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Psychological theory is advanced through empirical tests of predictions derived from quantitative cognitive models.8

As cognitive models are developed and extended they tend to increase in complexity – leading to more precise9

predictions – which places concomitant demands on the behavioral data used to discriminate between candidate10

theories. To aid discrimination between cognitive models and, more recently, to constrain parameter estimation,11

neural data have been used as an adjunct to behavioral data, or as a central stream of information, in the evaluation12

of cognitive models. Such a model-based neuroscience approach entails many advantages, including precise tests13

of hypotheses about brain-behavior relationships. There have, however, been few systematic investigations of the14

capacity for neural data to constrain the recovery of cognitive models. Through the lens of cognitive models of15

speeded decision-making, we investigated the efficiency of neural data to aid identification of latent cognitive states16

in models fit to behavioral data. We studied two theoretical frameworks that differed in their assumptions about17

the composition of the latent generating state. The first assumed that observed performance was generated from a18

mixture of discrete latent states. The second conceived of the latent state as dynamically varying along a continuous19

dimension. We used a simulation-based approach to compare recovery of latent data-generating states in neurally-20

informed versus neurally-uninformed cognitive models. We found that neurally-informed cognitive models were more21

reliably recovered under a discrete state representation than a continuous dimension representation for medium effect22

sizes, although recovery was difficult for small sample sizes and moderate noise in neural data. Recovery improved23

for both representations when a larger effect size differentiated the latent states. We conclude that neural data aids24

the identification of latent states in cognitive models, but different frameworks for quantitatively informing cognitive25

models with neural information have different model recovery efficiencies. We provide full worked examples and26

freely-available code to implement the two theoretical frameworks.27
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1. Introduction29

Quantitative models that explicate the cognitive processes driving observed behavior are becoming increas-30

ingly complex, leading to finer-grained predictions for data. Although increasingly precise model predictions are31

undoubtedly a benefit for the field, they also increase the demands placed on data to discriminate between com-32

peting models. The predictions of cognitive models have traditionally been tested against behavioral data, which33

is typically limited to choices and/or response times. Such behavioral data have been extremely useful in discrim-34

inating between model architectures (e.g., Anderson et al., 2004; Brown and Heathcote, 2008; Forstmann et al.,35

2016; Nosofsky and Palmeri, 1997; Ratcliff and Smith, 2004; Shiffrin and Steyvers, 1997; Tversky and Kahneman,36

1992). As model predictions increase in precision, however, we approach a point where behavioral data have limited37

resolution to further constrain and discriminate between the processes assumed by the models of interest.38

The problem of behavioral data providing limited constraint is compounded when one aims to study non-39

stationarity. Cognitive models typically assume a stationary generative process whereby trials within an experi-40

mental condition are treated as independent and identically distributed random samples from a probabilistic model41

with a specified set of parameters. This assumption has proven extremely useful, both practically and theoretically,42

but is not supported by fine-grained empirical analysis (e.g., Craigmile et al., 2010; Wagenmakers et al., 2004).43

Recent work in the study of stimulus-independent thought, or mind wandering, provides a psychological mechanism44

that can explain these findings, at least in part, in terms of observed performance arising from two or more latent45

data-generating states. One prominent theory proposes that ongoing performance is driven by two distinct phases:46

perceptual coupling – where attentional processes are directed to incoming sensory input and completing the ongo-47

ing task – and perceptual decoupling – where attention is diverted from sensory information toward inner thoughts48

(for detailed review, see Smallwood and Schooler, 2015). The perceptual decoupling hypothesis of mind wandering49

proposes, therefore, that observed behavior is the end result of a mixture of discrete latent data-generating states.50

To gain insight into the processes underlying the phases of perceptual coupling and decoupling, the goal of the51

cognitive modeler is to use the available data to determine the optimal partition of trials into latent states.52

On the basis of behavioral data alone, such as choices and response times, reliably identifying discrete latent53

states can be difficult or near impossible. In an example of this approach, Vandekerckhove et al. (2008) aimed to54

identify contaminant trials – data points not generated by the process of interest – in a perceptual decision-making55

experiment. They defined a latent mixture model in a Bayesian framework that attempted to partition trials that56

were sampled from the (diffusion model) process of interest from contaminant trials distributed according to some57

other process. In attempting to segment trials to latent classes, the diffusion model was only informed by the same58

choice and response time data it was designed to fit. For a representative participant, only 0.6% of their 8000 trials59

were classified as contaminants, indicating either a remarkable ability of the participant to remain on task (which is60

unlikely; see, e.g., Killingsworth and Gilbert, 2010), or, more likely, to the limited ability of behavioral data alone61

to segment trials into latent states.62
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Rather than relying solely on behavioral data, here we examine whether augmenting cognitive models63

with an additional stream of information – such as neural data, whether that involves single cell recordings, EEG,64

MEG, or fMRI – aids identification of latent data-generating states underlying observed behavior. Our aim is to65

investigate whether the addition of neural data can improve our account of the behavioral data, and in particular66

the identification of latent states, rather than accounting for the joint distribution of behavioral and neural data67

(for joint modeling approaches, see Turner et al., 2013a). To this end, we condition on neural data; that is, we68

do not consider generative models of neural data. Rather, we explore tractable and simple methods that augment69

cognitive models using neural data as covariates in order to gain greater insight into cognition than is possible70

through consideration of behavioral data in isolation.71

Throughout the manuscript we position our work within the theoretical context of mind wandering. Over72

the past decade, the scientific study of mind wandering has received great interest from behavioral (e.g., Bastian and73

Sackur, 2013; Cheyne et al., 2009) and neural (e.g., Andrews-Hanna et al., 2010; Christoff et al., 2009; Weissman74

et al., 2006) perspectives, though there have been few attempts to integrate the two streams of information in75

a model-based cognitive neuroscience framework (for an exception, see Mittner et al., 2014). The study of mind76

wandering is particularly relevant to our aim of identifying latent cognitive states as it is a phenomenon that77

has been studied under various, qualitatively distinct, hypotheses about how latent states give rise to observed78

performance (Smallwood and Schooler, 2006, 2015), which we expand upon below. Mind wandering, therefore,79

serves as an excellent vehicle through which to demonstrate our methodological approach. Our working hypothesis80

is that mind wandering is a neural state or process that affects the parameters of cognitive models, which in turn81

affect observed behavioral performance (Hawkins et al., 2015). Our approach inverts this chain of causation: we82

fit behavioral data with cognitive models that are informed with neural data, and compare their fit to cognitive83

models that are not informed with neural data. This allows us to assess what can be learnt about mind wandering84

in a way that is not feasible without the discriminative power of the neural data.85

Through the lens of cognitive models of speeded decision-making, we consider two approaches that use86

neural data to constrain cognitive models, which in turn helps to identify both when people mind wander and the87

effect it has on task performance. We note, however, that our methods generalize to any domain of study that utilizes88

neural data – or any additional stream of data, for that matter – to aid identification of latent data-generating89

states and fit the behavioral data arising from those states with cognitive models.90

We consider two general approaches to incorporating mind wandering within a modeling framework. The91

first approach assumes that observed behavior arises from a mixture of discrete latent states, which may have par-92

tially overlapping or unique sets of data-generating parameters. We refer to this as the Discrete State Representation.93

One might think of the latent states as reflecting an on-task state, where attention is directed to external stimuli,94

or task-related thoughts, and an off-task state, where attention is directed to internal stimuli, or task-unrelated95

thoughts, similar to the perceptual decoupling hypothesis (Smallwood and Schooler, 2015). Alternatively, the latent96
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states might reflect executive control, where an executive system oversees maintenance of goal-directed behavior,97

and executive failure, which occurs when the executive control system fails to inhibit automatically cued internal98

thoughts that derail goal-directed behavior (McVay and Kane, 2010). Regardless of the labels assigned to the latent99

states, models assuming a discrete state representation aim to first identify the mutually exclusive latent states and100

then estimate partially overlapping or distinct sets of model parameters for the discrete states (for a similar ap-101

proach, see Mittner et al., 2014). We note that a discrete state representation is also considered outside the context102

of mind wandering. For example, Borst and Anderson (2015) developed a hidden semi-Markov model approach103

that used a continuous stream of EEG data to identify discrete stages of processing in associative retrieval.104

The second approach generalizes the discrete state representation, relaxing the assumption that latent states105

are mutually exclusive. This approach assumes a dynamically varying latent state where, for example, at all times106

a participant will fall at some point along a continuum that spans from a completely on-task focus through to a107

completely off-task focus. We refer to this second approach as the Continuous Dimension Representation, and it108

approximates ‘executive resource’ theories of mind wandering (e.g., Smallwood and Schooler, 2006; Teasdale et al.,109

1995). This class of theories states that executive resources are required to perform goal-directed tasks. The pool110

of resources is finite, and competing demands, such as mind wandering from the task at hand, reduce the resources111

available to complete the primary task, leading to suboptimal task performance. The resources available to complete112

a task can effectively be considered a continuous variable: at times there are more resources available to complete113

the task than others, and this can vary in potentially complex ways from one trial to the next. Models assuming114

a continuous dimension representation aim to regress single-trial measures of neural activity onto structured trial-115

by-trial variation in model parameters (for similar approaches, see Cavanagh et al., 2011; Frank et al., 2015; Nunez116

et al., 2015, in press). To the extent that the single-trial regressors index the latent construct of interest, this117

approach dynamically tracks the effect of neural fluctuations on changes in model parameters.118

We use a simulation-based approach to explore how well neural data constrains the identification of data-119

generating states when fitting cognitive models to behavioral data. We first simulate data from models that assume120

a non-stationary data-generating process (i.e., a latent cognitive state that changes throughout the course of an121

experiment). We then fit models to the synthetic data that vary in their knowledge of the latent data-generating122

states: some models completely ignore the presence of a latent mixture in data (i.e., they are misspecified), and123

others assume partial through to perfect knowledge of the latent data-generating states. The degree of partial124

knowledge about latent states is assumed to reflect the precision of neural data that informs the analysis. When125

a neural measure or measures are perfectly predictive of the latent generating states, the partition of behavioral126

data to one latent state or another mirrors the data-generating process, and the model that assumes a mixture of127

latent generating states will be preferred over the (misspecified) model that marginalizes over latent states. As the128

strength of the relationship between the neural measure and the partition in behavioral data weakens, we ought129

to obtain less evidence for the model that assumes a mixture of latent states in data. Our primary aim is to130
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determine the amount of noise that can be tolerated in the relationship between neural and behavioral data before131

the misspecified model that collapses across the (true) latent states is preferred. Our outcome measure of interest132

is, therefore, the probability with which we select the model that assumes more than one latent generating state in133

data, which was the true data-generating model in all cases.134

1.1. Diffusion Model of Speeded Decision-Making135

In all simulations we studied sequential sampling models of decision-making, and the diffusion model of136

speeded decision-making in particular (Forstmann et al., 2016; Ratcliff and McKoon, 2008; Smith and Ratcliff,137

2004). The diffusion model, as with most sequential sampling models, assumes that simple decisions are made138

through a gradual process of accumulating sensory information from the environment. The sensory information139

influences an evidence counter that tracks support for one response alternative over another; for example, whether140

a motion stimulus moves to the left or right of a display, or whether a string of letters represents a word or not.141

The evidence counter continues to track evidence for the two response alternatives until it crosses an absorbing142

boundary – a pre-determined threshold amount of evidence – which triggers a response. The predicted choice is143

determined by the boundary that was crossed, and the predicted response time is the time taken for the process to144

reach the boundary plus a fixed offset time to account for processes such as encoding the stimulus and producing145

a motor response (e.g., a button press).146

Figure 1 provides a schematic overview of a choice between leftward and rightward motion in the diffusion147

decision model. The model has four core processing parameters: the starting point of evidence accumulation, which148

can implement biases toward one response or another (z); the average rate at which information is extracted from the149

stimulus, known as the drift rate (v), the amount of evidence required for a response, which represents cautiousness150

in responding, known as boundary separation (a); and the time required for elements outside the decision process,151

known as non-decision time (Ter). Modern implementations of the diffusion model assume trial-to-trial variability in152

some model parameters to reflect the assumption that performance has systematic and nonsystematic components153

over the course of an experiment (Ratcliff and Tuerlinckx, 2002). These parameters include the drift rate, starting154

point, and non-decision time. Specifically, on trial i the drift rate is sampled from a Gaussian distribution with155

mean v and standard deviation η, vi ∼ N(v, η); the start point is sampled from a uniform distribution with range156

sz, zi ∼ U(z − sz
2 , z + sz

2 ); and the non-decision time is sampled from a uniform distribution with range st,157

Ter,i ∼ U(Ter − st
2 , Ter + st

2 ).158

In all cases we simulated data from a hypothetical experiment of a two-alternative forced choice task with159

a single condition. The use of a single experimental condition mirrors almost all laboratory-based studies of mind160

wandering, which tend to focus on vigilance tasks such as the sustained attention to respond task (SART; Robertson161

et al., 1997; Smallwood and Schooler, 2006; Smilek et al., 2010). The SART is typically implemented as a single-162

condition go/no-go task with infrequent no-go stimuli (i.e., stimuli requiring a response to be withheld), with the163

aim of inducing boredom and hence mind wandering. The sequential sampling models we study here are easily164
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Figure 1: Schematic representation of the diffusion model of speeded-decision making. Reproduced with permission from Hawkins et al.
(2015).

generalizable to experimental paradigms with partial response time data – such as go/no-go and stop-signal tasks165

(Gomez et al., 2007; Logan et al., 2014) – so the results reported here are relevant to the tasks and experimental166

paradigms typically studied in the mind wandering literature.167

Our primary aim was to identify the latent data-generating states in data. This is a question pertinent to168

the individual-participant level – when was the participant on-task, and when were they off-task – thus we simulate169

and fit models to data at the individual-participant level.170

2. Discrete State Representation171

2.1. Generating Synthetic Data172

Synthetic data were generated from the discrete state representation by assuming that 80% of trials were173

from the on-task state and the remaining 20% of trials were from the off-task state. One could manipulate the ratio174

of on-task to off-task trials as a parameter of the model recovery exercise. We chose instead to select a fixed value175

that might be considered a conservative estimate of reported rates of mind wandering in experimental tasks that176

mirror the setup of our simulated experiment, so as to not overstate the estimated power of our results (e.g., some177

have reported that mind wandering occurs between 30–50% of the time; Killingsworth and Gilbert, 2010).1178

1Nevertheless, to assure ourselves that our results were not dependent on the ratio of on-task to off-task trials and the parameter
settings described below, we conducted a parallel analysis where synthetic data were generated from a discrete state representation with
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In generating synthetic data we constrained the parameters of the on-task and off-task states to identical179

values, except for the magnitude of the drift rate. We made the plausible assumption that the drift rate for the180

on-task state was larger than the drift rate for the off-task state, which implies that mind wandering reduces the181

efficiency of information processing. This assumption is consistent with empirical results suggesting that mind182

wandering leads to slower and more variable response times with a greater error rate (e.g., Bastian and Sackur,183

2013; Cheyne et al., 2009), which is qualitatively similar to the effect of a reduction in drift rate. Specifically, we184

set the drift rate for the on-task state to von = 2 and the off-task state to voff = 1. All other parameters were185

set to the following values, for both states: a = 1, z = .5 (i.e., no response bias), Ter = .15s, η = 1, and the186

trial-to-trial variability parameters for the start point of evidence accumulation and non-decision time were both187

set to 0. The diffusion coefficient was fixed to s = 1 in all synthetic data and model fits were obtained using the188

‘rtdists’ package for the R programming environment (Singmann et al., 2016). An exemplary synthetic data set is189

shown in Figure 2a and 2b. The synthetic data of the on-task state differed to the off-task state in terms of higher190

accuracy and faster mean response times that were less variable. These differences indicate that there was a reliable191

signal in behavioral data that differentiated the latent states.192

We generated synthetic data across a wide range of sample sizes (i.e., number of trials completed by a193

synthetic participant). Our motivation was to determine the efficiency of neural data to identify discrete latent194

states using sample sizes considered very small for fitting sequential sampling models to data, through to an195

approximate asymptotic limit with very large sample sizes. Specifically, we simulated 200 synthetic data sets from196

each of sample sizes 100, 250, 500, 1000, 2000, 5000, and 10000 trials. Therefore, for sample sizes of 100 trials, for197

example, there were 80 ‘on-task’ and 20 ‘off-task’ trials, and for 10000 trials there were 8000 ‘on-task’ and 2000198

‘off-task’ trials.199

2.2. Model Specification200

We fit two types of diffusion models to each synthetic data set: a single-state and a dual-state model. In201

the Appendix we outline the steps involved in performing an analysis assuming a discrete state representation and202

provide accompanying R code (R Core Team, 2016) that uses the rtdists package (Singmann et al., 2016).203

2.2.1. Single-State Model204

The single-state model is a misspecified model in the sense that it marginalizes (collapses) over trials gener-205

ated from the on-task and off-task latent states; this approach is equivalent to not using any neural data to inform206

cognitive modeling. The single-state modeling is representative of the dominant approach in the literature that207

an equal ratio of on-task to off-task trials and a lower drift rate for the on-task state (von = 1.8). Following (4) and (5), these settings
give an equivalent effect size to that reported in the primary simulation. All results of the parallel analysis mirror those shown in the
left panel of Figure 3. Combined with the results shown in Figure 4, this finding suggests that the primary factor influencing recovery of
the true latent generating state is the size of the effect that the neural data exert on the latent state, and not particular data-generating
parameter settings of the cognitive model.
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Figure 2: An exemplary synthetic data set generated from the on-task and off-task states of the dual-state model (panels a and b), and
the fit of the single-state model to the same data set, collapsed over latent states (panel c). Response time distributions for correct
responses are shown to the right of zero and distributions for error responses are shown to the left of zero (i.e., mirrored around the
zero-point on the x-axis). Green and red lines show correct and error responses, respectively, from the posterior predictive distribution
of the single-state model (panel c). The probability of a correct response in synthetic data is denoted p, and the corresponding predicted
probability from the single-state model is denoted p̂ (panel c).

generally makes no attempt to account for potential task-unrelated thoughts and their effects on task performance.208

The single-state model freely estimated the following parameters from data: start point (z), trial-to-trial variability209

in start point (sz), boundary separation (a), drift rate (v), trial-to-trial variability in drift rate (η), and non-decision210

time (Ter). Trial-to-trial variability in non-decision time was fixed to st = 0. We made this decision as we deemed it211

unlikely that the parameter estimation routine would compensate for the misspecification of the single-state model212

with a change in the parameter reflecting non-decision time variability, and our Bayesian parameter estimation213

routines were computationally much more feasible without the numerical integration required for estimation of the214

st parameter.215

2.2.2. Dual-State Model216

The dual-state model acknowledged the on-task and off-task generating states in data, by allowing for217

differences in drift rate between trials allocated to the on-task and off-task states (i.e., freely estimated von and218

voff , respectively). All other model parameters were constrained to be equal across the two states (as in the219

single-state model, st = 0 was fixed everywhere). The dual-state model, therefore, assumed some knowledge of the220
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data-generating structure in that there were two states that differed only in drift rate. Our results can thus be221

interpreted as a ‘best case’ scenario; additional misspecification in free parameters across the discrete states, or in222

the number of discrete states, may worsen model recovery relative to the single-state model.223

We did, however, introduce misspecification to the dual-state model in terms of the reliability with which224

trials were allocated to the true generating state. That is, we systematically manipulated the probability that225

trials generated from the on-task state were in the set of trials allocated to the on-task state in the fitted model,226

and similarly for the off-task state. In the sense that the set of trials generated from the on-task state was not227

necessarily the same set of trials fitted as the ‘on-task’ state, this model is misspecified. We refer to this form228

of misspecification as state-level misspecification, which is distinct from parameter misspecification (i.e., allowing229

the wrong parameters to vary with state). State-level misspecification mimics the capacity for an external stream230

of information, such as a neural data, to reliably partition trials into the true (data-generating) latent state. For231

example, Mittner et al. (2014) trained a support vector machine to use a range of fMRI and pupil measurements to232

classify trials from a stop-signal paradigm to on-task or off-task states. Their classifier achieved expected accuracy233

of 79.7% (relative to self-reported mind-wandering), implying that they could expect to correctly classify four out234

of every five trials to the on-task or off-task states, assuming there was a true distinction in the two latent states in235

the data-generating process.236

Although it is likely that our simulated neural data leads to better-than-chance classification accuracy, no237

combination of neural measures will achieve 100% accuracy. To explore the effect of classification accuracy on238

recovery of the (true) dual-state model, we manipulated state-level misspecification in terms of the probability of239

correctly assigning a trial to its true generating state, which we denote pcorrect. For example, pcorrect = .8 indicates240

that every trial that was generated from the on-task state had .8 probability of being correctly assigned to the241

on-task state in the fitted model, and .2 probability of incorrect assignment to the off-task state in the fitted model.242

The reverse was also assumed: trials generated from the off-task state had .8 probability of assignment to the243

off-task state in the fitted model, and .2 probability of assignment to the on-task state. This value mimics the244

classification accuracy achieved in Mittner et al. (2014). We explored a range from pcorrect = .5 (the neural data245

provide no information about the latent state, so trials are randomly allocated to the on- or off-task state) through246

to pcorrect = 1 (the neural data provide perfect knowledge of the generating state), in increments of .05. Therefore,247

for each synthetic data set, we compared the fit of the single-state model to 11 dual-state models corresponding to248

the range in pcorrect. For each value of pcorrect we determined which model (single state, dual state) provided the249

most parsimonious account of the synthetic data set.250

2.3. Parameter Estimation251

We sampled from the joint posterior distribution of the parameters of each model using differential evolution

Markov chain Monte Carlo (Turner et al., 2013b). We assumed prior distributions that had a considerable range
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around, but conveyed relatively little information about, the true data-generating parameter values:

v [single-state] ∼ N(0, 2,−5, 5),

von, voff [dual-state] ∼ N(0, 2,−5, 5),

a, sv ∼ N(1, 1, 0, 2),

z, sz, Ter ∼ Beta(1, 1),

where N(µ, σ, a, b) denotes a Normal distribution with mean µ, standard deviation σ, truncated to a lower limit of252

a and upper limit of b, and Beta(α, β) denotes the Beta distribution with shape parameters α and β. Parameters253

z and sz were estimated as a proportion of parameter a, and hence were constrained to the unit interval.254

Independently for all models, we initialized 18 chains with random samples from the prior distribution.255

Chains were first run for 250 iterations with the differential evolution probability of migration set to .05. Once256

initialization was complete, the migration probability was set to zero and we sampled from the joint posterior257

distribution of the parameters in phases of 1000 iterations. After each phase we checked chain convergence using258

the multivariate potential scale reduction factor (R̂ statistic; Brooks and Gelman, 1998), using a criterion of R̂ < 1.15259

to indicate convergence (visual inspection of a sample of chains supported this conclusion).2 After each phase of 1000260

iterations we monitored whether the chains had converged. If so, the parameter estimation routine was terminated.261

If not, another 1000 iterations were started from the end point of the previous 1000 iterations, and the procedure262

repeated until the chains had converged.263

2.4. Model Selection264

Model selection was performed with the Deviance Information Criterion (DIC; Spiegelhalter et al., 2002)3,265

which is computed using samples from the joint posterior parameter distribution. DIC is defined as DIC = D(θ) +266

2pD, where D(θ) is the deviance at the mean of the sampled posterior parameter vector θ, and pD is the effective267

number of model parameters, where pD = D−D(θ), and D is the mean of the sampled posterior parameter deviance268

values. Lower values of DIC indicate the better model for the data (i.e., the most parsimonious tradeoff between269

goodness of fit and model complexity).270

We converted estimated DICs for each comparison of the single- and dual-state models to model weights271

(for overview, see Wagenmakers and Farrell, 2004). If the set of models under consideration contain the true272

data-generating model, then these weights provide estimates of the posterior probability of each model (i.e., the273

2Preliminary simulations indicated lower values of R̂ (e.g,. R̂ < 1.1) were produced by longer series, but without any change in
conclusions; we chose a length of 1000 as a compromise that kept computational demands feasible.

3DIC has been criticized because it can select models that are too complex. Gelman et al. (2014) favor instead an information
criterion that approximates Bayesian leave-one-out cross validation, WAIC (Watanabe, 2013); for a number of checks we performed on
our extensive simulation study DIC and WAIC produced almost identical results. The code we provide to apply our analyses allows
calculation of both information criteria, so users can use their preferred choice.
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probability conditional on the data of each model being the true model relative to the set of candidate models274

under comparison). Otherwise, model weights provide a graded measure of evidence rather than the all-or-none275

decision rule that can arise when interpreting ‘raw’ information criteria. Model weights are also on the same scale276

for different data-set sizes (i.e., they fall on the unit interval), which allowed for simple comparison of model recovery277

across the sample sizes that were systematically manipulated in our study.278

Model weights are calculated by first considering differences in DIC for each model fit to a given data279

set: ∆i(DIC) = DICi −min DIC, where min DIC is the lowest (i.e., best) DIC among the set of K models under280

consideration. Then, the DIC-based weight for model i, wi(DIC), from the set of K models is given as281

wi(DIC) =
exp
{
− 1

2∆i

(
DIC

)}
K∑

k=1

exp
{
− 1

2∆k

(
DIC

)} . (1)

We calculated model weights for pairwise comparisons between the single- and dual-state models. All synthetic282

data were generated from the dual-state model so our primary outcome measure was the weight in favor of the283

dual-state model (i.e., successful model recovery), given by a simplified form of Equation 1,284

wdual(DIC) =
exp
{
− 1

2∆dual

(
DIC

)}
exp
{
− 1

2∆single

(
DIC

)}
+ exp

{
− 1

2∆dual

(
DIC

)} . (2)

We calculated model weights according to (2) for all relevant comparisons, and then averaged over the 200 Monte285

Carlo replicates within each state-level misspecification (.5, .55, ..., .95, 1) by sample size (100, 250, 500, 1000, 2000,286

5000, 10000) cell of the design.287

2.5. Results and Discussion288

The single- and dual-state models provided an excellent fit to all synthetic data sets. Figure 2c shows the289

fit of the single-state model to an exemplary synthetic data set. It is perhaps surprising, but also instructive, that290

the misspecified single-state model provided such a precise account of data generated from two discrete latent states291

that had different data-generating parameters. It appears that the single-state model is able to mimic the dual-state292

model, at least for the parameter settings we investigated. Specifically, when the drift rate is the only parameter293

that varies across discrete states – where von and voff , respectively, represent drift rates for the on-task and off-task294

states, and pon represents the proportion of on-task trials – the estimated (single) drift rate of the misspecified295

single-state model approximates a weighted combination of the two: von × pon + voff × (1 − pon). To mimic the296

variability of the mixture of drift rate distributions – which is increasingly greater than the variability of either of297

the mixture components as the two means increasingly differ – there is an increase in the standard deviation of298

the trial-to-trial variability in drift rate (η) estimate for the single-state model. For the difference in drift rates299

that we investigated this increase was only marginal, and the slightly more variable single drift rate distribution300
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approximated the mixture distribution quite well (see also discussion around formulae (4) and (5) below). This301

approximation will likely break down as the difference in means becomes extreme, but as the difference we examined302

was quite substantial it seems unlikely that visual examination of goodness-of-fit alone would be sufficient in practice303

to detect a misspecified single-state model.304

Since both models provided a visually compelling fit to behavioral data, we discriminated between the305

single- and dual-state models on the basis of model weights, as is standard in most research comparing competing306

cognitive models. The left panel of Figure 3 summarizes the model recovery simulation. The weight in favor307

of the dual-state model – the true data-generating model – is shown on the y-axis. Light through to dark lines308

indicate the amount of state-level misspecification, where classification to the true latent state was manipulated309

from chance performance (pcorrect = .5, lightest line) through to perfect classification (pcorrect = 1, darkest line).310

The key comparison is the ability to identify the true latent generating state on the basis of cognitive models fit to311

behavioral data, across a range of neurally-informed classification accuracies.312
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Figure 3: Model recovery for medium effect sizes. The left panel shows the weight in favor of the dual-state model over the single-state
model in the model recovery simulations of the discrete state representation. The y-axis represents the DIC-derived posterior model
probability of the dual-state model, the x-axis represents the number of trials in the synthetic data set, and color gradations represent
the range in pcorrect of the state-level misspecification of the dual-state model. The right panel shows the weight in favor of the covariate
model over the standard model in the model recovery simulations of the continuous dimension representation. The y-axis represents
the DIC-derived posterior model probability of the covariate model and color gradations represent the range in R2 of the covariate
measurement precision of the covariate model. Horizontal gray lines indicate the point of equivalent evidence between the two models
(solid lines), and a difference of approximately 3 DIC units in favor of the dual-state model (left) and covariate model (right; upper
dashed lines) or the single-state model (left) and standard model (right; lower dashed lines).

As expected, evidence in favor of the dual-state model increased as the number of trials in the synthetic313

data increased (larger values on the x-axis). This was, however, heavily influenced by the amount of state-level314

misspecification. In our simulations, this represents the capacity of the neural data to reliably classify trials to their315

true latent (data-generating) state. Whenever state-level misspecification was above chance (i.e., pcorrect > .5), the316

evidence in favor of the dual-state model increased with increasing sample size. In particular, it reached ceiling317

by a sample size of 1000 trials when state-level misspecification was completely absent (pcorrect = 1), and by318
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the upper limit of the sample sizes we explored (10000 trials) for moderate classification accuracy (pcorrect ≥ .7).319

For more plausible sample sizes, however, recovery of the true model was more modest. Even with no state-level320

misspecification, the weight for the dual-state model never exceeded .8 for sample sizes less than 250 trials. We321

note that a model weight of .8 corresponds to a difference of approximately 3 units on the raw DIC scale. Small322

differences in information criteria such as this are often considered as providing little more than weak evidence (e.g.,323

Burnham and Anderson, 2004; Kass and Raftery, 1995; Raftery, 1995). Even placing optimistic bounds on the level324

of classification accuracy that is possible with real neural data (e.g., pcorrect = .9), the weight for the dual-state325

model only exceeded .8 at a sample size of approximately 400 trials, and did not reach a decisive level of evidence326

until the sample size exceeded 1000 trials.327

On a more technical point, when state-level misspecification was at chance (pcorrect = .5), the single-state328

model ideally ought to garner increasing evidence with increasing sample size (i.e., a gradual shift toward lower329

values on the y-axis). This should occur since the classification to discrete states in the fitted model was completely330

uninformed by the true data-generating values, so the estimated drift rates for trials classified to the on- and off-task331

states were close to identical. Under these conditions, the dual-state model provides no predictive benefit over the332

single-state model, so we should favor the simpler single-state model, and increasingly so for larger sample sizes.333

Examination of Figure 3, however, indicates that this did not occur; model weight was independent of sample size.334

This result is due to a property of the model selection criteria used here. DIC penalizes model complexity with a335

fixed offset (the effective number of parameters, pD), which means that the penalty against the dual-state model336

over the single-state model when pcorrect = .5 is (almost) a fixed value as a function of the sample size manipulation337

in our study, hence the approximately flat line at y = .4. This problem would be addressed through the use of338

model selection indices that are consistent in the sense that they converge to the true answer with increasing sample339

size, such as Bayes factors. At the time of this work, calculation of Bayes factors for complex cognitive models340

such as the diffusion model is computationally extremely expensive. This is an active field of research and with341

future developments we hope to incorporate such model selection measures in our work (for a recent example, see342

Steingroever et al., 2016).343

In summary, our simulation study indicates that it can be difficult to identify discrete latent states on344

the basis of cognitive models fit to behavioral data. Of course, it is possible that changes to the parameters of345

the simulation may alter these results. For example, we could manipulate the ratio of on-task to off-task trials in346

synthetic data, the number of model parameters that differed across the latent states and the degree of difference, or347

the level of parameter misspecification in the models fit to the synthetic data. On the basis of the available evidence,348

however, we conclude that obtaining compelling evidence for the identification of mutually exclusive latent states –349

such as phases of on-task and off-task performance – requires very large sample sizes (5000+ trials) with moderate350

(or better) neural classifiers, or moderate (or better) sample sizes with very good neural classifiers. Our intuition is351

that neither of these situations arise in the majority of real psychological or neuroscience experiments. Nevertheless,352
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for almost all sample sizes we obtained at least some evidence in favor of the true model for plausible sample sizes353

(e.g., a few hundred to a few thousand trials) when data were partitioned to discrete states on the basis of neural354

classifiers that performed within an impressive but plausible range for real data (e.g., pcorrect = .7− .85).355

3. Continuous Dimension Representation356

The first model recovery analysis indicated that identifying discrete latent states on the basis of cognitive357

models fit to behavioral data is difficult but not impractical. We now investigate a generalization of the discrete358

state representation that considers the latent state as a continuous dimension. In the context of mind wandering,359

such a continuum could represent a dynamically fluctuating state where people drift into phases of more on-task or360

more off-task focus, without imposing a rigid boundary between mutually exclusive states. The idea underlying the361

continuous dimension representation is more general, though, mirroring constructs in many cognitive theories, such362

as the graded memorability of different items in a recognition memory experiment. Indeed, it was to account for363

just such graded variability that Ratcliff (1978) introduced trial-to-trial variability in drift rates into the diffusion364

model, which has since become a standard assumption (i.e., η > 0).365

The continuous dimension representation can be interpreted in two ways. The first assumes that there is an366

external stream of information, which we assume throughout to be some form of neural data, that reliably indexes367

a latent state, such as mind wandering. In the mind wandering literature, for example, measures of connectivity368

and activity of the default mode network are increased during phases of reduced attention toward the primary task369

(e.g., Andrews-Hanna et al., 2010; Christoff et al., 2009; Mason et al., 2007; Mittner et al., 2014; for meta-analysis,370

see Fox et al., 2015). In this case, moment-to-moment fluctuations in activity of the default mode network could be371

considered an online index of mind wandering. This stream of neural data can then be used as a covariate in the372

cognitive model; specifically, single-trial measures of default mode network activity can be regressed onto structured373

trial-by-trial variation in the parameters of the model. This allows exploration of the effect of the neural covariate374

on different model parameters and permits quantitative tests of the covariate-parameter pairings that provide the375

best fit to behavioral data. This approach has the potential to provide insights regarding how the latent state (e.g.,376

mind wandering as indexed by activity of the default mode network) affects cognition (e.g., processing efficiency;377

drift rate) and consequent task performance (e.g., more errors, slower response times).378

The second way to interpret a continuous dimension is that the neural measure provides a direct ‘readout’379

of a process assumed in the cognitive model. This approach allows for precise tests of ‘linking propositions’ (Schall,380

2004); explicit hypotheses about the nature of the mapping from particular neural states to particular cognitive381

states. As an example of this approach, Cavanagh et al. (2011) proposed that response caution in conflict tasks is382

modulated by connectivity between the subthalamic nucleus and medial prefrontal cortex. To test this hypothesis,383

the authors first estimated single-trial measures of theta band power from neural oscillations in ongoing EEG activity384

over the medial prefrontal cortex, which was then regressed onto the value of the decision boundary parameter of385
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the diffusion model. This single-trial regressor approach estimates regression coefficients that indicate the valence386

and magnitude of the relationship between the neural measure and observed performance, via the architecture of387

the cognitive model. Cavanagh et al. (2011) found that increased theta power led to a subsequent increase in the388

decision boundary (i.e., a positive value of the regression coefficient) for trials with high but not low conflict. A389

control analysis indicated that theta power had no trial-level relationship with drift rate (i.e., a regression coefficient390

centered at zero), indicating a selective effect of the neural measure on a model parameter. This example highlights391

how single-trial regression permits quantitative tests of hypotheses about brain-behavior relationships.392

Regressing neural data onto the parameters of cognitive models at the single-trial level has the desirable393

property that it provides a tight quantitative link between neural and behavioral data (de Hollander et al., 2016).394

Furthermore, although we used custom scripts for all analyses reported here – because we needed to automate a395

large number of replications – there are excellent, freely available programs that implement single-trial regression396

for hierarchical and non-hierarchical Bayesian parameter estimation for the diffusion model (HDDM toolbox for397

Python; Wiecki et al., 2013), which removes barriers to implementation of these methods. In the Appendix we398

outline the steps involved in performing single-trial regression and provide accompanying R code to implement399

these steps.400

In this section we assessed whether the trial-by-trial influence of an external stream of information, such401

as a neural measure, is identifiable in models fit to behavioral data. In previous simulation studies, Wiecki et al.402

(2013) found that single-trial covariates are well recovered in a hierarchical estimation setting for moderate effects403

sizes and moderate number of trials in the experiment. We build on Wiecki et al.’s findings to explore how often a404

model that incorporates a single-trial neural covariate – which was the true model in all cases – was preferred over405

the ‘standard’ diffusion model that uses no trial-level covariates.406

3.1. Generating Synthetic Data407

Synthetic data were generated from a diffusion model where a neural signal modulated individual-trial drift408

rates: trials with larger-than-average neural signals had larger-than-average drift rates and trials with smaller-409

than-average neural signals had smaller-than-average drift rates. We assumed that the neural covariate would be410

pre-processed and normalized prior to modeling. To this end, we simulated a single value of the neural covariate for411

every synthetic trial via random draws from the standard normal distribution and explored the effect of the neural412

covariate on recovery of the data-generating model.413

3.1.1. Covariate Model414

Synthetic data were generated data from a model that assumed trial-to-trial variability in drift rate had415

systematic fluctuations, via the neural covariate, and unsystematic (random) fluctuations, via parameter η, which416

we refer to as the Covariate model. We assumed that the trial-level neural covariate was mapped via simple linear417

regression to structured trial-by-trial variation in drift rate. Specifically, drift rates were distributed according to418
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the value of the normalized covariate (d) and a regression coefficient (β), such that the drift rate (v) on trial i is:419

vi ∼ v + β · di +N(0, η). (3)

The covariate model thus assumed that the drift rate on trial i, vi, had a mean component defined as a linear420

function of an intercept, v, representing average performance in the experiment, and the magnitude and valence421

of the neural measure on trial i, di, scaled by a regression coefficient, β, which is an index of effect size, and a422

random component involving samples from a Gaussian distribution with mean 0 and standard deviation η. This423

model reflects the plausible assumption that our measured neural covariate has a generative influence on drift424

rate (through parameter β), but there are also unmeasured, randomly distributed influences on drift rate (through425

parameter η).426

3.1.2. Effect Size of the Neural Covariate427

We matched the effect size (β) studied in the continuous dimension representation to the effect size studied428

in the discrete state simulations in terms of the proportion of variance accounted for by the neural information.429

Specifically, if pon represents the proportion of on-task trials in the discrete state representation, and x1 and x2430

respectively represent sampled drift rates of the on-task and off-task states, where x1 ∼ N(von, ηon) and x2 ∼431

N(voff , ηoff ), then the weighted mean drift rate of the mixture is432

Mdiscrete = pon · von + (1− pon) · voff , (4)

with variance433

Vdiscrete = pon · η2on + (1− pon) · η2off + pon · (von −Mdiscrete)
2 + (1− pon) · (voff −Mdiscrete)

2. (5)

Substituting the values used in the discrete state simulations (pon = .8, von = 2, voff = 1, and ηon = ηoff = 1)

into (4) and (5) we get Mdiscrete = 1.8 and Vdiscrete = 1.16. The proportion of variance accounted for by the neural

data in the discrete state simulations was therefore

R2
discrete = 1− 1

Vdiscrete
= 1− 1

1.16
= .138,

which gives the medium effect size of rdiscrete =
√
R2

discrete = .371.434

We used a comparable definition of effect size for the continuous dimension representation. If the neural

data is distributed as d ∼ N(0, Vneural) with regression coefficient β and base drift rate variability x ∼ N(0, η),4

4Here we set Vneural = 1 without loss of generality and similarly both means at zero as we are only concerned with proportions of
variance.
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then it follows that the covariate model in (3) has variance

Vcontinuous = η + β · Vneural,

with proportion variance435

R2
continuous =

β · Vneural
η + β · Vneural

. (6)

Rearranging (6) and setting R2
continuous = R2

discrete = .138, we get

β =
η ·R2

continuous

Vneural(1−R2
continuous)

= .16,

which is the value of the regression coefficient we used to generate synthetic data. This value is broadly representative436

of the few previous studies that have reported single-trial regression coefficients in empirical studies using a model-437

based neuroscience framework; β ≈ .20 for drift rate effects in Nunez et al. (in press), and β ≈ .09 and .04 for438

response threshold effects in Cavanagh et al. (2011) and Frank et al. (2015), respectively. All other parameters of the439

covariate model were set to the same values as in the simulation of the on-task state of the discrete representation.440

We again generated synthetic data sets from the same range of sample sizes as in the previous analysis; 200441

synthetic data sets from the covariate model for each of sample sizes 100, 250, 500, 1000, 2000, 5000, and 10000442

trials.443

3.2. Model Specification444

We fit two types of diffusion models to each synthetic data set: the covariate model and a ‘standard’

model. The covariate model was fit to all synthetic data sets with the drift rate assumptions specified in (3). The

second model neglected the information contained in the neural covariate altogether, instead attributing trial-to-trial

variability in drift rate to unsystematic sources via the η parameter; that is,

vi ∼ N(v, η).

We refer to this second model as the Standard model, reflecting its dominant status in the literature (Ratcliff, 1978;445

Ratcliff and McKoon, 2008).446

When the neural signal is measured with perfect precision, the true latent data-generating model – the447

covariate model – should be favored over the standard model. Such high measurement precision, however, is not448

possible in real neural data. To examine the effect of noisy neural data on the identification of a model incorporating449

a neural covariate, we manipulated the level of noise in the covariate that was fit to the synthetic data. That is, we450

systematically diminished the correlation between the data-generating value of the covariate and the fitted value451

of the covariate, which we refer to as covariate measurement precision. This manipulation mimics the setup of real452
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experiments where we (aim to) obtain neural measures that are noise-perturbed proxies to the true neural state.453

To systematically manipulate covariate measurement precision, for each synthetic data set we generated a454

new set of random variables that served as the neural covariate in the models that were fit to the synthetic data.455

The set of random variables, which we refer to as ‘fitted covariates’, had correlations with the data-generating value456

of the covariate ranging from r = 0− 1 in increments of .1. The mean (zero), variance (one) and shape (normal) of457

the fitted covariates were the same as that of the covariate distribution.5458

We report covariate measurement precision below as the coefficient of determination (R2) rather than459

Pearson correlation coefficient (r). This allows for direct interpretation as the proportion of variance that the460

noise-perturbed, fitted value of the covariate accounts for in the true data-generating value of the neural covariate.461

These results provide a benchmark for the minimum level of measurement precision required for identifiability of462

cognitive models that incorporate single-trial covariates.463

3.3. Parameter Estimation and Model Selection464

We estimated model parameters using identical methods to those described in the analysis of the discrete465

state representation, with the only addition that we specified a prior distribution for the covariate parameter of the466

covariate model: N(0, 1,−3, 3).467

Model selection was also conducted in a parallel manner to the first analysis. Our primary aim was to468

determine the covariate measurement precision required to obtain evidence in favor of the covariate model over the469

standard model. Therefore, we report the model weight in favor of data generated from the covariate (i.e., true)470

model over the standard model, following (2).471

3.4. Results and Discussion472

All models provided an excellent fit to synthetic data so we again adjudicated between them using model473

weights. The right panel of Figure 3 summarizes model recovery in a similar format to the left panel. Larger values474

on the y-axis indicate more evidence for the true (covariate) model over the standard model. Line darkness indicates475

the level of covariate measurement precision, where measurement precision was manipulated from complete noise476

(R2 = 0, lightest line) through to perfect measurement (R2 = 1, darkest line). As before, the key comparison was477

5Under this model of measurement noise, the relationship to the proportion of variance in drift rates explained by mind wandering
is more transparent than in the discrete case where measurement noise is in terms of the proportion of correct classifications. To see
this, denote the proportion of variance in the measured covariate (MC) by w, and the random variables representing the systematic
effect of the covariate and measurement noise by D ∼ N(0, 1) and M ∼ N(0, 1), respectively. Hence, MC = w ·D + (1 − w) ·M , and
so MC ∼ N(0, 1) as required. Consequently, the overall drift rate random variable with the measured covariate is V ∼ v + β ·MC =

v + β ·D + N(0,
√

1 + β · (1− w)). These results show the additive Gaussian assumption causes the difference between measurement
noise and the random effects on the drift rate unrelated to the covariate not to be identifiable, with the combination constituting what
might be called the “effective” level of noise. Given, r =

√
w, our manipulation of r is a manipulation of the effective noise level,

corresponding either to a change in the level of measurement noise, the level of unrelated effects on drift rates, or some combination.
We maintain the distinction between the two constituents of effective noise in our description of results given it makes clear the link to
the discrete case, where in both cases the range of the measurement noise manipulation is between no effect and the maximal effect size
(i.e., .138 = β/(1 + β), where β = .16).
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the capacity to identify the true generating model in neurally-informed versus neurally-uninformed cognitive models478

fit to behavioral data.479

Evidence in favor of the true model generally increased with the number of trials in synthetic data. As480

expected, however, this was influenced by the level of covariate measurement precision. When the covariate was481

measured with very low precision – where the fitted value of the covariate explained less than 5% of the variation482

in the data-generating covariate – sample size had almost no influence on recovery of the true model. This implies483

that when neural data are poorly measured, or when the neural measure is only a very weak proxy to the true latent484

process, then a binary decision would select the standard model over a neurally-informed model. That is, assuming485

unsystematic across-trial variation in drift rate would be more parsimonious than regressing an overly noisy neural486

measure onto drift rate.487

Perhaps surprisingly, evidence for the true model converged very slowly as a function of sample size. Even488

when the neural covariate was perfectly measured (R2 = 1), the weight for the true model did not exceed .8 until489

almost 2000 trials were observed; the comparable sample size for the discrete state simulation was 250 trials. For490

more plausible measurement precision – say, approximately 33% – the weight for the true model exceeded .8 only491

when sample size exceeded approximately 4000 trials. This result, and similar comparisons across the panels of492

Figure 3, suggests that the discrete state approach is a more powerful use of neural data than the single-trial493

covariate approach, at least for the parameter settings and effect size explored here. That is, neural data more494

heavily constrain model recovery when used as a binary indicator of the latent state than when regressed onto495

trial-by-trial variation in model parameters.496

4. Recovering Neurally-Informed Cognitive Models When Neural Data Have A Large Effect Size497

The foregoing analyses indicate that when equated on a medium effect size, neurally-informed discrete state498

models are more reliably recovered than neurally-informed continuous dimension models. In this section we confirm499

that when endowed with a sufficiently large effect size the true model is well recovered in both the discrete state500

and continuous dimension representations. This result implies that both discrete and continuous representations501

can indeed be identified in behavioral data when the information contained in neural data relates to a sufficiently502

strong effect.503

We generated synthetic data sets where the neural data strongly identified the latent state. Specifically, for504

the continuous dimension representation we set the value of the neural covariate to β = .5, with all other parameter505

settings as described in the previous section. Following (6) this gives an effect size of r = .577. An equivalent506

effect size can be obtained in the discrete state representation in multiple ways. We chose to enhance the difference507

between the on- and off-task states in terms of a larger drift rate for the on-task state (von = 2.414) and assuming508

an equal ratio of on-task to off-task trials (pon = .5), with no changes in other data-generating parameters. All509

other details were identical to those used in the previous simulations, including the data generation, sample size,510
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introduction of noise to the (synthetic) neural data, model specification, parameter estimation, and model selection511

methods.512

Figure 4 shows recovery of the true model with a large effect size in the discrete state and continuous513

dimension representations. A striking finding was how quickly the evidence for the true models converged as a514

function of the noise in neural data (state-level misspecification and covariate measurement precision in the left and515

right panels, respectively), even at relatively small samples sizes (i.e., 250–500 trials) and moderate levels of noise.516

Although recovery of the continuous dimension representation was much improved for large versus medium effect517

sizes, the true model in the discrete state representation was still recovered more reliably when equating sample518

size and noise in neural data.519
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Figure 4: Model recovery for large effect sizes. The left panel shows the weight in favor of the dual-state model over the single-state
model for the discrete state representation. The right panel shows the weight in favor of the covariate model over the standard model
for the continuous dimension representation. All other details are as described in Figure 3.

5. Conclusions520

We investigated whether informing cognitive models with neural data improves the ability to identify latent521

cognitive states. This approach is increasingly common in the psychology and neuroscience literatures (e.g., Borst522

and Anderson, 2015; Mittner et al., 2014; Turner et al., 2013a, 2015). However, there have been few systematic523

studies of the benefits to model recovery that such an approach may bear. We found that, when the neural data524

can discriminate a moderate effect on performance, it can be difficult to reliably identify mutually exclusive latent525

states when neurally-informed cognitive models are applied to behavioral data. As expected, model recovery was526

very good when the synthetic experimental design was far removed from typical experiments (i.e., large sample size,527

good neural classification accuracy). Model recovery, however, was still within acceptable bounds even with more528

feasible experimental designs (i.e., between 500-1000 trials) with moderate classification accuracy.529
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In contrast, when we relaxed the assumption that latent states are discrete, we found that a latent state530

that can dynamically move along a continuous dimension substantially worsened model recovery even though mind531

wandering accounted for the same proportion of variance (i.e., had the same effect size) in the continuous and discrete532

versions. Model recovery was relatively poor for the sample sizes typically observed in psychological experiments533

(i.e., up to 1000 trials per participant), and convincing evidence for the true data-generating model was only534

obtained with sample sizes of approximately 5000 trials or more, even when neural covariates were (hypothetically)535

measured with perfect precision. This result implies that when the neural covariate is only a distant proxy to the536

true data-generating process, a standard model that is ignorant with respect to neural data will often be preferred537

over a neurally-informed cognitive model, and, within reason, this is not dependent on sample size. We believe538

this highlights two important issues in the use of neurally-informed cognitive models. The first, more obvious539

issue is that we must maximize the precision in our measurement of neural data. Birte: Following Andrew’s540

comment, is there anything you can add to accompany the previous sentence about precision of541

neural recording? The second, more subtle issue is that we must use theory-based, hypothesis-driven tests of542

neural covariates on model parameters; that is, we must aim to maximize the possible relationship between the543

fitted value of the covariate and the true data-generating process.544

Our conservative conclusion is, therefore, that neural data aids model identification under some circum-545

stances. In particular, model recovery improved when the latent state was assumed to consist of discrete stages (vs.546

continuous dimension). The discrete approach had greater power in the sense that a given effect could be identified547

with smaller sample sizes, reflecting more efficient use of neural data. This finding may be due to the parameter gov-548

erning trial-to-trial variability in drift rate (η) having a better capacity to compensate for variance arising from the549

neural covariate under the assumption of a continuous dimension than a discrete state representation. Nevertheless,550

in practice this finding is particularly important since experiments that record neural measures such as fMRI or551

EEG activity during task completion are often limited in the number of trials that can be collected. Reassuringly,552

when the neural data exerted a large effect on behavior (although not such a large effect as to be implausible at least553

in some circumstances) both the discrete state and continuous dimension representations had good model recovery.554

Even under this condition, however, relative to the standard model, the assumption of mutually exclusive latent555

data-generating states was more efficiently recovered than a latent continuous dimension (cf. Figure 4). Finally, we556

note that efficiency of model recovery appears to more heavily influenced by the effect size rather than particular557

hyperparameter settings (cf. footnote 1).558

It is also important to note that even in the large effect size case simple visual inspection of model fits was559

not sufficient to reject the standard model; we required model selection methods. Fortunately, methods that are560

easily implemented based on standard Bayesian posterior sampling (e.g., DIC, WAIC) sufficed for detecting the561

presence of an effect of mind wandering in our simulations. However, more sophisticated model selection methods562

(e.g., Bayes factors) appear to be required to provide consistent evidence (i.e., evidence that becomes stronger as563
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sample size increases) against the presence of mind wandering. That is, when mind wandering is not present, at564

best the model selection methods explored here will be equivocal even with large samples.565

Regardless of whether one expects neural data to exert a small or large effect on performance, the assumption566

of a discrete or continuous representation will likely better serve different research goals at different times. Both567

approaches allow estimation of effect size (cf. formulae 4–6). The continuous approach also has the attractive568

property that a measure of effect size is directly estimated. That is, the output of the neural covariate-model569

parameter relationship – a regression coefficient – has a simple interpretation (assuming that the neural covariate570

is normalized): the extent to which the estimated regression coefficient differs to zero provides a standardized571

measure of effect size. Both approaches are also relatively easy to implement. The discrete state representation can572

be implemented by splitting an experimental condition into discrete sets of trials on the basis of a neural variable573

(e.g., the output of a classifier). Single-trial covariates are already incorporated as a standard feature of some574

estimation programs (e.g., HDDM, Wiecki et al., 2013), removing a potential barrier to implementation. In the575

Appendix we also provide custom R code to implement both analysis approaches discussed in this paper.576

Our analyses examined recovery of latent cognitive states in individual (simulated) participants, though577

one could also consider recovery of latent states across groups of participants. This could be investigated with578

hierarchical Bayesian models that, among other benefits, allow for simultaneous analysis at the level of individuals579

and groups (for an overview, see Lee, 2011). Such an approach allows information to be pooled across participants in580

a theoretically sensible manner, which can confer benefits to parameter estimation, in particular parameter stability.581

Furthermore, hierarchical Bayesian modelling can be applied to large samples of participants, where each participant582

may only complete a moderate number of trials. However, it is important to note that if there are too few data for583

each participant then individual differences cannot be estimated, with hierarchical models often displaying “over-584

shrinkage” (i.e., estimating the same parameter value for all participants). For simplicity, we restricted our analyses585

to the simpler case of recovering latent cognitive states in individual participants, which removes at least some586

sources of variability that are present in the hierarchical case (e.g., across-participant variability in the proportion587

of trials from each of two discrete latent states). We leave these interesting questions about model recovery in588

hierarchical settings to future research.589

Finally, we note that the discrete and continuous approaches need not involve neural data, although we590

considered such hypothetical scenarios here. A variable derived at the level of single trials – which can be incor-591

porated within a discrete or continuous approach – can be extracted from any property of the task environment592

that is relevant to performance. For example, Hawkins et al. (2016) studied the similarity between study and test593

items in an inductive reasoning task. The similarity relations are specified at the level of individual items, and thus594

can be regressed against parameters of the cognitive model in the same manner as neural data. In Hawkins et al.’s595

model, regressing single-trial item similarity onto the drift rate parameter led to a positive regression coefficient,596

indicating that as item similarity increased so too did the probability of generalizing a target property to novel597
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items according to a particular functional form. This example illustrates the general point that wider incorporation598

of single-trial properties of the experiment – neural or otherwise – in cognitive models has the potential to provide599

deeper insight to a broad range of psychological phenomena.600
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Appendix A. Implementing Neurally-Informed Cognitive Models601

In this Appendix we outline the steps involved in implementing the discrete state and continuous dimension602

representations discussed in the main text. To accompany the examples, we provide code in the R programming603

language (R Core Team, 2016) that is freely available on the Open Science Framework (osf.io/yt8q4).604

This outline provides guidance on the cognitive modeling component of a model-based neuroscience analysis605

in real data. It assumes that the neural data – whether it is fMRI, EEG, MEG, pupil measurements, or others –606

have been analyzed in an appropriate manner. It further assumes that it is possible to extract at least one value of607

the analyzed neural measure for each trial of the experiment.608

Appendix A.1. Implementing the Discrete State Representation609

The discrete state representation assumes that the observed data were generated by two or more discrete610

latent states. In the main text, for example, we hypothesized that two latent states underlying task performance611

might correspond to an on-task state, where attention is directed to external stimuli such as an experimental task,612

or an off-task state, where attention is directed to internal stimuli such as mind wandering; these two states have613

been proposed in the popular perceptual decoupling hypothesis of mind wandering (Smallwood and Schooler, 2015).614

One could also hypothesize more than two discrete states; for example, Cheyne et al. (2009) hypothesized a three-615

state model of engagement/disengagement from task performance. However, for simplicity, we restricted the model616

recovery analyses in the main text and the outline here to the more prominent two-state case.617

The partition of individual trials into the latent states can be derived from neural data in two main ways:618

using single measures, or multiple measures.619

Appendix A.1.1. Identifying Discrete Latent States From A Single Neural Measure620

Step 1: The first method begins with identification of a neural signal related to the latent states of interest.621

In the mind wandering literature, for example, activity of the default mode network (DMN) tends to increase during622

phases of off-task focus and decrease during phases of on-task focus (Andrews-Hanna et al., 2010; Christoff et al.,623

2009; Mason et al., 2007; Mittner et al., 2014; for meta-analysis, see Fox et al., 2015). In this case, the neural signal624

of interest could be a single-trial measure of DMN activity. The neural signal of interest can be simple in the sense625

that it involves a single measure (e.g., stimulus evoked pupil response, P3 ERP component over parietal cortex,626

or BOLD response in dorsolateral prefrontal cortex) or ‘complex’ in the sense that it involves an amalgamation627

of numerous measures (e.g., connectivity between various cortical regions); the key requirement is that a single628

value of the neural signal can be extracted for each trial (methods corresponding to multiple neural signals on each629

trial are discussed in the following subsection). The specifics for obtaining a single value on each trial might differ630

depending on the domain of study and the latent states of interest; it could be the value of the neural signal in a631

one second interval during the pre-stimulus period, immediately post-stimulus presentation, the full time course of632

a trial, or some other relevant interval.633

24



Step 2: Once a single value of the neural signal is obtained for each trial, the individual trials are sorted in634

order of those with the lowest value of the neural signal (e.g., low DMN activity) through to those with the highest635

value of the neural signal (e.g., high DMN activity). Once sorted, the trials are split into separate groups. A simple636

option is to perform a median split of the DMN activity-sorted trials on the assumption that trials with lower DMN637

activity are more likely to have been generated by the on-task state and those with higher DMN activity are more638

likely to have been generated by the off-task state. A median split is a coarse approach and other methods can be639

used; for example, taking the lower 40% and upper 40% of trials, or using signs of bimodality in the distribution of640

the neural signal as an indicator of the appropriate cut point for the sorted trials. The key requirement is that the641

neural signal is used to split individual trials into at least two discrete groups of trials.642

Step 3: Once the data have been split based on the neural signal, the cognitive model is fit to the discrete643

groups of trials. Critically, this fitting occurs as if the discrete groups were part of the experimental design. In the644

main text, for example, we assumed a single experimental condition with no explicit manipulation. When the data645

were split according to the neural signal, we essentially created a data set with two conditions that corresponded to646

the two latent states; we labeled these ‘on task’ and ‘off task’. When fitting the model to the latent states one can647

estimate partially overlapping or distinct sets of model parameters for the discrete states. This is the same logic648

as fitting regular experimental manipulations: when difficulty is manipulated across conditions the conventional649

approach is to freely estimate a drift rate parameter for each condition while constraining other model parameters650

to a common value. In the discrete states case, one might hypothesize that drift rate differs across conditions but651

other parameters do not. This corresponds to the assumption that the latent states only differ in the efficiency of652

stimulus information processing.653

The cognitive processes that might differ across latent states ought to be driven by theory. Ultimately,654

however, it comes down to a question of model selection; do processes A and B differ across latent states, or only655

process A? Such model comparison allows one to ask the question: if there are differences in cognitive processes656

between the latent states, what is the most likely difference? We argue that the final and most critical comparison657

is whether the simplest model of performance differences across the latent states is preferred to a model fit to data658

that is not split according to neural signal. The model recovery properties of this comparison were the primary659

focus of the main text.660

Appendix A.1.2. Identifying Discrete Latent States From Multiple Neural Measures661

The second method differs to the first in terms of the number of neural signals used to identify the latent662

cognitive states, and the complexity of the methods used to infer the latent state. The first method assumed that663

the neural signal collapsed to a single value for each trial. The second method attempts to combine multiple neural664

signals to infer the latent generating state on each trial. The general idea is that each neural signal might contain665

independent information about the latent state so simple methods of aggregation may lose discriminatory power.666

A more powerful form of aggregation is through supervised learning algorithms, though this places an additional667
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requirement on data collection to obtain the ‘labels’ for to train a classification algorithm.668

Step 1: The neural signals are extracted in a similar manner to Step 1 of Appendix A.1.1. However, here669

we assume there is a set of neural signals associated with the latent state of interest; the states might be on task670

and off task and the measures might be regional DMN activity, the task positive network, connectivity between the671

DMN and the task positive network, and stimulus evoked pupil diameter (cf. Mittner et al., 2014).672

Step 2: The general approach outlined here was performed in Mittner et al. (2014). The aim is to collect673

the neural signals identified in Step 1 and behavioral data during regular task performance that also involves674

occasional behavioral indicators of the relevant latent states. In mind wandering research, for example, participants675

are typically periodically asked to report whether their focus was ‘more on task’ or ‘more off task’ in the preceding676

trial, though this is not asked on all trials. This method takes these self-report ratings as an indicator of the latent677

state – on task or off task – and uses them as labels to train a classification algorithm to ‘learn’ the distinct patterns678

of (the collection of) neural signals that discriminate on-task from off-task self-report ratings. Once the trained and679

validated, the algorithm probabilistically classifies all unlabeled trials to the on-task or off-task state, based on the680

correspondence between the neural signals on each unlabeled trial with the neural signal on the labeled trials.681

Step 3: Once individual trials have been classified to the on-task or off-task states, the cognitive model is

fit to the discrete groups of trials in the same manner as Step 3 of Appendix A.1.1. Typical classification algorithms

used for Step 2 produce not only a latent state classification, but also a probability of correct assignment to the

state (i.e., pon and poff = 1 − pon). This uncertainty can be modeled in the liklihood function for each trial’s

data as a mixture of the likelihoods of the on-task and off-task states to account for noise in classification accuracy.

Specifically, if the data from trial i are Di and the likelihood of the set of on-task parameters given classification to

the on-task state for Di is L(θon|Di, on− task), and similarly for off-task, then:

L(θ|Di) = pon,iL(θon|Di, on− task) + poff,iL(θoff |Di, off − task)

Matthias: Are there any details that you think should be added to the machine learning682

outline? If so, can you please add some comments that detail what is missing.683

Appendix A.2. Implementing the Continuous Dimension Representation684

The continuous dimension representation assumes that the observed data were generated by a process that685

dynamically varies along a continuous latent dimension, relaxing the assumption that there are discrete latent686

states. In the context of mind wandering, for example, this approach assumes a trial will fall at some point along a687

continuum that spans from completely on-task focus through to completely off-task focus. The position along this688

latent continuum dynamically varies throughout the task.689

The aim of this method is to regress a single-trial neural signal onto structured trial-by-trial variation690

in a model parameter. Here we outline and provide code to regress a single neural signal onto a single model691
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parameter. However, the methods can be easily extended to regress multiple neural signals onto a single parameter692

(via multiple regression) or regress multiple neural signals onto multiple model parameters (via separate simple or693

multiple regressions for different model parameters).694

Step 1: The neural signal is extracted in an identical manner to Step 1 of Appendix A.1.1. For the695

analyses described in the main text and outlined here, we assume that the neural signal is normalized to a Gaussian696

distribution with mean 0 and standard deviation 1. This permits examination of simple linear relationships for the697

mapping between the neural signal and the model parameter. Other forms of regression that do not assume simple698

linear mappings are possible but we do not explore those here.699

Step 2: The hypothesized neural signal-model parameter mapping is formulated via simple linear regres-700

sion. For example, in the main text we explored a covariate model that mapped a single-trial neural signal to701

single-trial drift rates (formulae 3 of the main text). Denote the normalized neural signal d, regression coefficient702

β, and drift rate v, then the simplest covariate model for drift rate on trial i is:703

vi ∼ v + β · di (A.1)

(we also assumed across-trial variability in drift rate in the covariate model described in formulae 3 of the main704

text, which is omitted here for simplicity). This mapping assumes that the drift rate on trial i, vi, has a mean705

component – the intercept, v, representing average performance in the condition/experiment – that is modulated706

on a trial-by-trial basis by the magnitude and valence of the neural signal on trial i, di, scaled by a regression707

coefficient, β, which is an index of effect size.708

The neural signal can theoretically map to any parameter of the cognitive model of interest. When modu-709

lating single-trial parameter values it is important to ensure that the regression (A.1) does not allow any single-trial710

parameter estimates to move beyond feasible boundaries of the model (e.g., a single-trial value of the response711

threshold or non-decision time below 0). This can be instantiated with a ‘check’ in the parameter estimation712

routine that assigns very small likelihood to trials with infeasible single-trial parameter values, which results in713

low likelihood for the corresponding estimate of β. Alternatively the parameter can be transformed so that it is714

unbounded.715

Step 3: Once the single-trial regression is parameterized, the cognitive model is fit to the behavioral data.716

In addition to other model parameters, this involves estimating parameters corresponding to the mean component717

and the regression coefficient of the linear regression (v and β in A.1, respectively). The neural signal (di) is718

provided with the data. Together, these three components allow estimation of a unique drift rate for each trial (vi).719

The accompanying code provides explicit details how to compute this step.720

In the context of single-trial regression there is an added interpretational benefit to using a Bayesian721

approach to parameter estimation: if the posterior distribution of β does not contain zero there is likely a significant722
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effect of the neural signal on the model parameter. Other hypothesis tests are also possible using the posterior723

distribution, for example, estimation of the Savage-Dickey Bayes factor. Inference on β is less straightforward using724

conventional parameter estimation methods such as maximum likelihood estimation, though is still possible.725

The extent to which the estimate of the β parameter differs to 0 gives an estimate of the significance of the726

neural signal on the model parameter, and hence cognitive process of interest. For example, if we regressed single-727

trial measures of (normalized) DMN activity onto drift rate and obtained an estimate of β = −.2, this indicates728

that for each unit increase in DMN activity there was a decrease of .2 in drift rate.729

As in the discrete state analyses, the cognitive processes that might be dynamically modulated by a neural730

signal ought to be driven by theory. However, again, this comes down to a question of model selection; does the731

neural signal have a stronger single-trial effect on process A or B of the model? As before, we argue that the most732

important comparison is whether the most parsimonious single-trial regression model is preferred to a model fit to733

data that is not informed by a neural signal. The model recovery properties of this comparison were the primary734

focus of the main text.735

28



References736

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., Qin, Y., 2004. An integrated theory of the737

mind. Psychological Review 111, 1036–1060.738

Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., Buckner, R. L., 2010. Functional–anatomic fraction-739

ation of the brain’s default network. Neuron 65, 550–562.740

Bastian, M., Sackur, J., 2013. Mind wandering at the fingertips: Automatic parsing of subjective states based on741

response time variability. Frontiers in Psychology 4, n/a. doi: 10.3389/fpsyg.2013.00573.742

Borst, J. P., Anderson, J. R., 2015. The discovery of processing stages: Analyzing EEG data with hidden semi-743

Markov models. NeuroImage 108, 60–73.744

Brooks, S. P., Gelman, A., 1998. General methods for monitoring convergence of iterative simulations. Journal of745

Computational and Graphical Statistics 7, 434–455.746

Brown, S. D., Heathcote, A., 2008. The simplest complete model of choice reaction time: Linear ballistic accumu-747

lation. Cognitive Psychology 57, 153–178.748

Burnham, K. P., Anderson, D. R., 2004. Multimodel inference: Understanding AIC and BIC in model selection.749

Sociological Methods & Research 33, 261–304.750

Cavanagh, J. F., Wiecki, T. V., Cohen, M. X., Figueroa, C. M., Samanta, J., Sherman, S. J., Frank, M. J., 2011.751

Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nature Neuroscience 14,752

1462–1467.753

Cheyne, J. A., Solman, G. J., Carriere, J. S., Smilek, D., 2009. Anatomy of an error: A bidirectional state model754

of task engagement/disengagement and attention–related errors. Cognition 111, 98–113.755

Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., Schooler, J. W., 2009. Experience sampling during fMRI756

reveals default network and executive system contributions to mind wandering. Proceedings of the National757

Academy of Sciences of the United States of America 106, 8719–8724.758

Craigmile, P. F., Peruggia, M., Van Zandt, T., Jun. 2010. Hierarchical Bayes Models for Response Time Data.759

Psychometrika 75 (4), 613–632.760

de Hollander, G., Forstmann, B. U., Brown, S. D., 2016. Different ways of linking behavioral and neural data via761

computational cognitive models. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 1, 101–109.762

Forstmann, B. U., Ratcliff, R., Wagenmakers, E.-J., 2016. Sequential sampling models in cognitive neuroscience:763

Advantages, applications, and extensions. Annual Review of Psychology 67, 641–666.764

29



Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., Christoff, K., 2015. The wandering brain:765

Meta–analysis of functional neuroimaging studies of mind–wandering and related spontaneous thought processes.766

NeuroImage 111, 611–621.767

Frank, M. J., Gagne, C., Nyhus, E., Masters, S., Wiecki, T. V., Cavanagh, J. F., Badre, D., 2015. fMRI and EEG768

predictors of dynamic decision parameters during human reinforcement learning. The Journal of Neuroscience769

35, 485–494.770

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Aki, V., Rubin, D. B., Sep. 2014. Bayesian Data Analysis,771

3rd Edition. Texts in Statistical Science. CRC Press.772

Gomez, P., Ratcliff, R., Perea, M., 2007. A model of the go/no–go task. Journal of Experimental Psychology:773

General 136, 389–413.774

Hawkins, G. E., Hayes, B. K., Heit, E., 2016. A dynamic model of reasoning and memory. Journal of Experimental775

Psychology: General 145, 155–180.776

Hawkins, G. E., Mittner, M., Boekel, W., Heathcote, A., Forstmann, B. U., 2015. Toward a model-based cognitive777

neuroscience of mind wandering. Neuroscience 310, 290–305.778

Kass, R. E., Raftery, A. E., 1995. Bayes factors. Journal of the American Statistical Association 90, 377–395.779

Killingsworth, M. A., Gilbert, D. T., 2010. A wandering mind is an unhappy mind. Science 330, 932–932.780

Lee, M. D., 2011. How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical781

Psychology 55, 1–7.782

Logan, G. D., Van Zandt, T., Verbruggen, F., Wagenmakers, E.-J., 2014. On the ability to inhibit thought and783

action: General and special theories of an act of control. Psychological Review 121, 66–95.784

Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., Macrae, C. N., 2007. Wandering785

minds: The default network and stimulus–independent thought. Science 315, 393–395.786

McVay, J. C., Kane, M. J., 2010. Does mind wandering reflect executive function or executive failure? Comment787

on Smallwood and Schooler (2006) and Watkins (2008). Psychological Bulletin 136, 188–207.788

Mittner, M., Boekel, W., Tucker, A. M., Turner, B. M., Heathcote, A., Forstmann, B. U., 2014. When the brain789

takes a break: A model–based analysis of mind wandering. The Journal of Neuroscience 34, 16286–16295.790

Nosofsky, R. M., Palmeri, T. J., 1997. An exemplar–based random walk model of speeded classification. Psycholog-791

ical Review 104, 266–300.792

30



Nunez, M. D., Srinivasan, R., Vandekerckhove, J., 2015. Individual differences in attention influence perceptual793

decision making. Frontiers in Psychology 8, n/a. doi: 10.3389/fpsyg.2015.00018.794

Nunez, M. D., Vandekerckhove, J., Srinivasan, R., in press. How attention influences perceptual decision making:795

Single-trial EEG correlates of drift–diffusion model parameters. Journal of Mathematical Psychology.796

R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical797

Computing, Vienna, Austria.798

URL https://www.R-project.org/799

Raftery, A. E., 1995. Bayesian model selection in social research. Sociological Methodology, 111–196.800

Ratcliff, R., 1978. A theory of memory retrieval. Psychological Review 85, 59–108.801

Ratcliff, R., McKoon, G., 2008. The diffusion decision model: Theory and data for two–choice decision tasks. Neural802

Computation 20, 873–922.803

Ratcliff, R., Smith, P. L., 2004. A comparison of sequential sampling models for two–choice reaction time. Psycho-804

logical Review 111, 333–367.805

Ratcliff, R., Tuerlinckx, F., 2002. Estimating parameters of the diffusion model: Approaches to dealing with806

contaminant reaction times and parameter variability. Psychonomic Bulletin & Review 9, 438–481.807

Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., Yiend, J., 1997. ’Oops!’: Performance correlates of808

everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia 35, 747–758.809

Schall, J. D., 2004. On building a bridge between brain and behavior. Annual Review of Psychology 55, 23–50.810

Shiffrin, R. M., Steyvers, M., 1997. A model for recognition memory: REM-retrieving effectively from memory.811

Psychonomic Bulletin & Review 4, 145–166.812

Singmann, H., Brown, S., Gretton, M., Heathcote, A., 2016. rtdists: Response time distributions. R package version813

0.4-9.814

URL http://CRAN.R-project.org/package=rtdists815

Smallwood, J., Schooler, J. W., 2006. The restless mind. Psychological Bulletin 132, 946–958.816

Smallwood, J., Schooler, J. W., 2015. The science of mind wandering: Empirically navigating the stream of con-817

sciousness. Annual Review of Psychology 66, 487–518.818

Smilek, D., Carriere, J. S., Cheyne, J. A., 2010. Failures of sustained attention in life, lab, and brain: Ecological819

validity of the SART. Neuropsychologia 48, 2564–2570.820

31



Smith, P. L., Ratcliff, R., 2004. The psychology and neurobiology of simple decisions. Trends in Neurosciences 27,821

161–168.822

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., van der Linde, A., 2002. Bayesian measures of model complexity823

and fit. Journal of the Royal Statistical Society B 64, 583–639.824

Steingroever, H., Wetzels, R., Wagenmakers, E.-J., 2016. Bayes factors for reinforcement-learning models of the825

Iowa Gambing Task. Decision 3, 115–131.826

Teasdale, J. D., Dritschel, B. H., Taylor, M. J., Proctor, L., Lloyd, C. A., Nimmo-Smith, I., Baddeley, A. D., 1995.827

Stimulus-independent thought depends on central executive resources. Memory & Cognition 23, 551–559.828

Turner, B. M., Forstmann, B. U., Wagenmakers, E.-J., Brown, S. D., Sederberg, P. B., Steyvers, M., 2013a. A829

Bayesian framework for simultaneously modeling neural and behavioral data. Neuroimage 72, 193–206.830

Turner, B. M., Sederberg, P. B., Brown, S. D., Steyvers, M., 2013b. A method for efficiently sampling from831

distributions with correlated dimensions. Psychological Methods 18, 368–384.832

Turner, B. M., Van Maanen, L., Forstmann, B. U., 2015. Informing cognitive abstractions through neuroimaging:833

The neural drift diffusion model. Psychological Review 122, 312–336.834

Tversky, A., Kahneman, D., 1992. Advances in prospect theory: Cumulative representation of uncertainty. Journal835

of Risk and Uncertainty 5, 297–323.836

Vandekerckhove, J., Tuerlinckx, F., Lee, M. D., 2008. A Bayesian approach to diffusion models of decision–making.837

In: Sloutsky, V. M., Love, B. C., McRae, K. (Eds.), Proceedings of the 30th Annual Conference of the Cognitive838

Science Society. Cognitive Science Society, pp. 1429–1434.839

Wagenmakers, E.-J., Farrell, S., 2004. AIC model selection using Akaike weights. Psychonomic Bulletin & Review840

11, 192–196.841

Wagenmakers, E. J., Farrell, S., Ratcliff, R., 2004. Estimation and interpretation of 1/f α noise in human cognition.842

Psychonomic bulletin & review 11 (4), 579–615.843

Watanabe, S., 2013. A widely applicable Bayesian information criterion. The Journal of Machine Learning Research.844

Weissman, D. H., Roberts, K. C., Visscher, K. M., Woldorff, M. G., 2006. The neural bases of momentary lapses of845

attention. Nature Neuroscience 9, 971–978.846

Wiecki, T. V., Sofer, I., Frank, M. J., 2013. HDDM: Hierarchical Bayesian estimation of the drift-diffusion model847

in Python. Frontiers in Neuroinformatics 7, n/a. doi: 10.3389/fninf.2013.00014.848

32


