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Abstract  

Seafood industry workers exhibit an increased prevalence of respiratory symptoms due to 

exposure to bioaerosols containing a mixture of bioactive agents. In this study a human 

pulmonary epithelial cell model (A549) was exposed to mixtures of bacterial lipopolysaccharide 

(LPS) and either protease-activated receptor-2 (PAR-2) agonists SLIGKV-NH2, purified salmon 

(Salmo salar) trypsin or purified king crab (Paralithodes camtschaticus) trypsin. The 

inflammatory response was measured based on nuclear factor kappa B (NF-κB) activation of 

transcription in a luciferase reporter gene assay and interleukin-8 (IL-8) secretion in an enzyme-

linked immunosorbent assay (ELISA). We observed that mixtures of SLIGKV-NH2 or trypsins 

with LPS augmented the activation of NF-κB and secretion of IL-8. The effect on IL- 8 secretion 

was synergistic when both trypsins and LPS were used in the lower concentration range. The 

results demonstrate that exposure to mixtures of agents that are relevant to seafood industry 

workplaces may lead to increased inflammatory signalling compared to exposure to the 

individual agents alone. Furthermore, the results indicate that synergism may occur with the 

combined exposure to seafood trypsins with and LPS, and is most likely to occur when exposure 

to either agent is low.  
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1. Introduction 

Respiratory symptoms associated with occupational seafood exposure are common, and 

several studies have reported that workers in the seafood industry are at risk of developing 

respiratory disorders (Jeebhay and Cartier, 2010; Jeebhay et al., 2001). Workers in this 

industry are exposed to bioaerosols generated during seafood handling and processing 

(Jeebhay and Cartier, 2010). The inhalation of bioaerosols containing allergens, enzymes, 

microorganisms, endotoxins and other bioactive agents is the main cause of the observed 

respiratory problems (Bang et al., 2005; Shiryaeva et al., 2014). 

In occupational settings, workers are exposed to several bioactive substances that co- exist in 

the bioaerosol mixtures. It is well known that exposure to mixtures may result in combined 

effects due to interactions between the different substances (Kartono and Maibach, 2006; 

Wade et al., 2002; Boyd et al., 1990).  

Endotoxin is the major constituent of the outer membrane of gram-negative bacteria. The 

terms endotoxin and lipopolysaccharide (LPS) are sometimes used interchangeably in the 

literature. However, the term LPS denotes the chemically pure substance that is free from 

other chemical compounds, whereas, the term endotoxin refers to the toxin as the compound 

is present the bacterial cell wall. LPS is soluble in water and consists of a lipid A 

(phosphoglycolipid) component and a polysaccharide component, which are responsible for 

the toxicity and immunogenicity, respectively (Liebers et al., 2006). Gram-negative bacteria 

are ubiquitous in nature, and endotoxins are thus abundantly present in the environment. 

Human environmental exposure to endotoxin is mainly via inhalation. Studies have reported 

the presence of airborne endotoxin in various occupational environments, such as agricultural 

work, food industries, the textile industry, saw mills, waste handling and processing, 

breweries and paper mills (Rylander, 2002; Michel, 2003; al-Dagal and Fung, 1990). In the 

seafood industry, Gram-negative bacteria are likely to be present in several processes, and 

endotoxins have been measured in these work environments (Bang et al., 2005; Shiryaeva et 

al., 2014). Accumulating evidence suggests that exposure to environmental endotoxins is 

linked to airway inflammation, bronco constriction, decreased lung function, hypersensitive 

pneumonitis, chronic bronchitis and asthma (Michel, 2003; Michel, 2001; Schwartz et al., 

1995; Thorn, 2001; Hernandez et al., 2011). It has been documented that endotoxin induces 
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the activation, translocation and DNA binding of nuclear factor-kappa B (NF-B) (Zhang and 

Ghosh, 2000; Hernandez et al., 2011; Aul et al., 2012; Guha and Mackman, 2001), a key 

regulator of immune and inflammatory responses via toll like receptors, and trigger the 

generation of  a variety of inflammatory cytokines, TNF-, growth factors, and matrix 

metalloproteinases (MMPs) (O'Grady et al., 2001; Michel et al., 2007).  

The role of proteases in promoting the synthesis and release of inflammatory mediators such 

as cytokines, prostanoids, growth factors and MMP has been previously demonstrated (Bang 

et al., 2009; Larsen et al., 2008; Bhagwat et al., 2014; Lee et al., 2010; Page et al., 2006; 

Asokananthan et al., 2002; Vliagoftis et al., 2001). Our previous studies have shown that the 

trypsin present in seafood is capable of eliciting an inflammatory response via the activation 

of NF-B and the secretion of interleukin-8 (IL-8) in a human alveolar cell line and of IL-8 

and MMP in a skin keratinocytic cell line via a mechanism that involves protease-activated 

receptor-2 (PAR-2) (Bhagwat et al., 2014; Larsen et al., 2008; Larsen et al., 2011). Studies 

performed by Rallabhandi et al. (2008) demonstrated that  PAR-2 and toll-like receptor-4 

(TLR-4) or cooperatively resulted in an enhanced NF-B response, which suggests an 

important role for cooperativity in the inflammatory response to mixtures that contain LPS 

and PAR-2 agonists (Rallabhandi et al., 2008). Other studies have also demonstrated that 

concurrent exposure to LPS and PAR-2 agonists synergistically augments the inflammatory 

signals (Ostrowska et al., 2007).  

Therefore, in this study, we chose to investigate whether mixtures of LPS with either  salmon 

(Salmo salar)  trypsin or king crab (Paralithodes camtschaticus) trypsin were able to 

stimulate a cellular response related to inflammation in the human airway epithelial cell line 

A549 and to determine whether such mixtures had combined effects on the generation of NF-

B and the release of IL-8. 
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2. Materials and methods 

 

2.1  Materials 

A549 cells (ATCC; no CCL-185) were obtained from American Type Culture Collection and 

the A549-NF-B-luc cells (RC0002) were obtained from Panomics, CA, USA. Dulbecco’s 

minimum essential medium/Ham’s F12 medium (1:1), foetal calf serum, L-glutamine and 

penicillin-streptomycin were purchased from Gibco, NY, USA. The 12 well plates (4 cm2) 

were obtained from Nunc, Thermo Scientific, MA, USA. The PAR-2 agonist peptide 

SLIGKV-NH2 (H-Ser-Leu-Ile-Gly-Lys-Val-NH2) was purchased from Bachem, Bubendorf, 

Switzerland. The enzyme-linked immunosorbent assay (ELISA) kit was obtained from BD 

Biosciences, NJ, USA. The purified salmon trypsin was kindly provided by Dr. Nils Peder 

Willassen (University of Tromsø, Norway) (Outzen et al., 1996), and the king crab trypsin 

was provided by Dr. Galina N. Rudenskaia (Moscow State University, Russia) (Rudenskaia et 

al., 1998). LPS from Escherichia coli O111:B4, hygromycin B and the non-enzymatic cell 

dissociation solution were purchased from Sigma-Aldrich, MO, USA. The Dual-light 

Luciferase Reporter Gene Assay System was obtained from Applied Biosystems, CA, USA, 

and the Dc Protein Assay kit was purchased from Bio-Rad, CA, USA. 

2.2  Cell Culture 

The A549 cells, a human pulmonary epithelial cell line, and A549/NF-B-luc cells, a human 

pulmonary epithelial cell line that is stably transfected with an NF-B-binding luciferase 

reporter construct, were cultured in Dulbecco’s minimum essential medium/Ham’s F12 

medium (1:1) supplemented with 10% foetal calf serum, 2 mM L-glutamine, 50 IU/ml 

penicillin and 50 µg/ml streptomycin. In addition, the culture medium for the A549/NF-B-

luc cells was supplemented with 100 µg/ml hygromycin B. The cells were passaged using a 

non-enzymatic cell dissociation solution.  

2.3  Cell Stimulation experiment 

A549 cells were seeded into 12-well plates at a density of 1 x 105 cells/well. After reaching    

80 % confluence, the cells were starved of serum overnight. The cells were then subjected to 

stimulation with purified salmon trypsin, purified king crab trypsin, or the PAR-2 agonist 
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peptide SLIGKV-NH2 and LPS from E.coli O111:B4 for 6 hours. The culture supernatant was 

collected and stored at – 20 oC. 

2.4  Protease activity 

The enzymatic activity of the purified salmon and king crab trypsins was analysed with a 

serine protease assay as previously described (Outzen et al., 1996; Erlanger et al., 1961). 

Briefly, the kinetic measurement was determined by the hydrolysis of a chromogenic 

substrate, Na-benzoyl-D-L-arginine 4-nitroanilide hydrochloride (DL-BAPNA). The 

absorbance was measured spectrophotometrically at 405 nm for 10 minutes at room 

temperature and expressed as Units/ml (U/ml). One activity unit was defined as 1 µmol of 

substrate hydrolysed per minute using an extinction coefficient of 8800 M-1 cm-1. 

2.5  Quantitative analysis of IL-8 secretion 

The amount of IL-8 in the cell culture supernatant was measured with an ELISA kit according 

to the protocol described in the manufacturer’s instructions. The absorbance was measured 

with an iEMS Multiscan EX (Thermo Labsystems). The amount of IL-8 produced was 

calculated and expressed as pg/ml.  

2.6   Reporter gene assay 

A549/NF-B-luc cells were seeded into 12-well plates at a density of 1 x 105 cells/well. After 

reaching 80% confluence, the cells were starved of serum overnight. The cells were then 

subjected to stimulation with purified salmon trypsin, purified king crab trypsin, or the PAR-2 

peptide agonist SLIGKV-NH2 and LPS from E.coli O111: B4 for 6 hours. The cells were then 

lysed, and the luciferase activity in the cell culture lysates was measured with a Dual-Light 

Luciferase Reporter Gene Assay System according to the manufacturer’s instructions. The 

luciferase activity was measured with a Luminoskan RT dual injection luminometer 

(Labsystems). The total protein concentration in each cell lysate was measured with a DC 

Protein Assay and used to normalise the luciferase values.  
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2.7  Statistical Analysis 

The response data were regarded as synergistic when exposure to two combined stimulating 

agents resulted in response levels that exceeded the sum of the response to the respective 

agents alone at the same concentrations. Student’s t tests for independent samples (SPSS) 

were performed to compare the group data. Differences were regarded as significant for p 

values < 0.05. 
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3. Results 

 

3.1  LPS enhances the secretion of IL-8 in human pulmonary epithelial cells.  

To verify whether LPS (endotoxin) induces the secretion of IL-8 in a human pulmonary 

epithelial cell model, A549 cells were stimulated with different concentrations of bacterial 

endotoxin (LPS) for 6 hours. LPS induced the secretion of IL-8 in A549 cells in a dose 

dependent manner (Figure 1). The maximum stimulation was observed when the A549 

cells were stimulated with 100 µg/ml LPS, and the lowest stimulation was observed when 

the A549 cells were stimulated with 10 µg/ml LPS. Concentrations that were lower than 

10 µg/ml LPS did not induce an increase in the levels of IL-8 compared to the basal 

levels. 

 

3.2 Effect of LPS (endotoxin) and SLIGKV-NH2 on the secretion of IL-8 in human 

pulmonary epithelial cells. 

To determine whether a combination of LPS (endotoxin) and SLIGKV-NH2 (a synthetic 

PAR-2 agonist peptide) had an effect on the level of IL-8 in a human pulmonary epithelial 

cell line, A549 cells were stimulated with different concentrations of SLIGKV-NH2 alone 

or in combination with 10 µg/ml LPS. Figure 2 shows that both SLIGKV-NH2  and LPS 

individually lead to an increase in the secretion of IL-8, whereas a mixture of SLIGKV-

NH2 and LPS resulted in a further increase in the levels of IL-8 compared to either of the 

agents alone. 

 

3.3 Seafood trypsin and LPS synergistically induce the secretion of IL-8 in human 

pulmonary epithelial cells. 

To determine whether LPS (endotoxin) along with purified salmon trypsin or king crab 

trypsin had a synergistic effect on the induction of IL-8 secretion in a human pulmonary 

epithelial cell line, A549 cells were stimulated with different concentrations of purified 

salmon trypsin (0.2, 0.6 mU/ml) or king crab trypsin (0.01, 0.015, 0.02 mU/ml) alone  and 

with mixtures of the same concentrations of salmon or king crab trypsin and LPS (10 
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µg/ml). The results displayed in Figure 3A and 3B demonstrate that the mixtures of LPS 

and salmon/king crab trypsin induced an increase in the levels of IL-8. A synergistic 

effect was observed when the A549 cells were stimulated with a mixture of 10 µg/ml LPS 

with 0.2 mU/ml salmon trypsin or with 0.01 mU/ml or 0.015 mU/ml king crab trypsin. 

The maximum synergistic response was observed with the mixtures of 0.2 mU/ml salmon 

trypsin + LPS and 0.015 mU/ml  king crab trypsin + LPS with a 4-fold increase in the IL-

8 levels compared to the cells treated with either type of  trypsin or LPS alone. Higher 

concentrations of salmon trypsin in the mixture, 0.6 mU/ml + LPS resulted in a 1.4-fold 

increase in the IL-8 levels compared to the cells treated with 0.6 mU/ml salmon trypsin 

alone. 

 

3.4  Effect of variable  LPS (endotoxin) concentrations 

 

To determine the role of variable LPS (endotoxin) concentrations in combination with the 

seafood trypsins, A549 cells were exposed to a mixture of purified salmon trypsin (0.2 

mU/ml) or king crab trypsin (0.015 mU/ml) and/or higher concentrations of LPS (25 

µg/ml and 50 µg/ml). Figure 4 illustrates that a mixture of different concentrations of LPS 

and the salmon or king crab trypsins enhanced the levels of IL-8. A synergistic effect was 

observed when the A549 cells were stimulated with a mixture of 0.015 mU/ml king crab 

trypsin + 25 µg/ml LPS. When the A549 cells were stimulated with a mixture of 0.2 

mU/ml salmon trypsin + 50 µg/ml LPS, we observed an increase in the level of IL-8 

compared to the cells treated with LPS and salmon trypsin alone, but this increase was 

less than the sum of the effects of both agents. 

 

3.5  Mixtures of LPS (endotoxin) with SLIGKV-NH2, salmon or king crab trypsin 

stimulate the generation of NF-B in human pulmonary epithelial cells  

 

To investigate whether the activation of NF-B is stimulated by the exposure of human 

pulmonary epithelial cells to a mixture of LPS (endotoxin) together with salmon trypsin 
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or king crab trypsin, A549/NF-B-luc cells were exposed to different concentrations of 

SLIGKV-NH2 (10 µM), purified salmon trypsin (0.2, 0.6 mU/ml) and king crab trypsin 

(0.01, 0.015, 0.02 mU/ml) alone and mixtures of the same concentrations of SLIGKV-

NH2 and the purified salmon or king crab trypsins with LPS (10 µg/ml). The results in 

Figure 5 indicate that the mixture of endotoxin (LPS) with SLIGKV-NH2, purified salmon 

trypsin or king crab trypsin stimulate the generation of NF-B, as did each of the agents 

alone. The maximum response was generated with a mixture 0.015 mU/ml king crab 

trypsin + 10 µg/ml LPS with a two-fold increase in NF-B-driven luciferase activity 

compared to the effect of purified king crab trypsin alone. Higher concentrations of 

purified king crab trypsin resulted in an increase in the NF-B-driven luciferase activity 

compared to the untreated cells but did not exhibit a significant increase in the generation 

of NF-B when used in a mixture of trypsin and LPS. A mixture of purified salmon 

trypsin (0.6 mU/ml) + 10 µg/ml LPS stimulated the generation of NF-B with a 1.5-fold 

increase compared to the cells treated with salmon trypsin alone. 
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4. Discussion 

 

In this study, we focused on the inflammatory responses of airway epithelial cells elicited 

by exposure to relevant agents in bioaerosols present in seafood industry work 

environments. The effects of the agents alone and in combination are highlighted. 

Seafood proteases and endotoxin (LPS) are anticipated to be relevant exposure mixtures 

in occupational environments in the seafood industry.  

In our previous studies, we demonstrated that seafood proteases are capable of stimulating 

inflammatory responses in airway epithelial cells via PAR-2. PAR-2 agonists together 

with LPS have previously been shown to potentiate the stimulation of the inflammatory 

mediator IL-8 in cell models (Ostrowska et al., 2007).  

 

It has been previously documented that endotoxin (LPS) induces the up-regulation of the 

secretion of pro-inflammatory mediators such as IL-6, IL-8, TNF- and IL-1 (Reddi et 

al., 2003; Guha and Mackman, 2001; Rylander, 2002; Thorn, 2001). Figure one shows 

that bacterial LPS also elicits a dose-dependent increase in IL-8 secretion in these A549 

cells.  Similarly, the ability of proteases to stimulate the secretion of innate inflammatory 

mediators is well known (Bang et al., 2009; Bhagwat et al., 2014; Larsen et al., 2008; 

Larsen et al., 2011; Lee et al., 2010; Bhat et al., 2003; Kato et al., 2009; Kauffman et al., 

2000). The involvement of PAR-2 in serine protease-mediated up-regulation of 

inflammatory mediators has been previously documented (Sun et al., 2001; Hong et al., 

2004; Page et al., 2006; Bhagwat et al., 2014; Larsen et al., 2008; Larsen et al., 2011). 

Based on our own previous studies, salmon trypsin as well as king crab trypsin are 

capable of eliciting a dose-dependent increase in NF-B activation and IL-8 secretion  via 

PAR-2 in A549 cells (Larsen et al., 2008).   

 

In addition, the augmented activation of inflammatory signals with concurrent PAR-2 

activation and LPS exposure has been described (Ostrowska et al., 2007; Chi et al., 2001). 

In this study, we were interested in investigating whether combinations of the PAR-2 

agonist SLIGKV-NH2 or PAR-2 activating seafood trypsins with LPS could produce 

enhanced inflammatory signals in the form of NF-B-activation as well as IL-8 
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stimulation in our cell model. The combined effects with concomitant exposure to these 

agents have not been previously described. 

  

The results in Figure 5, reveal an augmented activity of NF-B in the samples treated 

with a mixture of LPS and SLIGKV-NH2 or seafood trypsins compared to those treated 

with either of the agents alone (Figure 5). A significant 2-fold increase in NF-B was 

observed in the cells treated with a mixture of 0.015 mU/ ml king crab trypsin + 10 µg/ml 

LPS, and a 1.5-fold increase was observed  in the cells treated with 0.6 mU/ml salmon 

trypsin + 10 µg/ml LPS. These results confirm the previous finding that there are 

differences in the salmon and king crab trypsins regarding the ability of these proteases  to 

generate inflammatory signals (Larsen et al., 2011). The results further indicate that 

concurrent exposure to LPS and seafood trypsin increases the generation of transcription 

factor NF-B compared to exposure to the individual agents, and thus augments the 

inflammatory signals in the A549 cell line.  

 

Further, to investigate whether the increase in NF-B signals extents to inflammatory 

cytokines, we examined the effect on IL-8 of the PAR-2 agonist peptide SLIGKV- NH2  

and seafood trypsins in combination with LPS. We found a significant increase in the IL-8 

levels when the A549 cells were treated with mixtures consisting of variable 

concentrations of the PAR-2 agonist or seafood trypsins with 10 µg/ml LPS (Figures 2, 

3A and 3B). With lower concentrations of the seafood trypsins combined with a low 

concentration of LPS (10 µg/ml) we found that the IL-8 levels after combined exposure 

were significantly higher than the sum of the levels generated by either of the agents 

alone. This indicates a synergistic effect of seafood trypsin and LPS at these 

concentrations. With the higher concentrations of either type of seafood trypsins (Figure 

3A and 3B) or LPS (Figure 4), this synergism was no longer evident, indicating that the 

effect is concentration dependent. These results provide an important new insight into the 

effects of exposure to mixture of these agents. Therefore, exposure to relatively low 

concentrations of LPS together with relatively low concentrations of seafood trypsin may 

cause a considerably augmented inflammatory response in airway cells due to the 

synergistic interactions between the exposure agents.  
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Previous studies have demonstrated that the prototype LPS receptor,  TLR-4, and the 

serine protease receptor PAR-2 interact at the level of cross talk between signalling 

pathways, which augment the inflammatory signals (Gieseler et al., 2013; Rallabhandi et 

al., 2008). Rallabhandi suggested an interaction between the two hetero-receptors via a 

MyD88-dependent pathway (Rallabhandi et al., 2008). Receptor cooperativity involving 

the PAR-2 and TLR-4 receptors may thus offer a likely explanation of the augmented 

inflammatory signalling observed with concomitant exposure to seafood trypsins and 

LPS. Further research is required to elucidate the mechanistic details and physiological 

significance of this interaction.  

 

5. Conclusions 

 

We conclude that bacterial LPS induces the secretion of the inflammatory mediator IL-8 

in a dose-dependent manner in the A549 human pulmonary epithelial cell model. We also 

demonstrate that mixtures of LPS and seafood trypsins have combined effects, 

augmenting the generation of the transcription factor NF-B and synergistically 

enhancing the secretion of IL-8. According to the present findings, our data suggest that 

exposure to mixtures of environmental LPS and seafood trypsin may elicit an 

inflammatory response in the airway. This response may vary depending on the seafood 

species and the concentrations of LPS and proteases in the environment. Further research 

focusing on the exposure levels of seafood trypsin and endotoxins (LPS) in occupational 

environments, as well as epidemiological studies, is required to confirm the role of mixed 

exposures in the generation of airway symptoms in workers of the seafood industry.   
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Figures and legends 

 

 

 

 

Figure 1. Effect of LPS (endotoxin) on secretion of IL-8 in A549 cells. A549 cells were seeded 

into 12-well plates at a density of 1 x 105 cells/well. After 48 hours, the cells were subjected to 

starvation in a serum-free medium. Then, 24 hours later, the cells were incubated with the 

indicated concentrations of LPS for 6 hours. The supernatant was analysed for the presence of IL-

8 with an ELISA. The data are presented as the means ± S.D.; n = 6 from three individual 

experiments. (## p < 0.01 compared with untreated cells.) 
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Figure 2. Effect of LPS (endotoxin) and SLIGKV-NH2 on the secretion of IL-8 in human 

pulmonary epithelial cells. A549 cells were seeded into 12-well plates at a density of 1 x 105 

cells/well. After 48 hours, the cells were subjected to starvation in serum-free medium. Then, 24 hours 

later, the cells were incubated with the indicated concentrations of SLIGKV- NH2 and LPS for 6 hours. 

The supernatant was analysed for the presence of IL-8 with an ELISA. The data are presented as the 

means ± S.D.; n = 6 from three individual experiments. (## p < 0.01 compared to the untreated cells; **p 

< 0.01 compared to the cells treated with SLIGKV- NH2 alone.) 
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Figure 3A: Salmon trypsin and LPS synergistically induce secretion of IL-8 in A549 cells. A549 cells 

were seeded into 12- well plates at a density of 1 x 105 cells/well. After 48 hours, the cells were subjected 

to starvation in serum-free medium. Then, 24 hours later,  the cells were incubated with the indicated 

concentrations of purified salmon trypsin and LPS (10 µg/ml) for 6 hours. The supernatant was analysed 

for the presence of IL-8 with an ELISA. The data are presented as the mean ± S.D.; n = 6 from three 

individual experiments. (## p < 0.01 compared to the untreated cells; * p < 0.05, **p < 0.01 compared to 

cells treated with purified salmon trypsin alone; ¤¤ p < 0.01 compared to the cells treated with purified 

salmon trypsin alone + LPS alone.) 
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Figure 3B. King crab trypsin and LPS synergistically induce secretion of IL-8 in A549 cells. A549 

cells were seeded into 12-well plates at a density of 1 x 105 cells/well. After 48 hours, the cells were 

subjected to starvation in serum-free medium. Then, 24 hours later, the cells were incubated with the 

indicated concentrations of purified king crab trypsin and LPS (10 µg/ml) for 6 hours. The supernatant 

was analysed for the presence of IL-8 with an ELISA. The data are presented as the means ± S.D.; n = 6 

from three individual experiments. (## p < 0.01 compared to the untreated cells,;** p < 0.01 compared to 

the cells treated with purified king crab trypsin alone; ¤¤ p < 0.01 compared to  the cells treated with 

purified king crab trypsin alone + LPS alone.) 
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Figure 4. Effect of variable LPS (endotoxin) concentrations. A549 cells were seeded into 12-well 

plates at a density of 1 x 105cells/well and cultured until reaching 80–90% confluency. After 48 hours, the 

cells were subjected to starvation in serum-free medium for 24 hours, and the cells were then incubated 

with the indicated concentrations of purified salmon trypsin or king crab trypsin and/or LPS for 6 hours. 

The supernatants were analysed for the presence of IL-8 with an ELISA. The data are presented as the  

mean ± S.D.; n = 6 from three individual experiments.(## p < 0.01 compared to the untreated cells; ** p < 

0.01 compared to the cells treated with purified salmon or king crab trypsin alone; ¤¤ p < 0.01 compared 

to the cells treated with purified king crab trypsin alone + LPS alone.) 
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Figure 5. Effect of the mixture of LPS with SLIGKV-NH2 or the salmon or king crab 

trypsins on the generation of NF-B in human pulmonary epithelial cells. A549-NF--luc 

cells were seeded into 12-well plates at a density of 1 x 105 cell/well and grown until the cells were 80-

90% confluent. The cells were then subjected to starvation in serum-free medium for 24 hours followed by 

incubation with the indicated concentrations of the purified salmon or king crab trypsins and/or LPS. After 

6 hours, the cells were lysed with a lysis buffer, and the lysates were analysed for luciferase activity. The 

results were normalised against the total protein concentration and expressed as a fold induction above the 

basal level. The data are presented as the mean ± S.D.; n = 6 from three individual experiments. (## p < 

0.01 compared to the untreated cells; ** p < 0.01 compared to the cells treated with purified salmon or 

king crab trypsin alone.) 

 

 

 

 


