base field k. As we men-
tioned in Section 1.4, this is always the case for the (graded and ungraded) Betti
numbers in homological degree one — as these simply correspond to the minimal
nonfaces of A. Furthermore, Bruns and Herzog demonstrated in [6, Corollary 5.4]
that dimy A, | A‘_3(A; k) is in fact independent of k. By Hochster’s formula this im-
plies (indeed, is equivalent to) that the Njj-graded Betti numbers in homological
degree two are also independent of k.

In [50], Terai and Hibi show that when I, is generated by squarefree mono-
mials of degree two, the ungraded Betti numbers 3(S/Ix; k) and B4(S/I; k) are
also independent of the base field. They also point out that there exists a minimal
free resolution of Z /I, over the polynomial ring Z[xy, ... ,x,] if and only if all the
ungraded Betti numbers f3; are independent of the base field. Also, recall that in
Section 1.4 we saw that the Njj-graded Betti numbers of a matroid are independent
of k

By [26, Corollary 2.4], the skeleton of a Cohen-Macaulay complex is Cohen-
Macaulay. And [26, Corollary 2.6] is Hibi’s classic result

depth §/Iy = max{j : A(;) is Cohen-Macaulay}. (1.11)

In [24], Herzog, Zheng, and Jahan generalize (1.11) using the jth skeleton ideal
construction described in Section 1.4.1 — demonstrating that for a (not necessarily
squarefree) monomial ideal /, we have

depth S/I = max{; : §/I; is Cohen-Macaulay }.

A natural question is whether a result similar to our main result holds for
the No-graded Betti numbers of generalized skeleton ideals of [24]. In Paper 3,
however, we give a counterexample showing two ideals with identical Betti tables
but whose first generalized skeletons have nonidentical Betti tables. It would be
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interesting, however, to see for which ideals and which values of g € Njj we do
get a positive result.

Truncations of matroids are studied in [32] (in particular in connection to ma-
troidal polynomials) where, amongst other things, results are given on their repre-
sentability.
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