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Abstract

Background: The understanding of changes in temporal processes related to human carcinogenesis is limited. One
approach for prospective functional genomic studies is to compile trajectories of differential expression of genes, based
on measurements from many case-control pairs. We propose a new statistical method that does not assume any
parametric shape for the gene trajectories.

Methods: The trajectory of a gene is defined as the curve representing the changes in gene expression levels in
the blood as a function of time to cancer diagnosis. In a nested case–control design it consists of differences in
gene expression levels between cases and controls. Genes can be grouped into curve groups, each curve group
corresponding to genes with a similar development over time. The proposed new statistical approach is based
on a set of hypothesis testing that can determine whether or not there is development in gene expression levels
over time, and whether this development varies among different strata. Curve group analysis may reveal significant
differences in gene expression levels over time among the different strata considered. This new method was applied as
a “proof of concept” to breast cancer in the Norwegian Women and Cancer (NOWAC) postgenome cohort, using
blood samples collected prospectively that were specifically preserved for transcriptomic analyses (PAX tube). Cohort
members diagnosed with invasive breast cancer through 2009 were identified through linkage to the Cancer Registry
of Norway, and for each case a random control from the postgenome cohort was also selected, matched by birth year
and time of blood sampling, to create a case-control pair. After exclusions, 441 case-control pairs were available for
analyses, in which we considered strata of lymph node status at time of diagnosis and time of diagnosis with respect
to breast cancer screening visits.

Results: The development of gene expression levels in the NOWAC postgenome cohort varied in the last years before
breast cancer diagnosis, and this development differed by lymph node status and participation in the Norwegian Breast
Cancer Screening Program. The differences among the investigated strata appeared larger in the year before breast
cancer diagnosis compared to earlier years.
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Conclusions: This approach shows good properties in term of statistical power and type 1 error under minimal
assumptions. When applied to a real data set it was able to discriminate between groups of genes with non-linear
similar patterns before diagnosis.

Keywords: Transcriptomics, Gene expression, NOWAC postgenome cohort, Breast cancer, Carcinogenesis, Metastasis,
Mammographic screening, Blood, Systems epidemiology

Background
The assumption of systems epidemiology [1] is that func-
tional aspects of the human carcinogenic process can be
detected in the blood as gene expression patterns before
cancer diagnosis, either as active signals or as passive in-
formation. A recent editorial in Nature Medicine [2]
stressed that if we are to understand the carcinogenic
process, research needs to shift from mouse models to a
“human model”. However, the peculiarities and time scale
of cancer development in humans impose to rely essential
on observational studies, The prospective design is clearly
the best design if one wants to incorporate the time aspect
of carcinogenesis and changing exposures. However, prac-
tical considerations frequently force us to use a nested
case-control design within the cohort, which keeps part of
the advantage of the previous design. Analyses of somatic
mutations in cancer genome studies have revealed the
huge diversity of mutational processes that occurs during
carcinogenesis [3]. One explanation for this observation
could be that multiple mutational processes operate differ-
ently within biological processes depending on subtypes of
cancer, thus giving a jumbled composite signature. In
order to avoid jumbled composite signatures, functional
analyses in observational studies must be stratified by im-
portant clinical information like lymph node status and
exposures to potential carcinogens.
One approach for prospective functional genomic stud-

ies is to compile trajectories based on measurements from
many case-control pairs in order to study the carcinogenic
process [4]. The trajectory of a gene is defined as the
curve showing the changes in gene expression levels in
the blood as a function of time to cancer diagnosis, and
consists in a nested case-control design of the differences
in gene expression levels between cases and controls.
Our overall aim was to develop statistical methods for

exploring the changes in gene expression in years before
diagnosis as part of a processual approach [5], not to es-
timate risk.
There is no prior knowledge about the form of the tra-

jectory of gene expression for any of the thousands of
genes. This lack of a priori information normally demands
an agnostic approach [6], i.e., considering all genes as
equal and adjusting for multiple testing using a false dis-
covery rate [7]. However, here we present a new statistical
method to study trajectories. We applied this new method

in a prospective analysis of women with breast cancer
in the Norwegian Women and Cancer (NOWAC)
postgenome cohort [8]. The trajectories were analyzed
within strata of different biological stages in carcino-
genesis of breast cancer within the screening or out-
side as clinical cancer, but without identifying single
genes or conducting pathway analyses.

Methods
The new statistical approach are described below. As a
“proof of concept” we carried through an analysis in a
nested case-control design in the Norwegian Women
and Cancer postgenome cohort. For each incident
breast cancer case identified through linkage to the
Norwegian Cancer Registry a control was drawn from
blood samples collected at the same time and year of
birth. This ensured the same storage time and no effect
of age between cases and controls. The pairs of cases
and controls were kept together throughout all labora-
tory procedures in order to reduce batch effects. For
more details see later under Epidemiological design and
study population.

Statistical methods
The new statistical method for curve group analyses is
a statistical method based on a set of hypothesis test-
ing that we developed in order to detect changes in
gene expression levels over time, and whether these
changes, if they exist, differ among strata. This
method is able to identify small changes that vary
slowly over time and/or among strata, by using a large
number of genes in each analysis. In order to define
test statistics that measure the development of differ-
ential gene expression levels over time and differences
among strata, we have introduced the concept of
curve groups, where each curve group consists of
genes that have a similar development over time, i.e.,
similar differential trajectories. These methods are de-
scribed in detail below:
Let Xg,p be the log2-expression difference for gene g

and the matched case-control pair p. Each case-control
pair belongs to a stratum s and a time period t. We
wanted to test whether Xg,p is independent of the time
period, and whether there is no difference among the
strata, i.e., Xg,p is independent of stratum. Figure 1 gives
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an overview of the different tests and the variables used
in these tests, the strata used in the analyses and the
table and figures where the results are shown.
In the illustrative application, analyses were either con-

ducted within strata of lymph node status at breast cancer
diagnosis (positive or ‘with spread’ and negative or ‘with-
out spread’) or with respect to breast cancer screening
visits (detection categories); cancers diagnosed during
screening visits were considered ‘screen-detected cancers’;
cancers diagnosed within 2 years of last screening visit
were considered ‘interval cancers’; and cancers diagnosed
clinically in women that did not attend screening or had
not attended screening for more than 2 years were consid-
ered ‘clinical cancers’ (Table 1).

Hypothesis tests for development over time in each stratum
For each stratum we tested whether Xg,p is independ-
ent of the time period in a global test since we are in-
terested in weak signals from many genes, not signal
that may only be identified in a single gene. To define

a test statistic that measures development over time
we used curve groups. The follow-up time was divided
into three time periods t = 1, 2, 3 where t = 1 is 0-1
year before cancer diagnosis, t = 2 is 1-2 years before
cancer diagnosis, and t = 3 is 3-5 years before cancer
diagnosis.

� For a given stratum s, a gene g can belong to zero or
one of six curve groups based on the average (mean)
of the data over all case-control pairs in the stratum
in each of the three time periods. These averages were
denoted X�g;3;s, X

�
g;2;s and X�g;1;s, respectively, and the

curve groups are defined based on the ordering of
these three averages. In order to search for curves
with changes over time, we defined six potential curve
groups that changed from time period to time period,
called «123, 132, 213, 231, 312, and 321», respectively.
The three numbers that denote each curve group
represent the level of the average gene expression of
time period 3 (left number), the level of the average

Fig. 1 Overview of hypothesis tests, variables, strata, tables and figures. a Illustration of the relationship between the data Xg,p, the different hypothesis
tests, the variables used in these tests, and which tables and figures that show the results from the tests. b Overview of the different strata
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gene expression of time period 2 (middle number)
and the level of the average gene expression of time
period 1 (right number). For example, if X�g;3;s < X�g;2;s
< X�g;1;s, and these three averages are not too similar
(to be defined later), gene g belong to curve group
‘123’ indicating an increasing gene expression level
over time when approaching the time of diagnosis,
with gene expression level 1 in time period 3, gene
expression level 2 in time period 2 and gene expression
level 3 in time period 1 (closest to the time of
diagnosis). If the three averages are too similar, gene

g does not belong to any curve group. See Fig. 2 for
an illustration of the concept of curve groups.

� Each curve group included only genes with a
significant change in expression level over time.
This was done by testing whether the smallest and
largest values of X�g;3;s, X

�
g;2;s and X�g;1;s were different

using a two-sample t-test (assuming unequal variances).
Let pg,c be the p-value of this test. Depending on the
statistical question at hand, we defined two alternative
criteria for concluding that a gene g belongs to the
curve group c:

Table 1 Number of case-control pairs in each stratum and time period with gene expression data Xg,p
Strata Year before diagnosis (time period)

Detection category Lymph node status 5-3 (3) 2 (2) 1 (1)

Screen-detected cancersa With spread 41 11 6

Without spread 118 42 43

Interval cancersb With spread 28 9 6

Without spread 30 15 10

Clinical cancersc With spread 11 8 10

Without spread 28 12 13
aDiagnosed at a screening visit
bDiagnosed within 2 years of a screening visit
cDiagnosed clinically and did not attend the screening program or diagnosed clinically more than 2 years after a screening visit

Fig. 2 Examples of curve groups according to time to diagnosis. Example of two different curve groups: curve group ‘123’ (upper panel, gene
expression values increasing with time) and curve group‘132’ (lower panel, highest gene expression value in the middle time period). In the left
panels curves with the gene expression differences Xg,p for 20 genes from the given curve group are plotted. For illustrational purposes, the curves have
been estimated from the data using splines. In the middle panels the data Xg,p for one of the 20 genes are shown with the corresponding
spline-estimated curve. The points represent the differences in gene expression Xg,p for each case-control pair. The mean value in each time
period, �X g;3;s , �X g;2;s and �X g;1;s , is shown in red. The right panels are similar to the middle panels except that the data points that are plotted
are the mean values computed over the 20 genes in the left panel
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� Inclusion criterion 1: Gene g belongs to curve group
c if pg,c is below a predefined limit α.

� Inclusion criterion 2: Gene g belongs to curve group
c if gene g is among the M genes with lowest pg,c.
See more in the next section.

To test for the development of gene expression levels
over time, for each stratum we counted the number of
genes that belong to the curve group using inclusion cri-
terion 1. We then performed seven hypothesis tests: one
global test and one for each of the six curve groups in
each stratum. In the global test the test statistic is the
total number of genes that belong to any one of the six
curve groups, while in the test for individual curve
groups the test statistic is the number of genes that be-
long to the curve group in question. If the conclusion of
the hypothesis test was that there were more genes in
the curve groups than what was expected by chance, we
concluded that there was a significant development over
time for some of these genes.

Hypothesis test for comparing two strata
Let us consider in our illustrative example ytwo strata like
for instance “with spread” and “without spread” at the
time of diagnosis. We wanted to test whether there were
differences in gene expression levels between these two
strata, using information from several genes. For each
curve group c, stratum s and case-control pair p, we de-
fined a curve group variable Zc,s,p as follows: we selected
the genes that belonged to curve group c for stratum s
using inclusion criterion 2 with M= 100. Let Gc,s denote
this set of genes. The curve group variable Zc,s,p for case-
control pair p was then computed as the average value of
the data Xg,p over the genes in Gc,s:

Zc;s;p ¼ 1
100

X

g∈Gc;s

Xg;p:

We could then test whether the variables Zc,s,p were dif-
ferent between the two strata for case-control pairs p either
for all time periods combined or for each time period sep-
arately. Note that the genes were selected based on data
from stratum s, but the variable may have been calculated
for case-control pairs p in any stratum. For example, as-
sume that we wanted to test if there was a difference in
gene expression level between case-control pairs in the
stratum with spread versus the stratum without spread for
curve group 123. Assume that the set of 100 genes G123,with

spread was selected using criterion 2 in the stratum with
spread. We would then have calculated Z123,with spread,p for
all case-control pairs p in the stratum with spread and
Z123,with spread,p’ for p’ in the stratum without spread, and
tested if the difference was larger than expected by chance.
Note that testing the strata with spread versus without

spread may also be performed with the set of genes
G123,without spread selected from the without spread stratum
or from any of the other defined strata.

An alternative statistic for comparing two strata
The test described above focuses on genes that belong to
the same curve group. We also constructed a hypothesis
test to compare the difference in development over time
between two strata that did not depend on curve groups.
This test statistic was constructed by first computing the
two-sample t-statistic Tg,t and comparing the difference
in gene expression levels between the two strata for each
gene g and time period t. We defined Fg ¼

P
twt jTg;t j as

the weighted sum of the absolute values of the t-
statistics for gene g with weight wt. Furthermore, the test

statistic was defined as Lk ¼
X

g∈Gk
Fg , where Gk is the

set of genes with the k largest Fg values, i.e. Lk is the
sum of the k largest Fg values. We observe that Lk is a
weighted sum of t-statistics. We used equal weights wt =
1/3 for each time period. Alternatively, the weights could
be selected either as proportional to the number of case-
control pairs in each time period or with larger values
for the case-control pairs in a time period closer to the
time of diagnosis. We then performed a global test in-
cluding all three time periods, and separate tests for
each time period, in which only data corresponding to
each time period were included. This test performed
very well on several simulated datasets with a different
development over time or different gene expression
levels for some genes for two strata. For details see
Holden [9].

Computing p-values – permutation tests
We computed p-values in all the tests described above
by estimating the null distribution for the statistic of
the hypothesis test by randomizing the data. In the
randomization, we preserve critical properties of the
genes (level of expression, complex correlation be-
tween genes, etc.) and randomize only what’s con-
nected to the evolution over time and stratum. This
randomization defines the null-distribution for the test
statistic that is used when finding the p-value. In hy-
pothesis tests for development over time in a single
stratum, the null model was estimated by randomizing
case-control pairs for that stratum between time pe-
riods, while in the hypothesis tests comparing two
strata, the null model was estimated by randomizing
case-control pairs between the two strata for each time
period. Note that these randomization algorithms
maintained the correlation structure between the genes
for each case-control pair. Also note that the curve
groups were redefined before a sample of the null
model was computed from a randomized dataset. The
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p-value of the test was set to Kþ1
Nþ1, where N is the total

number of randomizations and K is the number of ran-
domizations out of N with a more extreme statistic
than the statistic for the real data [10]. In the results
presented we used N = 1000.

Illustrative example: epidemiological design and study
population
The NOWAC study is a nation-wide population-based
cancer study that was initiated in 1991 [11], and the post-
genome cohort has been described previously in detail [8].
Briefly, random samples of women were drawn from the
Central Person Register by Statistics Norway based on their
unique national birth number. Selected women were sent
an invitation that included information on blood sample
collection and an 8-page questionnaire, on which their na-
tional birth number was replaced by a serial number. The
linkage file for the national birth number and the serial
number was kept at Statistics Norway. The questionnaires
were returned to the Department of Community Medicine,
University of Tromsø. Non-responders were mailed one or
two reminders. Of all invited women, 97.2 % agreed to give
a blood sample. These women were sent a blood sampling
kit including another 2-page questionnaire and one
PAXgene tube (PreAnalytiX GmbH, Hembrechtikon,
Switzerland) with a buffer or stabilization agent for mRNA
in order to improve the quality of gene expression for
genome-wide microarray analyses. These kits were mailed
in batches of 500, with one reminder sent after 4–6 weeks.
Blood was primarily drawn at family doctors’ offices and
the doctors then sent the samples as biological material
overnight to Tromsø, where they were immediately frozen.
Between 2003 and 2006, 48 692 blood samples were in-
cluded in the NOWAC postgenome biobank, and these
women make up the NOWAC postgenome cohort.
A nested case-control design was chosen in order to re-

duce batch effects in the laboratory and also for the high
cost of each analysis. For each case of breast cancer, a con-
trol from the same batch of 500 women in the postge-
nome cohort was assigned, matched by time of blood
sampling and year of birth, to be analyzed together with
the case.
The controls are used to establish the average (mean)

gene expression level in individuals without cancer and to
allow exposure-adjusted analyses to be performed. The ex-
pression level of a gene not involved in the carcinogenetic
process will exhibit variability dependent on day-to-day
changes in exposures such as environment and nutrition,
resulting in random fluctuations of the difference in gene
expression between case and matched control around a
population-average constant over time. Whereas, the dif-
ference in expression level of genes related to different
stages of the carcinogenetic process may vary over time in

a non-random way, thus exhibiting some non-random
trend. The changes in genes related to the carcinogenic
process could be complicated by other effects of exposures
to the carcinogens [4].

Follow-up and registry information
Cases of invasive breast cancer diagnosed in the NOWAC
postgenome cohort through the end of 2009 were identi-
fied through linkage to the Cancer Registry of Norway.
Altogether 637 cases of invasive breast cancer were re-
ported. After removing outliers and ineligible cases includ-
ing women with distant metastases, the study consisted of
441 case-control pairs. Information on lymph node status
at breast cancer diagnosis was based on the pTNM infor-
mation included in the Cancer Registry of Norway.
Detection categories were also obtained from the Cancer
Registry of Norway, which updates this data regularly
through linkage to the screening database kept by the
National Breast Cancer Screening Program [12].

Ethical issues
The NOWAC study was approved by the Norwegian
Data Inspectorate and the Regional Ethical Committee
of North Norway (REK). The linkages of the NOWAC
database to national registries such as the Cancer Regis-
try of Norway and registries on death and emigration
was approved by the Directorate of Health. The women
were informed about these linkages. Furthermore, the
collection and storing of human biological material was
approved by the REK in accordance with the Norwegian
Biobank Act. Women were informed in the letter of
introduction that the blood samples would be used for
gene expression analyses.

Laboratory procedures
Microarray data
All extraction and microarray services were provided by the
Genomics Core Facility, Norwegian University of Science
and Technology, Trondheim, Norway. To control for tech-
nical variability such as different batches of reagents and
kits, day-to-day variations, microarray production batches,
and effects related to different laboratory operators, each
case-control pair was kept together throughout all extrac-
tion, amplification, and hybridization procedures. RNA ex-
traction was performed using the PAXgene Blood miRNA
Isolation kit according to the manufacturer’s instruc-
tions. RNA quality and purity was assessed using the
NanoDrop ND 8000 spectrophotometer (ThermoFisher
Scientific; Wilmington, Delaware, USA) and Agilent bioa-
nalyzer (Agilent Technologies, Palo Alto, CA, USA), re-
spectively. RNA amplification was performed on 96 plates
using 300 ng of total RNA and the Illumina TotalPrep-
96 RNA Amplification Kit (Ambio, Inc., Austin, Texas,
USA). The amplification procedure consisted of
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reverse transcription with a T7 promotor and Array-
Script, followed by a second-strand synthesis. In vitro
transcription with T7 RNA polymerase using a biotin-
NTP mix produced biotinylated cRNA copies of each
mRNA in the sample. All case-control pairs were run
on either the IlluminaHumanAWG-6 version three ex-
pression bead or the HumanHT-12 version 4. Outliers
were excluded after visual examination of dendro-
grams, principal component analysis plots and density
plots. Individuals that were considered borderline out-
liers were excluded if their laboratory quality measures
where below given thresholds (RIN value <7, 260/280
ratio <2, 260/230 ratio <1.7, and 50 < RNA < 500).

Preprocessing of microarray data
The dataset was preprocessed as previously described
[13]. The dataset, which consisted of 441 case-control
pairs and 30 046 probes, was background corrected using
negative control probes and normalized on the original
scale using quantile normalization. Data from the two Illu-
mina chips (HumanWG-6 v3 and HumanHT-12 v4) were
combined on identical nucleotide universal identifiers
[14]. We retained probes present in at least 1 % of the in-
dividuals, i.e., in at least nine of the 882 individuals. If a
gene was represented with more than one probe only one
was selected, resulting in a dataset with 11 431 probes.
The probes were translated to genes using the Illumina-
HumanAll.db database [15]. Finally, the log2-differences of
the gene expression levels for each case-control pair were
computed and used in the statistical analyses. Additional
adjustments for possible batch effects were unnecessary as
the case-control pairs were kept together throughout the
laboratory processes.

Results
Hypothesis tests for development over time in each
stratum
A time trend was considered to be present if there were
more genes in the curve groups than expected by chance.
The number of case-control pairs stratified according to

lymph node status and detection category is shown in
Table 1. First, we stratified all case-control pairs by lymph
node status (Tables 2 and 3). The results were not signifi-
cant, indicating no changes in gene expression levels over
time. We then stratified all screening and interval cancers
by lymph node status, which rendered a highly significant
global test (p = 0.01), and more p-values less than 0.05
than expected by chance (Tables 2 and 3). Finally, we
stratified by all detection categories and lymph node
status. This analysis showed that the effect was mainly re-
stricted to interval cancers with spread (global test; p =
0.02) (Tables 2 and 3). In these tests the inclusion criterion
1 had value α = 0.01. The results depend on the α ‐ value,
but the results were not very sensitive to the choice of α ‐
value -value (data not shown). Tables 4 and 5 shows the ob-
served number and the expected number of genes in each
curve group analysis in Tables 2 and 3. Here it is important
to note that the number of genes in each curve group is
not too small (Tables 4 and 5). If this had been the case, it
would have indicated that the chosen α ‐ value -value was
too small, weakening the power of the test.

Hypothesis tests for comparing two strata
Based on the results from each stratum, we restricted
our analysis to compare gene expression levels in the
strata «screening or interval with spread» and «screen-
ing or interval without spread» using the curve group
variable Zc,s,p described in the methods section. P-values
were obtained by testing whether the curve group vari-
ables Zc,s,p were different in the two strata; many were
below 0.05 and some were smaller than 0.01 (Table 6).
In Fig. 3, we illustrated how to use the gene expression
data to separate these two strata by showing the curve
group variable Zc,s,p for each case-control pair p in the
different strata. The plot shows that the difference be-
tween the two strata changes over time for the two most
significant Zc,s,p variables. The differences between the
strata with spread and without spread were larger in the
year before diagnosis compared to earlier years, but even
these differences were comparatively small.

Table 2 P-values obtained when testing whether there are more genes in the curve groups than what is expected by chance in
different strata

p-value

Curve group Screen-detected, interval, and
clinical cancers with spread

Screen-detected, interval, and clinical
cancers without spread

Screen-detected and
interval cancers with spread

Screen-detected and interval
cancers without spread

Global 0.78 0.27 0.01* 0.20

123 0.61 0.23 0.02* 0.39

132 0.49 0.13 0.008* 0.11

312 0.88 0.18 0.13 0.11

321 0.41 0.74 0.02* 0.66

231 0.74 0.68 0.50 0.57

213 0.58 0.17 0.48 0.13
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In the methods section we introduced the statistic Lk,
a weighted sum of t-statistics, as an alternative to the
curve group variables Zc,s,p for comparing the gene ex-
pression levels of two strata. In Fig. 4 we plot the p-
value in a hypothesis test with Lk as test statistic against
the number of genes k. The plot shows that the gene ex-
pression levels are different in the two strata. Lk is the
sum of the k-largest weighted sums of t-statistics. Note
(in Fig. 4) that when we add more and more terms in
the sum, the observation becomes more significant.
When we used 50 genes, the p-value was about 0.05,
and the p-value decreased to below 0.02 when we used
the 1000 most significant genes. This indicates that the
difference between the strata is present in a large num-
ber of genes, but so weak that the strongest result was
only obtained when including a large number of genes.
Also, time period 1, i.e., 0-1 year before diagnosis, con-
tributed the most to the low p-values, which is in ac-
cordance with the results shown in Fig. 3 and Table 6.

Discussion
This methodological analysis has shown that it is pos-
sible to significantly discriminate the time trend of gene
expression patterns observed before breast cancer diag-
nosis. The findings are based on an original approach
for the statistical analysis of time-dependent curves of

gene expression levels in the NOWAC postgenome co-
hort. These methods could also be used for other as-
pects of functional genomics like methylation.
From a statistical point of view, since the publication

of the seminal work by Cox [16], the Cox proportional
hazard model and its extension have been largely used
by epidemiologists to analyze cohort studies with time-
dependent covariates. This model has also been adapted
to case-control designs [17], and some extensions have
been proposed for covariates measured with noise [18]
and time-dependent coefficients [19]. More recently, the
adjunction of numerous covariates like gene expression
data have added some challenging statistical issues [20].
While the characteristics and the basic assumptions of
the Cox model have been adapted to the dimensionality
and the very specific paired design of the NOWAC post-
genome cohort, the Cox model cannot be fully adapted
to the estimation of changes in gene expression curves
or to the biological interpretations of gene pathways.
The curve group approach can be viewed as an effect-

ive method for dimension reduction in studies of func-
tional genomics. The grouping of the curves is not
dependent on the individual testing of the curves for the
more than 10 000 expressed genes, thus it mostly elimi-
nates the false discovery rate of multiple testing. The
strength of the curve group approach can be seen in the

Table 3 P-values obtained when testing whether there are more genes in the curve groups than what is expected by chance in
different strata

p-value

Curve group Screen-detected cancers
with spread

Screen-detected cancers
without spread

Interval cancers
with spread

Interval cancers
without spread

Clinical cancers
with spread

Clinical cancers
without spread

Global 0.36 0.43 0.02* 0.46 0.40 0.81

123 0.10 0.33 0.21 0.89 0.06 0.34

132 0.38 0.19 0.009* 0.32 0.51 0.63

312 0.83 0.30 0.07 0.21 0.98 0.81

321 0.18 0.90 0.05* 0.40 0.22 0.66

231 0.33 0.63 0.21 0.83 0.94 0.93

213 0.70 0.27 0.29 0.16 0.90 0.59

Inclusion criterion 1 was used with α = 0.01. *P-values below 0.05

Table 4 Observed number of genes in each curve group and stratum, with expected number of genes in parenthesis

Observed number of genes (expected number of genes)

Curve group Screen-detected, interval, and
clinical cancers with spread

Screen-detected, interval, and
clinical cancers without spread

Screen-detected and interval
cancers with spread

Screen-detected and interval
cancers without spread

Global 305 (513) 609 (535) 1360 (482)* 708 (547)

123 47 (76) 97 (82) 259 (70)* 69 (86)

132 69 (100) 171 (103) 518 (99)* 205 (107)

312 37 (102) 145 (105) 171 (105) 203 (108)

321 66 (82) 40 (82) 314 (77)* 46 (82)

231 38 (77) 44 (81) 48 (66) 51 (82)

213 48 (76) 112 (82) 50 (65) 134 (83)
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statistical power that was achieved even in strata with a
low number of cases, such as the six cases with spread
in two strata. We stratified the data based on the detec-
tion category and lymph node status. The Norwegian
Breast Cancer Screening Program uses mammographic
screening and started in 1996, with coverage of the en-
tire population starting in 2005 [12]. It has been esti-
mated that the introduction of population-based breast
cancer screening in Norway gave a mean sojourn time
for invasive cancer of 4.0 years in women aged 50-59
years and 6.6 years for those 60-69 years [21]. Analyses
of breast carcinogenesis as a time-dependent process
should therefore take into consideration that cases diag-
nosed within the screening program are diagnosed at an
earlier phase of carcinogenesis and thus are not directly
comparable to clinically-detected cases. Lymph node sta-
tus has been the most important prognostic factor for
breast cancer survival for 100 years [22, 23]. At time of
diagnosis, we had a censored distribution of tumors
where detection category determined the time of diagno-
sis irrespective of the underlying carcinogenic process.

The prospective analyses of gene expression levels in
the years preceding breast cancer diagnosis as assessed by
the log-fold change between cases and controls showed
significant differences in the curve groups after stratifica-
tion by lymph node status and detection category. The
analyses showed the ability to discriminate between differ-
ent stages of the carcinogenic process. A previous analysis
of a case-control study within NOWAC showed that dif-
ferences in gene expression mainly reflect immune re-
sponses, but also genes related to cell control [24]. The
analyses of trajectories could aid in understanding the
time dependent interaction between the immune response
and carcinogenesis. Our findings should be further inter-
preted in relation to the biology of both single genes and
gene pathways.
An agnostic search for time trends depends on a sensi-

tive statistical approach. We have presented two novel
statistical methods that demonstrated that the gene ex-
pression levels varied over time in the last years before
breast cancer diagnosis and that the development over
time differed by lymph node status among women who

Table 5 Observed number of genes in each curve group and stratum, with expected number of genes in parenthesis

Observed number of genes (expected number of genes)

Curve group Screen-detected
cancers with spread

Screen-detected cancers
without spread

Interval cancers
with spread

Interval cancers
without spread

Clinical cancers
with spread

Clinical cancers
without spread

Global 475 (464) 490 (547) 1233 (485)* 471 (525) 448 (491) 302 (502)

123 139 (75) 78 (85) 101 (81) 33 (90) 233 (84) 83 (83)

132 81 (91) 141 (106) 515 (92)* 96 (97) 52 (84) 54 (90)

312 43 (96) 107 (109) 237 (89) 123 (96) 18 (82) 40 (92)

321 115 (82) 29 (82) 213 (81)* 71 (83) 101 (83) 45 (77)

231 63 (63) 46 (82) 92 (70) 31 (78) 21 (77) 27 (77)

213 34 (58) 89 (83) 75 (73) 117 (81) 23 (81) 53 (83)

*Cases with a p-value below 0.05 from Table 2 and 3

Table 6 P-values obtained when testing whether the curve group variables Zc,s,p are different for the strata «screen-detected and
interval cancers with spread» and «screen-detected and interval cancers without spread»

p-value

Genes selected based on stratum s1 = «Screen-detected
and interval cancers with spread» Zc;s1 ;p

Genes selected based on stratum s2 = «Screen-detected
and interval cancers without spread» Zc;s2 ;p

Time period t 3 2 1 3 2 1

N1 69 20 12 69 20 12

N2 148 57 53 148 57 53

Curve group c

123 0.22 0.59 0.02* 0.53 0.11 0.08

132 0.90 0.005* 0.004* 0.71 0.11 0.009*

312 0.80 0.27 0.15 0.04* 0.009* 0.001*

321 0.12 0.98 0.24 0.35 0.72 0.15

231 0.26 0.45 0.78 0.34 0.38 0.23

213 0.53 0.45 0.65 0.36 0.04* 0.08

*P-values below 0.05. ‘N1’ is the number of case-control pairs in the stratum «Screening or interval with spread» in the time period t, while ‘N2’ is the number of
case-control pairs in the stratum «Screening or interval without spread» in the time period t
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attended the National Breast Cancer Screening Program
in Norway (i.e., those with screen-detected or interval
cancers). One of the methods focused on identifying
genes with specific changes over time within a given
lymph node status. The other method focused on differ-
ences in gene expression levels between lymph node sta-
tuses in the different time periods. Both methods
focused on different aspects of functional time depend-
ency of gene expression levels relative to time of breast
cancer diagnosis, and both methods gave significant re-
sults when many genes were used. As gene expression
data are very noisy, our methods used information from
several genes simultaneously to increase the power of
the hypothesis tests.
A potential weakness of the curve group approach is the

increasing number of curve groups as observation time
periods increases. When there are four time periods, 24
curve groups will be needed, and even more will be
needed for five time periods.
Studies of gene expression levels in peripheral blood are

challenging and have many difficulties and pitfalls. Most
biobanks suffer from ubiquitous degradation by RNase,
which reduces the quality of mRNA for whole genome

Fig. 3 Distribution of case-control pairs for two curve groups stratified on spread in each time period. Plot of two of the most significant curve
group variables, Z132,with spread,p and Z312,without spread,p, for the three time periods. These variables are the sum of gene expression differences Xg,p
for genes selected from curve group 132 (high values in middle period) based on data with spread and curve group 312 (low values in middle
period) based on data without spread. The data with spread (without spread) are first used to select two sets of genes, one set for each of the
two curve-group variables. We may calculate both Z132,with spread,p and Z312,without spread,p for all case-control pairs from all strata. Note that the difference
between the two strata varies between the periods

Fig. 4 The relationship of p-values to number of genes in the test
statistic Lk. The p-value in a hypothesis test with test statistic Lk, a
weighted sum of t-statistics, plotted against the number of genes k
used in the calculation of Lk. The two strata that are compared in
the t-statistics that are used for computing Lk are «Screening or
interval with spread» and «Screening or interval without spread»
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analyses. Only samples that contain a specific buffer or are
directly frozen in liquid nitrogen can be used for whole
genome analyses. The signals related to carcinogenesis in
the blood are expected to be much weaker than those
in tumor tissue and can be confounded by signals from
exposures to carcinogens or other lifestyle factors. The
problem of noise due to the complicated study of car-
cinogenesis, the need for an adequate epidemiological
design including exposure information and blood sam-
pling, complicated technology, and the development of
robust statistics, could make the approach unsuccessful.
The prospective design of our study made it difficult to
increase the statistical power, so our results should be
interpreted with care.
To the best of our knowledge, the NOWAC postge-

nome cohort is the largest population-based prospective
cancer study designed for transcriptomics due to the pres-
ence of buffered RNA. All parts of the analyses were done
within the framework of the NOWAC study. In the
NOWAC postgenome cohort, a single laboratory proc-
essed all samples using the same technology, thus redu-
cing analytical bias and batch effects. The cohort design
reduced selection bias. A weakness of a prospective study
could be possible changes in case-control status as con-
trols became cases over time, thus reducing the differ-
ences in gene expression levels within a case-control pair.
We removed all case-control pairs in which controls were
diagnosed with breast cancer or any other cancer within
2 years of blood sampling. The matching was done only
for storage time and year of birth. Matching on other vari-
ables will eliminate the inclusion of these lifestyle factors
in the analyses. If matched on e.g. smoking we could not
estimate the effect of smoking or any interactions with
other risk factors. Unfortunately, there was no repeated
sampling of blood, and no additional questionnaires were
completed. Repeated measurements would secure better
analyses, making it possible to use intra-individual com-
parisons over time.

Conclusions
The proposed statistical methods are sensitive for find-
ing curve groups of genes even for strata with few case-
control pairs. This made it possible to describe and test
non-linear relationships. Our findings could be viewed
as a proof of concept of systems epidemiology, indicat-
ing the potential to include gene expression for func-
tional analysis in prospective studies of cancer.
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