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Abstract 

Development of effective (trans)dermal drug delivery systems requires reliable skin 

models to evaluate skin drug penetration. The isolated perfused human skin flap 

remains metabolically active tissue for up to 6 hours during in vitro perfusion. We 

introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration 

model. To validate the model’s ability to evaluate skin drug penetration the solutions 

of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were 

applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH 7.4). 

Infrared technology was used to monitor perfusion and to select a well-perfused skin 

area for administration of the markers. Flap perfusion and physiological parameters 

were maintained constant during the 6 hours experiments and the amount of markers 

in the perfusate was determined. Calcein was detected in the perfusate, whereas 

rhodamine was not detectable. Confocal images of skin cross-sections shoved that 

calcein was uniformly distributed through the skin, whereas rhodamine accumulated 

in the stratum corneum. For comparison, the penetration of both markers was 

evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed 

perfused flap model enabled us to distinguish between the penetrations of the two 

markers and could be a promising close-to-in vivo tool in skin penetration studies and 

optimization of formulations destined for skin administration. 

Key words: human skin; skin therapy; skin models; skin penetration; isolated 

perfused human flap 

 

Abbreviations: Cellophane membrane (CM); confocal laser scanning microscopy 

(CLSM); dynamic infrared thermography (DIRT); Franz diffusion cells (FDC); 
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human skin (HS); infra red (IR); isolated perfused human skin flap (IPHSF); modified 

Krebs-Henseleit buffer (KHb); pig skin (PS); propylene glycol (PG); pig skin (PS); 

stratum corneum (SC)  
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1. Introduction 

(Trans)dermal delivery of drugs and cosmeceuticals has gained increasing interest in 

pharmaceutical and cosmetic fields. The skin represents an attractive route of drug 

delivery for both local and systemic effects. In this context, investigating the drug 

penetration into/through the skin is of fundamental importance regarding both the 

desired drug’s therapeutic efficacy and its potential toxicity (DeLouise, 2012; Prow et 

al., 2011). Skin, especially the stratum corneum (SC) layer, exhibits very efficient 

barrier properties which limit drug penetration into/through the skin and needs to be 

overcome for successful trans(dermal) delivery (Bouwstra et al., 2003; Lane, 2013).  

Therefore, reliable skin models able to predict and evaluate the (desired or undesired) 

penetration of molecules/nanosystems in vivo and serve as a tool in optimization of 

topical formulations are required (Flaten et al., 2015). In vivo studies, especially in 

humans, are the golden standard tool in skin penetration studies. However, in the early 

stages of drug development, in vivo studies are restricted due to ethical and 

economical concerns (Parra et al., 2016). Moreover, new regulations limit the use of 

animals for in vivo studies in the initial stages of product development (Flaten et al., 

2015). Therefore, in vitro and ex vivo techniques are gaining more interest as tools to 

study skin penetration (Patel et al., 2016).  

The skin perfusion models comprise a surgically prepared portion of skin (flap) 

including subcutaneous fatty tissue with assured continuous vascular circulation. 

These models offer the benefits of living metabolically-active tissue and are 

considered the missing link between in vitro and in vivo methods (Schaefer et al., 

2008). These models overcome some of the limitations of the in vitro studies using 

human or animal skin, such as the use of only epidermis and the upper part of the 

dermis and the lack of a dermal vascular system (de Lange et al., 1992; Patel et al., 
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2016). Several animal specimens have been used for the skin perfusion model, such as 

the isolated perfused pig skin flap (Riviere et al., 1986), the isolated blood-perfused 

pig ear (de Lange et al., 1992), the isolated perfused bovine udder (Kietzmann et al., 

1993) and the pig forelimb (Wagner et al., 2003). Several animal skin perfusion 

models are in use (Riviere et al., 1986; de Lange et al., 1992; Kietzmann et al., 1993; 

Wagner et al., 2003); however, their use retains the limitations of correlations between 

animal and human skin. Pig skin is considered the most suitable animal model to 

mimic human skin. Therefore, pig skin flap has been widely studied as skin perfusion 

model and skin penetration of different substances has been investigated using the 

isolated perfused pig skin flap model (Carver et al., 1989; Carver et al., 1990; 

Williams et al., 1990; Wester et al., 1998; Inman et al., 2003).  

However, use of animal skin retains the limitations of correlations between animal 

and human skin. Kreidstein et al. (1991) designed the isolated perfused human skin 

flap model using transverse paraumbilical skin flap. This tissue is normally discarded 

in abdominal dermolipectomy (Kreidstein et al., 1991). Several techniques have 

confirmed the perfusion of the flap (Black et al., 2001; Kreidstein et al., 1995; Lipa et 

al., 1999; Miland et al., 2008). Miland and colleagues (2008) confirmed the suitability 

of the dynamic infrared thermography (DIRT) to monitor skin flap perfusion and to 

differentiate between well and less perfused areas.  

To the best of our knowledge, the isolated perfused human skin flap (IPHSF) has not 

been used to study (trans)dermal penetration. Such a model could be a valuable tool in 

skin penetration studies and in optimization of dosage forms/delivery systems for skin 

therapy. 

This study evaluated the feasibility of the IPHSF as a skin penetration model. To 

validate the IPHSF model, two fluorescent markers, a hydrophilic (calcein) and a 
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lipophilic (rhodamine), were used and their penetration investigated over a 6 hours 

period. Confocal laser scanner microscopy (CLSM) technique was used to follow the 

fluorescent markers penetration through the IPHSF. These data were compared with 

the ex vivo (human and pig skin) and in vitro (cellophane membrane) penetration 

studies in Franz diffusion cells (FDC).  

 

2. Material and methods 

2.1. Material 

Calcein, rhodamine B, sodium chloride, potassium chloride, magnesium sulfate, 

sodium bicarbonate, trichloroacetic acid ( ≥99.0 %), ethanol (96 %, v/v) and TritonTM 

X-100 were from Sigma-Aldrich Chemie (Steinheim, Germany); human serum 

albumin (30 mg/mL) from Octapharma AG (Lachen, Switzerland); propylene glycol 

(PG) from NMD – Norwegian Medical Depot AS (Oslo, Norway) and glucose, 

calcium chloride and potassium dihydrogen phosphate from Merck KGaA 

(Darmstadt, Germany). Sucrose was product of VWR International bvba/sprl 

(Leuven, Belgium). Pig ears were purchased from Nurtura AS (Bardufoss, Norway). 

 

2.2. Human skin flap   

Eight human skin flaps were used in this study and were obtained from the abdomen 

of female patients (mean age 49.5 years, range 40-66 years) who underwent 

abdominoplasty (Table 1). All patients gave their written consent prior to the surgery 

and the experiments were performed according to the Declaration of Helsinki 

Principles. Since these skin panni are normally disposed of by incineration, no ethical 

approval for their use was required according to Norwegian Ethical Committee. The 



7 
 

procurement and disposal of human skin flaps were in accordance with the policy of 

the University Hospital of North Norway, Tromsø.  

 

2.3. Preliminary perfusion experiment  

A modification of the perfusion design of the model described by Miland and co-

workers (2008) was used. The human skin flap, after its excision, was wrapped in 

gauze soaked with physiological solution and placed in a sealed plastic box to 

maintain it at room temperature until it was transferred in the laboratory where the 

flap experiments were performed. To perfuse the human skin flap, it was placed on a 

metal grid and one vessel was selected and cannulated with an arteriotomy cannula 

(diameter 1 mm; DLP® Metronic Inc, Minneapolis, USA), which was then connected 

to the perfusion apparatus (Figure 1). The cannulation was performed at room 

temperature. The perfusate was modified Krebs-Henseleit buffer (KHb) comprising 

(in mM): 110 NaCl, 3.8 KCl, 1.4 KH2PO4, 1.2 MgSO4, 31 NaHCO3, 2.5 CaCl2, 11 

glucose and 10 sucrose. Human serum albumin (30 mg/ml) was added to the 

perfusate. The perfusate had a pH of 7.4 and an osmolarity of 290 mOsm mimicking 

the physiological conditions.  

The perfusion flow rate (6-8 mL/min) was monitored using a drop counter and the 

pressure by inline pressure transducer (Transpac® IV; Abbott Laboratories, North 

Chicago, IL, USA).  

All perfusions were initiated within 90 min after the excision of skin panni (Miland et 

al., 2008). 

2.4. Validation of the IPHSF model 
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Preliminary calcein skin penetration experiments through the IPHSF were performed 

to validate the experimental setups and the analytical method of the quantification of 

penetrated marker in the perfusate. Calcein solution (10 mM) in KHb was applied 

onto the perfused skin flap (Figure 1). The skin diffusion area (49 cm2) exhibiting best 

perfusion (skin temperature of ca. 32 ºC) was measured with an IR camera (FLIR 

ThermaCAM S65 HS, FLIR Systems). An adhesive patch constituted the donor 

chamber and calcein solution (7 mL) was applied onto the selected well-perfused skin 

area using a syringe. The experiment was carried out for 6 h when no leakage of the 

solution was observed. The weight of the flap was determined before and after the 

perfusion period. The penetrated calcein was assessed spectrofluorometrically 

spectrophotometrically in the perfusate collected after 6 h from a metal container 

placed under the flap. To assure that no inherent fluorescent skin constituents were 

detected, the perfusate was also collected when calcein solution was applied (time 0). 

Moreover, the non-penetrated calcein (retained on the flap surface) was swept and 

quantified at the end of experiment.  

Figure 1. 

 

2.4.1. Quantification of calcein in the perfusate 

The analytical method used to detect and quantify calcein in the perfusate was based 

on Bahia and co-workers (2010) with modifications. The collected perfusate was 

centrifuged to remove blood cells (1914 g, 20 min). To assure that no calcein 

precipitated with the blood cells the pellets were firstly washed with KHb (10 mL) 

and secondly dissolved in Triton solution 5% (w/v; 10 mL). Trichloroacetic acid 

(58.82%, w/v) was used to precipitate plasma protein. Calcein concentrations in the 
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supernatants, pellets washed after blood cells precipitation and pellets dissolved in 

Triton solution were determined spectrofluorometrically spectrophotometrically 

(excitation and emission wavelengths at 485 and 520 nm, respectively) on a Polarstar 

fluorimeter (Fluostar; BMG Technologies, Offenburg, Germany) using a multiplate 

reader (COSTAR 96). Three parallels were determined for each sample. Equation 1 

(derived from the Fick's first law) was used to calculate the apparent permeability 

coefficient (Papp) where J is the observed flux rate (μg/cm2/s) and Cd is the 

concentration of calcein solution in the patch (μg/mL). The flux was calculated from 

the linear part of the curve, representing the steady-state condition. 

Papp (cm/s) = J / Cd                        (1) 

 

 

2.5. Skin penetration experiments on IPHSF model 

Calcein (10 mM) in KHb and rhodamine (10 mM) in KHb/PG (0.5%, v/v) were 

applied onto the perfused skin flaps perfused with KHb (Figure 1). The weight and 

thickness of each flap were determined before and at the end of the experiment. The 

perfusate was collected at time 0 and every hour for a period of 6 h and sink 

conditions were maintained. The penetrated and non-penetrated markers were 

quantified as described in the methods for validation of the IPHSF model. 

 

2.6. Confocal laser scanning microscopy (CLSM)  

CLSM analysis was performed on a Leica TCS SP5 microscope (Leica Microsystems 

CMS GmbH, Mannheim, Germany) equipped with an Argon laser. The samples were 

prepared using the imprint method (Brommeland et al., 2003). A cross-sectioned slide 
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of the flap was cut by a scalpel and attached onto a microscope slide. The cells 

remaining on the slide were fixed in formalin (SPRAYFIX®, Histolab Products AB, 

Gothenburg, Sweden). The flap areas used in CLSM are shown in Figure 2a. Calcein 

and rhodamine were excited using 488 and 568 nm laser lines, respectively. 

Fluorescence was detected using the following spectral range: 5050-550 nm for 

calcein, 570-610 nm for rhodamine. When required, images were acquired in Z-

sections of 1 to 100 µm thickness and were superimposed. 

 

2.7. Ex vivo and in vitro skin penetration experiments 

Ex vivo and in vitro skin penetration experiments were carried out on Franz diffusion 

cells (FDC; PermeGear, Bethlehem, USA) of 1.77 cm2 diffusion area and with 12 mL 

receiver volume (Hurler et al., 2012). Ex vivo skin penetration experiments were 

performed using human skin (HS) and pig ear skin (PS). Human skin (HS) was 

obtained from human skin flaps, which were not the same as the flaps used in skin 

penetration experiments on IPHSF model (Table 1). and pig ear skin (PS) were used 

in ex vivo skin penetration experiments, while Ccellophane membrane (CM; Max 

Bringmann KG, Wendelstein, Germany) was employed in in vitro experiments. The 

same solutions of the fluorescent markers tested in the IPHSF were added into the 

donor chamber (600 µL). The receiver chamber was filled with KHb. Samples (500 

μL) were collected at 1, 2, 4 and 6 h and replaced by fresh acceptor medium to 

maintain sink conditions. All experiments were carried out at 32 °C. Calcein and 

rhodamine concentrations were determined  

spectrofluorometricallyspectrophotometrically. Equation 1 was used to calculate the 

Papp.  
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2.8. Statistical evaluation 

The Student's t-test was used for the comparison of two means. A significance level of 

p < 0.05 was considered significant.  

 

 

3. Results 

Any model destined for application in the development and optimization of skin 

formulations needs to be validated to confirm its robustness and wider applicability.  

 

3.1. Validation of IPHSF model 

Table 1 provides an overview of the characteristics of the flaps used in experiments. 

The perfusion experimental set up of Miland et al. (2008) was modified to identify the 

areas of the flap with skin temperature of at least 32 ºC corresponding to adequate 

perfusion (Figure 1). This enabled us to establish the area (49 cm2) of well-perfused 

skin surface suitable to apply fluorescent markers. Once the area was selected, we 

focused on optimizing the volume (mL) of the marker solution to be applied. A 

fluorescent marker cCalcein solution (7 mL) was injected into an adhesive patch 

(donor chamber) attached to the selected well-perfused skin area and penetration 

studies performed to further validate the model and confirmed its applicability. 
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The IPHSF was further validated in respect to possible oedema formation and the 

weight changes. Variation of less than 10 % in the weight observed during 6 h of 

perfusion was found acceptable (data not shown).  

 

Calcein was detected in the perfusate. Moreover, in the perfusate collected at time 0 

no fluorescence was detected, indicating that no inherent fluorescent skin constituents 

were present in the perfusate and could be detected spectrofluorometrically.   

 

3.2. Assuring perfusion during the skin penetration studies  

Physiological parameters were monitored throughout the experiment. The flow, 

perfusion pressure and inlet temperature were kept constant during 6 h (Table 2).  

Table 2. 

Figure 2. 

All areas where the markers were applied were well perfused throughout the 

experiment and no leakage of markers from the donor chambers were observed 

(Figure 2a). DIRT images, taken 1 min after the start of the perfusion, showed a hot 

spot indicating where the skin perfusion started (Figure 2b). A distinct area of 

rewarming appeared corresponding to the perfusion area of the cannulated vessel. 

DIRT images were also taken before and after the application of markers (Figure 2c) 

and confirmed well-perfused skin in areas where the markers were applied throughout 

the experiment (Figure 2d, e).  

 

3.3. Penetration of fluorescent markers in IPHSF model 
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DIRT images of flap areas where markers were applied showed that the area was still 

perfused after 6 h. Interestingly, DIRT images of flap areas next to where rhodamine 

was applied showed also the less well-perfused area (skin surface temperature lower 

than 32 ºC) (Figure 2e). To further investigate this area, a cross-section of the area 

was analyzed by CLSM. CLSM images of the marker-free skin area showed no 

presence of both markers, as expected (Figure 3a). CLSM images of calcein (green) in 

the perfused-treated area indicated a uniformly distributed fluorescence through the 

skin flap, while rhodamine (red) exhibited a bright fluorescence in the SC but 

decreasing fluorescence in the viable epidermis and subcutaneous fat tissue (Figure 

3b). CLSM images of both markers in the well-perfused-untreated area indicated a 

weaker fluorescence as compared to the treated area (Figure 3c). In the less well-

perfused areas we could only detect a weak fluorescence of rhodamine (Figure 3d).   

Figure 3.  

CLSM images confirmed the skin penetration profiles of the two markers in the 

IPHSF model.  

 

3.4. Correlation between the skin penetration in the IPHSF model and ex vivo 

and in vitro studies 

Penetration of two markers through IPHSF model is presented in Figure 4a. No 

fluorescence was detected in the perfusate at time 0, assuring that no inherent skin 

constituents were detected with our analytical method employed to quantify the 

penetrated markers in the perfusate. Calcein was detected in the perfusate, whereas 

rhodamine was not detectable. Ex vivo skin penetration studies using human skin 

revealed lower calcein penetration as compared to IPHSF (p<0.05) (Figure 4b). The 
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same penetration profiles of rhodamine were observed both in the IPHSF and in ex 

vivo studies on human skin (Figure 4a, b). More calcein and rhodamine penetrated 

through the pig skin and cellophane membrane compared to the ex vivo human skin 

and the IPHSF (Figure 4c, d). Calcein exhibited higher flux and Papp than rhodamine; 

whereas the non-penetrated rhodamine was recovered to higher extent (Table 3).  

Figure 4. 

Table 3. 

 

4. Discussion 

The organization of the lipid domains in the SC is considered the main contributor to 

the barrier property of the skin (Bouwstra et al., 2003; Schmieder et al., 2015). This 

barrier property of the skin can be seen as a synergy between the cooperation and 

interactions between SC macro- and micro-structure, bi- and three-dimensional 

supramolecular organization of the lipid matrix and composition of the SC (Baroli, 

2010). However, dermal circulation is responsible for the clearance of the drug from 

the skin and should not be neglected (Lane, 2013). The introduction of nanocarriers 

has opened a means to improve penetration of drug into/through the skin. 

Nanoparticles are expected to enhance or limit the ingress and diffusion of drugs 

into/through the skin depending on their physicochemical properties, particularly size 

(Vanić et al., 2015). Penetration of molecules and particles in and through skin is 

gaining increased attention due to increased focus on the transdermal therapies, safety 

of cosmetic products, possible penetration of environmental compounds and skin 

decontamination (Bolzinger et al., 2012).  
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Consequently, there is an increasing need to understand the penetration into/through 

the skin and the interaction between the carrier, drug and the skin not only to optimize 

the therapeutic applications, but also to minimize potential side effects (Bolzinger et 

al., 2012; DeLouise, 2012). However, reliable skin models able to predict and 

investigate desired or undesired penetration through the skin remain challenging. 

Human skin perfusion models offer the benefits of living tissue with active 

microcirculation, mimicking the application in human to a greater extent (Schaefer et 

al., 2008; Patel et al., 2016). Moreover, they provide a mean to study the effects of 

dermal vasculature on the systemic absorption. However, no human skin perfusion 

model has been used to assess the penetration of drugs/markers into the skin and as a 

tool in dermatological product development. Kreidstein and co-workers (1991) have 

shown that the human skin flap is metabolically and physiologically stable for at least 

5 h of in vitro perfusion. We used DIRT to measure skin perfusion. A number of 

studies have shown a good correlation between skin temperature and skin perfusion. 

As such DIRT can provide us indirectly with information on skin perfusion and its 

dynamics. (de Weerd et al., 2006; de Weerd et al., 2009).  

The perfusion of IPHSF was performed using the established method by Miland et al. 

(2008) with modifications. To validate the model, preliminary skin penetration studies 

were performed on perfused skin flaps in order to establish the experimental design of 

skin penetration studies on IPHSF. In both preliminary and skin penetration studies, 

In all flaps we observed the same dynamics of perfusion. This confirmed that 

experimental conditions remained constant throughout the experiments. Moreover, 

little variation (less than 10 %) in the weight and thickness of all flaps during 6 h 

perfusion excluded oedema formation and assured a good tissue perfusion as reported 

earlier (Black et al., 2001; de Lange et al., 1992; Lipa et al., 1999). Similar to Miland 
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et al. (2008) a perfusion flow rate between 6 and 8 ml/min was maintained during the 

experiments. The perfusion pressure was higher than 50 mmHg, which we attribute to 

the smaller cannula diameter and the different software used to monitor the baseline 

perfusion in our experiments as compared to Miland et al. (2008).  

 

The IPHSF model was able to distinguish between the penetrations of two markers 

(0.7% calcein and 0% rhodamine). Calcein penetrated to a lower extent, as expected, 

since it is a hydrophilic marker with low logP (-5.02) (Gillet et al., 2011) with limited 

skin penetration potential (Bolzinger et al., 2012). Interestingly, calcein was detected 

in the perfusate, which would suggest that the circulation enabled its penetration. 

Rhodamine has a higher logP (1.95) (Anissimov et al., 2012) and due to its 

lipophilicity was prepared in solution containing PG (0.5 %; v/v) as a solubilizing 

agent. Therefore, we expected that PG would act as a penetration enhancer (Lane, 

2013). However, the concentration of PG used in our study was relatively low 

compared to the PG concentration used in other studies suggesting its role as 

penetration enhancer (Trottet et al., 2004; Watkinson et al., 2009). Similar penetration 

results were reported by Wester and co-workers (1998) and their studies on the 

isolated perfused pig skin flap model. Tested compounds with lower logP were 

detected in higher percentage in the perfusate compared to compounds with higher 

logP. Although we could not detect rhodamine in the perfusate, the amount of 

rhodamine retained at the administration site on the flap was less than calcein. This 

suggests that rhodamine remained within SC rather than penetrating deeper into 

epidermis, as expected (Bolzinger et al., 2012). The lipids in human skin barrier are 

organized as stacked bilayers of fully extended ceramides with cholesterol molecules 

associated with the ceramide sphingoid moiety, providing barrier towards both 
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hydrophilic and lipophilic molecules (Iwai et al., 2012). The extracellular space in SC 

and stratum granulosum exhibits hydrophobic properties due to its lipid-rich 

composition, whereas the layers below the stratum granulosum represent hydrophilic 

environment due to desmosome-rich composition (Iwai et al., 2012; Schmieder et al., 

2015). The IPHSF results were supported by the CLSM images of the cross-section of 

skin flaps. While calcein was found uniformly distributed throughout the flap, 

rhodamine exhibited a bright fluorescence in the SC but weaker fluorescence in the 

viable epidermis and subcutaneous fat tissue. Gillet and co-workers (2011) reported 

similar accumulation of rhodamine in the SC and negligent amount within the 

epidermis. The same penetration profile of rhodamine observed in the IPHSF model 

was seen in full human skin in FDC. Water present on the surface of skin might cause 

swelling of the polar head-group regions in the lipid bilayers, and hence disruption of 

the lipid domains, which could explain the higher fluxes of hydrophilic molecules 

such as calcein (Bolzinger et al., 2012). However, the percentage of penetrated calcein 

through full human skin in FDC was significantly lower (p<0.05) than through the 

IPHSF model indicating that the perfusion might play an important role in the 

penetration of compounds through the skin, as recently suggested by Patel et al. 

(2016). For the hydrophilic marker calcein we observed a positive effect of perfusion 

on its skin penetration, whereas for the lipophilic marker rhodamine the penetration 

profile was not influenced by the perfusion to a greater extent. 

These results support considerations that ex vivo skin studies do not resemble the in 

vivo situations to a satisfactory extent. This is a clear advantage of the skin perfusion 

models, since these models investigate the drug penetration considering also the 

dermal perfusion (Schaefer et al., 2008). Wagner and co-workers (2002) also reported 

that hydrophobic flufenamic acid penetrated less through the human skin in FDC 
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system than in in vivo studies. We confirmed that the perfusion played a role in the 

penetration of both markers by analyzing cross-section of perfused skin flap areas 

where the markers were not applied (as visible by DIRT images). CLSM images of 

these untreated perfused areas showed the presence of both markers in the skin and 

subcutaneous tissue of untreated areas confirming that perfusion affected the 

penetration. Such findings stress the importance of perfusion in a skin penetration 

model. 

The results obtained with the IPHSF model were compared with the results obtained 

on the established skin models. Both penetration studies through the pig skin and 

cellophane membrane showed a higher penetration of the markers compared to their 

penetration through the IPHSF model and human skin in FDC system, strongly 

indicating the importance of having a model that contains human skin. Interestingly, 

calcein penetrated through pig skin more than rhodamine. Observed Papp of calcein 

across pig skin was similar as in an established in vitro model mimicking human SC 

lipid composition (Engesland et al., 2013). Rhodamine penetration through the pig 

skin, IPHSF model and human skin on FDC system was similar and as expected since 

it is known that pig skin mimics human skin better for the lipophilic penetrants (Dick 

and Scott, 1992). Penetration of both markers through cellophane membrane was 

significantly higher than in other models used in this study (p<0.05); calcein 

penetrated more than rhodamine in agreement with Ansari and co-workers (2006) 

who tested the penetration of three drugs with different lipophilicity through human 

skin, cellophane and natural membranes. They found that penetration of water soluble 

diclofenac sodium through cellophane was higher than through all other membranes, 

while penetration of lipophilic erythromycin through cellophane was lower (Ansari et 

al., 2006). 
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Although different in vitro and ex vivo animal skin models help us to simplify the 

drug penetration, the results obtained from those models differ from the results 

obtained with IPHSF model suggesting the importance of this missing link in reaching 

the close-to-in vivo situation. 

The limitation of this study is the relatively small number of experiments; therefore, 

the results should be interpreted within the context of this limitation. Moreover, the 

IPHSF model is metabolically active for 6 h and skin drug penetration studies on 

IPHSF model have to be performed within this time limit. Specific equipment, such as 

infrared camera, is  needed to perform skin flap experiments as well as the help of 

selected professionals to cannulate the skin flap. Therefore, we are aware that the 

IPHSF model cannot be used as skin perfusion model in the early stages of drug 

development. However, the model might be used, after the fully validated 

methodologies have been employed, to study skin drug penetration in conditions 

closer to the in vivo human ones since However, the importance of perfusion and the 

use of human skin in skin penetration studies is clear. 

The next step in full utilization of the proposed model is to evaluate the penetration of 

nanoparticles and nanoparticle-associated drugs. 

 

5. Conclusions 

We demonstrated that the isolated perfused human skin flap model can be used in the 

skin penetration studies since it provides constant experimental conditions and 

perfusion, assuring reproducible results. Moreover, the model proves the benefits of 

working with living tissue using a byproduct of surgery, and avoiding animal use. The 
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model was able to distinguish between the penetrations of two markers and is a 

promising tool in optimization of formulations destined for skin administration.  
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Figures and figure legends: 

 

Figure 1. Flap perfusion design 

The perfusate was filtered and gassed with 95% O2/5% CO2 using a rotating surface 

oxygenator. The perfusion flow rate (6-8 mL/min) was monitored using a drop 

counter and the perfusion pressure measured with an inline pressure transducer. A 

heating circulator was set at 38 ºC and a thermocouple inserted in the cannula to 

monitor the temperature of the perfusate entering the flap. The IR camera monitored 

the skin surface temperature throughout the perfusion period. The flow, pressure and 

temperature of the perfusate were monitored on-line using PhysAcq software. The 

perfusate from IPHSF was collected using a metal container. 

 

Figure 2. Photographs and DIRT images of representative flaps in skin 

penetration experiments  

The a represents the photographs of flaps. The b are DIRT images recorded 1 min 

after the start of the perfusion (skin temperature below 32 ºC). The c, d and e are 

DIRT images recorded at time 0, 3 and 6 hours after the application of the markers, 

respectively (skin temperature at ca. 32 ºC).  

 

Figure 3. Representative CLSM images of cross-sections of IPHSF at the end of 

skin penetration experiments   

CLSM images of calcein (green fluorescence) in IPHSF are shown in the left column, 

while CLSM images of rhodamine (red fluorescence) are shown in the right column. 

The a represents the intact flap cut before the perfusion (control). The b is treated 
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area; c untreated area. The d is a non-perfused area observed by DIRT in flap where 

rhodamine was applied.  

Cross-sectioned slides of IPHSF were cut starting from the skin surface (S; left side) 

to the subcutaneous fat (SF; right side). Scale bar represents 500 µm. 

 

Figure 4. Penetration profiles of calcein and rhodamine through IPHSF (a), HS 

(b), PS (c) and CM (d). 

The concentration of calcein in KHb and rhodamine in KHb/PG (0.5%, v/v) solutions 

was 10 mM. The penetration of both markers was investigated for a period of 6 h. All 

experiments were conducted in triplicates and the results are presented as mean ± SD. 

* p<0.05.    
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Tables and table legends: 

 

Table 1. Characteristics of human skin flaps 
a Weight and thickness of the flaps were not determined in the preliminary study used 
to validate the experimental design of the perfusion technique and experimental set 
up. 
b Thickness (cm) refers to the full skin obtained from the human skin flap. Weight 
was not determined since not relevant for ex vivo study. 

 

Table 2. Characteristics and physiological parameters of IPHSF recorded during 
6 h of experiment (mean ± SD) 
a Variation (%) calculated from weight and thickness measured before and after 
perfusion of flaps. 

 

 

Table 3. In vitro and ex vivo penetration of calcein and rhodamine (mean ± SD) 
a The amount retained at skin surface. 
b nd, flux and Papp were not determined because no penetrated rhodamine was 
detected.   
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