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Dedicated to those whom I can always depend upon



“And so, does the destination matter? Or is it the path we take? I declare that no
accomplishment has substance nearly as great as the road used to achieve it. We
are not creatures of destinations. It is the journey that shapes us. Our callused

feet, our backs strong from carrying the weight of our travels, our eyes open with
the fresh delight of experiences lived.”

–—Brandon Sanderson, The Way of Kings



Abstract
When working with distributed systems, detecting faults can be a difficult
task, as abnormalities isn’t necessarily immediately evident by warnings or
system crashes. This is especially true with subtle faults, such as variations
in performance of a running program, it is not necessarily its own fault, but
could rather be from a different source, somewhere in the cluster, using a lot of
resources (CPU, IO, etc.), thereby causing other programs to perform sub-par
compared to earlier executions.

These types of problems won’t necessarily be detected by regular cluster moni-
toring tools, as these only look at cluster metrics, or by distributed debuggers,
as these only monitor specific programs, and thus won’t find the cause for the
degraded performance if it comes from a different source.

As the usage of distributed systems is becoming more common amongst those
without an intimate knowledge about these systems, being able to quickly
inform the user about any faults or abnormalities,would be a great improvement
on their efficient use of the system. It would additionally be a great help to
developers, as they could easily get their programs performance data without
implementing specific procedures for the task, thus simplifying the development
of new distributed software.

This thesis is looking to discover if the system, and process, information attain-
able from each nodes operating system, is enough to detect abnormal operation.
This is approached by creating a prototype system that collects this information
from the cluster, and doing analysis on the data during runtime to check for
faults.

The achieved system is capable of collecting large amounts of data from the
cluster, storing it, and doing some rudimentary analysis on the data. While
leaving most of the clusters resources free for its computations. This shows
that it is possible to create a low resource cluster monitoring tool, that collects
large amounts of system data, with high frequency, from each of the nodes,
and analyze the data.
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1
Introduction
Clusters of computers forming a distributed system is a widely used alternative
for creating parallel computing systems, this is a highly scalable and cost
effective way to create such a system. With these large systems comes an
increased complexity for the users, this makes it necessary for any system, with
maybe the exception of very small clusters, to have a way to monitor the health
of this system.

A common approach for this is to have a monitoring system for the cluster, such
as ganglia[1], or HP Insight Cluster Management Utility[2], that is responsible
for collecting data such as total central processing unit (cpu) and memory
usage for each node in the cluster, and present it to the user. This makes it
easier to compare the overall usage of each of the nodes in the cluster. There
are issues with these systems however; they usually work with a slow heart
beat for their updates (thus it is possible that short term system abnormalities
goes undetected), another problem is that they don’t normally give any data
on processes. Some systems do however allow the user to add additional
data points to be monitored, ganglia gives the possibility for user-defined
metrics that can represent arbitrary state, but here every metric characteristic
must be explicitly defined. But then you have the problem of defining all the
necessary metrics that could be of value, something that can be difficult to
know beforehand.

There are systems that monitor specific programs, either with or without includ-
ing host system metrics. They vary in whether or not they start and stop at the
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same time as the process they are monitoring, or if they have a server running
continuously. These normally only store the collected data, and has an interface
for the user to get the current or historical data from the database[3, 4, 5].

The systems with a server running continuously can have agents collecting
systemmetrics, in addition to getting data from themonitored program through
an installed library that allows it to connect and deliver its own usage metrics
to the server.

Although it is vital to a systems administrator to make sure the system as
a whole is working as it should, this is not necessarily the main concern of
someone using the system, they generally only care about one process, or a
small group of processes, depending on their use of the system. For the task
of checking on the health of a single distributed program, one runs into the
same problem as with checking on the system as a whole, it gets very time
consuming if it’s not automated in some way.

One could for instance check every node individually to make sure a program
is running as it should, or get information from tools used to run the program
on the cluster, such as ansible[6]. Checking every node for errors or abnormal
operation is time consuming and can be difficult, even to users familiar with
the system. While relying on tools like ansible only gives you information about
a run at certain intervals, and only gives information about whether or not the
program is running, not the correctness of the program.

Something that must be known however, is what measurements is normal for
a well behaved system where everything is working as it should. This would of
course differ based on what the distributed system is doing at any given time.
A high cpu usage when the system is idling, or no usage when doing a cpu
intensive calculation, would f.ex. be indications of abnormalities, as this isn’t
an expected metric for the use case. This same goes for every aspect of the
metrics monitored, high memory usage in some program that normally use
only a few megabyte (mb) could be an indication of abnormal behavior.

Thus to detect strange behaviors in a system, it is necessary to know how the
metrics differ from normal behavior, this is of course difficult to know. For
example if we know how a system normally behaves when running nothing but
one single program, lets call this process A, and we also know how it should
be when running only process B. How can we know the normal behavior of
the system when running both of these processes simultaneously.

If only system metrics was monitored, like in general cluster monitoring tools,
this would be a very difficult question, but if we also monitor the metrics of each
of these processes, we still know how each individual process should behave,
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even with both running at the same time, although we don’t necessarily know
how the system as a whole will behave. This lack of knowledge is less of an
issue when knowing how all components of the system should behave, as it is
still possible to detect abnormalities in each of these processes.

1.1 Problem Statement
This thesis is looking to design and implement a distributed service that collects
and analyses resource usage from all computing nodes, and their running
processes, to detect abnormal operation in parts of a distributed program
running on several nodes. And give a warning to the user about any abnormal
process or node behavior. This challenge can be divided into two categories:
cluster monitoring, and usage analysis.

As the operating system (os) keeps data on all resource usage, and every
running process, it is easy to get large amounts of data from the os. It is
however necessary to keep this data for much longer to be able to do any
analysis on the data. This means that the data must be aggregated, and stored
while running, and with the large amounts of data, it is necessary to use as
little space as possible while still keeping all the important data from the
cluster.

The analysis of both the system as a whole, and of every process on the system,
relies on the continuous detection of any deviation from the normal resource
usage pattern of the specific process or system node. To achieve such an analysis
it is necessary to find out which of the collected data fields are relevant for
detecting abnormal operation from the normal, as well as to find out if there
is additional data that would improve this detection.

1.2 Contributions
The contributions of this thesis are:

• The architecture, design and implementation of a Prototype for moni-
toring a distributed system, with a rudimentary ability to detect faults
within this system.

• Analysis of data needed for the detection of abnormal behavior.

• Experiments showing that it is possible to collect large amounts of cluster
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data with a low resource usage.

1.3 Limitations
There are some aspects not taken into consideration in this thesis

• There was no focus on security, this was done to limit the scope of the
thesis. As access to the cluster network, on which AutoMon is running,
normally is limited, there is still some security to the system.

• Every connecting monitoring-agent is assumed to be part of the same
cluster.

• The usability of a system over a wide area network (wan) has not been
tested.

• There is no automatic discovery of the AutoMon server, thus themonitoring-
agents have to know the IP address of the server at startup.



2
Background and Related
Work
This chapter gives an introduction to cluster monitoring, and presents existing
cluster monitoring systems, before looking at ways of analyzing large amounts
of collected data; in order to detect any deviation from expected metrics.

2.1 Cluster Monitoring
Traditional cluster monitoring systems generally follows a client-server archi-
tecture showed in figure 2.1, where there is some form of agent on each node
that obtains some system information. The information is then sent to a server
part for monitoring. The server then aggregates, stores, and visualizes the
cluster data to the user. The data can be collected from the os, especially on
an Unix-type system where it can be easily gathered from the proc filesystem
(procfs), it might also be possible to obtain this information from middleware
systems and/or applications. This data is collected at certain intervals, that
normally span several seconds to keep the overhead as low as possible, so it
doesn’t interfere with anything running on the cluster[7, 8, 9].

The data collected is generally only systems wide data, like average cpu usage
over the last 5, 10, and 15 minutes, memory usage, and net usability as standard,

5
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Monitoring Agent

Monitoring Agent

Monitoring Agent

. . .

Aggregator

Server

Storage Visualizer

Figure 2.1: General architecture for traditional cluster monitoring systems

sometimes with the possibility of having the user add specific measurement
points to the collections. By only collecting these few points of data, the network
usage of the system is kept at a minimum, while at the same time giving the
user enough data for them to see if the cluster is healthy.

Normally no processing of the data takes place on the nodes, the agents only
collect information. This behavior is usually explained by the need to reduce
the impact the agents has on the distributed system. There is typically also a
predefined fixed configuration, set at start, for where the data is to be sent. For
large clusters the monitoring system is set up as a tree-like structure, where
each agent sends information to aggregates, that then sends the data in a
more compact form upwards in the structure. To cope with failure, the data
from any point in the structure can be sent to multiple places, thereby getting
redundancy in the system.

Ganglia uses a similar architecture that is comprised of two parts, their differ-
ence is that the daemons running on each node of the cluster don’t send their
collected data to a server node, they instead use multicast, and send it to every
node of the cluster so that every node knows the status of the entire cluster.
Then the server can poll for the data from any one node, thus by polling several
nodes, they achieve redundancy[1]. This can also be used for clusters located
on a wan, where they build up a hierarchical monitoring tree using several of
their aggregating server parts[10].

The trend of the development of these types of systems seems to be focused
mostly on scalability[11, 12, 13, 14] (Both Van Renesse et al.[12] and Clough et
al.[13] use a hierarchical system, and with it claim to be able to handle tens of
thousands of nodes efficiently. Zhan et al.[11] also presses this as an important
piece of their system). This is of course a good thing, distributed systems are
rapidly growing in size, and thus the task of monitoring the system and keeping
it healthy, increases in size and complexity. And being able to use the same
system for this task whether the cluster is comprised of 5 or 5000 nodes, while
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still maintaining usability, and low overhead, is an advantage. However, as
much as this is very helpful for the system administrators, it doesn’t necessarily
help the users of the system, as they don’t get any information about how their
specific tasks are running.

There are some systems that target application monitoring. That however
differs from system monitoring in that the collection rate has to be much
higher, resulting in the volume of collected data to be greatly increased. A
common feature of application specific monitoring systems, is that they are
intended for monitoring specific jobs, thus the execution time is the same as the
job it is monitoring, and much of the analysis is done afterwards [15].

2.2 Analysis
There are some that tries to automate the process of fault detection on a
distributed system[16, 17]. They employ a combination of statistics and super-
vised detection to automate the process of detecting faults on a distributed
system (Chen et al. introduces a concept of using canonical correlation anal-
ysis (cca) to decide whether variables should be monitored supervised or
unsupervised[16]).

Automating this process is of course a logical step, as the size of the monitored
systems increase, the frequency of the collections, and the amount of collected
data increases, the analysis of this data becomes a big data problem in and of
itself. As such is impossible for any one person to do alone, especially for real
time analysis.

Tang et al.[17] combines the use of an analysis of historical alerts and incidents,
with a rule-based learning algorithm with rule complexity criteria to generate
a set of predictive rules. Potential monitoring conditions are then built upon
these rules, if any degradation of the system’s vital signs (defined by acceptable
thresholds ormonitoring conditions), the issue is flagged and sent to supporting
personnel. The resolution of this issue is then used to update the system’s
conditions. Thus creating a system that becomes more accurate, regarding
which issues are flagged and sent to supporting personnel, as time passes.

2.3 Related Work
Ganglia’s[1] multicast communication between monitoring-agents withing a
cluster, gives every agent the metrics for the entire cluster, thus allowing the
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server to get all the metrics by polling one agent. AutoMon instead has each
monitoring-agent push data directly to the server. Another difference is in the
server-part, where ganglia visualizes the data to a user. AutoMon does analysis
on the data instead, and gives a warning to the user if some abnormality is
detected.

The monitoring framework by Zhan et al.[11] uses collectors, called end hosts,
that gather metrics and send feedback messages to a coordinator, that then
forwards the data to a feedback server. This is similar to AutoMon except for
the additional step of the coordinator. A monitoring platform communicates
with these feedback servers periodically to retrieve available aggregated mea-
surement data, for analysis and visualizing in real-time. This is something
the server takes care of in AutoMon. Both systems uses hypertext transfer
protocol (http) for all communication. Messages in the framework are en-
coded by administrator needs, while AutoMon uses javascript object notation
(json).

2.3.1 Hierarchies
Astrolabe[12] use a peer-to-peer protocol, with a zone hierarchy structure. A
zone is either a host or a set of non-overlapping zones, thus creating a tree-like
structure. Each node has an agent that collects information, and also act as
a web server, these agents learn about other zones using a gossip protocol.
Using this structure, summaries of the metrics are created using SQL queries to
get on-the-fly aggregation. This way it is possible to gather, disseminate, and
aggregate information about the zones.

Panopticon[13] like Astrolabe[12] use a hierarchy of agents, that run as daemons
on each node, in a tree-like structure. These agents observe and record host
system metrics, and provide them to other nodes on request. This way the
information is propagated up the tree, recording the route within the data.
Thus the root node receives all the data, while only having to communicate
with a few child nodes. When running experiments of Panopticon, they used a
similar small set of metrics as ganglia[1]. Between the agents a client-server
binary protocol is used. While a web service interface with REST and JSON is
used between the root node and the storage and retrieval system. They use a
5 minute time granularity, which is the same as many other systems.

Both of these differ greatly from AutoMon, especially in that the use a hierar-
chical tree-like structure, and aggregate data upwards to a root node, instead
of direct communication between client and server. And they also have slow
collection, and only collect host metrics, so that messages between nodes are
very small in size. Because of their dedication to scalability, both claiming to be
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able to handle tens of thousands (possibly up to millions) of nodes simultane-
ously, thus they have to give up on fine time granularity and complete system
metric collection that AutoMon has.





3
Architecture and Design
AutoMon is being developed to run under Linux os, so whenever ’operating
system’ is mentioned, this refers to a Linux-kernel os. AutoMon is a distributed
monitoring system, composed of collector agents running on each node of a
cluster, these send messages to the analysis-engine server that processes the
information, see figure 3.1.

Monitoring Agent. . . . . . . . . . . . . . . . . . . . .
Collect from procfs
Calculate host usage
JSON encode data
Send JSON data
Wait

Monitoring Agent

Monitoring Agent

. . .

Aggregator. . . . . . . . . . . . . . .
For each set of received data:
Parse JSON
Place in memory

Server

Analyser. . . . . . . . . . . .
Calculate cluster averages
Check for outliers
Check all processes for high
CPU usage and if Zombiefied

Storage. . . . . . . . .
Store to file at regular intervals
Store to file on shutdown

Figure 3.1: AutoMon architecture
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3.1 Collector
The AutoMon collector is the component that runs on every node of the cluster.
The collector runs on an interval timer, at the start of each of these intervals
it collects metrics about the os, and every process running on the os. All the
collected data is then converted to json before being sent to the analysis-
engine, in a push-based fashion. The collector then waits until the start of the
next timer interval.

3.1.1 Metric Collection
All the data AutoMon collects is from procfs. More specifically the os met-
rics is gathered from /proc/stat, /proc/net/dev, and /proc/meminfo, and for
each process(PID) currently executing, it is gathered from /proc/PID/stat,
/proc/PID/statm, and /proc/PID/io.

As small calculations are done on the data, not all cpu fields are sent. Instead,
for each cpu entry in /proc/stat (this will be whole cpu plus every cpu thread,
see listing 3.1), the fields are added to make the total ticks, and using this the
usage percentage since last collection is calculated. So for each cpu field the
usage percentage is sent, in addition to the idle and total cpu ticks.

Listing 3.1: Example /proc/stat file excerpt

cpu 25220 1 3887 3316908 2450 0 5 0 0 0
cpu0 5057 0 1250 410265 1319 0 1 0 0 0
cpu1 2236 0 258 415867 315 0 1 0 0 0
cpu2 6150 0 938 411482 252 0 2 0 0 0
cpu3 916 0 161 417502 184 0 1 0 0 0
cpu4 3962 0 516 413836 220 0 0 0 0 0
cpu5 1193 0 152 417260 43 0 0 0 0 0
cpu6 4982 0 422 413052 69 0 0 0 0 0
cpu7 722 0 188 417639 45 0 0 0 0 0

From the /proc/net/dev file, 1st and 9th number fields are collected, see listing
3.2, these are for total bytes received and sent respectively. These values are
stored in the collector, and are used for calculating the total network traffic in
kilobyte (kb) since the last collection time. This total network traffic is what
is sent to the analysis-engine.
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Listing 3.2: Example /proc/net/dev file excerpt

eth0 : 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0

lo : 43412 460 0 0 0 0 0 0 43412 460 0 0 0
0 0 0

The memory metrics collected is the MemTotal, MemFree, Buffers, and Cached
fields from the /proc/meminfo file, see listing 3.3. TheMemTotal field is of course
the total memory available to the system, the three other fields combined are
what is free memory (possible to allocate). Using these metrics the memory
usage percentage is calculated, and it is only this calculated metric that is sent
to the analysis-engine.

Listing 3.3: Example /proc/meminfo file excerpt

MemTotal : 16348432 kB
MemFree : 13830324 kB
MemAvailable : 14623324 kB
Bu f f e r s : 69932 kB
Cached : 1155036 kB
SwapCached : 0 kB
Ac t i ve : 1490204 kB
Ina c t i v e : 752820 kB

3.1.2 Data Transfer
AutoMon uses a push-based data transfer for sending the collection metrics
from the collectors to the server, this is useful because it ensures that collected
data is always ready when the transfer happens. The metric data sent to the
analysis-engine is encoded as json.

3.2 Analysis-Engine
The AutoMon analysis-engine acts as the system server, in that this is what
aggregates, stores, and analyses the data received from the clients. Any con-
nections to this server is done over http, through a representational state
transfer (rest)ful application programming interface (api), with metric data
being encoded as json.
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3.2.1 Interface
The collectors use a restful http api to send the data to the analysis-engine.
This includes the name of the host that sent it, see listing 3.4.

Listing 3.4: HTTP header for data transfer

POST /raw/HOSTNAME HTTP/1.1
Content−Length : X

MESSAGE−BODY

By using http as the connections between the collectors and the analysis-
engine, there is no disruption to the rest of the system if one or more collectors
were to fail.

This also makes adding and removing nodes from the system during runtime
very easy, as it only depends on a client sending data to the server, there is no
dependency on collectors sending any data.

3.2.2 Aggregation and Storage
The received json data is first parsed, then it is filtered and stored in a memory
structure, using a hierarchical formation split on nodes and processes, see figure
3.2.

This whole structure is at regular intervals, and at shutdown, stored to a file
on disk. Regularly saving the structure to disk makes sure that not all data is
lost, if for example the server crashes, and thus is unable to write the contents
to disk.

The filtering is done for each data point, the received data is compared to the
last recorded value from the same node. The newly received data is only stored
if there is no previous data, or if it is different from the preceding data point,
all data is stored with a time stamp, that way it is possible to see how long a
value remained unchanged.

The time stamp used when storing the data is generated by the server, so it
corresponds with the time the data was received, not the time it was collected,
this prevents server error caused by differing times on the cluster nodes.
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Figure 3.2: Memory structure

3.2.3 Analysis
When analyzing data, the first thing done is to calculate the cluster averages
for each node, using this information along with each nodes metrics, it is
determined if any nodes have values that differ more than a specific amount
from the average. The nodes that fall into this category are reported to the
user.

For each process, the state is checked, to see if any has become a zombie. The
cpu usage is also checked, and logged if it exceeds a specific amount.





4
Implementation
AutoMon is implemented in C to run under Linux.
Each node in the test cluster runs a 64-bit version of the Ubuntu 14.04 LTS with
Linux kernel 3.13.

The implementation of the prototype was done in a circular fashion. Based
on the idea the architecture was decided, and then each part of the system
were designed and implemented, then experiments were run to test that it was
working, and performing as expected.

Each time a problem was detected, f.ex. not working as it should, or having
very bad performance, the process was reiterated, improving the design and
implementation, before redoing the experiments, see figure 4.1.

4.1 Collector
When gathering data from the procfs, there is always the chance that user
permission for the program is not set correctly, this is especially the case for the
process input/output (io) file for system processes. To prevent this giving an
error every time a collection occurs, it stores whether or not it has permission
to access the file, and opens the file accordingly. This prevents the error log
from overflowing with the same messages, making it difficult to see other, more
serious errors. This permission problem mostly occurs with system processes,
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Design

Imple-
ment

Exper-
iment

Figure 4.1: Implementation Routine

as the required permissions for reading the /proc/PID/io file, is higher for these
processes.

To decrease amount of data sent each time, the complete data for each process
is only sent once, for all following collected metrics, the fields known to be
unchanged, such as command line arguments are not sent to the server.

4.2 Analysis-Engine
4.2.1 Data Transfer
For the data transfer, the first attempt was made using binary, and not json to
encode the data. The binary encoded messages was a lot smaller in size than
the json equivalent, the size advantage was however lost when a bug caused
random data to become corrupt, and being binary it was very difficult to debug.
Altering this to using json made debugging easier, and the bug was quickly
corrected. Because of being easier to debug if something were to happen, this
encoding method was used onwards in the project.

For the json parsing server side, a third party library called JSMN[18] was
used. JSMN proved to be very lightweight, both in the size of the code base,
and in its very low resource consumption.
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4.2.2 Storage
As databases are generally optimized for reads, the performance for consecutive
writesmay suffer, especially with large amounts of data, therefore it was decided
to keep all the data needed for the analysis in memory.





5
Experiments
5.1 Experimental Setup
5.1.1 Platform
Experiments were run on the Tromsø Display Wall Cluster. This cluster consists
of 29 nodes connected via a full-duplex gigabit Ethernet. The hardware of each
node consists of:

• Intel Xeon W3550 quad core cpu at 3.07 GHz with hyper-threading
(total of 8 threads).

• 12 GB of random-access memory (ram).

• MSI GeForce GTX 560Ti graphics card with 1 GB GDDR5 video memory
and PhysX PCI-Express 2.0.

The cluster is organized in such a way that one of the nodes functions as a
remote entry point for the cluster. This node, referred to as the root node, has
no display connected to it, while the remaining 28 nodes, referred to as tiles
or display nodes, each has a projector connected. The projectors each have a
resolution of 1024x768 pixels.

One other test machine was used, located on the same local area network
(lan) over a 5GHz wireless connection, the hardware consists of:
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• Intel Core i7-4720HQ quad core cpu at 2.6 GHz with hyper-threading (a
total of 8 threads).

• 16 GB or ram.

Running a 64-bit version of Linux Mint 17.2 Cinnamon with Linux kernel
3.16.

Experiments were run on the Tromsø Display Wall Cluster unless anything else
is specified.

5.2 Collector
The collectors cpu usage is determined from the raw data they collected from
several executions.

The cpu usage percentage was found by dividing the number of cpu ticks used
by each collector, by the total number of cpu ticks from their respective hosts
during the same time-frame, and multiplying this value by one hundred.

The memory usage is from the vsize field from the /proc/PID/stat file, this field
contains the total memory usage of the process in bytes.

5.2.1 Network
The network usage is found by collecting the number of bytes sent from the
collector each time it transfers data. This data is then used to find the average
message size that the collector sends to the server each time.

5.3 Analysis-Engine
5.3.1 Benchmarking
The clock function from the C library time.h was used to benchmark how the
resources was spent internally in the analysis-engine.

By subtracting the start time from the end time for each function call or code
segment, the amount of time used (in cpu ticks), is found for each of these
functions or segment.
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Using this data, it is discoveredwhich code segment uses the highest percentage
of time, compared to the total time for each loop.

5.3.2 Usage
The usages for the server is calculated in the same fashion as for the collectors,
using raw data gathered by a collector on the same cluster node.

Unlike with the collectors, the usages of the analysis-engine is expected to rise
with increasing amounts of collectors connected, and as the runtime duration
increases. Thus the measurements are done for several executions, with differ-
ing amounts of connected collectors over a limited time (5 minutes). And for
with the whole cluster with a longer duration (330 minutes).

5.3.3 Storage
To find the storage space needed, the time and size of each of the stored files
are collected for the long duration execution. Then the total storage usage
over time is calculated by adding the sizes of the files for each of the storage
times.

5.4 Analysis
To find out which data fields were useful, every gathered field was checked
to see if they changed, and the frequency of their change, on a longer cluster
execution.

5.5 Detection
To test the detection, several collectors and an analysis-engine was run on
the single test machine. Using a testing option on one of the collectors, in-
creasing the cpu load to 60 percent for that process, in addition to injecting
false host data to the server (99 percent CPU usage, and 70 percent memory
usage).





6
Results
6.1 Collector
The results from every execution showed that the collector usage remained
virtually unchanged over time, therefore the average was calculated for the
collector metrics.

The CPU usage was on average 0.785 percent, this was very stable across the
collectors, none showing above 1 percent CPU usage. Average memory usage
during these experiments was 2.8 MB, seemingly remaining stable at that
usage.

There were only negligible variations in the measurements from the collectors,
most differences being a few bytes of memory, or a few cpu ticks between.

Given the design of the collector the stable, unchanging usage over time is
expected, as the workload, and needed memory allocation, remains the same,
only changing if the number of processes on the host change.

6.1.1 Network
The average message size from the collector to the server is 126.2 kb, this
remains stable as expected, because as with the memory usage, the message
size only really changes if the number of processes change.
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This is quite a lot larger than the 8 kbmessages used in some systems, but they
collect a very limited set of metrics, in addition to having a slower heartbeat
for the collection.

With AutoMon doing collections every second this would for the test cluster
amount up to 454.32 mb per hour from each collector. thus the network traffic
for the whole cluster would be 13.175 gigabyte (gb) per hour.

6.2 Analysis-Engine
6.2.1 Benchmarks
The code benchmarking for the analysis-engine showed that about 99 percent
of the time was spent in two different segments, the usage between these two
was split quite evenly.

The first of these was the JSMN[18] json parsing function, as it was reported
from benchmarks[?] that it was supposed to have a high parsing speed, it
was discovered that for large files this was only the case with PARENT_LINKS
enabled. After enabling this feature the time used by this function dropped by
roughly 93 percent.

The other time consuming segment, was the code that stores the parsed json
data into the memory structure. A recursive algorithm that caused a lot of
overhead was used for this task, changing it to a non-recursive algorithm
instead reduced the time-frame by roughly 75 percent.

The combined effort of these two optimizations reduced the total server usage
by about 82 percent.

6.2.2 Scalability
The resource usage of the analysis-engine is intrinsically connected with the
systems scalability. Collectors only communicate with the server, and they
themselves have a steady resource usage, resulting in the server being the
only system part affected by the increase in monitoring-agents. Therefore the
analysis-engines resource usage is considered as scalability results.
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Figure 6.1: CPU usage with differing amount of nodes.
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Figure 6.2: CPU usage, long term with 29 connected nodes.

CPU

The cpu usage for a limited execution time (2 minutes), using different amount
of nodes on each execution, see figure 6.1, shows that the increase in cpu usage
is quite linear based on the number of connected nodes.

When looking at the usage over time, for 29 connected monitoring-agents, the
usage is fairly low most of the time, with some peaks appearing, see figure 6.2,
with the average for this run being 3.728 percent cpu usage.

Memory

The memory usage for the 2 minute execution time, for differing amounts of
nodes, the usage shows a near linear increase in usage based on the amount of
connected nodes, see figure 6.3.
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Figure 6.3: Memory usage with differing amount of nodes.

Storage

The storage usage over the long term execution for the whole cluster, this
includes both memory and disk storage space used, see figure 6.4.

This shows that there is a linear increase in memory usage over time, with the
disk usage increasing exponentially over time. This is because the complete
memory structure is saved to disk each time, thereby increasing the used disk
space with the size of the memory usage at each save time.

6.3 Analysis
The data analysis showed that the data fields for each process that changed
most frequently was connected to:

• Cpu related fields, ticks used, processor used last, etc.

• Memory related fields, total memory size, stack pointer, etc.

• IO fields, especially bytes read, and bytes written fields.
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Figure 6.4: Storage Usage, long term with 29 connected nodes.

• Fault fields.

Fields connected with command line argument, start values, etc. never changed.
This is expected as they only say something about starting states for the process,
and these can’t change at later times.

6.4 Detection
By running the detection test, the injectedcpu andmemory values are detected
as abnormal from the cluster norm as expected, as these values are much higher
than the cluster averages.

The increase in collector cpu usage was however not detected as it should
be. This seems to be caused by a system bug, causing the cpu usage to be
incorrectly calculated.





7
Discussion
7.1 Collector
The results from the experiments shows that creating collectors for gathering
large amounts of system data from each node can be done without incurring
any significant resource usage.

There is however, as can be seen from the network usage, reasons to consider
doing more processing on the monitoring-agents,

One example would be to only send periodic reports to the server when the
node is considered stable, then increase the frequency of these reports when the
node is unstable in some way. This kind of frequency changing could however
have the disadvantage of stressing the system at times when it is already under
some stress (the reason the frequency changed), thus enhancing the existing
problem.

There are good reasons to increase the workload on the monitoring-agents, one
being a decrease in network traffic, this is especially important if the system is
expected to work on some wan, but as some tasks use a lot of network traffic
in a cluster, having the monitoring system use a high degree of network traffic
can cause problems it was meant to detect.

Another reason is that sending pre-processed data can lessen the cpu and
memory usage of the server, thus it can handle more clients with the same
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resources, giving the system a better scalability.

7.2 Design Choices
Using push-based communication between the collectors and server also comes
with a disadvantage, and that is that the server becomes the system bottleneck.
Seeing as the increases in resource usage is fairly linear, the amount of nodes a
server can handle could, at least to some extent, be estimated. And if it is likely
that the amount of nodes will exceed the capacity of a server, the system could
be expanded with the possibility of adding additional servers to the system.
Doing such an expansion would also give the possibility of redundancy by
sending data to multiple server each time.

The decision to use http was because of the ease of use, combined with the
ability to add and remove nodes easily. message passing interface (mpi) for
example have the problem that it may crash the entire system if one collector
were to fail, and adding and removing nodes is difficult during runtime.

The lack of cleanup in the systemmemory structure was because of the intent to
add a database system for storage. This way the most resent metrics could stay
in memory for the calculations, and then written to disk when it is less likely
to be of value to the necessary calculations. Thus maintaining a lower memory
footprint, and having the option to write to the database in bulk instead of
many smaller writes. This addition was not possible to achieve because of time
constraints. The usage of the current memory and file setup was deemed good
enough for this prototype, as the intent was to see if such a large amount could
be gathered, and analyzed. This storage choice did however make early data
analysis more difficult to achieve.

7.3 Development
There was also an idea to collect system power usage as part of the metrics using
running average power limit (rapl), this proved impossible for the prototype,
as it is a hardware option, that only became available on processor models
newer than those in the test cluster. With this option being mainly intended
for servers, it is not available on the separate test machine either, as this is a
consumer grade cpu.

The decision was first made to use binary encoding for the messages, this
uses less space and therefore less network bandwidth. The problem with this
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approach came when because of a system bug, the data became corrupted.
This was difficult to detect and debug, and when not finding the problem the
encoding was switched to json as this is human readable, with the hope that
it would help in the debugging process.

Using json did help get enough debug data to be able to find and fix the specific
bug that caused the error, being a helpful debug tool for the implementation
of the prototype it was used for the rest of the project.

AutoMon first collected and kept all data from the monitoring-agents, this used
an enormous amount of storage space, a different design with only storing
changed data was implemented and tested, and this approach reduced stored
data to approximately one hundredth of the previous usage.

7.4 Metric Analysis
The analysis of which metrics are needed to reliably determine if a process or
system is executing normally is complex, there are a lot of variables that come
into play, such as the task the processes are expected to perform.

It becomes clear that the metrics with high frequency updates, are important
ways to monitor the process, but these are not necessarily the only important
metrics. For metric analysis, the usage of statistics, or machine learning to
define the metrics that can be associated with abnormal behavior seems like a
very good place to start, this would over time also improve the detection rate
of the system.

To improve the reliability of such a system, the addition of agents looking
more closely at some processes (f.ex. those known to have a high resource
usage), could improve the reliability of the detection, as it is more likely that
a resource heavy process is the cause, than some system daemon checking on
the system.

7.5 Observations
The observed cpu peaks for the experiment with the long execution time, could
be connected with the storing of the memory structure to disk, as each of these
peaks seems to be happening at times where such storage is scheduled.

Memory usage is as seen something that will always increase with the current
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system design, and storing to disk being as it is, the used disk space will always
be exponential, this is of course something that would be different if a database
was used in conjunction with some form of memory cleanup instead.

The observed failure of the system to detect high cpu usage in a process seems
to be because of a bug in the calculation of the cpu usage, caused by the
system cpu ticks being reported as negative, this was unfortunately not fixed
because of time constraints.

7.6 System
AutoMon design choice of having a single server, and thereby a single point
of failure does mean a limit to its inherent scalability. There are however
possibilities of adding more servers to the system architecture, and by doing
so creating a more robust system.

Having a http api makes it very easy to connect new clients to the system,
and by having a server the collectors connect directly to, the amount of data
transmitted between nodes, remains low. If using a hierarchy model with
this large amount of collected metrics, it would quite possibly generate huge
amounts of network traffic in the cluster network.

The current AutoMon storage system is as already mentioned, this was a
solution that was implemented based on time constraints for the prototype.
The way it stores data now is ineffective, as timestamps are stored with each
metric value, wasting storage space, and is string based, costing resources to
have it parsed if one wanted to find data for a specific time. Some more efficient
manner to store this data, both space and resource wise, would be very helpful
for improving the metric analysis.

Having the client collect all data and then sending it in bulk to the server gives
the system much data to work through, and then nothing, this evens out a
little bit with multiple clients, but it is still a problem. It would quite possibly
be better if each client, collected and sent the data one process at a time as a
stream, to even the load of both the client and the server.

7.7 Lessons Learned
One of the things I have learned is the complexity of working on distributed
systems, even if an idea seems simple to design and implement there are a
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lot of potential pitfalls that should be considered, one example is the system
communication, this is somewhere a lot of potential problems can occur, and
is somewhere extra care should be given during the design.

The fact that all objects that one would write to or read from in unix-based
systems are considered to be a file descriptor is very handy, they are however
very important to keep track of, as a problem was encountered when the system
crashed because of trying to open a file, because the maximum number of file
descriptors was reached from not closing the network sockets correctly.





8
Conclusion
A cluster monitoring system that frequently collects large amounts of data,
and does rudimentary analysis on this data, that in addition has a low system
resource requirement was developed.

Monitoring agents with a low resource usage, that collect data and sends it to a
server is especially easy to achieve. The more difficult part of the system design
is how to achieve storage and analysis of the data while keeping the usage at a
reasonable level. Especially the storage space needed for the collected data for
a cluster quickly increase with a high amount of collected metrics, thus there
is a need to compress this data without losing anything vital, and storing it
both for runtime analysis, but also for the possibility of later analysis.

The systems ability to detect faults is not completed and is currently only rudi-
mentary, the analysis of which metrics is needed to detect faults are complex,
and has a high degree of uncertainty. This is due to the very large amount of
data collected, and the high degree of variation in metrics between processes.
It thus becomes a big data problem, and it is necessary to automate this to
some degree, for long term usage metrics to be able to define the required data
to detect faults in the system.

For developing distributed systems it is invaluable to see what design choices
others have made, and why they made their decision. Using this knowledge
on how a system could be, is a good starting point for designing a new system
based on the needs. As some design decisions are difficult to change after
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starting implementing, it is a good idea to define the possible problems with
the current design before starting implementation.

For systems that collect or process large amounts of data, it is vital to begin
storing this data, and do analysis on it as early as possible, therefore it should
immediately by stored in a fashion were it can easily be worked upon.



9
Future Work
As of now the analysis is not able to detect system faults, an improvement in this
regard is needed. The completion of this task relies on a more defined normality
of system processes, and to achieve this the storage should be finished so that
long term data can be collected and analyzed.

There is also the need for a way to efficiently giving a notice to the user when
something is detected, a web service for the system could be one way to do it,
as this would be available as long as the user has access to the network.

Other things of interest would be to see if other methods of collecting metrics
is better suited for gathering these large amounts of system data, and if there
is any additional metrics that can be gathered.

In addition to doing more experimentation on increasing the amount of com-
putations the collectors are doing, and decreasing the amount of data sent to
the server.
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A
System Usage
To start the system the files must first be extracted before running make.

This will create the system binaries in the bin folder.

Run automon_ad [-dpD] to start the server
-d to set debug
-p to set server portnumber
-D to change storage directory

Then run automon_cd [-adlpD] to start a client
-a to set server address
-d to set debug
-p to set server port number
-D to set storage directory

running ’run_automon tests’ starts a series of scalability tests on the Tromsø
Display Wall cluster.
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B
Glossary
middleware is computer software that provides services to software applica-

tions beyond those available from the operating system.

multicast is group communication where information is addressed to a group
of destination computers simultaneously (one-to-many or many-to-many
distribution).

node is a single computer in a distributed systems cluster.

proc filesystem is a special filesystem in Unix-like operating systems that
presents information about processes, and other system information in a
hierarchical file-like structure, providing a more convenient and standard-
ized method for dynamically accessing process data held in the kernel
than traditional tracing methods or direct access to kernel memory.

runtime is the time during which a program is running (executing).

ticks measurement for the amount of time for which a CPU was used for
processing instructions.

zombie is a process that has completed execution but still has an entry in
the process table, this occurs for child processes when they wait for the
parent to read their exit status.
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