
1 

Cry1Ab protein from Bacillus thuringiensis and MON810 cry1Ab-transgenic 

maize exerts no adjuvant effect after airway exposure 

Short title: Airway exposure to Cry1Ab exert no adjuvant effect 

Monica Andreassen 
a, b, d 

*,
 
Thomas Bøhn 

a, d
, Odd-Gunnar Wikmark 

a
, Johnnie Van den Berg

c
, Martinus Løvik 

e
, Terje Traavik 

a, d
 and Unni C. Nygaard 

b

a 
GenØk - Centre for biosafety, Tromsø, Norway 

b 
Norwegian Institute of Public Health, Oslo, Norway 

c 
North-West University, Potchefstroom, South-Africa 

d 
UiT  The Arctic University of Norway, Tromsø, Norway 

e
 Norwegian University of Science and Technology, Trondheim, Norway 

*Corresponding author

Tel +47 995 444 55  

E-mail address: monica.andreassen@fhi.no 

Postal address: Department of Food, Water and Cosmetics, Norwegian Institute of Public 

Health, PO Box 4404, 0403 Oslo, Norway. 

Total word count: 4081 

Abstract word count: 219 

Scientific heading: Basic immunology 

Abbreviations 

GM, genetically modified; OVA, ovalbumin; CT, cholera toxin; BALF, broncho-alveolar 

lavage fluid; MLN, mediastinal lymph node; Bt, Bacillus thuringiensis.   

This is the peer reviewed version of the following article: Cry1Ab Protein from Bacillus thuringiensis and MON810 
cry1Ab-transgenic Maize Exerts No Adjuvant Effect After Airway Exposure, which has been published in final form at 
http://doi.org/10.1111/sji.12269. This article may be used for non-commercial purposes in accordance with 
Wiley Terms and Conditions for Self-Archiving.

mailto:monica.andreassen@fhi.no
http://doi.org/10.1111/sji.12269
http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms


2 

 

ABSTRACT 

The genetically modified (GM) maize event MON810 has been inserted with a processed 

version of the transgene, cry1Ab, derived from the soil bacterium Bacillus thuringiensis (Bt) 

to express proteins with insecticidal properties. Such proteins may introduce new allergens 

and also act as adjuvants that promote allergic responses. While focus has been on safe 

consumption and hence the oral exposure to GM food and feed, little is known regarding 

inhalation of pollen and desiccated airborne plant material from GM crops. The aim of the 

present study was to investigate whether plant material from the Cry1Ab-expressing maize 

variety MON810, or trypsin activated Cry1Ab (trypCry1Ab) protein produced in recombinant 

bacteria, may act as adjuvants against the allergen ovalbumin (OVA) in a mouse model of 

airway allergy. A clear proallergic adjuvant effect of the mucosal adjuvant Cholera toxin (CT) 

was demonstrated, determined as increased specific IgE, eosinophils and Th2 cytokines in 

MLN cell supernates, while no elevation in OVA-specific antibodies or cytokine release from 

MLN cells after stimulation with OVA were observed in mice receiving Cry1Ab-containing 

plant materials or the trypCry1Ab protein. Our data suggest that Cry1Ab proteins had no 

detectable systemic adjuvant effect in mice after airway exposure. Further experiments with 

purified plant proteins, as well as long term exposures needs be conducted to further evaluate 

exposures experienced in real life situations.  
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INTRODUCTION 

 

Trans-genetic modifications of crop plants by the insertion of “foreign” DNA-sequences into 

the plant genome, will often introduce novel proteins into food and feed products intended for 

human and domestic animal consumption. Concerns have been raised regarding the safety for 

consumers, including the risk of introducing new allergens [1-4]. Additionally, novel proteins 

may act as enhancers, so-called adjuvants, of allergic immune responses without being 

allergens themselves (possible modes of actions are reviewed by Brunner et al. [5]).  

 

In the genome of the genetically modified (GM) maize event MON810, a processed version 

of the transgene cry1Ab, derived from the soil bacterium Bacillus thuringiensis (Bt), has been 

inserted. In the parent Bt bacterium, the cry1Ab gene encodes a protoxin, which is 

transformed into an active toxin by enzymatic cleavage in the insect mid-gut. The complexity 

in mode of action(s) and interactions with other factors is discussed in the literature [6-9], but 

the main toxic effect of the cleaved polypeptide is ascribed to its binding to receptors in the 

cell membranes of lepidopteran midgut epithelium, inducing pore formation in the cell 

membranes. This in turn leads to influx of intestinal bacteria, followed by septicaemia and 

insect death [10]. The naturally occurring Cry proteins are known to be non-toxic for human 

consumption because the human intestines lack the enzymatic prerequisite for activation of 

the protoxin. The Cry version expressed in GM plants, however, is circumventing this 

because the cry1Ab transgene has been truncated and codon optimized to maize. 

Consequently, the plant-Cry1Ab molecule lacks the carboxy-terminal part of the protein, and 

thus resembles the activated version of the protoxin, although they are not identical. 

Accordingly, it is important to distinguish between the various versions and origins of 
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Cry1Ab proteins when assessing possible adverse immune responses, as the protoxin Cry1Ab 

and different versions of toxin Cry1Ab may affect the immune system differently [11]. 

 

To date, the plant Cry1Ab has not been extracted and purified in sufficient amounts to enable 

animal exposure experiments.  Feeding of MON810-containing diets to animals indicate 

Cry1Ab immunogenicity [12], altered proportion of immune cells in the gut [13-15] and 

increased serum levels of cytokines [13]. Only a few studies have addressed the potential 

adjuvant effect of Cry1Ab proteins. Guimaraes et al. [16] reported a potential adjuvant effect, 

as oral gavage of the trypsinised version of Cry1Ab plus a major food allergen showed 

increased Th2 and Th17 cytokine production and eosinophil inflammation in the airways of 

mice. In contrast, a recent study [17], found no adjuvant effects on the onset or severity of 

allergic asthma after short term feeding of mice to a MON810 maize diet. 

 

The dietary intake of Cry1Ab proteins via food and feed is undoubtedly a highly relevant 

route of exposure. In addition, inhalation of pollen and desiccated airborne plant material 

from GM crops represent a realistic exposure route for humans, as well as for domestic and 

wild animals. Exposure may occur in the field, but also during storage and processing of GM 

plant materials. Nevertheless, to our knowledge no information exists on the adjuvant 

capacity of inhaled Cry1Ab proteins. Airway exposure was illustrated in a rat feeding study 

with cry1Ab-transgenic rice [12]. The target groups fed GM and the control groups fed 

unmodified rice menus were kept in the same room, and both groups developed anti-Cry1Ab 

antibody reactions. The only reasonable exposure route for the control groups were by 

airborne plant debris from the feed. Although the inhalation of Cry1Ab-containing feed was 

unintended, it demonstrates the principle that such exposures may be relevant for immune 

effects.  
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Importantly, another Cry1A protein, the structurally related Cry1Ac, has been demonstrated 

to exert strong adjuvant effects, comparable to the systemic and mucosal effect reported for 

cholera toxin (CT) [18]. Consequently, the similarity with the mucosal adjuvant Cry1Ac and 

the gaps in knowledge related to inhalation of plant originating Cry1Ab proteins warrants 

further investigations. The aim of the present study was to investigate whether exposure to 

pollen and/or leaf material from the cry1Ab-transgenic MON810 maize elicited airway 

immune responses or exerted adjuvant effect on antibody production against an allergen, 

ovalbumin (OVA), in a mouse model of airway allergy. We also tested a trypsinised, and 

hence toxicologically activated, version of a Cry1Ab protein produced in recombinant E. coli. 

Effects on immune responses were evaluated by determination of serum levels of OVA-

specific antibodies (IgE, IgG1 and IgG2a), cytokines in broncho-alveolar lavage fluid (BALF) 

and mediastinal lymph nodes (MLNs), and BALF cell differentiation. 
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MATERIALS AND METHODS 

 

Animals 

Female BALB/c mice (Charles River, Sulzfeld, Germany), 5-6 weeks old at arrival, were 

rested for one week before being included in the experiments. The mice were randomly 

allocated to groups (n = 8-10) and housed on Nestpack bedding (Datesand Ltd, Manchester, 

UK), 3-4 mice together in cages. The Harlan Teklad 2018 rodent OVA-free diet (Madison, 

Wisconsin, USA) and tap water were given ad libitum. The mice were exposed to a 12/12 

hour light/dark cycle, room temperature of 21 +/- 2 C and 55 ± 10 % humidity. The 

experiments was performed in conformity with the laws and regulations for experimentation 

with live animals, and approvals were obtained from the North-West University Office of 

Ethics Committee (approval reference NWU-00025-10-A3) and by the Norwegian Animal 

Research Authority under the Ministry of Agriculture (approval reference FOTS 4050) for 

experiment 1 and 2, respectively (described below). 

 

Test materials 

The test solutions (table 1) contained allergen alone or in combination with test materials 

(pollen, leaf extract or trypCry1Ab protein). A physiological buffer (HBSS or PBS) was used 

as vehicle providing a total exposure volume of 35 µL per mouse per day. Endograde 

Ovalbumin, OVA (Hyglos GmbH, Germany) was used as allergen. Cholera toxin, CT, 

(Quadratech Diagnostics Ltd., Surrey, UK), was included as a positive control for adjuvant 

effect. Purified trypsinised Cry1Ab protein, trypCry1Ab, was purchased from Case Western 

Reserve University (Dr Marianne Carey, Ohio, USA). Briefly, the cry1Ab gene from the Bt 

kurstaki HD-1 strain was inserted in recombinant E. coli. Inclusion bodies were solubilized at 

pH 10.5 in the presence of a reducing agent. The precipitated protoxins were digested by 
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commercial bovine trypsin and subsequently purified by ion exchange HPLC. The relevant 

fractions were analysed by gel filtration, HPLC and SDS-PAGE, desalted and lyophilized (M. 

Carey, personal communication). For pollen preparation, MON810 (cultivar DKC78-15B) 

and non-GM (cultivar CRN 3505) maize plants were cultivated under identical conditions in 

pots in a greenhouse at North-West University. The presence of Cry1Ab in MON810 plants 

was confirmed with the QuickStix kit for Cry1Ab corn leaf & seed (Envirologix, Portland, 

Maine, USA). Individual plant flowers from the two cultivars were carefully enclosed in 

plastic bags and shaken to dislodge pollen from flowers 2-3 hours before exposure. After 

sieving twice to remove fragments other than pollen, 5 mg pollen was suspended in 350 µL 

sterile HBSS less than 1 hour before exposure. The applied dose of 500 µg pollen per mice 

per day was in a pilot study observed to be the highest dose not causing respiratory problems 

in the mice. Whole leaves were collected from greenhouse-cultivated MON810 (cultivar 6Q-

308Bt) and non-GM (cultivar 6Q-121) maize plants. The leaves were enclosed in wet paper 

and sent by airmail to the Norwegian Institute of Public Health. At arrival, the leaves were cut 

into 1-2 cm long pieces before manual grinding with mortar and pestle. Ten mL HBSS was 

added to 1 gram of ground leaves, stirred and left overnight at 4 °C. After centrifugation at 

877 G for 5 min, the supernates was collected and frozen at - 18 °C until the days of exposure.  

The leaf extracts were not further diluted in order to give the highest possible concentration of 

plant Cry1Ab after extraction.  

 

Plant Cry1Ab levels in test suspensions were measured by a semi-quantitative ELISA kit 

(Agdia, Elkhart, Indiana, USA) according to the manufacturer’s instructions.  A two-fold 

dilution standard curve ranging from 0.03 – 0.96 ng/µl and 3 – 96 ng/µL trypCry1Ab was 

included for the quantification of Cry1Ab in pollen and leaf extract, respectively.  
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Endotoxin levels were measured in the pollen suspension (0.131 EU/mL in both MON810 

and non-GM), leaf extracts (0.130  and 0.129 EU/mL for MON810 and non-GM, 

respectively) and the trypCry1Ab solution (0.046 EU/mL) using ToxinSensor 
TM

 

Chromogenic LAL endotoxin Assay kit (GenScript, Piscataway, New Jersey, USA) according 

to the manufacturers’ description. One EU/mL corresponds to 0.1 – 0.2 ng endotoxin/mL, 

which correspond to a total dose of < 0.003 ng endotoxin per mouse.  

 

Experimental protocol 

The mice were intranasally exposed under anaesthesia to 35 µL of test solutions on days 0, 1, 

2. On days 21, 22 and 23 all mice, except those in the vehicle control group, were boostered 

with allergen. A 100 µL blood sample was collected from vena saphena lateralis from each 

animal on day 0 and prior to the challenge on day 21. The mice were terminated by heart 

puncture under anaesthesia on day 26, and blood and 3 x 0.8 mL BALF were collected as 

previously described [19] and kept on ice until processing. In experiment 2, also MLNs were 

collected [20] and MLN single cell suspensions were prepared as previously described [21]. 

 

Due to accessibility of fresh pollen from flowering maize plants, experiment 1 was performed 

at North-West University (Potchefstroom, South Africa). Experiment 2 was performed at the 

Norwegian Institute of Public Health (Oslo, Norway). Although the experiments were not 

intended to be replicates as different versions of the Cry1Ab protein were assessed, the same 

experimental protocol was applied and the experimental conditions were kept as similar as 

possible (unless otherwise stated).    

 

Intranasal immunisation 



9 

 

For each individual mouse, droplets of the test solution were carefully applied with a pipette 

onto the left and right nostril repeatedly until the full dose of 35 µL was inhaled. The animals 

were under anaesthetics and positioned on their backs during the application. 

 

Anaesthetics 

In experiment 1, for the intranasal exposures and the exsanguination, an initial dose of 1.4 mL 

of Halothane (SafeLine Pharmaceuticals (Pty) Ltd, South Africa) was added to an inhalation 

chamber and animals were kept in the chamber until sedated. Supplemental doses of 0.4 mL 

were added when the sedative effect declined. For the intranasal exposures in experiment 2, 

3.5 % Isofluran gas (Isoba vet; Intervet/Schering-Plough Animal Health, Lysaker, Norway) 

were administered in surgical O2 in an inhalation chamber until sedation. At exsanguination 

the mice received ZRF cocktail (18.7 mg Zolazepam, 18.7 mg Tiletamine, 0.45 mg Xylazine 

and 2.6 mg fentanyl per mL) at 0.1 mL/10 g bodyweight intraperitoneally prior to heart 

puncture.  

 

OVA-specific antibodies in sera 

OVA-specific IgE and IgG1 antibodies in sera were determined in a capture ELISA as 

previously described [21]. In short, monoclonal rat anti-mouse IgE and IgG1 were used as 

capture antibodies. Following incubation with optimally diluted test sera (1:10 for IgE and 

1:20 000 for IgG1), biotinylated OVA and HRP-conjugated OVA were added in the IgE and 

IgG1 assays, respectively. In the IgE assay, poly-HRP-streptavidin was added. In both assays, 

color development was obtained by the addition of stabilized chromogen TBM. The reaction 

was stopped with 2N H2SO4 solution.  
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OVA-specific IgG2a antibodies were determined using indirect ELISA as previously 

described [22]. In short, optimally diluted sera (1:50) were incubated in OVA coated 

microtiter plates. Biotinylated rat anti-mouse IgG2a was added. Detection was performed with 

poly-HRP-streptavidin and stabilized chromogen TBM as described above.  

 

Standard curves were included for all antibody assays on each plate, and made from 

duplicates of diluted IgE standard (mouse anti-OVA IgE; AbD Serotec, Kidlington, Oxon, 

UK) or serum pools from mice immunized with OVA and Al(OH)3 for IgG1 or OVA and 

CpG oligonucleotides for IgG2a. As the amount of IgG1 or IgG2a in the standards is 

unknown, their levels are presented as arbitrary units (AU). Absorbance was measured at 450 

nm on BioTek Elx808 Absorbance Microplate reader with the Gen5™ Microplate Data 

Collection & Analysis Software (BioTek
®
 Instruments, Inc., Winooski, Vermont, USA).  

 

Cytokine analyses  

Cytokines in BALF and cell supernates were analysed by Cytometric Bead Array (CBA) flex 

set kit from BD Biosciences (San Diego, California, USA). Beads dyed with fluorescence red 

and covalently coupled to antibodies that capture specific cytokines, allow simultaneous 

quantification of several cytokines. IL-5, IL-10, IFNγ, TNFα and MCP-1 were measured in 

BALF from both experiments. IL-10, IFNγ, IL-4, IL-13 and IL-17 were determined in the 

supernates from mediastinal lymph node cells stimulated with 1 mg/mL OVA and incubated 

at 37 C for 120 hours, in experiment 2. 

 

Differential counts 

Cells (125 000 cells/mL) from a pool of all three BALF collections from each individual 

animal were spun down on to cytoslides using a cytocentrifuge (Shandon Scientific Ltd., 
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Astmoor, Runcorn, UK) at 70 G for 6 minutes, and stained by the Hemacolour rapid staining 

according to the manufacturer’s protocol (Merc KGaA, Darmstadt, Germany). A total number 

of 200 cells were counted on each slide in a light microscope (Axioplan2, Zeiss, Göttingen, 

Germany) at 100x magnification, separating macrophages, eosinophils, neutrophils, 

lymphocytes and epithelial cells based on their morphological characteristics. Cell differential 

counts for all animals were performed blindly by the same investigator (MA).  

 

Statistical analyses 

Statistical analyses were performed with SigmaPlot 12.3 and Minitab 16 Statistical software. 

When necessary, data were log10 transformed to adjust for non-normal distributions and to 

obtain comparable variances. All normally distributed parameters with comparable variances 

were tested by one-way ANOVA. In the case of significant overall differences, pair-wise 

comparisons between treatment and control were performed with the Dunnets post hoc test. 

Data that could not be transformed to normal distribution and comparable variances were 

tested with the non-parametric Kruskal-Wallis test, using Mann-Whitney post hoc tests for 

pair-wise comparisons between treatments versus control. Differences between groups were 

considered significant when p-values were < 0.05.  
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RESULTS 

Cry1Ab exposure dose 

Based on the measured concentrations (6.92 and 612.51 ng Cry1Ab in 1 mg of pollen and leaf 

respectively), the calculated total dose of Cry1Ab given per mice exposed to pollen or leaf 

extracts was 0.01 µg and 6.43 µg, respectively. The total dose of trypCry1Ab was 0.66, 3.3 

and 16.5 µg per mice. 

 

OVA-specific antibodies in serum 

OVA-specific antibodies were analysed in sera collected on day 0, before booster on day 21 

and at termination on day 26. In experiment 1, the levels of OVA-specific IgE, IgG1 and 

IgG2a were below or just above the limit of detection for all mice on day 0 (data not shown). 

On day 21 the levels of OVA-specific antibodies remained low for all mice in all treatment 

groups except in the positive control group that received OVA together with CT (data not 

shown). After allergen booster, the levels of OVA-specific IgE and IgG1 in the OVA + CT 

group were significantly (p < 0.05) enhanced compared to the OVA group on day 26 (figure 

1). A few animals in the OVA + CT group showed elevated levels of OVA-specific IgG2a on 

day 26, but no significant elevation was observed on group level. The OVA + CT group also 

showed elevated levels of OVA-specific IgG2a on day 26 although not statistically 

significant. Pollen from GM and non-GM plants did not increase antibody production in mice, 

as none of the two groups receiving pollen demonstrated significant elevated OVA-specific 

IgE, IgG1 or IgG2a responses. In experiment 2, OVA-specific IgE, IgG1 and IgG2a levels 

were low, often below the detection limits, for all mice on day 0, and, with the mice exposed 

to OVA + CT as an exception, also on day 21 (data not shown). At termination on day 26, the 

levels of OVA-specific IgE, IgG1 and IgG2a antibodies were significantly higher for the mice 

in the OVA + CT group than for the OVA exposed mice (figure 2). The mice that received 
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OVA together with leaf extract appeared to have a moderate (non-significantly) rise in OVA-

specific IgE and IgG1 serum levels; the response was, however, at the same level for the GM and 

the non-GM leaf extracts. The IgG2a response was somewhat (not significantly) elevated in 2-3 mice 

that received OVA + non-GM leaf extract.  

 

Cytokines in BALF 

In experiment 1, the BALF levels of IL-5, TNFα, IFNγ and MCP-1 were low for all mice in 

all groups, and not significantly different in mice from the different treatment groups (figure 

3). The level of IL-10 was below the limit of detection (data not shown). Also, in experiment 

2, the levels of IFNγ, TNFα, MCP-1 and IL-10 in BALF were below or just above the 

detection limit in all mice, irrespective of exposure scheme, and no differences were detected 

between the groups (data not shown).  

 

Cell differential counts 

In experiment 2, the relative number of neutrophils, lymphocytes, macrophages and 

eosinophils in BALF collected day 26, were determined (figure 4).  Mice exposed to OVA + 

CT had significantly higher numbers of eosinophils in the BALF than mice exposed to OVA 

alone. The increased levels of macrophages and decreased numbers of neutrophils seen in 

animals exposed to OVA + leaf extract cannot be associated to an adjuvant effect of  leaf 

extracts, because a similar pattern  was also demonstrated for animals exposed to vehicle 

alone.  

 

Ex vivo cytokine release from mediastinal lymph node (MLN) cells  

In experiment 2, OVA-stimulated MLN cells from the mice in the OVA + CT group 

demonstrated significantly increased releases of all cytokines measured, i.e. IL-4, IL-17, IL-
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13, IL-10 and IFN (figure 5). The OVA-stimulated MLN cells from mice exposed to OVA + 

non-GM leaf extract consistently demonstrated elevated secretion of IL-4, IL-13, IL-10 and 

IFN cytokines compared to cells from mice receiving OVA alone, although at lower levels 

than for the mice exposed to OVA + CT. The exposure of mice to trypsinised Cry1Ab protein 

or MON810 leaf extract did not affect cytokine release from MLN cells. 
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DISCUSSION 

 

We have investigated whether Cry1Ab protein after intranasal exposure can act as an adjuvant 

for allergic sensitisation to a protein allergen (OVA) in a mouse model of airway allergy. 

Three different sources of Cry1Ab were used: i) pollen from cry1Ab-transgenic maize (event 

MON810); ii) leaf extracts from MON810 plants; and iii) trypsin activated Cry1Ab produced 

in recombinant E. coli. Homologous materials from an unmodified, near-isogenic maize 

variety, and the known mucosal Th2 adjuvant, CT, were also included in the test schemes. 

Immune responses induced by intranasal exposure to OVA in combination with each Cry1Ab 

protein preparation were compared with those induced by OVA alone or together with CT. 

Clear proallergic adjuvant effects of CT were demonstrated in the two independent 

experiments, determined as increased allergen-specific IgE in serum, lung eosinophils and 

Th2 cytokines in MLN cell supernates after OVA stimulation. Neither the trypCry1Ab protein 

nor pollen or leaf extract from MON810 maize plants promoted systemic immune responses 

against OVA, as shown by low levels of all endpoints. These findings, although a different 

route of exposure were applied, are in line with the recently published study by Reiner et al. 

[17]. In that study, feeding of MON810-containing diets for up to 34 days did not affect OVA 

induced eosinophilic lung inflammation, or OVA-specific antibody production, using a mouse 

model of allergic asthma. The authors concluded on the lack of adjuvant effect upon GM 

maize consumption on both the onset and severity of allergic responses.  

 

The Cry1Ac protein in its protoxin form has been reported to exert a strong adjuvant effect, as 

potent as CT [18].  Cry1Ac promoted specific antibody responses towards other proteins, HIV 

peptides and polysaccharides when administered via the intraperitoneal, intragastric and 

intranasal route [18, 23]. Cry1Ab can be considered a natural chimera between Cry1Aa 
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(domain III) and Cry1Ac (domains I and II) [24].  Hence, there are reasons to believe that the 

C-terminally truncated Cry1Ab protein expressed in MON810 maize, mainly composed of 

domains I and II, may possess adjuvant properties as well. Interestingly, in our study, at the 

doses employed, neither the plant material from cry1Ab-transgenic MON810 maize nor the 

purified, trypsinised bacterial Cry1Ab protein exhibited an adjuvant effect similar to that 

observed with CT or reported for Cry1Ac. Cry-proteins produced in recombinant E. coli may 

be contaminated with endotoxin, which have been shown both to promote and inhibit  allergic 

responses dependent on dose and timing [25].  Presence of endotoxins could explain the 

strong adjuvant effect found for Cry1Ac produced in E. coli in the Vazquez et al. study [18], 

however the endotoxin levels were never reported. In our study, the endotoxin levels in the 

test solution gave a total dose of < 0.003 ng per mouse, a dose that is much lower than the 

dose (100 ng LPS) referred to as an inhibitor of Th2 lung inflammation [26]. We therefore do 

not expect that the endotoxin level in our samples was interfering with the negative results on 

Cry1Ab adjuvant effect.  

 

To address the issue that Cry1Ab expressed in transgenic plants has not been extracted and 

purified in sufficient amounts to enable animal exposure experiments, we included Cry1Ab-

containing plant material (pollen and leaf extracts from MON810 maize) as well as Cry1Ab 

produced in E. coli, in our studies. After trypsination, the latter resembles the truncated, 

insecticidal protein, i.e. the expected expression product in the MON810 maize. Using 

BALB/c mice, it has previously been demonstrated possible adjuvant properties of the 

trypsinised Cry1Ab on the elicitation, but not the sensitization, of allergic airway reaction 

after oral exposure of trypCry1Ab and peanut protein. It was evidenced by Th2/ Th17 

cytokine release and eosinophil influx in BALF after allergen challenge in the airways [16]. 

However, our data from intranasal exposure to trypCry1Ab in BALB/c mice do not support an 
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adjuvant effect after allergen airway challenge: While the the OVA + CT exposed mice had a 

significant eosinophilic infiltration in BALFs, we could not detect local airway effects after 

the intranasal Cry1Ab exposure, regardless of Cry1Ab source. Compared to mice receiving 

OVA alone, the mice exposed to OVA + leaf extract demonstrated significantly enhanced 

macrophage and decreased neutrophil percentages. However, since this was also the case for 

the control animals that received vehicle only, it illustrated that OVA itself induced some 

changes to the BALF cell composition in this model. Furthermore, cytokine levels in BALFs 

were low and no difference between treatments was found. The fact that mice receiving CT + 

OVA did not have elevated BALF levels of the selected cytokines could reflect that either the 

choice of cytokines or time point of BALF collection were not optimal. Cytokines after 

allergen booster have previously been found to have maximum expression in BALF less than 

or equal to 24 hours [27]. Furthermore, we gave a maximum total of 16.5 µg trypCry1Ab per 

mouse intranasally, while the total dose given perorally by Guimaraes and colleagues was 50 

µg trypCry1Ab per mouse. The discrepancy in both dose and exposure route may also 

contribute to the different findings. 

 

Based on an in vitro study, Allakhverdi  et al. [28] suggested that pollen grains themselves 

may act as adjuvants on allergic immune responses by inducing activation and maturation of 

dendritic cells. In our in vivo study we did not observe any indications of adjuvant effects 

exerted by the pollen grains themselves. Dry airborne pollen might, however, have different 

adjuvant capacity than the vehicle-suspended pollen applied in the present study. The leaf 

extracts with OVA, and the non-GM extracts in particular, however, appeared to enhance 

cytokine release from MLN cells. Since the extracts were prepared from whole leaves with all 

constituents present, this cocktail or single element within the cocktail may be responsible for 

the altered immune responses observed.  
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Standardised or validated methods to systematically evaluate the effect of adjuvants are not 

yet available. Animal models are considered robust for hazard identification in the weight-of-

evidence approach for GMO issues recommended by EFSA, and in particular regarded as 

helpful in addressing the issue of protein immunogenicity or adjuvanticity [29]. Our study 

design, including a positive control for adjuvant effect and Cry1Ab protein in three different 

forms, strengthen our ability to conclude on the lack of systemic adjuvant effects.  

 

Taken together, Cry1Ab protein from three different sources did not act as an adjuvant in our 

mouse model under the experimental conditions used. Although the contents in our MON810 

maize tissues may represent “relevant doses”, long term exposures of plant Cry1Ab as well as 

purified plant proteins to mimic the total exposures experienced in real life situations, should 

be included in future studies.  
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Table 1 

 

Table 1. Exposure schemes for experiment 1 and 2, with doses of test materials and allergen 

Test material  

Days  

0, 1, 2  

Allergen 

Days  

0, 1, 2 and 21, 22, 23 
Experiment 1  

 
Experiment 2  

 

- 10 µg OVA x x 

0.5 µg CT 10 µg OVA x x 

500 µg MON810 pollen 10 µg OVA x - 

500 µg non-GM pollen 10 µg OVA x - 

35 µL MON810 leaf extract 10 µg OVA - x 

35 µL Non-GM leaf extract 10 µg OVA - x 

0.22, 1.1 or 5.5 µg trypCry1Ab 10 µg OVA - x 

HBSS or PBS - x x 

CT: cholera toxin; OVA: ovalbumin.  
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Figure 1 

 

 
 

 

 

Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure legends 

 

Figure 1. Intranasal exposure of pollen from MON810 and non-GM maize did not 

promote OVA-specific antibody responses in mice. Allergen (OVA) specific IgE (a), IgG1 

(b) and IgG2a (c) in serum on day 26 after intranasal exposure of mice to allergen and fresh 

maize pollen (day 0, 1 and 2), followed by OVA boosters (day 21, 22 and 23). Each circle 

represents one individual animal, and bars represent group medians (n = 8). Asterisks (*) 

denote groups that are significantly different (p < 0.05) from the OVA control group.  

 

Figure 2. Intranasal exposure of trypsinised Cry1Ab and leaf extracts from MON810 

and non-GM maize did not promote OVA-specific antibody responses in mice. Allergen 

(OVA) specific IgE (a), IgG1 (b) and IgG2a (c) in serum on day 26 after intranasal exposure 

of mice to OVA and three doses of trypsinised Cry1Ab (trypCry1Ab), or leaf extracts from 

MON810 and non-GM maize leaves (day 0, 1 and 2), followed by OVA boosters (day 21, 22 

and 23). Each circle represents one individual animal, and bars represent group medians (n = 

10). Asterisks (*) denote groups that are significantly different (p < 0.05) from the OVA 

control group. 

 

Figure 3. Intranasal exposure of pollen from MON810 and non-GM maize did not affect 

cytokine levels in BALF. Cytokine IL-5 (a), TNF, (b) IFN (c) and MCP-1 (d) levels in 

bronco-alveolar lavage fluid (BALF) collected on day 26 after intranasal exposure of mice to 

allergen (OVA) and fresh maize pollen (day 0, 1 and 2), ), followed by OVA boosters (day 

21, 22 and 23). Each circle represents one individual animal, and bars represent group 

medians (n = 8). The dotted lines indicate the lower quantitative detection limit of the assays 
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Figure 4. Intranasal exposure of trypsinised Cry1Ab and leaf extracts from MON810 

and non-GM maize did not affect the proportion of immune cells in BALF. Percentages 

(%) of neutrophils (a) lymphocytes (b), macrophages (c) and eosinophils (d) in bronco-

alveolar lavage fluid (BALF) collected on day 26 after intranasal exposure of mice to allergen 

(OVA) and trypsinised Cry1Ab (trypCry1Ab), or leaf extracts from MON810 and non-GM 

maize leaves (day 0, 1 and 2), followed by OVA boosters (day 21, 22 and 23). Each circle 

represents one individual animal, and bars represent group medians (n = 10). Asterisks (*) 

denote groups that are significantly different (p < 0.05) from the OVA control group. 

 

Figure 5. Intranasal exposure of trypsinised Cry1Ab and leaf extracts from MON810 

and non-GM maize did not promote cytokine secretion from MLN cells after OVA-

stimulation. Cytokine IL-4 (a), IL-17 (b), IL-13 (c), IL-10 (d) and IFN (e) secretion from 

mediastinal lymph node (MLN) cells collected on day 26 after intranasal exposure of mice to 

allergen (OVA) and three doses of trypsinised Cry1Ab (trypCry1Ab), or leaf extracts from 

MON810 and non-GM maize leaves (day 0, 1 and 2), followed by OVA boosters (day 21, 22 

and 23). Each circle represents one individual animal, and bars represent group medians (n = 

10). The dotted lines indicate the upper quantitative detection limit of the assays. Asterisks (*) 

denote groups that are significantly different (p < 0.05) from the OVA control group. 

 

 

 




