

MASTER THESIS IN COMPUTER SCIENCE

Casual Resource Sharing with
Shared Virtual Folders

Siri Birgitte Uldal

June 15th, 2007

FACULTY OF SCIENCE
 Department of Computer Science

University of Tromsø, N-9037 Tromsø

Casual Resource Sharing with
Shared Virtual Folders

Siri Birgitte Uldal

June 15th, 2007

University of Tromsø

2007

Abstract

Proliferation of wireless networks has been a major trigger behind increased mobility of
computing devices. Along with increased mobility come requests for ad-hoc exchange of
resources between computing devices as an extension of humans interacting. We termed
it casual resource sharing where resources in this thesis have been narrowed down to files
only.

We have named our casual resource sharing model for shared virtual folders (SVF).
SVFs can be looked upon as a common repository much in the same way as the
tuplespace model. The SVF members perceive the repository similarly to a common file
directory on a server, while in reality all participating devices stores their own
contribution of files. All types of files could be added to the repository and shared. To
become a SVF member one needs to be invited by another member or initiate a SVF
oneself. All members are free to withdraw their SVF membership whenever they wish.
They are also free to log on to the SVF and log out as they please. The SVF cease to exist
when the last member has drawn his membership. The SVF implements a simple
versioning detection system to alert members when a file has been modified by another
member.

Feasibility of the model is demonstrated in a prototype implementation based on Java and
the JXTA middleware, a peer-to-peer (P2P) infrastructure middleware supporting the
Internet protocol. The implementation functions with any underlying network supporting
the IP protocol, both LAN or WAN. The interacting devices could be running on any
operating system. The SVF itself is created with focus on simplicity and requires no more
than software installation before use.

The model and implementation is discussed and contrasted with other existing
approaches to casual resource sharing.

Keywords: Peer-to-peer, JXTA, ad-hoc

 i

 ii

Preface

The master thesis was carried out during 10 ½ month in 2006 and 2007 and is a
collaboration project between the Department of computer science at the University of
Tromsø and Norut IT.

The master thesis started out as a supplement to Njål Borch’s PhD thesis at Norut IT
which focused on socialized ad-hoc networks based on peer-to-peer technologies.

I would like to thank my advisors Randi Karlsen at the Department of computer science,
University of Tromsø together with Njål Borch for their help and efforts through the
process of finishing my thesis.

I am also grateful to the Norwegian Polar Institute, especially head of Environmental
Data Section Stein Tronstad, for allowing me to finish my master thesis. Also thank to
the people at Norut IT for allowing me to stay there during work with the thesis.

Finally I would like to thank friends and family for their support and bearing with my
absence.

 iii

 iv

Table of contents

ABSTRACT ... I

PREFACE...III

TABLE OF CONTENTS ...V

1. INTRODUCTION.. 1

1.1 PROBLEM DESCRIPTION .. 1
1.2 GOAL AND OBJECTIVES ... 2
1.3 LIMITATIONS AND ASSUMPTIONS ... 3
1.4 METHOD .. 4
1.5 RESEARCH CONTRIBUTION.. 5
1.6 OUTLINE .. 5

2 BACKGROUND ... 7

2.1 PEER-TO-PEER NETWORKS... 7
2.1.1 Definition of a peer-to-peer network ... 8
2.1.2 An overview of P2P networks... 9
2.1.3 Decentralized versus centralized P2P networks ... 13

2.2 RESOURCE SHARING CONCEPTS .. 14
2.2.1 Remote procedure call (RPC) ... 15
2.2.2 Message oriented middleware (MOM) .. 16
2.2.3 The publish-subscribe model... 17
2.2.4 Tuple spaces... 19

2.3 PROPERTIES OF RESOURCE SHARING MODELS .. 22
2.3.1 Interruption handling during data transfer ... 23
2.3.2 Data push versus pull... 26
2.3.3 Configuration .. 26
2.3.4 Incentive mechanisms and accountability.. 27
2.3.5 Persistence and search guarantees ... 29

2.4 VERSIONING DETECTION AND CONTROL ... 31
2.4.1 Versioning models .. 32
2.4.2 Versioning detection... 33

 v

2.4.3 Software configuration management (SCM) .. 34
2.5 MIDDLEWARE FOR P2P NETWORKS ... 37

2.5.1 Why middleware... 37
2.5.2 Types of middleware... 38
2.5.3 Characteristics of decentralized P2P middleware .. 40
2.5.4 Bonjour... 42
2.5.5 Universal Plug and Play (UPnP)... 44
2.5.6 JXTA .. 48
2.5.7 The Socialized.Net ... 51

2.6 RELATED WORKS... 53
2.6.1 Bluetooth/OBEX/FTP .. 54
2.6.2 Microsoft Shared Folders/SAMBA .. 54
2.6.3 Microsoft Office Groove... 55
2.6.4 iFolder... 56
2.6.5 Google Docs & Spreadsheets .. 57
2.6.6 myJXTA .. 58
2.6.7 GRAM .. 60
2.6.8 Gnutella .. 61

3 CASUAL RESOURCE SHARING WITH SHARED VIRTUAL FOLDERS 65

3.1 SCENARIOS.. 65
3.2 CASUAL RESOURCE SHARING ... 66
3.3 SHARED VIRTUAL FOLDERS ... 67
3.4 VERSIONING DETECTION ... 72
3.5 SVF OPERATIONS AND PROPERTIES... 73
3.6 COMPARISON TO RELATED WORKS ... 76

4 APPLICATION DESIGN ... 79

4.1 FUNCTIONALITY CRITERIA ... 79
4.2 APPLICATION ARCHITECTURE.. 80
4.3 CHOICE OF MIDDLEWARE .. 82
4.4 CASUAL RESOURCE SHARING ... 85

4.4.1 Resource sharing issues ... 85
4.4.2 Notification messages.. 86
4.4.3 SVF log on and log off .. 88
4.4.4 File download.. 90

 vi

4.5 VERSIONING DETECTION ... 90
4.6 THE REPOSITORY .. 93
4.7 THE GRAPHICAL USER INTERFACE (GUIS) ... 94

5 IMPLEMENTATION... 97

5.1 IMPLEMENTATION ENVIRONMENT .. 97
5.2 SOFTWARE CHOICE ... 97

5.2.1 Programming language.. 97
5.2.2 Database .. 97

5.3 APPLICATION IMPLEMENTATION .. 99
5.3.1 The graphical user interface (GUI) .. 101
5.3.2 The file repository.. 106
5.3.3 JXTA platform configuration and application setup .. 110
5.3.4 JXTA advertisement, discovery, service and rendezvous.................................. 112
5.3.5 JXTA secure group concept ... 117
5.3.6 Communication: Ports, pipes and queues.. 125
5.3.7 Messaging ... 129
5.3.8 Versioning ... 132

6 TESTING AND DISCUSSION ... 135

6.1 TESTING... 135
6.2 LIMITATIONS OF THE IMPLEMENTATION ... 136
6.3 RESEARCH CONTRIBUTION.. 137
6.4 DISCUSSION OF RESULTS.. 137

6.4.1 The SVF model ... 137
6.4.2 The implementation .. 139
6.4.3 Shortcomings of the JXTA .. 141

6.5 SCALABILITY .. 142
6.6 FUTURE WORK... 143

7 CONCLUSION.. 147

8 REFERENCES ... 149

9 APPENDIX A: EMBEDDED DATABASES ... 155

10 APPENDIX B: GROUP AND SERVICE ADVERTISEMENT EXAMPLES........................... 159

 vii

 viii

1. Introduction

The first chapter starts with a problem description in 1.1 and the goal of the thesis in 1.2.
In 1.3 we have included some necessary limitations and assumptions about the thesis. 1.4
describes the methods used and 1.5 contains a short summary of the research contribution
of the thesis. The chapter closes with an outline of the remaining thesis chapters in 1.6.

1.1 Problem description
Proliferation of wireless networks has been a major trigger behind increased mobility of
devices. Along with increased mobility come requests for ad-hoc exchange of resources
between computing devices as an extension of human interaction. For some interaction
between groups, there would be servers available. Typically, these groups could be
employees in an office environment, or students working on a common university
project. To other groups or in other situations, it is less obvious how resources could be
shared. For example students that have a server for university work, may not be allowed
to use disk space for game playing. A group of craftsmen may not have a server available
at work at all, at least not for sharing holiday pictures. A neighbour watch may also lack
a server, should they need an archive for logging interaction with the police.

We have termed this type of interaction casual resource sharing. Possible resources
exchanged could be web pages, text documents and images, Internet chatting, audio-
streaming, video-conferencing, game play interaction, common access to resources like
printers, large display walls etc. Due to time constrains, we have found it necessary to
narrow resources down to file exchange only.

Traditionally, servers have been used as resource storages between clients. But as
outlined in the resource sharing examples above, servers are not always available. There
could also be decentralized solutions to resource sharing typically based on specific
applications, often configuring one of the devices to act as a server towards the others.

Usually, these solutions are restricted to local area network (LAN) either due to
communication range or security restraints.

 1

Another approach which do scale well to wide area networks (WANs) are based on a
peer-to-peer (P2P) architecture where all parties may both serve and fetch. These
networks differ in functionality, but they often lack a group concept to restrict outsiders
from resource access. A closed group concept is desirable to avoid unwanted resources
filling up the disk space and removal of requested resources. For example, if a large
number of peers actively participate in a network, often less popular files can be difficult
or impossible to find as they have been removed. Another issue as networks grow is
motivating peers to offer resources and do routing for other peers.

While solutions are in use today and has found their market, we would like to focus on
ad-hoc gathering of groups collaborating over some time without depending on access to
servers. We will choose a decentralized approach using P2P to avoid dependency upon
servers. The application should be device and network agnostic and not require explicit
technical skills to set up or use. It should employ a group concept to avoid unrestricted
access to resources. Group limitations can also give members increased incentive to
provide and route resources as well as downloading. The collaborators will usually know
of each other prior to resource exchange.

When users collaborate, they often not only want to exchange files, but also collaborate
by updating common documents. Usually the operating system will carry out some
simple versioning detection like changing modification dates when a file is updated
locally. However, this will not be detected when the repository is located on several
devices. Thus, the application should also contain simple versioning detection of the
common repository so that group members do not have to worry about where the
resources are located in the network or whether anyone has overwritten a file they wanted
to keep.

1.2 Goal and objectives
The thesis goal is to develop a concept for casual resource sharing using P2P models. As
an approach to archive casual resource sharing, we will define a concept called shared
virtual folders (SVF).

Furthermore, the objectives of the goal are:

• Describe an architecture for the shared virtual folders using the P2P model rather
than the client-server model.

 2

• Ensure that all peers can both upload and download resources within a closed
group concept.

• The SVFs should not be dependent on accessing servers at any level or require
Internet access. It should be device and network agnostic to the largest degree
possible as well as allow initiation and use by persons without specific technical
skills. Devices could be connected and disconnected ad-hoc.

• The SVF should contain some form of versioning detection to inform users when
a file has been updated by others in the group.

• Proof of concept should be demonstrated through prototype implementation,
based on available middleware for P2P networks.

1.3 Limitations and assumptions
Many issues could be included in the application described above. However, due to time
limitations some tasks have been omitted:

• Exchange of resources will be limited to files only. Thus Internet chatting, audio-

streaming, video-conferencing, game playing interaction, common access to
resources like printers, large display walls etc will not be considered.

• Hybrid P2P networks. If servers are available, they are looked upon as peers in
the network as well as any other devices.

• Static computer networks. We will assume that highly dynamic networks
represent more challenging environments than static networks. Thus focus will be
on devices connecting and disconnecting ad-hoc rather than devices with a high
uptime.

• Device discovery and routing. A lot of work has been carried out in this field
already and the thesis will rely on work and programming code available [1, 2].

• Lower layer protocols for interaction. How resource transferral and
interoperability between devices on a low protocol level are carried out will not
have focus in the thesis but rely on work already carried out in these fields.

• Security. Although a vital part of ad-hoc networking and a closed group concept,
due to time constraints the thesis will not look specifically into security related
issues.

• Legal issues. File sharing is closely linked with issues of legislation and
copyrights, which will not be discussed in the thesis.

 3

Furthermore, the thesis relies on some assumptions:
• All participants have some network connection access based on the IP protocol.
• All peers are autonomous.

1.4 Method
There are three major paradigms in the discipline of computing [3]:

• Theory: This paradigm is rooted in mathematics following in the development of
a coherent, valid theory.

• Abstraction (modelling): The paradigm is rooted in the experimental scientific
method following the investigation of a phenomenon.

• Design: The paradigm is rooted in engineering followed in the construction of a
system (or device) to solve a given problem.

For computing as a discipline and thus for the thesis, the design approach will be most
appropriate. The design approach model is divided into four steps:

1) State requirements.
2) State specification.
3) Design and system implementation.
4) Test the system.

Usually engineers iterate these steps (e.g., when tests reveal that the latest version of the
system does not satisfactorily meet the requirements).

The National Research Council in the USA reported on three primary purposes in
experimental computer science and engineering [4, 5]:

• Proof of existence: The demonstration of a fundamentally new computing
phenomena.

• Proof of concept: The demonstration of a particular configuration of ideas or an
approach that achieves its objectives.

• Proof of performance: The demonstration of seeking performance or seeking
improvement and enhancement of prior implementations.

 4

Research in this thesis will focus on the proof of concept; devices and software
functioning already will be put together to demonstrate a particular configuration of
ideas.

1.5 Research contribution
The research contributions of the thesis are considered to be:

• The concept of shared virtual folders where also versioning detection is included.
• Proof of concept of a simple, ad-hoc file sharing application that combines the

concept of shared virtual folders with versioning detection.

1.6 Outline
The rest of the thesis is organized as follows:

Chapter 2 presents background material for casual resource sharing together with
descriptions of P2P networking and of P2P middleware.

Chapter 3 defines casual resource sharing and elaborates on the concept of SVF.

Chapter 4 explains design issues related with an SVF implementation. The chapter
includes architecture and choice of middleware.

Chapter 5 describes implementation issues in detail.

Chapter 6 describes how testing was carried out showing some results, contains a
discussion of results and findings, suggests changes and extensions to the model and
implementation and gives directions for future work.

Chapter 7 contains the thesis conclusion.

 5

 6

2 Background

This chapter present background literature on subjects related to the concept of casual
resource sharing. Section 2.1 gives a brief background and overview of peer-to-peer
(P2P) networks sometimes contrasted with the client-server model. In 2.2 we describe
four main resource sharing concepts closely related to our definition of casual resource
sharing.

A model for casual resource sharing contains some properties of importance. In 2.3 some
of the issues related to organizations of a P2P network are discussed. These includes
handling message flow in the network avoiding message loss or network congestion,
looking into incentives for peers to do routing, how persistent information is in the
network and forwarding information to others and using a profile to obtain better
performance.

A resource sharing model would typically need to handle updates of resources as users
collaborate. For example, if two users share a document, it would be of interest to them if
another peer had updated it by adding or removing information. Thus, in 2.4 we give a
background on how decentralized versioning detection could function.

In order to carry out a proof of concept, we will need a model implementation. As
implementations can be time consuming to develop, we will need to base ours on a fitting
middleware infrastructure. Section 2.5 motivates for the use of middleware as well as
describing four implementations that could be employed.

Section 2.6 presents related works to our resource sharing concept.

2.1 Peer-to-peer networks
Peer-to-peer (P2P) networks are often contrasted with the client-server model, but P2P
networks also have other abilities. In 2.1.1, we present some definitions of the P2P
network and choose the definition most relevant for our concept. In 2.1.2 we describe
different types of P2P networks and finally subsection 2.1.3 outlines some advantages
and disadvantages of a pure P2P network in contrast with networks based on the client-
server model.

 7

2.1.1 Definition of a peer-to-peer network
According to Schoder and Fischbach [6], the term peer-to-peer (P2P) refers to
“technology that enables two or more peers to collaborate in a network of equals (peers)
by using appropriate information and communication systems, without the necessity for
central coordination”.

Thus when two or more computers spontaneously collaborate it should be without
dependency on already available servers in the network. In fact some sources, like Barkai
[7], prefer to contrast P2P with the client-server model: “In a client-server model, the
client makes requests of the server to which it is networked. The server, typically as
unattended system in a back room, responds to, and acts on, the requests. The idea behind
P2P computing is that each peer, i.e., each participating computer, can act both as a client
and as a server in the context of some application.”

Androutsellis-Theokokis and Spinellis [2] propose a very extensive definition: “P2P
systems are distributed systems consisting of interconnected nodes able to self-organize
into network topologies with the purpose of sharing resources such as content, CPU
cycles, storage and bandwidth, capable of adapting to failures and accommodating
transient populations of nodes while maintaining acceptable connectivity and
performance, without requiring the intermediation or support of a global centralized
server or authority.”

In the last definition P2P is defined beyond the contrast with the client/server model to
focus on the sharing capabilities, of encountering a larger task by merging the resources
of each peer. In addition, it is stated that a P2P network could function as an ad-hoc
network with peers connecting and disconnecting continuously without the collapse of
any remaining peers nor the network itself. Also considered is the elimination of the
single-point-of-failure that a server may represent.

Because the focus of resource sharing is central to our approach, we will choose the
definition of Androutsellis-Theokokis and Spinellis. But Schoder and Fischbach et al [8]
give some interesting characteristics of a P2P network:

• Sharing of distributed resources and services: In a P2P network each node can act
both as a client and server, both providing and requesting a service.

 8

• Decentralization: There is no central coordinating authority for the organization
of the network or the use of resources and communication between peers in the
network. Frequently, a distinction is made between pure and hybrid P2P
networks. Because there are no centralized services in a pure P2P network, this
network represent the reference type of P2P design. In hybrid P2P networks,
selected functions, such as indexing or routing, are allocated to a subset of nodes
that assume the role of a coordinating entity. This type of architecture combines
P2P and client-server principles.

• Autonomy: Each node in a P2P network can autonomously determine when and
to what extent it makes its resources available to other entities.

2.1.2 An overview of P2P networks
Decreasing costs together with increasing availability of processor cycles, bandwidth,
and storage, together with the Internet growth have created new fields of applications
where P2P networks fit well. Development and proliferation of wireless networks has
spurred growth of smaller, lighter mobile devices such as the personal digital assistants.
The P2P concept fit well in these surroundings, perhaps because of it has focus on
mobility and thus could be server independent.

Together with the increase in P2P networks, the networks themselves have become
increasingly specialized, offering different tasks and different abstraction levels. Schoder
and Fischbach et al [8] have chosen to divide P2P networks into a three level model
shown in Figure 2-1.

Level 1 represents the lower layers in a communication model, typically addressing
issues such as device and service routing and discovery. Level 2 represents a variety of
applications which particularly at this level have become diverse as P2P systems matures.
Level 3 deals with human implications of the new technology like how people react
having their device slowing down as it must route information to others, how
communities and interest groups develops and so on. At this level, the term peer is
interpreted as a person, and not as a person’s computing device.

As mentioned, level 1 represents P2P infrastructures. P2P infrastructures are positioned
above existing telecommunication networks, and acts as a foundation for all levels. P2P
infrastructures provide communication, integration, and translation functions between IT

 9

components. It provides services that assist in locating and communicating with peers in
the network and identifying, using, and exchanging resources, as well as initiating
security processes such as authentication and authorization. This infrastructure acts as a
“P2P Service Platform” with standardized APIs and middleware which in principle can
be used by any application.

Telecommunication networks

P2
P

ne
tw

or
ks

Level 3: P2P Communities
Cooperative interaction between persons

with similar interests or rights

Level 2: P2P Applications
Applications based on P2P infrastructure

Level 1: P2P Infrastructures
Communication mechanisms and techniques and

integration of IT components

Figure 2-1 Levels of P2P networks [8].

Level 2 consists of P2P applications that use services of P2P infrastructures. They are
geared towards enabling communication and collaboration of entities in the absence of
central control. P2P applications are often classified according to the categories of instant
messaging, file sharing, grid computing and collaboration. The categories of this
classification have developed and now start to overlap. Instead Schoder, Fischbach et al
suggest application classification through resource coordination of information, files,
bandwidth, storage and processor cycles.

Information sharing has been divided into presence information, document management
and collaboration. Presence information represents peer discovery and knowledge of
which peers exist in a network. Applications can independently recognize which peers

 10

and resources are currently available to them in a query search. In the thesis, we have
chosen to let the P2P middleware handle presence information.

Document management permit shared storage, management and use of data. In a pure
P2P network, the document index must be stored at each peer rather than centrally. Thus,
indexing and categorization of data could be carried out on the basis of individually
selected criteria for example based on interests. An example here is the OpenCola project
[8].

Collaboration is permitted by P2P groupware at the level of closed working groups.
Particularly beneficial here is the omission of server administration, which better
supports ad-hoc collaboration. Microsoft Office Groove [9] (see also subsection 2.6.3) is
a fitting example.

Characteristics of file sharing is given by peers that have downloaded the files in the role
of a client subsequently make them available to other peers in the role of a server. A
central problem for the P2P networks in general, and in particular for file sharing, is
locating resources (lookup problem). In the context of file sharing systems, three
algorithms have been developed: the flooded request model, the centralized directory
model and the document routing model [10]. Gnutella (see subsection 2.6.7), Napster
[11] and Freenet [12] are examples of these models.

Since demands on network transmission capacities are continuously rising, effective use
of bandwidth is becoming more important. P2P-based approaches achieve increased load
balancing by taking advantage of transmission routes that are not being fully exploited.
For example, in hybrid networks only the initial requests for files are served centrally,
while the download itself is carried out between the node actually storing the file and the
requester. Moreover, P2P designs can accelerate the downloading and transport of big
files that are simultaneously requested by different entities. Usually these files are split
into smaller blocks by use of swarming protocols and then downloaded by the requesters.
An implementation utilizing this principle is BitTorrent [13] (see also subsection 2.3.1).

Increased connectivity and availability of bandwidth enable alternative forms of
managing storage. Within P2P storage networks, it is generally assumed that only a
portion of the disk space available on a desktop PC is used. Thus a cluster of computers
could replace expensive backup servers in a network. Yet, in P2P networks, this could

 11

result in settings where no peer is available where the file is being requested. Thus,
increasing the number of replicates stored at various geographic locations can enhance
the probability that at least one peer will be available in the network. OceanStore [14] is
perhaps the best known example of a P2P storage network.

Sharing processor cycles on a P2P network came as a result of the recognition that
available computing power of the networked computers often was unused. At the same
time the growing demand for high-performance computing, especially in the field of bio-
informatics, logistics and the financial sector, was increasing. The approaches to the
coordinated release and shared use of distributed computing resources in dynamic virtual
organizations, is called grid computing. One of the most well known projects is
SETI@home [15], an initiative to search for extraterrestrial life forms. The central SETI
server divides the data into smaller units and sends these units to the computers made
available by the volunteers who have registered to participate in the project. The SETI
clients carry out the calculations during idle processor cycles of the participant’s
computers and then send the results back.

Level 3 focuses on social interaction, in particular, the formation of communities and the
dynamics within them. Thus, whereas in level 1 and 2 the term peer essentially refers to
technical entities, in level 3 the term peer is interpreted as a person. Schoder and
Fischbach et al indicate that “they will be communities not of common location but of
common interest”. Grid projects such as those interested in finding a cure for AIDS [16]
or users of file sharing network like Gnutella (see subsection 2.6.7) and FastTrack [17]
who wish to exchange music for example, confirms the suggestion.

Important level 3 issues concerns free riding and accountability (see also 2.3.4).
Individual maximization of usage in P2P communities would lead to collectively
desirable results. This is because after a file is downloaded, a replicate is added to the file
collection of the file sharing community. Free riders threaten collective desirable results
by denying access to the downloaded file or moving the file immediately after
downloading so that the collective file collection does not increase. Free-riding peers use
the resources available in the P2P network, but do not make any resources available [18].
One of the most successful approaches to avoid free riding is the tit-for-tat algorithm
used by BitTorrent (see subsection 2.3.1). Files are downloaded in pieces from several
peers ensuring improved download capacity. A downloading peer eventually gets

 12

chocked by their fellow peer downloaders if it does not provide server capabilities to the
other downloaders once a piece is downloaded.

Another possible solution is accountability [19]. It consists of protocolling and
assignment of used resources and the implementation of negative or positive incentives.
For example the Socialized.Net use such mechanisms [1] (see subsection 2.5.7).

2.1.3 Decentralized versus centralized P2P networks
Central to the P2P definitions mentioned in section 2.1.1, is the ability to carry out
collaboration without having access to or involving servers. As mentioned in the problem
description (see section 1.1), there are situations where servers likely will not be
available. Thus P2P networks have the potential to expand to new situations and markets
and become more ad-hoc or casual in nature which we find desirable. On the other hand,
many P2P networks have abandoned the fully decentralized approach and put some
servers back into the network, often in response to slow or insufficient discovery and
routing.

This section briefly summarizes some advantages and disadvantages of a pure P2P
network as compared to hybrid or centralized networks. During construction of P2P
networks these advantages and disadvantages must be considered.

Some advantages of the decentralized P2P network are:

• A pure P2P network will likely support ad-hoc networking better than a
centralized structure because it is not dependent on the accessibility of a server.

• Usually a centralized service is more expensive than a decentralized, due to both
investment cost and maintenance [8].

• Single-point-of-failures could be minimized or avoided when there are no servers
in the network.

• There is no need for dedicated staff to maintain the service.
• Since the users handle the data themselves, they do not have to trust a third

party’s security routines. Also, there is no centralized log where all activity could
be traced.

• If proper algorithms are developed, resources from all participating computers can
be exploited instead of just resources of a few servers.

 13

• The network could be optimised for ad-hoc interactions since security routines
like establishment of user accounts and security routines does not have to be
settled in advance.

However, decentralization also comes at a cost:

• Algorithms such as routing and service discovery can get cumbersome, slow and
even fail if the network structure is changing fast and/or the networks are large.

• It requires the peers themselves also to run routing and server capabilities. These
routines use computer resources so there must be incentives for contribution and
routing in the network.

• Maintenance is left to the users, depending on their technical skills.
• Untrustworthy participants can more easily corrupt or destroy the network or

network content as there is no single administrator responsible.
• Since there are no centralized services, there is a greater risk of flooding the

network limiting scalability.
• Usually access to services is faster and more reliable with a centralized approach

than a decentralized.
• Asymmetric bandwidth access can be an obstacle to decentralized services.

2.2 Resource sharing concepts
This section looks into models used for decentralized P2P networks, where the different
models considered are from a overview written by Johanson and Fox [20]. Of these
models, we have extracted four which we considered to have the most relevance to our
concept. The first two models are well-known middleware concepts. Section 2.2.1
describe the remote procedure call (RPC) followed by the description of an asynchronous
version of the RPC called message oriented-middleware (MOM) in 2.2.2. These two
models form a base for two other important models at an even higher abstraction level,
the publish-subscribe model described in subsection 2.2.3 and the tuplespace model in
subsection 2.2.4.

 14

2.2.1 Remote procedure call (RPC)
Remote procedure call (RPC) was the first type of middleware (see section 2.5), used as a
way to transparently call procedures located on other machines.

RPC is analogous to a function call. When a RPC is made, the calling arguments are
passed to the remote procedure and the caller waits for a response to be returned from the
remote procedure. Figure 2-2 shows the flow of activity that takes place during an RPC
call between two networked devices [21]. The client makes a procedure call that sends a
request to the server and waits. The client thread is blocked from processing until either a
reply is received, or it times out. When the request arrives at the server, it calls a dispatch
routine that performs the requested service, and sends the reply to the client. After the
RPC call is completed, the client program continues.

Client
program

Client Server

Function
call

Execute
request

Call service

Execute
service

Request
completes

Return
reply

Program
continues

Figure 2-2. RPC activity flow [21].

RPC establishes a notion of client (the programme that calls a remote procedure) and a
server (the program that implements the remote procedure invoked) [22]. Calls to remote
computers will be hidden and make it appear as a local call. Thus it offers transparency to
the users, typically location transparency (requests from an application need not know
about physical component locations) and access transparency (interfaces for local and

 15

remote communication are the same). The RPC mechanisms will also seek to hide
heterogenity between computers, which is also desirable.

2.2.2 Message oriented middleware (MOM)
Using synchronous RPC demands that the server always will be available, serving upon
request. As this is unlikely in many situations, synchronous communication is not always
optimal. As a result, the message-oriented middleware (MOM) was developed.

Local OS Local OS

Sender Receiver

Queuing
layer

Queuing
layer

Address
look-up
repository

Network

Figure 2-3 MOM functionality [23].

MOM supports message-based interoperability as shown in Figure 2-3 [23]. A sender
puts a message into the local outbound queue. MOM uses a repository to map the address
of the content in the queues to the correct destination address. Thereafter the message is
forwarded to the queuing layer of the receiver where it waits until the receiving
application can process it.

MOM allows the requester to continue as soon as the middleware has taken responsibility
of the message and thus supports asynchronous message delivery. Eventually the
provider will send a response message including the result, and the requester can fetch

 16

the message at an appropriate time from the inbound queue. The result is a de-coupling
between the requester and the provider which leads to more scalable systems since
programs do not have to wait. For pure message-oriented interactions, the client-server
model is no longer fitting because all objects on the devices both send and receive
messages. MOMs can also support multicast messages and deliver it transparently to the
receivers.

The primary disadvantage of MOM is requiring an extra component in the architecture,
the message transfer agent. The message transfer agent is needed if the sender and the
receiver are not directly connected to one another. As with any other systems, adding an
extra component may lead to reductions in performance and reliability [24].

2.2.3 The publish-subscribe model
A model that supports MOM but on a higher abstraction level is the publish-subscribe
model. A publish-subscribe service conveys published notifications from any providers
to all interested subscribers with a matching subscription set [25]. The subscribers only
need to subscribe to a service, and if there is a match with the publishers, the subscriber
will get the message. Figure 2-1 shows three examples of how publish-subscribe works:
In a) the subscriber registers for a certain type of message. In b) a publisher generates a
non-matching message, so it is not delivered. In c) a matching message is generated and
thus delivered to the subscriber.

Clients do not need to use source/destination identifiers or addresses. The model scales
well because subscribers can be follow-up through multicast messages. Flexibility is
achieved by varieties of subscription criteria. Oki et al [26] describe the publish-
subscribe model as appealing for event-based applications because of the strong
decoupling of participants in 1) time (participants do not have to be up at the same time),
2) space (participants do not have to know each others address) and 3) flow (data
reception/sending does not block participants).

To achieve decoupling, consumers subscribe to specific kinds of event notifications. The
most flexible selection criteria for notifications are realized by content-based selection.
In the publish-subscribe model, notification messages are filtered according to content.
Event notifications propagate from a provider to interested subscribers through a network
of filters. Filters are typically boolean functions to help content selection.

 17

Publisher SubscriberInfrastructure

Register

Publisher SubscriberInfrastructure

Publish

Publisher SubscriberInfrastructure

Notify

a

b

c
Publish

Figure 2-4 The publish-subscribe model.

Type-based publish-subscribe is an object-oriented variant of the content-based selection
[27]. Here events are considered to be objects, i.e. instances of native types in an object-
oriented programming language. The subscriber in a type-based publish-subscribe service
will only receive instances of a particular type of objects and its subtypes. Subscriber-
specified content filters may also be applied to further limit the events delivered to the
subscriber. Content filters are specified in the native language based on the events’ public
attributes and methods.

The publish-subscribe model was first developed for static networks where subscriptions
may change dynamically with the interest of the clients, while network routing remained
fairly unchanged. Porting the model to P2P systems required dynamic routing
algorithms, but has been demonstrated for several P2P networks through multicast
message use [25, 28].

However, the publish-subscribe model provides no temporal decoupling [20]. An
application must be running and subscribed at the time of message generation to receive a
copy of the message. It is hard to account for this drawback since a message transfer
agent could have temporarily stored the messages, but has to reside on one or more of the

 18

nodes themselves in a decentralized P2P network. As all devices can be removed from
the network ad-hoc, this approach will have drawbacks.

Johnson et al [20] also points out that the publish-subscribe model is not a general
purpose coordination system since it is designed primarily for broadcast and multicast.
Example given of anycast, where each destination address identifies a set of receiver
endpoints, but only one of them is chosen at any given time to receive information from
any given sender. Typically data is routed to the "nearest" or "best" destination. When the
first receiver receives the message, there is no way to remove the message once one of
the receivers acknowledges the receipt.

Gnutella (see subsection 2.6.7) implements the publish-subscribe model.

2.2.4 Tuple spaces
An alternative to the publish-subscribe model is the tuple space model. The concept of
tuple spaces first rose within the discipline of parallel programming. In the eighties
Carriero and Gelernter [29] published work on Linda, a model for process creation and
coordination. If two processes needed to communicate, they did not need to exchange
messages or share variables. Instead, the data producing process could generate a new
data object called a tuple and set it adrift through a region called a tuple space. The
receiver process could then access the tuple through the tuple space. In Linda,
communication and process creation were considered two facets of the same operation.
The result in both cases was that a new object was added to the tuple space, where any
interested party could access it, taking the data object tuple out or copying it.

The senders in Linda did not know anything about receivers and vice versa. When a
Linda process generated a new result that was of interest to other processes, it dumped
the new data into the tuple space.

A tuple existed independently of the process that created it. Collectively the data
structure from all the tuples formed the tuple space. A tuple itself was a series of typed
fields, for example (“a string”, 15.01, 17, “another string”) or (0,1). There were four
statements that could be used. To put data into the tuple space the command out was
used, which would cause the tuple to be generated and added to the tuple space. An in or
rd statement specified a template for matching: any values included in the in or rd needed

 19

to be matched identically to one or several tuples residing in the tuple space. In removed
the tuple from the tuple space as if it was taken out. The rd command specified how to
get a copy of the tuple previously put out. There was also an eval statement which would
start a process, which would return its value by becoming a normal tuple.

In the parallel programming model of Linda it was not important on what machine and in
what memory the tuple actually resided. When a process requested a tuple it was
delivered because the machines shared the same memory, distributed over several
machines.

The concept of tuple spaces has later on been applied to a well-known pilot called the
Interactive Workspaces project at the Stanford University [20, 30]. Initiated in 1999, the
project focused on investigation of human interaction with large high-resolution displays.
The main user setting was the open participatory meetings in the same location. In this
setting, a group of 2 to 15 people worked to accomplish a task. People came to the
meeting with relevant materials saved on laptops or file servers. During the meeting, the
shared focus attention was on a large display surface, to which users could apply content
from their computing devices. The goal was to facilitate ease of interaction among
participants.

The project recognized that many different applications could be utilized as users brought
along various computing devices when collaborating and during interaction with the
high-resolution displays. Work was put into understanding the concept of interactive
workspaces along with development of a software infrastructure called iROS (interactive
Room Operating System). It was a higher layer meta-operating system that was tied
together with devices through their own operating systems.

iROS had three subsystems, the Data Heap, iCrafter and the Event Heap. They were
responsible for moving data, moving control and dynamic application coordination.
Figure 2-5 shows the basic architecture. The only device demand was to support the
Event Heap. Furthermore, decoupling of applications through the underlying
coordination mechanism was emphasised. Through decoupling the system parts would be
less dependent on each other and faults in one application would be limited as much as
possible.

 20

The Event Heap stored and forwarded messages known as events. It provided a central
repository much like a tuple space to which all applications in an interactive workspace
could post events. An application could selectively access events on the basis of pattern
matching fields and values. Interface actions in one application could trigger actions in
another running on any of the machines in the workspace. As an extension to tuple
spaces, unconsumed events would automatically be removed and provided support for
soft-state though interval signalling. The applications had interfaces which could interact
with the Event Heap through several APIs like Web, Java, and C++.

The Data Heap facilitated data movement by allowing any application to place data into a
store associated with the local environment. The data was stored with an arbitrary
number of attributes that characterized it. The system received location independence
through attribute use instead of naming the physical file system that stored the data. The
Data Heap stored the format information, and transformed the data to the best format
supported by the retrieving applications.

Persistent
store

Event Heap File
stores

Other
APIs

Key: = Standard
iROS

= Other
infrastructure

Interactive workspace applications

State
manager

Service
invo-
cation

Service
discovery

Data
Heap

iCrafter

Figure 2-5 The iROS component software [30]

The iCrafter system provided a system for service advertisement and invocation, along
with a user interface generator for services. iCrafter services were similar to other

 21

middleware directory services, except that invocations happened through the Event Heap.
If a custom-designed user interface was available, the iCrafter system would use it.
Otherwise, a more generic generator rendered the user interface into the highest quality
type supported on the device.

The Interactive Workspaces project only allowed interaction between devices within the
bounds of the local physical space (typically between devices located in the same room).
Therefore, software infrastructure for a particular room should only support the device
within the room unless explicitly over-ridden by users to do otherwise. Vice versa,
coordination with applications and devices outside of the space would not occur unless a
user specifically requested it.

2.3 Properties of resource sharing models
As described in the previous section, choosing an appropriate resource sharing model is
of vital importance to get a successful P2P application model. Within the chosen model,
there again would be properties also in need of assessment. This section elaborates on
some of the issues related to model properties.

For example, as devices come and leave ad-hoc, communication between devices could
easily get lost, for example as a result of network congestion. Thus minimizing the
effects of lost communication will be of importance as outlined in subsection 2.3.1.

A subject also related to communication is that of whether push or pull should be used as
transfer mechanisms in a network, as presented in subsection 2.3.2. The two represent
very different approaches to network flow, but can also be combined together.

Subsection 2.3.3 discuss a vastly different property of a casual resource sharing model;
whether a peer application should make use of a configurable profile to specify needs, or
whether all or most decisions should be implemented directly in the software coding,
leaving the user with little or no alternatives.

In the absence of servers in P2P networks, the peers would have to route and also maybe
upload for other devices themselves. Most people are not willing to do these tasks on
behalf of others, as their device may work slower. Thus rewards and punishments may be

 22

necessary properties of a casual resource sharing model. These issues are briefly
discussed in 2.3.4.

Finally, also due to lack of servers, we have to trust other peers with information in the
network. Since all peers usually act in their own interest, it can be difficult to obtain the
same extent of persistence as a server in a network can. Subsection 2.3.5 looks into
properties improving persistence in a P2P network.

2.3.1 Interruption handling during data transfer
In P2P networks, devices may connect and disconnect at any time. Errors may arise if a
device is disconnected during resource transferral. These situations must be accounted for
in order to avoid information loss or even damage to the network itself.

The transferral time is dependent on the connection time, the bandwidth and the channel
contention. Channel contention depends upon the total amount of data transferred and the
interval between data transferred.

Using compression techniques could be way of reducing the amount of data transferred,
but over narrow bandwidths, it may not be sufficient as the only technique. Another
technique is to try to avoid peers with little capacity. JXTA for example uses the notion
of minimal edge peer (see section 2.5.6) for peers that should relieved for additional
burdens like routing.

Another approach is to make priorities on the data a device should look for. Typically it
is carried out by means of a device profile, where the user may specify his or her interests
at the moment (see also subsection 2.3.3). For example a tourist looking for somewhere
to eat, could receive advertisements from restaurant while walking down a city street
[31].

Proactive caching could be carried out by means of user profiles or information
weighting. If using a profile, registered preferences may be used as means to select areas
of interest (see subsection 2.3.3 below on profile content). Instead of waiting for the user
to explicitly request downloading of data, the device could start caching as soon as it
discovers new data of potential interest [31]. Xu and Wolfson present an approach where
one peer poses queries. The peer serving ranks the answers based an algorithm of

 23

multiple attributes with individual weights, and start transferring the most important data
first [32]. This approach requires that the data to download are small in size compared to
the available bandwidth or that other measures are taken also to avoid uncontrolled
device disconnection.

Another approach could be to propagate notifications before the actual data is sent to
ensure at least arrival of meta-information. Later on, the resource itself can be
downloaded if relevant. Tanenbaum and Steen [23] describe a similar approach carried
out by invalidation protocols, where devices holding document copies are informed that
an update has taken place and that the data the device has is no longer valid. An
advantage of the approach is that notification messages itself are small and can thus be
transmitted even at low bandwidth connections or during very short connection periods.
The disadvantage is that the messages themselves take up bandwidth and must be
planned carefully not to congest the network.

As an alternative to transferring the whole updated document, one can instead tell each
replica which update operation it should perform [23]. This approach assumes each
replica is represented by a process capable of “actively” keeping its associated data fresh
by performing operations. The advantage of the approach is little bandwidth use, while it
requires more processing power per replica. Another disadvantage is ensuring total
ordering of all the different versions of the updates.

If a device is taken down in a controlled manner, it is possible to display a message
informing about the remaining transferral time before download and give the user a
possibility to cancel the transfer. In the UPnP middleware, it is possible to issue SSDP
bye-bye messages and un-register the device before removal from the network (see
subsection 2.5.5). Yet devices could be removed uncontrollably, for example through lost
network connections in wireless networks.

A very interesting approach is swarming. Swarming is a P2P content delivery mechanism
that utilizes parallel download among a mesh of cooperating peers. Instead of
overloading the peer delivery content, swarming is initiated by giving peers now acting
as clients only a block of the desired content, along with a list of other peers that can
provide the other blocks of the same item [33], as seen in Figure 2-6. In a) several peers
are downloading content from a peer. The swarming peer downloading will also
exchange information with their peers in order to progressively find other peers with the

 24

content they need. Moreover, as peers acting as clients discover suitable peers, they begin
to download the content from them in parallel as shown in Figure 2-6, b. Overall, the
more requests the peer with a resource get, the less content it serves directly and the more
it redirects to other peers which already has downloaded blocks of content. During heavy
load, the system may generate swarms of peers that cooperatively download content in
parallel from each other and from the peer serving. Thus, if the peer serving is restricted
by means of bandwidth, a swarming protocol can do a better load-balancing.

The most interesting example of a swarming protocol is perhaps BitTorrent, an
application for file sharing which uses the tit-for-tat strategy to optimise fast
downloading [13]. The clients have an incentive to participate in the swarming because
they will receive the help of other peers in return. If a peer refuses to help other peers
downloading, the other peers will gossip and soon the peer refusing will find itself down
prioritised when needing to download from others.

Figure a Figure b

Peer serving
Peer serving

Peer requesting
content 1

Peer requesting
content 2

Peer requesting
content 3

Peer requesting
content 1

Peer requesting
content 3

Peer requesting
content 2

Figure 2-6. Swarming protocols [33].

 25

2.3.2 Data push versus pull
Another issue related to network flow is whether data should be pushed or pulled to the
client. This issue is related to minimizing message loss in a network. In a push-based
approach, updates are propagated to the receiver without the receiver asking for it. This
type of model is often related to the publish-subscribe model described in 2.2.3.
Typically a peer subscribes to a service from another peer that pushes information every
time new items are generated. Where data is requested simultaneously, broadcast or
multicast could be carried out, typically on a local area network (LAN). P2P protocols
usually present an overlay network that makes broadcast/multicast possible even across
different network segments (WAN).

Data pushing is sometimes not desirable if the peer receiving has little capacity available,
or is soon about to disconnect. Moreover, if the subscribing device is not connected, the
pushed content will be lost. Even worse the providing device could be unavailable if
removed ad-hoc from the network. Although outside of the thesis scope, if a subscriber is
allowed to push information into a closed network, security would be violated [23].

In a pull-based approach, the receiver requests a sender to send the data contained at the
moment. It is a preferred approach in many P2P networks [31, 32], due to both security
and bandwidth limitations, but also due to ad-hoc connection and disconnection of
devices and because the peers may select the files to receive on an individual basis.

A trade-off between the push and the pull model could be leases [23]. A lease is a
promise by the peer serving that it will push updates to the receiving peer for a specified
time. When a lease expires, the receiver is forced to poll the sender for updates and pull
in the new or modified data. Alternatively the receiver can ask for release renewal. JXTA
(see subsection 2.5.6) has specified the Rendezvous protocol for peers wishing to lease
rendezvous peers for query propagation to others [34].

2.3.3 Configuration
A vastly different issue related to properties of casual resource sharing is whether a peer
application should make use of a configurable profile to specify needs, or simplify user
decisions by implementing logic directly in software coding, leaving the user with no
alternatives. While at one hand experienced users may request a large degree of freedom,

 26

we may want to keep the threshold for use as low as possible so inexperienced users
could participate as well.

Self-configuration was one of the issues discussed at Ubisys 2003 and 2004 [35]. Most
people agreed that a system should be able to configure itself. However, a self-
configurative system does not mean that the system can predict user requests.

One approach to a self-configuring system, was initiated by the Aura programme at
Carnegie Mellon where the person’s scheduler was used as an indication of where a
person is heading [36]. Also, it may provide an indicator for of how long the person’s
computer will be available on the network. This could work well provided that the person
uses the scheduler for all appointments and keeps it updated all the time. As such, the
solution is quite similar to a profile.

When deciding what device to route through or what device to download from Verma
[37] suggests a system where a property manager located on each peer keeps track of the
uptime cycle of the computer. Also bandwidth and available free storage can be extracted
to suggest whether the user should participate in backing up files or not.

Yet although some self-configuration is possible, most often user needs are provided
through a profile where the user may specify her intentions and desires [31]. If the user
has enough incentive to provide this information, for example through specifications like
a shopping list, this approach may work. Otherwise, if the profile is difficult to configure
or has to be configured often, it may be an obstacle to application use.

2.3.4 Incentive mechanisms and accountability
In a P2P network, a peer may function as a client, a server or a router. By selfish
behaviour most peers would like to download resources rather than to route or provide
them. Thus these behaviours must be accounted for by system properties if deemed
required.

For many P2P networks, employ mechanisms to provide incentives and stimulate
cooperative behaviour between users are of importance, as well as some notion of
accountability for actions performed [2]. An example of uncooperative behaviour is so-
called free-riding; users that only consume resources without contributing any.

 27

Androutsellis-Theotokis and Spinellis [2] divide incentive and mechanisms into two
categories:

• Trust-based incentive mechanisms. Trust is a straightforward incentive for
cooperation, in which a node participates in a transaction based on whether he/she
trusts the other party. Reputation mechanisms are considered belonging to this
category.

• Trade-based incentive mechanisms. In trade-based mechanisms, a node offering
some service to another is explicitly remunerated, either directly or indirectly.
This category is mainly represented by various micropayment mechanisms and
resource trading schemes.

An example of a trust-based incentive mechanism could be through a preference and
reputation systems like the one used in The Socialized.Net [38] (see subsection 2.5.7).
The preference is a locally determined rating from neighbour nodes. It is based on
gathered statistics and possibly user inputs. It is modelled after the human notion of
impressions; the “like” and “dislike” of others. The preference is represented with a scale
where 0 is neutral, a number between 0 and +5 gives a positive preference and a number
between 0 and -5 gives negative preference. The extremes in either directions are given
by user interaction, either blocking or high priority. A number of automatically generated
ratios decide the middle part of the scale.

One of the most successful examples of trade-based incentive mechanisms also seeking
to avoid free-riding is the tit-for-tat algorithm used by BitTorrent [13] (see also
subsection 2.3.1). BitTorrent is a swarming protocol, where the nodes receive a block of
the file which later on is offered to other peers. If two peers are both getting poor
reciprocation for some of the uploading they are providing, they can start uploading to
each other instead and both get a better download rate than they had before. Thus, peers
that provide poor upload while doing download will get chocked. Choking is a
temporarily refusal to upload; it stops uploading while downloading can still happen and
the connection doesn’t need to be renegotiated when choking stops. BitTorrent peers
recalculate who they want to choke every ten seconds, and then leave the situation as is
until the next ten second period is up. Ten seconds is considered a long enough time to
increase new transfers to their full capacity.

 28

2.3.5 Persistence and search guarantees
By selfish behaviour most peers would also prefer not to store information on behalf of
other users. Thus one cannot expect the guarantees in a P2P network to be equally good
as for server storage. Lower persistence and search guarantees must be accounted for
during design of a casual resource sharing network.

The ACID model is one of the oldest and most important concepts of database theory. It
sets forward four goals that a database or information system should strive to achieve:
atomicity, consistency, isolation and durability. Persistence guarantees are closely
connected with durability. Durability demands that changes applied to a database or
information system by a committed transaction must persist. The changes must not be
lost because of any failure [39].

Regarding persistence guarantees given for a decentralized P2P network Kubiatowicz
states that P2P systems must deal with an unreliable and distrusted infrastructure [40].
He defines “unreliable” as systems not professionally managed that may crash or fail at
any time. By “distrusted” he refers to participants that could be adversarial, attempting to
exploit vulnerabilities, compromise privacy, or damage the system.

While it is possible to give persistence guarantees in a read-only P2P system, systems
with read-write capabilities cannot be guaranteed without active, well-behaving
components [40]. In read-write systems unreliable peers may manipulate the stored
resources. To some extent, Byzantine Agreement can provide a mechanism for
cooperative decision making in spite of malicious elements. A Byzantine Agreement
allows a set of peers to come to a unified decision about something even if some of them
(less than one-third) are actively attempting to compromise the process.

Search or lookup guarantees is connected with the ability to locate a resource in a
network. If a resource is sure to be somewhere in the network, search guarantees would
return the resource. Deterministic search guarantees can be given in structured networks,
for example by means of techniques like distributed hash tables [41]. For unstructured
networks which lacks global routing guarantees, it has been shown that probabilistic
search guarantees can be given [42].

 29

Giving persistence and search guarantees for some P2P network can be a challenge.
Thus, usually these systems work on a best effort basis. For example, if a tourist walks
down the street looking for a Chinese restaurant, he may get within network range of one.
If so, the restaurant’s issued advertising message may be registered with the personal
device of the tourist. Yet, there is no guarantee that the tourist will be in the vicinity of a
Chinese restaurant, even though the city may contain several of the restaurants. The
MoGATU project works on in this manner, assuming that two devices may never
communicate amongst each others again [31]. As a consequence, the device will also
offer to make a reservation as well at the same time so that all communication may be
settled during the same session.

For a network that uses semantic query routing such as the Socialized.Net [1] (see
subsection 2.5.7), a device can delay a search for another peer if the device is not
available at the moment. The requester in this type of network may expect that the two
devices will meet again, thus he does not download any files during the first encounter.
Yet, two devices may never reconnect, loosing the opportunity to download a resource.
In this type of network one cannot give more than best effort guarantees on both search
and persistence. This is acceptable, as long as the users do not expect more. Networks
based on semantic query routing are not meant to provide exhaustive searches, but rather
to provide an answer according to the user’s preferences if existing and available.

Other P2P networks may use a combination of both probabilistic and deterministic
guarantees on search lookup. Yet it demands that the requested resource exists in the
network, thus persistence guarantees must be given. For example, in a large P2P system,
a probabilistic algorithm may search for the resource near the querying device. If the
resource cannot be found, a full deterministic search can be carried out which eventually
will locate the resource. The OceanStore project [14] carry out search in this manner,
mainly because resources in the network are likely to be located near where they are
being used.

A positive ability about a P2P network, is that by adding peers, together they may
provide more stable capabilities even when individual peers vary in behaviour [40]. For
instance, when requesting a document, one may gain faster response by issuing requests
to several peers serving than just one. Thus, for a network storing information to achieve
a 1,000–year data persistence guarantees, peers serving must continuously collect,
regenerate, and redistribute fragments as individual disks have a life expectancy of only

 30

five years. Kubiatowicz [40] recognizes three key elements to achieve stable persistence
and search capabilities:

• Redundancy. More resources must be utilized than the “bare minimum” required
for operation.

• Replacement. Some technique must be present to recognize failure and switch
from faulty resources to functioning ones.

• Restoration. Some process must act to continuously repair data and routing.

Kubiatowicz also suggests that P2P systems will become more stable as they grow larger.

One assumption that often permeates large-scale systems is the belief that peers will fail
independently [40]. If this assumption does not hold, persistence guarantees in the
network may not hold. For instance, replica placement schemes do not protect data when
peer holding the replicas both fail. Simultaneous failing may arise if peers share the same
subnet, owner, software release, operating system or geographic location. Thus,
simultaneous failing represent an obstacle to achieve good persistence guarantees in a
P2P network.

2.4 Versioning detection and control
An important part of resource sharing involves resource collaboration. Thus a common
resource could be modified by one user and then handed to another for further updates.
 Usually the operating system will carry out some simple versioning detection like
changing modification dates when a file is updated locally. However, as we will use P2P
systems, we cannot rely on the operating system of a common server. Thus, our resource
sharing model needs to be able to inform the users when they have created different
versions of a resource.

Revision control, versioning control, source control or software configuration
management (SCM) is the management of multiple revisions of the same unit of
information. The models we will use for versioning detection will not involve changing
the resources to avoid inconsistency nor do we need as elaborate models as used within
SCM. However, often models for control and detection can be hard to separate since they
may use the same mechanisms, thus we will focus on versioning detection, but also touch
upon versioning control when it is intertwined with detection models. An overview of

 31

version models definitions are given in 2.4.1. Thereafter, in 2.4.2 we describe how
detection of new versions could be carried out. While SCM is too elaborate a model to
use directly within our casual resource sharing, it forms a base for simpler versioning
models as well [43]. Thus we describe overall SCM terminology and principles in 2.4.2.
Also in this subsection, we will focus on versioning detection.

2.4.1 Versioning models
If two developers try to change the same file at the same time, the developers may end up
overwriting each other's work. We thus need to implement a versioning model. Conradi
and Westfechtel [43] define a version model as the items to be versioned, the common
properties shared by all versions of an item, and the deltas, which is the differences
between them. Furthermore, versioning models determines the way version sets are
organized and provides operations for retrieving old versions and constructing new
versions.

The term item or object defines anything that may be put under version control, including
all kinds of resources like for example text documents or software. A versioned item is an
item that is put under versioning control. Thus for a versioned item more than one state
should be maintained, in contrast to unversioned items where changes are performed by
overwriting. Also, there must be some way of deciding whether two versions belong to
the same item. An identifier can thus be defined to help identifing an item. For a
versioned item, each version must be identified by a version identifier, for example a
number.

Versions differ with respect to specific properties. The difference between them is called
a delta. The term suggests that the differences would be small compared to the files
themselves. Sometimes this does not hold, as a file could have all its content changed in
the next version. Thus the common properties may become smaller and smaller the more
versions are created. But it is necessary to define some common properties, as there
otherwise would be no reason to group versions. Sometimes multilevel versions are
introduced, where each version has versions themselves.

Typically, there are two ways to define a set of V versions from a versioned item, either
extensional or intensional. Extensional versioning is defined by by enumerating its
members, like giving each version a consecutive number. All new versions are explicit

 32

and will be registered. The user interacting with the system base retrieves some version
vi, performs changes on the retrieved version, and finally submits the changed version
back to the system base as version vi+1. To ensure safe retrieval of previously constructed
versions, versions can be made immutable. In some systems all versions are made
immutable when they are checked into the system base, in others explicit operations are
provided to freeze mutable versions.

In contrast, intensional versioning is applied when flexibility is needed in development of
new versions. Typically a specific version v is constructed in response to a bug or a
demand from a customer. In this case, many new combinations could be constructed on
demand. These version sets are defined by a predicate, which defines all constraints that
must be satisfied by all members of V. Thus a specific version v is described
intentionally by its properties. For example conditional compilation as supported with the
C programming language use intensional versioning. The preprocessor used for
conditional compilation constructs any source file based on the values of preprocessor
variables. Fragments of the source file whose conditions evaluate to false are excluded.

2.4.2 Versioning detection
Having defined some criteria of what a new version could be compared to older ones, we
also need to know how new versions could be detected. Collins-Sussman and Fitzpatrick
et al [44] states that there are two main versioning models. One solution, named file
locking prevent concurrent access problems by locking files so that only one person at a
time has write access to the central repository copies of those files. However, there are
some problems related to the model:

• Administrative problems. If a process holds on to a lock for a long time, others
will not be able to access the resource. It may also lead to deadlock if two
processes each hold on to a file, at the same time trying to access each other’s file.

• Unnecessary serialization. Suppose process A holds on to a file, modifying only
the beginning of the file, while process B waits for the lock, but only wants to
make changes at the end. Ideally they could have accessed the file
simultaneously.

• Create a false sense of security. Process A locks and edits file A, while process B
simultaneously locks and edits file B. But if file A and B are dependent on one
another, the changes made to each could be incompatible. The locking system

 33

may create a false sense of security.

A second solution is called version merging (or collision detection) and is used by
Concurrent Versions System (CVS) among others. The model allows each process to
create a working copy from the main file at the repository, update this file, and provide
facilities to merge changes later. If process A finish the file before process B, A’s
changes is written back to the repository. When process B attempts to save it’s updates
later on, the repository informs that the file is out-of-date. Process B can ask the
repository to merge any new changes from the repository into B’s version of the file. If
the changes do not overlap each other, this is done.

If the two copies cannot be merged, it is called a conflict. B’s version of the file is usually
flagged as being in a state of conflict which cannot be solved automatically. Often the
conflict is resolved by the users who must look at changes in both copies and decide
which one to keep.

Within P2P systems, there are distributed version control systems that uses both
preventive approaches and collision detecting methods.

2.4.3 Software configuration management (SCM)
The most elaborate forms of versioning control usually happens within software
development. As software is developed and deployed, it is common for developers to be
working simultaneously with updates on different software versions. Bugs and other
issues are often only present in certain versions because of the fixing of some problems
and the introduction of others as the program develops. For the purposes of locating and
fixing bugs, it is important to be able to retrieve and run different versions of the software
to determine in which versions the problem occured.

Within SCM, each developer operates in a local workspace that contains the versions
created and used.Traditionally, cooperation policies from a common server regulate when
versions are exported from or imported into a workspace [43]. Typically, the common
server holds a repository. The repository has a collection of system configuration files
and history files including file control meta data, latest source codes, comments and
revision records [45]. The repository also include a sequence of directory trees [44]. A

 34

directory tree is a snapshot of how the files and directories versioned in the repository
looked at some point in time. These snapshots are created as a result of operations of a
developer, and are called revisions. Each revision is a new version intended to supersede
its predecessor.

A version can be made a local working copy from the repository, through check-out.
During check out a local copy of the requested directory tree is made from the repository.
The directory tree contains the requested collection of files. The developer can edit the
files and compile them if they are source code files. After changes has been made to the
files in the workspace and it is verified that they work properly, the files can be
transferred back to the server, called a check-in or commit. Here the working copy is
written or merged back into the repository at the server. An atomic commit (or check-in)
allows committing changes in multiple files. The set of changes is called a changelist,
change set or patch and identifies changes made in a single commit and offering
guarantees that all files get fully uploaded and merged [46].

Suppose two collaborators A and B, checked out the same working copy simultaneously.
When A commits changes to a file back to the repository, B’s working copy will be left
unchanged. To bring B’s project up to date, B can request the server to update (or sync)
her working copy. It will incorporate A’s changes into her working copy, as well as any
others that have been committed since B checked it out. During an update the local
workspace first builds a temporary transaction tree that mirrors the state of a working
copy. The repository then compares that transaction tree with the requested revision tree
(usually the most recently created tree), and sends back information that informs the
client about what changes are needed to transform their working copy into a replica of
that revision tree. After the update completes, the temporary transaction is deleted.

A merge or integration brings together (merges) concurrent changes into a unified
revision. Merging files can be difficult, especially if repeatedly merge changes from one
branch to another, one may accidentally merge the same change twice. It may still work,
but if the already-existing change has been modified in any way, one might get a conflict.

Every revision starts as a transaction tree. When doing a commit, a client builds a
transaction that mirrors their local changes plus any additional changes that might have
been made to the repository since the beginning of the local client's commit process, and
then instructs the repository to store that tree as the next snapshot in the sequence. If the

 35

http://en.wikipedia.org/w/index.php?title=Changeset&action=edit

commit succeeds, the transaction is effectively made into a new revision tree and
assigned an identifier or tag. The tag is an identifier for a revision to uniquely define it. If
the commit fails for some reason, the transaction is destroyed and the client is informed
of the failure.

A trunk is the main line of development. During an ongoing product development, there
may be a need for a release of bug fixes. A branch (see Figure 2-1) can be copied from
the trunk, moving on generating its own history, but previously sharing the same history
as the trunk release. Thus a branch can serve as the bug fix baseline for that release.
Patches that have to be made for this release in the future will be developed on this
branch. The main trunk can be used for ongoing product development.

Original line of
development

1st branch

3rd branch

2nd branch

Time

Figure 2-7. Branching [44].

Traditionally, SCM have used a centralized model, where all the revision control
functions are performed on a shared server. Distributed versioning control allows
multiple simultaneous editing by using a P2P approach to versioning control. Rather than
a single, central repository on which clients synchronize, each peer's working copy of the
codebase is an independent repository. Synchronization is conducted by exchanging
patches (change-sets) from peer to peer. Usually there is a global (world wide) name-

 36

space for lines of development and revisions. Every branch is effectively a working copy
and vice versa, with branch merges conducted by ordinary patch exchange, from branch
to branch. New peers can join without applying for access to a server. It also allows
developers to work without a network connection. GRAM, described in subsection 2.6.7
in an example of a distributed SCM.

2.5 Middleware for P2P networks
To demonstrate a proof of concept of our resource sharing model, we will build a pilot
implementation. As there are many infrastructure functionality like routing, discovery
and querying involved in a P2P network, we will need to employ a middleware with our
application. Middleware is necessary to avoid application development becoming too
time consuming. Thus, in the next two subsections, 2.5.1 and 2.5.2, we give a brief
introduction to why we should use middleware and summarizes the most widespread
middleware types. In 2.5.3 we consider middleware for decentralized P2P networks in
contrast to other middleware. The four remaining sections thereafter describe different
types of middleware implementations that are available for download. In section 4.3 we
will choose the middleware best suited for our needs to use in our proof of concept.

The selection of middleware was done amongst vendors/institutions where support for
the middleware was available and the middleware itself was accessible without any cost.
By support we mean where it is possible to find papers, books, or other material where
interaction with an implementation application programming interface (API) is described.
Bonjour (2.5.4) is an Apple implementation of the ZeroConf protocol and is geared
towards discovery of new devices to simplify configuration and service exchange. The
UPnP middleware in 2.5.5 is used for much of the same purposes. The JXTA middleware
from Sun in 2.5.6 is used for closed peer groups, to gather peers with similar interests,
and to carry out surveillance of devices. The Socialized.Net developed at Norut IT
(subsection 2.5.7) uses semantic query routing to gather peers with similar interests.

2.5.1 Why middleware
Middleware started to develop at the beginning of the 1980s together with the widespread
of distributed systems. For application developers it was tedious and error prone to

 37

convert application calls from the client to the server and ensure server response.
Middleware simplified application development because [47]:

• Communication demanded complex parameters such as records, character strings
or arrays to be transmitted from one device to another. These needed to be
converted to lower level protocol implementations, usually to byte sequences.

• Two devices could have different encodings of data types in memory if they were
not deployed on the same hardware platform and software not written in the same
programming language. Application developers would have to map the types to
each other.

• Parameters and return values might refer to components located on other devices.
Application developers would have to implement object references in according
to Internet domain names, port numbers and additional addressing information.

• Application developers would have to implement activations of a server
component as a response to a client component request.

• An operation requested by a client had to ensure that the response from the server
side is always carried out and that the parameters sent from the client match the
server side parameters (type safety).

• After the request was sent, the client needed to wait for the result to return.
Implementation of synchronization between two devices was non-trivial.

• Sometimes qualities of service were required that could not be guaranteed at the
network level. For example, it might be required for different client requests to
be implemented atomically, either completely or not at all (transaction support).

Middleware offered a layer that “glued together” applications across heterogenous
platforms and offered abstractions simplifying application development. Putting as much
as possible of the standard functionality into the middleware layer gave the application
developers freedom to concentrate on more specific application functionality. They could
now focus on the higher level programming, and omit time consuming low level details
of object transferral between devices. Middleware produced separations of concerns.

2.5.2 Types of middleware
The remote procedure call (RPC) was the first type of middleware, used as a way to
transparently call procedures located on other machines. The concept of middleware
became popular and led to a number of different middleware types. Amongst the most
widespread types are [22]:

 38

• RPC-based systems. RPC provides the infrastructure necessary to transform

procedure calls into remote procedure calls in a uniform and transparent manner.
RPC systems are used as a foundation for almost all other forms of middleware.
We described RPC briefly in subsection 2.2.1.

• Transaction processing (TP) monitors. TP monitors are likely the best-known
form of middleware. Very simplified, TP monitors can be seen as RPC with
transactional capabilities.

• Object brokers. RPC was designed and developed at a time when the predominant
programming languages were imperative languages. When object-oriented
platforms took over, platforms were developed to support invocation of remote
objects, thereby leading to object brokers. These platforms were more advanced
in their specification than most RPC systems, but they did not significantly differ
from them in terms of implementation. In practice, most of them used RPC as the
underlying mechanism to implement remote object calls. The most popular class
of object are those based on the Common Object Request Broker Architecture
(CORBA).

• Object monitors. When object brokers tried to specify and standardize the
functionality of middleware platforms, it became apparent that much of this
functionality was already available from TP monitors. At the same time, TP
monitors had been extended to fit with object-oriented languages. The result of
these two trends was convergence between TP monitors and object brokers that
resulted in a hybrid system called object monitors. Object monitors can roughly
be described as TP monitors extended with object-oriented interfaces.

• Message-oriented middleware. The earliest versions of RPC middleware had
acknowledged that synchronous communication was not always optimal. Initially
this was solved using asynchronous RPC. Later on, TP monitors extended this
support with persistent message queuing systems. After a while these systems
became middleware platforms on their own under the general name of message-
oriented middleware (MOM). We described MOM in subsection 2.2.2.

• Message brokers. Message brokers are message-oriented middleware that has the
capacity of transforming and filtering messages as they move through the queues.
They can also dynamically select message recipients based on message content.
In terms of basic infrastructure, message brokers are just queuing systems. The
only difference is that application logic can be attached to the queues, allowing
de-signers to implement more sophisticated interactions in an asynchronous

 39

manner.

Of these, the RPC is of particular interest because it was the first type of middleware and
thus explains the principles of middleware well. Moreover, the message-oriented
middleware (MOM) is also important to our thesis because it forms the base for most
more advance P2P middleware.

2.5.3 Characteristics of decentralized P2P middleware
P2P middleware differs from the middleware types described in the previous section.
Obviously, as RPC is a synchronous operation requiring the requesting program to be
suspended until the results of the remote procedure has returned, it is not fitting. For a
P2P network such tight-coupling between devices is undesirable as devices may be added
and removed ad-hoc. The architecture represented by MOM where each device acts both
as sender and receiver and interact through asynchronous transmission is far more
appropriate. Thus P2P middleware are usually abstractions built on a basic MOM
architecture.

Following from the client-server model is also that software usually has a centralized
approach, entirely dependent on the server. Depending on one or a few devices being
accessible, is undesirable in a fully decentralized network.

Even with MOM architecture, the ad-hoc nature of the peers raises issues about how to
find devices and information in these types of networks. Typically a P2P middleware
could offer:

• device and service discovery
• message routing
• query and search utilities
• caching/storage (related to the above mentioned issues).

New models for device and service discovery are needed because the network cannot be
dependent on a server carrying out mapping between logical and physical addresses.
Usually this is solved by trying to contact a bootstrapping node which gives the joining
peer the IP-address of one or more existing peers, making the newcomer a part of the
network. Each peer will usually only have information about its neighbours, which are
peers that are directly connected to it in network [48].

 40

The peer needs to locate information in the changing network. Thus, traditional routing
protocols using pre-defined data access structures will not be fitting [32], and routing of
queries becomes another issue. Often queries are flooded on the LAN to all the neighbour
peers to find information. A side-issue within query routing and update messages is to
avoid network congestion as messages are flooded in the network. Good routing
protocols use additional techniques to keep message transmissions to a minimum.

As devices are added and removed, knowledge of where to find information must be
further developed. Joseph divides search into three parts [49]:

1. identify what you want
2. work out where it is
3. download it

One example is semantic query routing described in 2.5.7, where a node’s previous
knowledge about another node’s interests is used during search. Another example is
JXTA’s use of rendezvous peers (see subsection 2.5.6) or Gnutella’s use of ultrapeers
(see subsection 2.6.7).

In addition, choosing a decentralized approach, each device or node must itself be
responsible for carrying some information on discovery, routing, search and querying in
the network. The nodes need to retrieve this information and store it locally, usually in
the cache, or more persistently on disk. Storing the information as devices comes and
leaves leads to the possibility of storing stale information. Often this problem is simply
dealt with by letting the cache empty itself as the network changes and new information
continuously are added replacing the old.

Ding, Nutanong et al [48] describes two properties of a P2P network which also P2P
middleware should abide:

• Scalability: There should be no algorithm or technical limitation to the size of the
system, i.e. the P2P network should not be dependent upon the number of nodes
participating.

• Reliability: The malfunction of any given node should not affect the whole
system (or even any other nodes).

 41

This is more or less the same statements as Kubiatowicz [40], as described in subsection
2.3.5.

The rest of the section describes four different decentralized P2P types of middleware
that have freely available implementations. The subsections also describe how these
implementation have solved issues related to P2P networks.

2.5.4 Bonjour
Bonjour, formerly Rendezvous, is Apple’s trade name for its implementation of the
Internet Engineering Task Force (IETF) Zeroconf protocol [50].

Bonjour provides automatic IP configuration if a dynamic host configuration protocol
(DHCP) service is missing [51]. It also provides a service discovery replacement for
domain name service (DNS), provided the peers are on the same subnet. It takes
advantage of protocols that already exists like Advanced Function Printing (AFP), Server
Message Block (SMB), Internet Printing Protocol (IPP) and HTTP in communication
once the service on the devices has been discovered.

When a new computer or device is added to the network, Bonjour configures the device
using a technique called link-local addressing (If a DHCP server is available, Bonjour
uses the assigned IP address). Using local-link addressing, the device randomly selects an
IP address from a predefined range of IP addresses set aside by the Internet Assigned
Numbers Authority (IANA). Addresses are in the range 169.254.XXX.XXX. Afterwards,
the computer sends a message out on the network to determine whether another device is
already using the address. If the address is in use, the device randomly selects another
address until it finds one that is available. When the device has assigned itself an IP
address, it is ready to send and receive IP traffic on the network.

Once a device has been automatically configured to work on the network, it needs to
discover services being offered by other devices on the network, as well as a way to tell
other devices what services it offers. To share services, a device must create a unique
name for each of its services and let the other devices on the network know of their
existence. To do this, Bonjour uses DNS, which offers translation between human-
friendly names and numbered IP addresses. To perform name services, Bonjour uses a
variant of DNS called Multicast DNS-Service Discovery (mDNS-SD). An mDNS-SD

 42

notification is query driven and retrieves the type of service (such as IPP printing), the
name of the service (such as “Copy room printer”), IP and port addresses, and other
optional information (such as the correct file format, for example PPD). Each device on
the network receives the notification and stores the information. Applications running on
the computer can use the information to create a list of services in their custom interface
for the user to choose a service. But without a special DNS configuration, Bonjour only
works on a LAN [50].

If a device is added to the network, it may query the network about a certain type of
service. For example, the device may want to know what printers are available so it can
create a list of printers for the user. The device queries the network for devices offering
printing services. It receives responses from the devices that can print using the specified
printing protocol and uses that information to create a list of printers for the user.

To minimize network traffic, Bonjour uses a range of techniques. For example, the
multicast protocol is designed to reduce network traffic by issuing only one packet on the
network that can be received by all devices. When a device queries the network for
information, and the other devices on the network respond, all the devices receives all the
responses. Since each device caches the information, the device does not need to query
again. Furthermore, a device does not query before a service is requested by the user.

The source code of Bonjour is open source and freely available under the Apple Public
Source Licence including software for UNIX, Linux, BSD, Solaris, Windows, Windows
CE and Pocket PC [51]. Bonjour is used for many different services like finding shared
music (iTunes), find shared photos (iPhoto), to find other users on the same subnet (iChat
AV and Skype), to find digital video recorders (TiVo Desktop), and to find document
collaborators (SubEthaEdit). Apple’s web browser Safari uses it to find local web servers
and configuration pages for local devices and it is also used to advertise telephone
services and configuration parameters to voice over IP (VoIP) phones and diallers [52].

An alternative to Bonjour is the Avahi project developed on Linux and other Unix-like
desktops. Avahi is published under the less controversial Lesser General Public License
(LGPL). Avahi is consided the default Zeroconf implementation on all Linux
distributions and has also been ported to Apple's own Mac OS operating system.

 43

2.5.5 Universal Plug and Play (UPnP)
Late 1999, an association of more than 340 vendors formed the Universal Plug and Play
Forum. The forum defined the UPnP Device and Service Descriptions (originally called
Device Control Protocols) after a common device architecture from Microsoft [53]. A
number of companies today offer UPnP kits for implementations [54].

The basic building blocks of an UPnP network are devices, services and control points.
The middleware is optimized for discovery and controlling surrounding devices and
services.

A device is a container of services and nested devices. An example of a device can be a
VCR which has a tape transport service, a tuner service and a clock service. Services will
thus differ from device to device, and is documented in an XML device description
document that the device must have. The device description includes vendor-specific,
manufacturer information including the model and number, serial number, manufacturer
name, URLs to vendor-specific Web sites etc. There is also a list of any embedded
devices or services as well as URLs for control, eventing, and presentation. In addition,
the device description also includes a list of properties.

The smallest unit of control in an UPnP network is a service. A service exposes actions
and models its state with state variables. For instance, a clock service could be modelled
as having a state variable, current_time, which defines the state of the clock, and two
actions, set_time and get_time, which allow you to control the service. Similar to device
description, this information is part of an XML service description standardized by the
UPnP forum. An URL pointer to these service descriptions is contained within the device
description document. Devices may contain multiple services.

A service in an UPnP device consists of a state table, a control server and an event
server. The state table models the state of the service through state variables and updates
them when the state changes. The control server receives action requests (such as
set_time), executes them, updates the state table and returns responses. The event server
publishes events to interested subscribers anytime the state of the service changes. For
instance, the fire alarm service would send an event to interested subscribers when its
state changes to “ringing”.

 44

A control point is a controller capable of discovering and controlling other devices.
Typially, in a home the controller point could be a PC controlling all other devices like
VCR, DVD, washing machine etc. After the initial discovery, a control point could
retrieve device description, service description and invoke actions to control services. It
could also subscribe to a service event source, which sends an event anytime the state of
service changes.

Figure 2-8 describes the UPnP specific protocols. UPnP vendors, UPnP Forum Working
Committees and the UPnP Device Architecture document define the highest layer
protocols used to implement UPnP. Based on the device architecture, the working
committees define specifications according to device type such as VCR, dish washers and
other appliances.

Figure 2-8 The UPnP protocol stack [53].

Two important protocols in the UPnP protocol stack are Simple Service Discovery
Protocol (SSDP) and Generic Event Notification Architecture (GENA). SSDP defines

 45

how network services can be discovered on the network. SSDP is built on two UDP
variants of HTTP, Hypertext Transport Protocol Unicast (HTTPU) and Hypertext
Transport Protocol Multicast (HTTPMU). SSDP defines methods both for a control
point to locate resources of interest on the network (search), and for devices to announce
their availability on the network (presence). Both control points and devices use SSDP.

In addition to discovery capabilities, SSDP also provides a way for a device and
associated services to gracefully leave the network (through a bye-bye notification) and
includes cache timeouts to purge stale information.

GENA was defined to provide the ability to send and receive notifications using HTTP
and HTTPMU. GENA formats are used to create presence announcements sent via SSDP
and to provide the ability to signal changes in service state for UPnP eventing. A control
point interested in receiving event notifications will subscribe to an event source by
sending a request that includes the service of interest, a location to send the events to and
a subscription time for the event notification. Thus, GENA also defines the concepts of
subscribers and publishers.

The protocol stack is used together with the following services:

• Addressing: If there is no DHCP server in the network, UPnP allows use of Auto-
IP. With Auto-IP the device will choose an IP address in the 169.254.XXX.XXX
range. After address selection, the address is tested on the network to see if it is
already in use. If occupied, the device will randomly choose another address to
test.

• Discovery, advertisement: Upon booting, a control point can send a multicast

SSDP search request to discover devices and services that are available on the
network. The receiving device examines the search criteria to determine if there is
a match. If a match is found, a unicast SSDP is sent to the control point. The
GENA format is used for the advertisements. The discovery message contains a
few essential device specifications and its services, like its type, identifier, and a
pointer to its XML device description document.

• Discovery, search: A search request is similar to advertisement, a device or

control point sends an SSDP search request to search for services. The receiving
device examines the search criteria to determine if there is a match. If a match is

 46

found, a unicast SSDP is sent to the control point.

• Description: After a control point has discovered a device, the control point
knows very little about it. For the control point to learn about the device or
interact, the control point must retrieve the device’s description from the URL
provided by the device in the discovery message. The description service is
carried out by means of HTTP over TCP.

• Presentation: Upon connecting, a device will send out multiple SSDP presence

announcements advertising the services it supports. However, the capabilities of
the presentation page are completely specified by the UPnP vendor. To
implement a presentation page, an UPnP vendor may wish to use UPnP
mechanisms for control and/or events, leveraging the device’s existing
capabilities.

• Control: Typically, control is carried out if for example a user has a PC and

would like to control other devices from it. The PC then acts as a control point.
To control a device, a control point sends an action request to a device’s service.
This means that a suitable control message is sent to the control URL for the
service.

In response to the control message, the service returns action specific values or
fault codes. The information is encapsulated in UPnP specific formats and
formatted using SOAP/XML, then transmitted using HTTP. A device must
respond to control requests within 30 seconds.

• Eventing: An UPnP description for a service includes a list of actions the service
responds to and a list of variables that model the state of the service at run time.
The service publishes updates when these variables change, and a control point
may subscribe to receive this information.

The service publishes updates by sending event messages. Event messages
contain the names of one or more state variables and the current value of those
variables. These messages are also expressed in XML over HTTP and formatted
using GENA.

 47

All control points on a network that register for events receive the notifications.
The state variables described in a service description can be evented. The service
publishes updates when these variables change. A control point may subscribe to
receive this information by sending a subscription message. The publisher of the
event can accept this subscription and respond with a duration for the
subscription. The subscriber can renew its subscription or cancel subscription
when no longer interested.

First time a control point subscribes, an event message is sent that contains the
names and values for all event variables and allows the subscriber to initialize its
model of the state of the service. The event message is sent to all subscribers.

2.5.6 JXTA
JXTA (Juxtapose) is an open source P2P platform created by Sun Microsystems in 2001
[55] available in Java and C. A JXTA network is an ad hoc, multi-hop and adaptive
network composed of connected peers. Peers may join or leave the network at any time,
and network routes may change frequently.

Unique IDs are used for identification in the network. There are six types of JXTA
entities which use JXTA IDs: peers, peer groups, pipes, contents, module classes and
module specifications. A JXTA ID is defined by a Uniform Resource Name, URN, a
form of URL that is intended to serve as a persistent, location-independent, resource
identifier.

Together a group of peers form a peer group. Peers self-organize themselves into peer
groups, where each group has agreed upon a common set of services. There are three
motivations for creating a peer group: 1) To create a secure environment within the
group, 2) to locate others with similar interests, like a document or a CPU sharing
network and 3) to monitor the other peers for any special purpose (e.g. heartbeats, traffic
introspection or accountability).

Peers can be four different types:

• A minimal edge peer can send and receive messages, but does not cache
advertisements or route messages. Typically devices with limited resources like
PDAs and cell phones would be minimal edge peers.

 48

• A full-featured edge peer has the same functions as a minimal edge peer, but also
it may cache advertisements and reply to discovery requests using its cache
information.

• A rendezvous peer is like a full-featured edge peer, in addition it also forwards
discovery requests. Edge peers send search and discovery requests to rendezvous
peers which in turn forward all requests that they cannot answer themselves to
other rendezvous peers. To avoid messages travelling many routing hops (any
thus take too long time to get response) there is a “hop limit”, so called time-to-
live (TTL), of seven hops. Loopbacks are prevented by maintaining the list of
peers along the message path. Only rendezvous peers maintain a list of other
known rendezvous peers and also the peers that are using it as a rendezvous. This
structure significantly reduces the number of peers involved in the search for an
advertisement. If a new device joins the network, it first contacts the rendezvous
peer; if no such peer exists, the new peer automatically becomes the rendezvous
peer itself.

• A relay peer maintains information about the routes to other peers and route
messages to peers. Relay peers can forward messages on behalf of peers that
cannot directly address another peer (e.g. NAT environments), bridging different
physical and/or logical networks. The relay and rendezvous services can be
implemented on the same peer.

Each rendezvous peer maintains its own list of known rendezvous peers in the peer
group. A rendezvous peer may retrieve rendezvous information from a pre-defined set of
bootstrapping, or seeding, rendezvous. Sun provides some servers for the purpose (see
also subsection 5.3.3). They periodically select a given random number of rendezvous
peers and send them a random list of their known rendezvous. Rendezvous peers may
also periodically purge non-responding rendezvous peers. Thus, a loosely consistent
network of known rendezvous peers is maintained.

When a peer publishes a new advertisement, the advertisement is indexed by the shared
resource distributed index (SRDI) service using keys such as the advertisement name or
ID. Only the indices of the advertisement are pushed to the rendezvous by SRDI,
minimizing the amount of data that needs to be stored on the rendezvous peer. The
rendezvous peer also pushes the index to additional rendezvous peers.

In order to send messages, the peers employ pipes. Pipes are the core mechanism for

 49

exchanging messages between JXTA applications or services. Pipes can be either point-
to-point, multicast (transmission to a group) or secure unicast pipes (a reliable point-to-
point pipe).

A message is an object that is sent between JXTA peers; it is the basic unit of data
exchange between peers. All JXTA network resources (such as peers, peer groups, pipes
and services) are represented by advertisements. Advertisements are meta-data
represented as XML documents. The JXTA protocols use advertisements to describe and
publish a peer resource.

JXTA is based on six protocols:

• Peer Discovery Protocol is used by peers to publish their own advertisements or
discover advertisements from other peers. If a peer group does not have its own
discovery service, the Peer Discovery Protocol is used to probe peers for
advertisements.

• Peer Information Protocol is used by peers to obtain status information (uptime,
state, recent traffic etc) from other peers.

• Peer Resolver Protocol enables peers to send a generic query to one or more
peers and receive one of more responses to the query. Unlike Peer Discovery
Protocol and Peer Information Protocol which are used to query specific pre-
defined information, this protocol allows peer services to define and exchange
any arbitrary information they need.

• Pipe Binding Protocol is used to establish a pipe between one or more peers,
connecting two or more pipe endpoints. A pipe can be viewed as an abstract
named message queue; supporting create, binding, unbinding, delete, send and
receive operations.

• Endpoint Routing Protocol defines a set of request/query messages that are used
to find routing information. Path information includes an ordered sequence of
relay peer IDs and time-to-live (TTL) that can be used to transmit a message to
the destination.

• Rendezvous Protocol is a mechanism by which peers can subscribe or be a
subscriber to a propagation (multicast) service. Rendezvous Protocol is
responsible for propagating messages within a peer group and is used by the Peer
Resolver Protocol and the Pipe Binding Protocol to propagate the messages.
Moreover, the protocol controls the propagation of a message (TTL, loopback
detection etc).

 50

All JXTA protocols are asynchronous and based on a query/response model. JXTA peers
are not required to implement all six protocols, only the ones that they use.

2.5.7 The Socialized.Net
Some P2P networks use a routing technique called semantic query routing. Semantic
query routing focus more on the nature of the query to be routed than on the network
topology in general. By evaluating the query answers, nodes that give fitting information
as answers are prioritized rather than nodes giving less important information. This
means that nodes with similar interests are grouped together.

Search is done by forwarding queries to a subset of nodes that is believed to possess
matches to the search query [49]. For example a search for keyword A will make the
routing node look up in a priority list the nodes associated with keyword A. The routing
node would then choose a number of associated nodes holding the highest priority score.
The querying node also establishes a direct link to the remote node, adding to the
system’s existing connections, leading to a gradual increase in connectivity. The effect is
that all nodes gradually get more knowledge about the others, leading to a gradual
increase in connectivity. An analogy used is to think of the nodes as humans that request
a friend about something. If the friend does not know the answer, he can suggest another
person that could help, which again might suggest another one and so on.

An issue in such networks is to handle malicious nodes spreading bogus information. The
Socialized.Net (TSN) uses semantic query routing but extends it with the use of
preferences and reputations, giving nodes a rudimentary social network to avoid
unusable information. [38]. Nodes monitor their neighbour’s replies, and would notice if
they spread bogus information. Based on these observations together with possible user
interaction a node calculates preferences. Nodes also spread their knowledge about
another node’s reputation (gossiping), making it possible to learn from other nodes’
experiences. Querying is done by asking the neighbours with the highest scoring points.

Search is carried out in two steps: First a local filtering of incoming resource descriptions
is set up based on the given query. Resource announcements and incoming replies are
processed by the filter. A second optional step is to send the query to other nodes, which
in turn will forward the query to more nodes. TSN can automatically resend the query at

 51

a given interval, allowing the daemon to actively keep searching. It can be sent to
different nodes every time. The search will not terminate until the user explicitly removes
it from the daemon. A “copy-to” field allows application designers to specify recipients
regardless of how the daemon itself routes the message. TSN is however not able to give
guarantees that all possible resources are found, as only a “best effort” subset of nodes
are queried. Also changes in the node infrastructure may affect the search.

TSN allows multiple addresses for each node [1]. If none of the addresses works, the
node is assumed to be temporarily unavailable. Each address can be active, inactive or
stale. When in an inactive state, the address can still be used, but active probing of the
neighbour might be triggered. If a neighbour fails to respond, it will be set to stale. The
address can still be tried, but ranks lowest. Last address is used if all addresses show the
same response.

An address will receive points when in use. Also, it will receive more points when
providing answers as opposed to routing only. The optimal path is sought for querying.
TSN will monitor its own activity in order to decide its own interest. Thus, when having
too many neighbours, only the neighbours with the highest scores are kept. Only
addresses that have been active during a given time period will be kept. Very active,
stable and well connected nodes can receive many points for their connectivity. Also, the
local user can have an opinion about certain nodes, either due to excellence or disliked
nodes.

An overview of the protocol layers are shown in Figure 2-9. The Socialized.Net is based
on UDP communication over IP. Routing is carried out either directly or via other nodes.
All nodes that route queries, will also cache routed information and thus at the same time
update their semantic knowledge of the senders. With this structure, it is also possible to
go beyond a network translation address (NAT) configuration and connect in WANs. To
avoid very long routes with many hops, TSN uses Time To Live (TTL) counters. TTL
gives a limit for the number of hops allowed before the search is terminated.

Each participating node is running a TSN daemon. Local applications can connect to
various interfaces of the daemon. The http interface is a web based user interface, giving
the user the possibility of directly access to the daemon. The Instant Messaging and
XML-RPC interface allow applications to integrate with the TSN.

 52

Application

Plugin

Application

Plugin

Application

Plugin

TSN
Daemon

IM XML-RPC HTTP

Network UDP/IP

Figure 2-9 The Socialized.Net communication infrastructure [56].

Application developers can specify their own meta-data structures and matching policies
for the meta-data. There are also policies describing how resource descriptions and
queries are handled. For example, it is possible to limit caching of resource descriptions,
or the scope of messages and more.

The TSN software has been developed at Norut-IT and is written in the Python
programming language. The middleware is downloadable from the Internet [57].

2.6 Related works
A lot of work has already been carried out in the field of resource sharing. This section
describes various related approaches to contrast and complement our resource sharing
concept. We have not tried to make the section exhaustive, as there are numerous
initiatives targeting resource or file exchange between devices and a wide variety of P2P
networks whose purpose is file exchange. Instead we have focused on a few of the most
profiled and relevant projects to show the variety of approaches and those working close
to our approach.

 53

Subsection 2.6.1 describes a shared resources approach by simple file transfer using
Bluetooth, OBEX, ftp or others. In 2.6.2 we describe file sharing by Microsoft Shared
Folders/SAMBA. In 2.6.3 and 2.6.4 we describe technologies that resemble each other in
architecture, Microsoft Office Groove and iFolder. Google Docs & Spreadsheets are
briefly described in 2.6.5. Using the JXTA platform, architecture of myJXTA is
presented in 2.6.6. A JXTA version management system called GRAM is described in
subsection 2.6.7. Finally in 2.6.8 we describe a decentralized representative for the P2P
file sharing systems, Gnutella.

All approaches are compared to our model for casual resource sharing in subsection 3.6,
Comparison to related works.

2.6.1 Bluetooth/OBEX/FTP
On close ranges, like people meeting ad-hoc, it is possible to transfer files one-by-one
using Bluetooth or IrDA OBject EXchange (OBEX) protocol with assisting application
protocols depending on device OS. While these solutions work well for personal area
network (PANs) distances, they are not suitable for WAN. Moreover, there is no group
concept, search possibilities, repositiory and other functionality beside offering file
transferral.

Protocols like file transfer protocol (FTP) will in the same manner allow exchange of
files between two peers via TCP/IP over the Internet. FTP is based on the client-server
model, thus an FTP server can offer a secure repository similarly to any other file server.
Other protocols like SSH, HTTP etc will function in the same manners. The downsides to
using a server is typically additional routines such as registration for server access (filling
out forms/contacting administrators explaining why you need access etc) and the need for
network access between the client and the server. In contrast, servers also have benefits
such as getting backup provided and a high uptime of the server itself.

2.6.2 Microsoft Shared Folders/SAMBA
With Microsoft (MS) shared folders it is possible to share out a part of a device’s
harddisk to collaborators. MS shared folders can best be described as similar to disk
server access, but without many of the additional routines related to servers themselves

 54

since it is one of the client’s devices that are usually shared. MS shared folders is thus
based on the client-server paradigm, rather than P2P.

MS is relatively easy to configure which can explain some of the popularity. Moreover, it
is shipped with the popular MS Windows operating systems so there is no need for
additional software installations. MS shared folders use the same access control
mechanisms including directory services as the shared device itself. It supports a multi-
user environment, thus collaborating working groups can be organized. It includes
concurrency control or locking of a remote file while a user is editing it [58].

MS shared folders runs on top of an application-level network protocol called server
message block (SMB/CIFS). Depending on operating system and access mechanisms,
MS shared folders uses transport protocols TCP, NetBIOS over TCP/IP or UDP/IP,
NetBEUI or other NetBIOS transports [58]. Traditionally the shared folder access has
only been available on LAN, and file access is normally prohibited by firewalls from
devices outside the LAN. By means of virtual private networks it is possible to access the
service from outside.

A drawback is that users are restricted to MS Windows operating systems, thus MS
shared folders do not allow operating system heterogenity. However, Samba, a free
software re-implementation of the SMB/CIFS networking protocol, offers shared folder
integration with most Unix and Unix-like systems, also including Apple's Mac OS X
Server. Samba is standard on nearly all distributions of Linux [59].

The SMB protocol also supports access to a number of other shared resources, like
printers, scanners and serial ports.

2.6.3 Microsoft Office Groove
Groove was founded in 1997 by Ray Ozzie, the developer of Lotus Notes. Originally
developed by Groove Networks, it is now a proprietary licensed product owned and
developed by Microsoft as a component of the Office 2007 Enterprise suite [60].
Groove’s main goal was to allow users to communicate directly with other users without
relaying on a server. Others important goals were security and privacy, and flexibility
[61]. Groove is a project management application based on the client-server model and

 55

integrates chat, file sharing, calendar, discussion, picture sharing, and also allow third
party tools to be integrated to improve the functionality.

A Groove user creates a workspace and then invites other people into it. Each person who
responds to an invitation becomes a member of that workspace and is sent a copy of the
workspace that is installed on his or her hard drive. All data is encrypted both on disk and
over the network, with each workspace having a unique set of cryptographic keys.
Groove also includes firewall/NAT transparency. Thus, a workspace is the private virtual
location where users who are members interact and collaborate. After the initial
connection, Groove synchronizes all copies through central servers via the Internet.
When a member makes a change to the space, that change is sent to all copies for update.
If that member is offline at the time the change is made, the change is queued and
synchronized to other workspace members when the member comes back online.

Groove offers ad-hoc group formation. It uses a protocol Simple Symmetrical
Transmission Protocol (SSTP), a small application-layer protocol designed to allow two
programs to engage in bidirectional, asynchronous communication over both TCP and
UDP protocols. In addition, Groove version 3.x also supports Extensible Messaging and
Presence Protocol (XMPP, an XML communications technology) protocol for sending
instant messages to users on an XMPP network.
MS Office Groove is linked with the MS operating systems and other MS programs.

2.6.4 iFolder
iFolder allows people to share folders of files of any type with each other. Currently,
iFolder has support for Windows, Novell Linux Desktop and Mac OS X [62]. The
iFolder client runs in two operating modes, enterprise sharing and workgroup sharing.
In enterprise sharing, the iFolder Enterprise Server is used. The iFolder client first
synchronizes the files in the iFolders found locally to the intermediate server, and
thereafter replicates them to other computers. With the iFolder Enterprise server, it is also
possible to access shared files located on the server via an Internet browser, as well as
copy files from the server to other media.
In workgroup sharing, which is more relevant to our pilot, iFolder can share files and
synchronize directly without an intermediate server. This is accomplished through add-on
modules using Gaim, an open-source instant messaging client, and using Bonjour (see

 56

subsection 2.5.4). The sharing capabilities of workgroup mode are currently under
development.
By means of the iFolder client, files are saved into an iFolder and replicated in their
entirety, either to other devices or to the iFolder server. As the files are edited and
changed, the iFolder client keeps track of the changes and then only synchronizes the
changed parts with the other devices.
iFolder (at least for the Linux client and server) is built on top of Simias, a generic data
store and logic for the collections of information. Simias uses a local database as storage.
It also handles synchronizations of the the collections from machine to machine. Security
is handled through access levels which can be either Administrator, Read/Write or Read
Only. It is possible to fetch user identities from an external source, for example from
Novell's eDirectory service. Simias also includes an embedded web server for browser
accessibility. The iFolder project is built on the .Net framework and Mono (software to
develop and run .NET client and server applications on Linux, Solaris, Mac OS X,
Windows, and Unix).
Like many other open source developments, the documentation for iFolders is not always
up to date. Thus, implementation details may have changed.

2.6.5 Google Docs & Spreadsheets
It has been difficult finding any thorough technical information on Google
Docs&Spreadsheets, as specification information beyond user descriptions is seemed to
be held back. Thus the following information has mainly been fetched from Wikipedia
[63]. Google Docs & Spreadsheets is a Web-based word processor and spreadsheet
application offered by the company Google and used through a browser interface.
Documents and spreadsheets can be created within the application itself, imported
through a web interface, or sent via email. Documents can also be saved to the user's
computer in a variety of formats, for example Microsofts Word and Excel format. By
default, documents are saved to Google's servers. Documents that are opened are
automatically saved to prevent data loss. Documents can be tagged and archived for
organizational purposes as well as shared and edited by multiple users at the same time.

Google Docs & Spreadsheets does not support certain browsers such as Opera and
Apple's Safari. There is also a limit on how much a user can store on his account. Each
document must be under 500k plus 2MB for each embedded image.

 57

Although text documents and spreadsheets can be optionally accessed through HTTPS, it
is not set by default. There is also a potential security breach as accounts for all Google
services have a unified login process. While a unified login simplifies access, it also
represents a potential threat to security through cross-site scripting as the access to
Google Docs & Spreadsheets then requires no password check. Cross-site scripting
allows code injection by malicious web users into the web pages viewed by other users.
Code injection is a technique to introduce code into a computer program or system by
taking advantage of unenforced and unchecked assumptions the system makes about its
inputs.

Originally Google’s write program Writely ran on Microsoft ASP.NET, but has since
2006 been developed on a Linux-based platform.

2.6.6 myJXTA
myJXTA is a demo application written for the Java platform which illustrate key
concepts of the JXTA platform and P2P. The myJXTA application provides functionality
for secure one-to-one chat, group chat, and sharing, searching and downloading
documents within a peer group [64]. The myJXTA application uses the JXTA platform
core building blocks to discover, join, create groups, create a connection between two
peers (chat) and a group of peers (group chat), as well as the resolver and endpoint
routing protocol to search and download files. The system is available for Windows (95,
98, ME, 2000, NT, XP), Solaris, Linux, Unix, Mac OS X, or other Java enabled
platforms. myJXTA uses a native GUI rather than using a browser.

New peer groups can be created using the JXTA network. The peer groups are public and
can be created. It is also possible to join an existing peer group. Every time a user joins a
new group, this peer group becomes the default peer group for chatting and/or file
sharing.
For chat possibilities, it is possible to create private one-on-one chats. The chats are
assigned a secure password and the messages are encrypted as they are sent over the
network. For chats, it is possible using the JXTA Peer Group advertisement to create a
JXTA invitation. The invitation can be sent to other myJXTA peers and functions like a
business card. If the invitation is accepted, the peer will be added to the user list of
known peers which allows for secure one-to-one chat.

 58

Search for files and file sharing is always carried out within the current peer group and is
based on the JXTA Content Manage Service (CMS). The CMS manages the shared
content for a local peer, and allows applications to browse and download content from
remote peers. Within CMS, each item of shared content is represented by unique content
id and a content advertisement which provides meta-information about the content, such
as its name, length, mime type, and description [65]. The CMS also provides a protocol
based on JXTA pipes for transferring content between peers.

Each piece of shared content is referenced by a unique content identifier, using a 128-bit
MD5 checksum generated from the content data. By using MD5 as unique identifier, it is
easy to determine if two files shared by different peers are the same rather than relying on
the content name or description.

The CMS manages a persistent store in the cache which includes references to the locally
shared file content as well as their associated advertisements. These advertisements are
stored as XML files. In the persistent store, only the references to shared files are
maintained rather than copying the file contents. This saves disk space when sharing
large media files. When content is shared, the MD5 is computed and the reference to the
actual content is stored along with the MD5 checksum. When the content is subsequently
retrieved by another peer, the content is verified to make sure that it has not changed
since last shared.
The CMS service uses JXTA pipes (see subsection 2.6.6) for remote content request and
retrieval. Each instance of CMS manages a single input pipe for receiving both content
requests and responses. Request and response pipe advertisements are passed in each
CMS message so once the initial content request pipe advertisement is discovered for a
peer, subsequent pipe advertisements can be obtained from the messages themselves.
This allows the CMS to utilize separate pipes for handling different message types, since
the initial pipe is only needed to send the first request.

It is possible to allow automatically sharing of all files that have been searched and
downloaded from a device by setting the auto share preferences. By default, myJXTA
will not allow auto share. myJXTA also has additional options for configuration of
rendezvous, router and other network services and protocols (see subsection 2.5.6).

An extended version of myJXTA, called myJXTA2 is under development. Very little
information is available, but myJXTA2 aims to include resource search, JXTA import

 59

and export facilities, text-to-speech through integration with Java speech synthesizer
software FreeTTS and live graphs through the integration with the Prefuse tool (having
features for data modeling, visualization and interaction) [66].

Like many other open source developments, the documentation for myJXTA is not
always up to date. Thus, during the time of writing, implementation details in particular
for the CMS may have changed.

2.6.7 GRAM
GRAM (Group Revision Assistance Management) is a decentralized P2P based software
configuration management tool [45]. The system uses JXTA as a middleware platform.

Every peer holds a shared space synchronized with other peers, and a workspace for a
user’s ordinary editing. The workspace holds the configuration files and actual source
codes for each user. The shared space functions as a repository where a collection of
system configuration files and history files are kept, including file control meta data,
latest source code, comments and revision records. Using JXTAs group concept, the
shared space includes a new group directory to hold group related configuration files and
messages for helping peer’s administration and coordination. All files except the GRAM
source codes are kept in the XML format which makes them interchangeable for adapting
to different usages. Group data are synchronized and duplicated among peers in the
shared spaces.

In terms of collision detection of source code, GRAM uses preventive approaches rather
than file merging after collisions have occurred. GRAM provides the users with context-
aware information of the group software development environment so users can be aware
of what others are doing and how source codes are revised. This context-aware
information includes information on which peers are currently logged on, which files is
currently being edited, messages related to files, current version numbers and the
possibilities of chatting with other group members using multicast messages. Moreover,
GRAM uses agents within the workspaces to watch on the source files being edited,
analyze the possibility of collisions by their cooperation, and alert users before possible
collisions happen. The agents are connected with a proactive action database which
consists of current user’s editing processes.

 60

It is the shared space service that checks whether a user is present and offers chatting and
other communication services. It also contains file manipulation services based on delta
techniques (see subsection 2.4.1). The workspace service has a diff processor (based on
the GNU diff command in Unix) which discovers changes to files in different versions by
comparing their texts.

The user interface offers a view of commonly shared files and groups, as well as group
members, the source code for a selected file, a chatting module and additional
information about files.

2.6.8 Gnutella
A number of P2P file sharing systems have been made like Gnutella, FreeNet, Morpheus,
eDonkey, Napster and others. Of these, we describe Gnutella as it was the first
decentralized P2P file sharing network to come into widespread use. The main
motivation for use of a fully decentralized network has proved to be the difficulty to shut
the network down or control its content as there is no centralized unit.

Gnutella was developed by Justin Frankel and Tom Pepper in early 2000, and was made
available on the Internet only a day before AOL stopped the program distribution over
legal concerns. Yet after a few days, the protocol had been reverse engineered, and
compatible open-source clones began to appear. In the first version of Gnutella, a client
had to know the address of at least one other node to join the network [67, 68]. Once the
client had connected to the node, it could broadcast a ping to find the addresses of other
nodes. Each node maintained a connection to a number of other nodes, usually about five.
To search the network for a resource a peer sent a query message to each of the nodes it
was connected to. They then forward the message and when a resource was found the
result i.e. resource name and address was propagated back along the path. The number of
nodes that get queried would be controlled by using a Time-To-Live (TTL) counter (see
subsection 2.5.7).

The first version of Gnutella did not scale well. Flooding the network by messages would
lead to network congestion once the number of nodes expanded above a limit. When
node saturation occurred, the network became fragmented. Moreover, searching the
network was roughly of exponential complexity. To address the problems of bottlenecks,
Gnutella developers implemented a tiered system of ultrapeers and leaves. Instead of all

 61

nodes being considered equal, nodes entering into the network were kept at the edge of
the network as a leaf, not responsible for any routing, and nodes which were capable of
routing messages were promoted to ultrapeers, which would accept leaf connections and
route searches and network maintenance messages. Search results were now delivered
over UDP directly to the node which initiated the search, respectively a proxying peer,
usually an ultrapeer of the node. The queries carried the IP address and port number of
either node. It lowered the amount of traffic routed through the Gnutella network
significantly, making it more scalable.

If the user decides to download the file, they negotiate the file transfer. If the node which
has the requested file is not behind a firewall, the querying node can connect to it
directly. However, if the node is behind a firewall, stopping incoming connections, the
client wanting to download a file will send it a so called push request to the remote peer
to initiate the connection instead (to “push” the file). At first, these push requests were
routed along the original chain it used to send the query. However, this was however
rather unreliable because routes would often break and routed packets are always subject
to flow control. Therefore so called push proxies were introduced. Push proxies are
usually the ultrapeers of a leaf node and they are announced in search results. The client
connects to one of these push proxies using a HTTP request and the proxy sends a push
request to leaf on behalf of the client. Normally, it is also possible to send a push request
over UDP to the push proxy which is more efficient than using TCP. Push proxies have
two advantages: First, ultrapeer-leaf connections are more stable than routes, which
makes push requests much more reliable. Second, it reduces the amount of traffic routed
through the Gnutella network.
When a user disconnects, the client software saves the list of nodes that it was actively
connected to and those collected from ping response (pong) packets for use the next time
it attempts to connect so that it becomes independent from any kind of bootstrap services.

Additionally the Gnutella has adopted a number of other techniques to reduce traffic
overhead and make searches more efficient. Most notable are QRP (Query Routing
Protocol) and DQ (Dynamic Querying). With QRP a search reaches only those clients
which are likely to have the files, so rare files searches grow considerably more efficient,
and with DQ the search stops as soon as the program has acquired enough search results,
which reduces the amount of traffic caused by popular searches.

 62

The file transfers themselves are handled using HTTP. Gnutella is based on it’s own
protocol being further developed and maintained by the Gnutella Developer Forum.

 63

 64

3 Casual resource sharing with shared virtual folders

The chapter presents the concept of shared virtual folders (SVF) and how we will use it
for casual resource sharing. First we present some scenarios on where and how an SVF is
foreseen to be used in 3.1. In 3.2 we define what we mean by casual resource sharing
together with other related expressions. In 3.3 we look into how an SVF functions and in
3.4 we extend the SVF concept to also include simple versioning detection. In order to
further clarify the concept of an SVF, in 3.5 we define a set of properties that a SVF will
have, and a set of operations that the users can carry out on an SVF. The chapter ends
with a comparison of SVF contrasted to other related work described in the previous
chapter, section 2.6.

3.1 Scenarios
The thesis work originates from the need of exchanging resources in an ad-hoc manner.
We envision the application to be used by people exchanging resources in collaboration
or project groups for a longer or shorter period of time, but lack server access. An
example could be children playing in a local football team, where some of the parents
would be team board members. The team board members get together on a regular basis
and some members bring along their computers. The computers are used for minutes,
budget estimations, letters and other documents. It functions as the board’s electronic
archive.

The board meetings take place in a public cafe where a WLAN zone with Internet
connection is available. The board has network access but need a common repository for
their documents. We propose to let the board members use SVF. The SVF could consist
of parts of all board members harddisks. Files stored on the shared parts of the harddisks
become available to all board members visible as a common repository.

The SVF itself will keep track of where the different files are located, hiding location
details from the users. Moreover, it would provide security mechanisms so the repository
can only be accessed by the SVF members. The SVF members need not worry about a
third party administrator getting access to their documents since there are no servers
involved. They can log on to the SVF or off as each device owner wish. It is also possible
to update a document within the repository of an SVF. Since there is a risk of a board

 65

member updating a document without telling the others, versioning detection within the
SVF is supported by the application. Should the board members wish to divide
themselves into smaller groups working independently on separate networks, the SVF
will split itself as well. The members in each group will only see the shared resources
from devices they are currently networked with. When they join again the two instances
of the SVF will melt back into one large group. Updates carried out on any of the
documents stored in the repository will be visible to the others.

There is no requirement for Internet connectivity. As new members join the board, they
can get SVF membership through invitation from current members who pass on the
credentials for group joining. If any members withdraw from the board, they may also
withdraw from the SVF membership. It is not possible for the SVF members to evict any
other members. The SVF cease to exist when the last device withdraws its own SVF
membership.

Another scenario is university students from activity groups storing images and films
from holidays and week-end trips they have been to. While the students have common
servers available for university courses, they are not allowed to use disk space for other
purposes than assignments. Thus they establish a SVF amongst them consisting of parts
of harddisks from their personal devices. After a while the harddisks fill up, leaving the
students with the option of either deleting older images or not adding new ones. A third
option is to find additional space. If for example one of the members has an Xbox at
home with available disk capacity, the Xbox could be included in the SVF to function as
backup storage. The SVF will provide a simple means for exchange of files between the
Xbox and another device, for example a portable PC. The Xbox owner could transfer
some older, less popular images to the Xbox. If anyone requests the content, she will be
able to get the content for them later by moving music from the Xbox at home back to her
portable PC. Afterwards, taking her portable PC with her to the university campus, the
SVF members can access her shared harddisk from the campus network.

3.2 Casual resource sharing
By casual resource sharing we mean ad-hoc exchange of resources between computing
devices connected in a network. By resources we include any exchange of data using any
kind of protocols, for example web pages download, text documents and images

 66

exchange, chat-functionality, audio-streaming, video-conferencing, game playing
interaction etc. For our implementation we have narrowed resources down to file sharing
only to avoid the pilot becoming too large. Thus in the succeeding text, the words “file”
and “resource” will be used interchangeably.

A device could be any computer that can be configured and networked. By casual we
mean resource exchange not usually planned in advance, although it could be. It happens
ad-hoc as people interact during work or through entertainment. This type of interaction
cannot rely on stationary servers to support resource exchange, although servers, if
occasionally accessible, could be taken advantage of.

3.3 Shared virtual folders
Shared virtual folders (SVF) can be looked upon as a concept with similarities to tuple
spaces [29]. A SVF is a repository shared between a number of devices connected to the
same network. The shared folder is virtual because all users see it as one folder or
repository, while in reality it consists of a several different disks where the resources are
located.

During network connection, the devices discover each other. In order to start exchanging
resources, one of the devices must initiate establishment of a SVF. A SVF is initiated by
giving the SVF a name and issuing a group advertisement to ensure all potential
participants receive information about the group. In addition, a password or another
credential to the group must be provided to potential new members.

If the others logs on to the group, they will be registered as members of the group. If they
choose to join, they will become member devices of the SVF, otherwise the SVF will be
established without them. The SVF will always be established with at least the device
that initiated establishment.

Consider Figure 3-1. Suppose A initiates establishment of the SVF by creating a new
SVF and joining it herself. Moreover, a group advertisement must be issued to B and C
before they will be able to join the group. Also some credential for authentication, like a
password must be known to all parties. Should both B and C decline to join, a SVF will
still be established with A as the only member. If both B and C accept, the SVF will be

 67

established with three participants. In Figure 3-1 both devices have accepted so that
devices A, B and C share a SVF and are located on the same network.

Within the network, the devices can share resources with each other. For example in
Figure 3-1, A has added resources a and b, B has added resources c and d, while C has
added resources e and f. Thus the common repository of the SVF contains resources a, b,
c, d, e and f which all members has access to as long as they are connected to the same
network.

A
B

C

Local storage, each device:

a
b

c
d

e
f

Shared virtual folder visible to all participants:

Figure 3-1 Example of a shared virtual folder (SVF).

While all devices have the name of all resources kept visible to them, the resource itself
has not been transferred to any of the others, they have only received resource
notifications. Thus all resources remain on their local disks of the participant which
provided the resource. As long as the resources are not removed from the repository, a
SVF participant can request a download of a resource any time. If the request is
successful, the resource itself will be downloaded to the requester.

For example if A does not wish to download resources c, d, e and f instantly to her
harddisk, she can wait until she needs the resources. The downside of waiting is risking

 68

that device B and C has removed their resources from their parts of the repository. If B
requests a download of resource f and the request is successful, resource f will now be on
B’s local disk as well and the resource will be listed twice in the SVF repository.

If any of the participants updates their resources, simple versioning detection will be
carried out, as explained in section 4.5.

The devices may at any time log off the SVF. If they do, their resources will still be
visible to the others as long as they stay in their SVF session and do not log off.
However, should they request any of the resources which only resides on the device that
has left, the request for download will not be successful and thus not carried out.

A device could also risk never to be re-connected with the others. If so, the resources that
have not been downloaded and stored locally will be lost. Also the notification of
resources that are not locally available will be lost.

The SVF permits a device to log on and log off the SVF ad-hoc. All devices will always
have access to all their member SVFs regardless of whether they are connected to a
network or not. A device could be a member of as many SVFs as the hardware and
software of his device allows. For example, A, B and C can establish a group called
“chemistry” and another called “mathematics”. They could all share the SVFs. In
addition A could share a common SVF called “computer science” with D, where B and C
do not have access. B again could share a group called “French” with E and F to which
A, C and D do not have access and so forth.

While many groups can be established, it is not allowed to be logged on to more than one
group at a time.

While it is possible to establish many different groups, it is also possible to create
different instances of the same group provided that the group members have split into
several networks that are not connected. For example in Figure 3-2, A and B are on one
network, while C is alone on another. A and B will have access to each other’s resources,
while C will be on her own. If they all get together on the same network, there will be
only one common SVF. Participants of an SVF sharing the same network would never
separate.

 69

A
B C

a

b

c
d

e
f

Shared virtual folder visible to all participants:
Local storage, each device:

Figure 3-2 Two instances of a shared virtual folder.

All SVFs has their own id which is unique. In addition they also have a human-friendly
name, which may not be unique such as the previously mentioned “mathematics” or
“French”. The human-friendly name could be re-established or two groups could be
given the same name by coincidence. If a SVF is removed, the name can be given to a
new group, but not the id. If the SVF is removed, but the advertisement has been kept, the
group can be reconstructed. After a while the advertisement itself will also be removed
automatically and then the group can no longer be reconstructed.

A particular SVF could be described as the following triplet:

SVF= <D, R, id >

where id is a unique identification that identifies the SVF. D is the devices registered as
members of SVF and R is the resources they offer to the SVF repository. Both D and R

could vary over time.

As an example of varying devices registered as members, suppose when A, B or C have
finished the collaboration, C do not wish to be a part of the SVF anymore. Thus she

 70

withdraws her SVF membership. A and B chooses to stay in the SVF as they are not
finished with their collaboration.

As an example of varying resources, suppose device A at some point in time wishes to
withdraw resource a and instead add resource g and h. The repository will then be
updated to b, c, d, e, f, g and h if all three devices are connected to the same network.
Moreover, the same resource can be shared out to several SVFs. For example a resource
b can be added to the “mathematics” group, but also to the “French” group if desirable.

If a user has more than one device, it is of course possible to set up a SVF between his
own devices as well to transfer resources from one device to another. It is also possible
for these devices to become members of many SVFs at the same time as the different
memberships will be independent of each other.

It is not possible to evict a member from an SVF. Only the participant themselves can
withdraw their own SVF membership. Suppose A and B wanted to evict C, who refused
to leave the SVF. A and B cannot evict C, but they can both withdraw their resources and
membership from the SVF and re-establish a new SVF without giving C access to the
new password or other credentials.

As a part of the SVF properties of a closed group concept, we will assume that for most
initiated groups the group members already know each other as they start to collaborate.
Thus if the members are not trustworthy, they can be held responsible for their actions as
opposed to large P2P networks where participants easily can be anonymous. We will also
assume that the chances of re-finding a file and thus persistence (see subsection 2.3.5)
within the SVF are good as people can be held accountable. Also injection of unsolicited
files will likely be less than for open P2P networks.

We have not seen the need to include any incentive mechanisms (see subsection 2.3.4)
within the SVF because we assume the users will get incentives for collaboration through
previous knowledge of each other. Similarly, if users are aware of each others identity,
they may use other means of sanctions if participants are not behaving well during SVF
sessions.

 71

3.4 Versioning detection
When users collaborate, they often not only want to exchange resources, but also
collaborate by updating common documents. On a server the operating system will carry
out some simple versioning detection like changing modification dates of a file when it is
updated. However, this will not be detected when the repository is located on several
devices. Thus simple versioning detection might be of interest if several persons
simultaneously would work on the same files.

Again consider Figure 3-2, suppose C had already downloaded resource a before
separation. Also suppose C opened the resource, wrote to the resource and saved the
resource again when located on the other network. Also assume that A did the same
thing. Afterwards they all got together again on the same network. Likely the participants
would be interested in knowing what had happened to the resource still available from
both C’s and A’s devices.

For simplicity each SVF member is allowed to access all resources in the repository, but
must download a resource before reading or writing to it. Thus a peer is not given write
access to remotely stored resources. Each member of the SVF can be sure that the
resources they provide for the repository will not be changed as long as the resources are
stored on their local disk. Downloaded resources will automatically be a part of the
repository as well, but can be updated.

In order to carry out versioning detection, the repository must be able to identify two
identical resources and two different versions of the same resource. For example two files
are identical if one of the file copies has been downloaded from another device and not
been modified afterwards. Two file copies are not considered identical if for example a
file from the repository is copied and issued to another device via e-mail and then
imported into the SVF.

If a resource is fetched into the repository by SVF download, modified within the
repository and thereafter saved under the same name again, it is called a new version of
the resource. In the example of A, B and C where both A and C had updated the same
resource, the resource will be marked with version 2 in both cases. This will be enough
for the parties to know that the resource has been updated, but they will not know
whether A and C both have created their own successors of the resource a or whether A

 72

had updated the resource and sent C a copy of the successor. Thus if a resource has
copies, the copies will be identified as having the same author, filename and version.

Our SVF will thus be based on trying to keep a file uniquely defined within a group by a
combination of filename, author and version. This is analogue to an operating system’s
demand of never storing a file with the same filename twice within a directory. Thus two
files with the same name and version can exist on different devices, as they would either
be copies of one another or they would have different authors. The peer that adds a
resource to the repository will be set at the author. Similarly, the peer that updates a
resource will be the author. If files have different authors, it will be an indication of two
different files even with the same filename and version number. A file cannot be
downloaded or added to the local repository if these three criteria already match an
existing file in the local repository. A file will alo be detected during version update if it
has been overwritten to match another file within the repository. If detected, a user must
store the file under another name, or the file will be deleted.

If a file is written to without ever being copied, it will not be a new version of the file as
long as only one peer has seen the previous version. In these cases, only the modification
date will be updated.

Each time a resource has been updated, a resource notification will be issued unless the
previous version, the predecessor, was not submitted to anyone. If so the version number
will not be updated but remains the same as long as only the resource owner has seen the
intermediate copy.

3.5 SVF operations and properties
In order to understand more clearly the concept of an SVF, the SVF could be described
through operations and properties. SVF properties define abilities designed into the
system that the users must relate to. SVF operations are carried out by the users of the
SVF as they wish.

 73

SVF properties
id Each SVF has a unique id.
name Each SVF has a name which is not unique.
resources Files that are available and belong to the SVF. The number

of files may change dynamically as users add or remove
files to the repository.

member devices The devices with access to the SVF resources (files). A
member device can be a member of more than one SVF
simultaneously.

repository Can be looked upon as common storage where all resources
 are kept. The common storage contains resources that the
 member devices wish to share.

resource notification All member devices currently logged on to the SVF issue a
list of all resources they wish to share. The resources
themselves are not sent, but are physically stored on that
member device.

advertisement A potential new group member must receive a group
announcement called advertisement before being able to
join the group.

SVF instance As long as all member devices are connected to the same
network there will be only one instance of an SVF running.
If the member devices are located on several separate
networks, there can be several instances of the same SVF
running simultaneously.

initiating device The device establishing the SVF. This device will always
be a member of the SVF at the time of SVF creation.

version A resource can have several versions available in the
repository.

predecessor The resource (file) version which comes before.
successor The resource (file) version which comes after.
identical files Two resources are identical if one of the file copies has

been downloaded from another device and not been
modified afterwards.

repository A virtual place where the SVF keeps all resources. In
reality it consists of disk space from all participants.

 74

SVF operations
initiate SVF establishment In order to share resources, one device must create a new

SVF. An initiated SVF will always be established. The
SVF established will always contain at least one member
device which is the initiating device.

register as member A device has received the password or other credentials in
order to join the SVF. It has also received group
information or created a group and logged on to the SVF.

log on A device member logged on to the SVF can see the
resources in the repository and may download resources. A
device becomes a member of an SVF the first time it logs
in to the SVF.

log off A device that logs off the SVF has temporarily lost access
to the resources in the repository and to download
resources. Access can be regained next time the device logs
on to the SVF.

resource notification A device adding or removing a resource in the repository
will automatically issue a notification message. Sometimes
this will happen also if a resource is updated.

request a download In order to download a resource a request must be issued
onto the SVF.

download resources All logged in member devices can view all resources
available in the common repository. These devices may
download a resource if they want to look at the actual file
contents and modify the file.

withdraw resource A member device may remove a resource from the
repository that it previously has offered other member
devices.

add resource A member device may add a resource to the repository so
other device members can download the resource if they
wish.

withdraw membership If a member device wish never to be connected to the SVF
again, it can withdraw its membership from the SVF.

remove SVF When the last member device has withdrawn its
membership, the SVF ceases to exist. As long as the
advertisement is available, the group can be re-established.

 75

If the advertisement is lost, the SVF name can be recycled,
but not the id.

open resource Open a resource for reading or writing.
read a resource Read the content of a resource.
write to/update a resource Change a resource by writing to it.
saving a resource Saving it back to the repository after writing to it.

Other expressions used:
Session The time between log on and log off for a member device.

3.6 Comparison to related works
As mentioned in subsection 2.6, there are quite a few alternatives to SVFs. These can
usually be divided into two categories:

1) alternatives based the client-server model
2) alternatives based the P2P model (including SVFs).

Using the first alternative, access to a common server like a web hotel or a file server
(through HTTP, FTP, SSH or similar protocols) would solve the problem of storage in a
simple way. It would usually also solve issues of getting proper backup, high server
uptime and a well-defined security regime.

However, using servers has the disadvantages that the users have to administer the disk
space, getting hold of different file versions and carry out versioning control between
them, cleaning up and removing old files etc. within the groups. Also, they have to
arrange access to the server in advance, typically through a user agreement either online
or otherwise. Thus some routines must be planned in advance. There are file servers
publicly available online (for example through anonymous ftp), but without security
checking there is no concept for closed groups as anybody may remove or change file
content.

In addition servers require network access to become available, for example through
Internet. Just a common network between the participants is not sufficient. While Internet
usually is available, server access also requires the users to trust a third party with their

 76

contents. Being subjected to a third party security routines can be undesirable. For
example, physicians in different locations discussing a patient’s x-ray may be hesitant to
trust a third party with patient information without further guarantees of security routines.

Google Docs&Spreadsheets is a good example of these server solutions. While the
administrational process of getting access to using the servers are very simplified and the
server uptime is excellent, there is a limit to disk space and document size per user. Also
typically for server solutions, one has to have Internet access and trust a third party with
user content.

Microsoft Shared Folders and SAMBA described in 2.6.2 are also based on the client-
server model, where one of the participating devices now functions as a server. This type
of software may be more ad-hoc since software usually comes installed with the
operating system and since there is no additional system administrator the collaborators
have to relate to. Furthermore, there is no need for network access to a server, only
between the participants themselves. These solutions also comes with a security regime
and thus group support [58]. Moreover, they do not require network access to a stationary
server for collaboration, just access between involved devices.

Still some of the same problems as for other client-server models occur, like the need to
administer how users use their common disk space (file modification and update, file
removal etc). It also has the undesirable effect of usually not having equally high uptime
as an ordinary server.

Solutions like Microsoft Groove Office and at least the enterprise sharing part of iFolder
are also based on a client-server model [61, 62]. They also offer a browser interface
which simplify use, but require Internet access. Microsoft Groove Office in particular has
an advantage as a number of other applications also can be used beside just file sharing.
The drawback to vast functionality could be that there is a higher user threshold during
initial use of the solution.

The second alternative is using the P2P model. The advantage is no need for Internet
access or other network access to reach a server. For example the iFolder workgroup
sharing and the myJXTA application described in 2.6.4 and 2.6.6 appear conceptually
very similar to the SVF. myJXTA has many similarities with SVF, but it’s main aim is to
demonstrate the functionality of the JXTA platform whereas for SVF the goal is not to

 77

show middleware functionality but to build solutions for causal collaboration. Thus
myJXTA relies on using the JXTA cache, which means that it is not possible to guarantee
that a group will still be available the next time a device logs on. While myJXTA too has
a casual approach to file exchange (besides chatting), it does not have any versioning
detection available in the current version. iFolder workgroup sharing will likely offer re-
establishment of a group, similarly to SVF. It is uncertain how iFolder will handle
version detection as the implementation of workgroup sharing is not finished.

The project with most similarity to our concept is likely GRAM described in 2.6.7. It is
based on the JXTA middleware platform, and has a shared file repository that is central
to the application. The architecture uses a database for repository storage. It also offers
full software configuration management, a much more extensive version detection and
control than for our version. In addition other resources are also shared, like messaging
and chatting. The difference between the two is that GRAM is meant for software
configuration management, whereas our application is a simple tool meant for users
without any technical background that wants to share files and in general collaborate.

The Interactive Workspaces project at the Stanford University (see subsection 2.2.4) also
has similarites with our model also because they both are based on the tuplespace model.
However, this project was restricted to location boundaries, and were also far more
pervasive when interacting between different user interfaces through integrated user
views.

P2P file sharing systems like Gnutella described in 2.6.7 does not usually provide a
closed group concept, thus everybody would have access to all files in these types of
networks [68]. In some of these networks, it may also be difficult to get hold of files that
are not particularly popular, as they often are replaced with more popular content.

Both the Bluetooth protocols and OBEX as described in 2.6.1 are relatively easy to use
and can be considered building blocks of both a P2P system and a client-server model.
These protocols can be used for transferring files, but has no group concept attached to it.
Moreover, they are not suitable for WAN communication, nor do they keep any form of
versioning detection beside what is available through the operating system.

 78

4 Application design

This chapter describes the overall design of an SVF implementation which will be used
to prove our SVF concept. In 4.1 we start by presenting some functionality criteria for
our SVF implementation, while in section 4.2 we describe the application’s main
architecture. For our application we will also need a suitable middleware. 4.3 outlines
why we have chosen JXTA as our middleware amongst the four implementations
previously described in section 2.5. Section 4.4 deals with more design issues on casual
resource sharing and the passing of notifications, while 4.5 describes design issues for the
versioning detection system. Section 4.6 explains how organization and repository of the
architecture will be, while the last section, 4.7, describes in overall terms the principles
behind the application’s graphical user interface (GUI).

In this and the following chapters, the words “SVF” and “group” will be used
interchangeably since we will base our SVF concept on the JXTA group functionality.

4.1 Functionality criteria
Based on the functionality described in the previous chapter, we want the application to
have the following capabilities:

• Casual resource sharing should be carried out through a closed group concept
described as shared virtual folders (SVF). The groups should be closed in order to
avoid outsiders to read or write to files, to remove them or to add unwanted files.

• Persistent storage using disks as well as the cache. The cache itself will be
overwritten eventually, thus it is desirable to employ a more permanent storage.

• Traffic between devices should be kept to a minimum to avoid network
congestion. The middleware will issue coordination messages also, thus
application messages should be kept at a minimum.

• The application should function both on WANs as well as LANs. Ideally we
would like our application to function everywhere regardless of distance or
location.

• Establishment of new SVFs should not be limited by the application. Ideally it
should be possible to create as many groups as desirable because we assume it
will make resource sharing more casual.

 79

• Resources in an SVF can be added or removed at any time. Again we wish to
allow resource sharing to be as casual as possible.

• All resources made available in a SVF will be visible to the others within the
group. All members can also download all resources should they wish so. In order
to simplify and include inexperienced users, we allow all resources to be shared
without further restrictions.

• A member can only withdraw his own membership from a SVF. While more
complicated designs could be implemented, our model will emphasis simplicity.

• In order to remove a SVF, all participants must withdraw their memberships. As
long as a member has not withdrawn his membership, it should be possible for
him to get hold of at least his own files.

• The SVF should contain versioning detection when users modify a document.
Since we believe that users will be updating files within the repository during
collaboration, there should be a structure to handle versioning detection within
the SVF.

• The application should focus on simplicity at the expense of user freedom. Only
basic functionality should be offered and the GUI should provide little freedom
through configurations to also attract inexperienced users.

• The application should be agnostic to various operating systems and devices in
the largest degree possible. It should be possible to run the application regardless
of device type or operating system.

• The device and service discovery should be highly dynamic. Devices and files
should be allowed to arise and vanish without notice to accommodate ad-hoc
behaviour.

4.2 Application architecture
In this section we outline the main application architecture. We have built our
architecture around the tuplespace model described in section 2.2.4. We could also have
used other models, for example both one-way RMI/RPC (see subsection 2.2.1) and
messages in MOMs (subsection 2.2.2) are basic building blocks in distributed systems
and thus could be used. But it would require more time to start with the very basic
building blocks rather than to make further use of middleware abstractions. Programming
everything from scratch could give a fast application, but development would be time
consuming. Another advantage of using middleware is separations of concerns as

 80

described in subsection 2.5.1, which is important in order to not clutter up the application
and to make error search and correction easier.

All devices participating in a SVF holds their local part of the SVF repository. Together
the parts form the SVF repository quite analogues to the tuplespace. All member devices
may add (analogue to the out command) or remove files (the in command), read the files
(rd command) or write to the files (in in combination with the out command).

When considering a resource sharing concept, we could also have used the publish-
subscribe model (see subsection 2.2.3) for our application architecture. While the
publish-subscribe model is well established, it does not provide any temporal decoupling
so that devices removed during subscription can get access to past resources again after
reconnection. This must be accounted for somehow, for example by buffering in the
sender application, but would be connected with uncertainty of when to buffer and
maintaining the accurate buffer size. Although we did not choose the publish-subscribe
model, our architecture will also have to deal with it because of the middleware chosen,
as seen in the next section.

Since one of our functionality criteria is simplicity, we will avoid adding a profile as
described in 2.3.3. But we will offer a basic setup file because different devices may have
different editors and choose to install software in different places.

Figure 4-1 shows the architecture and division between the application and the
middleware. All traffic between devices goes through the middleware’s network
interface. The middleware is responsible for device discovery, dynamic routing between
peers and a group concept used for SVFs. The latter provide a framework for closed
groups forming the shared virtual folders (SVFs). It is also the middleware that handles
the transmission and routing of group and peer information (advertisements) that is stored
in the local cache.

The application connects to the middleware through a middleware interface. The
application contains some logic which acts upon the different user decisions provided via
the GUI (see section 4.7). The application also interacts with the SVF repository and
gives feedback to the GUI. The repository consists of an embedded database and a
directory where all the files will be located (see subsection 4.6). In addition it contains
the cache which holds information about groups and peers.

 81

Altogether, the SVF repository will be responsible for:

• Keeping track of a device’s current SVF memberships through communication
with the middleware’s group concept.

• Keeping track of all peers offering files to member SVFs.
• Administer local disk space where repository files are stored.
• Keeping track of which device holds the files not stored locally.
• Keeping track of the current session’s notifications, i.e. what files are currently

offered by the system.
• File versioning detection.
• Keeping track of groups and peers discovered in the network.

Middleware

Application

Database

File directory

SVF repository

GUI

DiscoveryRoutingGroups

Network interface

Middleware interface and logic

Application interface and logic

Cache

Figure 4-1. Architecture overview.

4.3 Choice of middleware
In 2.5.1 we explained briefly why middleware is used during software development. The
most important concerns is that it allows for abstractions to be made and thus to save
time during development, but also that it separates concerns well if the middleware is
fitted for the purpose.

 82

In 2.5 we also presented four different types of middleware implementations. In order to
evaluate these, we have put up some desirable criteria based on our functionality criteria
from 4.1:

• Highly dynamic device and service discovery. Devices and services could arise
and vanish in a short notice. We assume that ad-hoc behaviour will be the norm
for our devices.

• A group concept, preferably with a co-existing security implementation. In order
to avoid unwanted files being distributed within the groups or requested files
being removed, a closed group concept is considered of importance.

• Dynamic routing. This is a demand as we expect devices to move around in
different networks a lot.

• A minimum of traffic between devices. As little traffic as possible is of interest to
avoid network congestion, especially since the application also will issue
messages itself.

• Platform ubiquity. The operating system or the device resources should not
matter.

• Based on Internet protocols and well-functioning on both WANs as well as
LANs. Preferably the pilot should function at any location and with and distance
between the devices.

• Vendor supported. A middleware with broad vendor support it is more likely to
be maintained and installed on more devices.

• The purpose of the middleware should fit with our SVF concept to the largest
degree possible. While one usually has to test the middleware or at least study the
protocols closely before knowing how well the middleware fits, middleware that
appears to lack mechanisms needed with our concept should be excluded.

We have chosen JXTA (see subsection 2.5.6) as our middleware and “building block”
for our SVF model. The JXTA platform’s group concept is attractive to ensure file
protection in the repository to outsiders, although JXTA does not offer security for
multicast messages, only for unicast. The JXTA platform provides a highly dynamic
discovery service through the use of rendezvous peers using time-to-live (TTL) counters.
JXTA functions both on LAN as well as WANs due to the relay peers that do the routing
and contains information about routes to other peers. These relay peers can forward
messages on behalf of peers that cannot directly address another peers due to NAT,

 83

firewalls or routers. This is performed by using a protocol that can traverse the firewall,
like HTTP, for example (see subsection 5.3.6). Also, the JXTA is implemented in the
Java language which provides implementations of a wide variety of platforms and OS.
Thus there will be no need for the application to interact directly with different OS, as the
Java Virtual Machine (JVM) will handle the integration.

As mentioned in section 4.2, JXTA supports the publish-subscribe model as devices has
to subscribe to groups. This is not desirable since peers will loose messages while not
logged on, but we will account for it by additional notification messages.

As for the other middleware platforms investigated, The Socialized.Net described in 2.5.7
has an advantage since the support and development environment is directly available.
On the other hand, TSN lacks a group concept as it is more loosely based on the current
interests of a user. Furthermore, a platform choice with broad support from international
environments would be preferable in order to ensure maintenance. Broad support
platforms software is also usually subjected to more thoroughly testing and has more
resources for further development.

Bonjour described in subsection 2.5.4 is a popular middleware in particular for
exchange of music files, but was not chosen due to its inability to function across
firewalls and routers which excludes use in WAN settings (at the time implementation
decision was made, a newer version is now available which promises to also handle
WANs).

Universal Plug and Play (UPnP) described in subsection 2.5.5 is also popular standard
with many implementations, but was not chosen because the goal and some of the vital
procedures seemed not to support our project. According to the UPnP form the goal is “to
allow devices to connect seamlessly and to simplify network implementation in the home
and corporate environments” [69] which is a very overall goal, but may fit our SVF
model. Going into details however, UPnP defines a control point (see section 2.5.5) to
retrieve a device's description which is vendor-specific, manufacturer information like
the model name and number, serial number, manufacturer name, URLs to vendor-specific
web sites, etc. The description also includes a list of any embedded devices or services,
as well as URLs for control, eventing, and presentation of the device. Issues connected
with how to remotely control a device seemed without relevance to our project, although
we do not know whether it could perhaps have been possible to adjust them also to fit

 84

with the SVF. However, it was easier for the project to use JXTA as it seemed viable for
our purposes.

We did not consider any other middleware but these four described in section 2.5.

4.4 Casual resource sharing
This section explains design issues and how messages are passed in our pilot application.
Subsection 4.4.1 motivates our choice to base the application on notification messages
and the downloading itself on a pull model. The subsections thereafter describe the
different types of message passing in different situations which are of importance to the
application. Subsection 4.4.2 describes the notification messages, while 4.4.3 describes
how the application handles log on and log off of a device. 4.4.4 describes how files are
downloaded.

4.4.1 Resource sharing issues
As devices come and leave ad-hoc, we need to make sure that the network itself is stable.
As mentioned in subsection 2.5.3, it is of great importance that device activity does not
block or take down other devices or even worse, the network itself. Thus also avoiding or
handling network congestion well is of importance especially since both the middleware
and the application will issue messages.

We have chosen to base our communication on multicast notifications (see subsection
2.3.1) for the SVF application itself. The multicast notifications are push messages issued
to all members of a SVF. Notifications inform the others when a file is being added or
removed from the repository, during file requests and when a new device joins a session.
However, by use of JXTA the participants will only receive push messages for as long as
they stay logged on to a SVF. As the JXTA group concept is based on subscription, it is
necessary to account for the loss of messages issued when the devices are not logged on.
The application will do this by issuing special notification messages as a peer log on to
the network again, see subsection 4.4.3.

If a notification message is lost, we will not try to account for it, as that may lead to
network congestion. The user may gain it later on if a new device logs on to the group, or

 85

it may have to log off the group and log on again to trigger another issues of update
notification messages. In most cases we foresee that messages will reach the receiver.

For the file downloading, we have chosen to use pull requests rather than push. The
choice was made as it is difficult to foresee when users need a file.

We want to avoid loading down devices with little resources and to minimize the
possibilities of network congestion (see subsection 2.3.2). We also foresee that not all
users participating in an SVF will want to download all resources, thus downloading
upon request seems most viable.

Implementing a swarming protocol as suggested in subsection 2.3.1 could have been
beneficial for download in a setting where a larger number of devices transfer files
casually. For example one could envision a tutorial where the lecturer would like to
distribute presentation material. Often this type of material is large (typically Microsoft
Powerpoint presentations with many images) and a swarming protocol could be
employed to off-load the lecturer’s PC so other devices reach the files at an earlier stage.
A multicast would be even more efficient, but requires all participants to arrive on time.
Moreover, the functionality criteria of including also low resource devices restrict use of
large multicast messages. Thus, for our pilot implementation, we have not implemented
any of this functionality.

Notifications combined with file transfer overall demands more bandwidth than just file
transfer alone, but will ensure that the views each device has of the SVF repository will
be kept reasonably updated. In cases when devices prefer not to download the files
immediately it will be particularly useful.

4.4.2 Notification messages
When a new file is added, updated or deleted in the repository the other SVF member
devices need to be informed. In order to update them, multicast notification messages are
sent to other member devices.

The types of multicast notifications used are:

• Update : When a device has added a file to the repository or updated a file already

 86

in the repository. The file can be added either by downloading from one of the
other member devices or by copying the file into the SVF repository locally.
Update messages are also used in response to “new” messages to inform other
member devices for files available from the local repository.

• Delete: When a file has been removed from the repository.
• New: Similar to an update message, but is only issued when a new device logs on

to a SVF.
• Request: If a device wants to download an entire file, not just the notification.

All notifications are issued as multicasts. Figure 4-2 shows an example where the
smartphone has added or updated a file locally and issues an update multicast message to
the others. Similarly, Figure 4-3 Remove notification using multicast. Here the
smartphone has removed a file from the repository and sends the others an update.

1.u
pd

ate

1.update

Figure 4-2. Update notification using multicast.

Should a device loose any messages they are simply lost, and if the notification is of
great importance, the user can restart the SVF application and thus initiate an update over
again.

 87

1.
re

mov
e

1.remove

Figure 4-3 Remove notification using multicast.

4.4.3 SVF log on and log off
When a peer logs off a group, they will loose the messages issued during their absence as
the group is based on member subscription. The application must account for this the
next time a peer logs on to the group again. Thus, when a device logs on to the SVF
application, the peers need to get the newcomer’s latest changes to his local SVF, and the
newcomer needs to know what the others currently offer in their local SVF repositories.

Thus the newcomer issues a “new” message including all files it currently has in its local
repository. As the others receive the message, they will respond to the new message by
issuing a multicast update message containing all files they currently have in their local
repositories.

Figure 4-4 shows an example of a smartphone logging on to an already established SVF.
As a newcomer, the smartphone issue a multicast “new” message to inform the others
that it has now arrived and to notify about it’s local files. As the smartphone’s message
are received by the others, they get all the current updates from the smartphone’s local
repository, and they respond by issuing an update message containing information on the
current content of their local repository. The messages labelled “new” are printed in
dashed lines, while the update messages are drawn in solid lines. Response messages to a

 88

“new” message must be labelled differently as a “new” message automatically will
trigger a response from the other member devices.

If any messages are lost, restarting the SVF application may help as it will repeat the
process.

Since a device can leave the network any time, there will be no time for additional
notifications before leaving or closing the application. Devices that request any of the
files from the device that has left, will be unsuccessful in it’s search if a file copy is not
kept amongst the remaining peers.

At the application level there is no need to issue particular messages to establish groups
or remove them as JXTA will take care of messaging at this level (see subsection 5.3.5).

1.
ne

w

1.new
2.update

3.update

2.update

3.update

Figure 4-4 Multicast messaging as a device connects to a SVF.

 89

4.4.4 File download
A file download starts with a multicast request to the others from the device that requests
a file. If a device issues a request notification, the other devices will either do nothing or
respond by starting to transfer the requested file. If the issuing device has received no
response to the request, it may repeat the request later on. If nothing is received, it will
assume that the file at least currently is not available within the SVF.

Figure 4-5 shows an example of request for a file download. The smartphone requests a
file from the others in the SVF by issuing a multicast request for a file, shown in dashed
lines. The lowermost PC has the file and thus responds to the request. If the request
message is lost, the request also has to be repeated.

1.
re

qu
es

t

1.request

2. download

Figure 4-5. Request for file download.

4.5 Versioning detection
Versioning detection in the SVF is foremost to detect if several persons simultaneously
has been updating a file. Thus, the distributed software versioning detections outlined in
2.4.3 is fitting for software development, but too elaborate for this pilot. Instead we have
chosen a very simple scheme for document versioning.

 90

File versioning for an SVF depends on whether a file has been distributed to others or
not. If the last version of the file has not been downloaded by anybody, the file will not
receive a new version number if updated. As long as the file version number has not
changed, a notification message will not be issued either. Figure 4-6 shows the
smartphone issuing a multicast notification message to the others after fetching a file into
the local repository. This file will be marked with version number 1. Thereafter the
smartphone writes to its own local file. Because the file itself has not been distributed,
there is no need to update the version number, thus it is still version number 1. Since the
others have not read nor written to the file, they will not know what version number 1
look like, and thus there is no need for version update nor notification issuing.

1.
up

da
te

1.update

Figure 4-6. Version control if the previous version has not been distributed.

If the file has been downloaded by others, there will be file copies with the same
filename, author and version. The messaging scheme will become more complicated as
Figure 4-7 shows. Here the smartphone has issued a notification on a file that it has
added to the local repository, similar to the previous example. This file will also be
marked with version number 1. However, the PC to the left now requests the file by
issuing a multicast request, shown in dashed lines (2). The smartphone responds by
sending the file, as shown with a longer, dashed line (3). The file transfer itself is carried
out as a unicast. As a response to the received copy, the leftmost PC issues an update (4)
to inform the others. Finally when the smartphone updates the file thereafter, the file
must now be given a new version, number 2. When the file is given a new version

 91

number, this must be announced by two multicasts; one to remove the old file version
followed by an update multicast to inform the others of the new file version (5).

2. request

2.request

3. download
1. update

1.
up

da
te

6.
up

da
te

6. update

4. update

4. update

5. remove

5.
 re

m
ov

e

Figure 4-7. Version control if the previous version has been distributed.

In Figure 4-7, if also the PC to the left updates the same file, there will be two different
versions of the same file named with version 2. The group members could incorrectly
perceive it as one file being a copy of the other. In order to know the difference between
a file copy and two versions of the same file, the files that are copies will have the same
authors. Thus there will be a difference between a file that is a copy and a file that has
two separate versions.

As mentioned previously in subsection 3.4, a file cannot have the same filename, version
and author if they are located on the same device and belongs to the same group. Thus
downloading and adding a file is not allowed if the device already contains a file with the
same combination of filename, author and version. Similarly, during version update a
conflict will be detected and give the user the option of renaming or deleting the last file.

 92

If a file is saved under another name in the repository, the file will not be a part of the
local repository at all unless it is fetched into the repository again by adding the file to the
repository.

4.6 The repository
In order to store information about files and updates, a repository is needed. This section
describes how the repository would be implemented. Without modification, the JXTA
middleware will save all announcements both for groups and other services in the caches
of each peer (see subsection 5.3.4). For our application it is not desirable to use the cache
alone as storage, as the cache will eventually replace old content with newer once it has
been filled up. Thus groups seldom gathering may risk that information about their SVF
has disappeared from the cache. However we will employ the cache for discovery of new
groups and peers in the network.

An important design choice is how information would be stored locally besides caching.
The two most obvious choices are either using a directory structure or a database. We
have chosen a database structure for our application.

A file system only allows folder names and file names to be present. In a directory
structure, typically naming conventions (like the use of the filename extension to indicate
a content type) or location conventions are used for mapping data. In a database structure,
mapping to available types can be carried out through adding fields and tables to the
database. It is also possible to add more meta-data than for a directory structure.
Moreover a database can often organize and structure the content better, thus simplifying
search and allow for more metadata to be gathered. Using a database will also simplify
implementation of versioning detection.

A database usually supports access and updates by well-defined APIs, like the Structured
Query Language, SQL. One of the benefits of using a fairly abstract query language is to
make the database engine carry out basic tasks like adding temporary variables, loop
structures etc and thus simplify application programming. Also, the database
management system (DBMS) offers additional attractive functionality, like indexing in
order to improve performance.

Another DBMS advantage is the ability to carry out transactions. For simplicity, features

 93

involving transactions have not been implemented in the pilot. All SVF changes could be
envisioned as transactions. If demanded, modifications associated with a partial
transaction could be undone without compromising the integrity of the SVF. For
example, one could demand notifications to be visible either for all device views of the
SVF repository or none.

For storage of the files themselves, we have chosen to create a local directory (see Figure
4-1) where all files are stored identified through unique identifiers. The files are linked to
their SVFs and real filenames through entries in the database. Alternative options to the
approach could have been to use binary large object (blobs) or character large objects
(clobs) in relational databases, alternatively to use object-oriented, object-relational or
multimedia databases. We have not explored these alternatives and will thus not employ
them in the pilot project.

While separate file storage will likely take up more space if the users want to store the
same files also outside of the repository, it has the advantage that the users will easily
recognize files belonging to the SVF repository in contrast to other files. When the users
update a file, the file will be fetched from the directory and saved under the same name,
which will indicate a new version of a file. If the file is saved by the user under a name
not recognized in the database, the file will not be included in the SVF repository,
although it resides in the same directory as the local SVF repository files. However, the
user may add the file to the SVF if desirable.

4.7 The graphical user interface (GUIs)
Today many applications use web browsers as GUIs rather than making native ones. Web
browsers are available on all platforms, and have a relatively well-defined API which
makes this type of GUI attractive. Moreover, through Internet browsing the users have
familiarized themselves with the GUI.

But the browser client is also strongly connected with the client-server concept where a
server’s address (URL) must be given in order to locate the content. The well-defined
client-server model is contradictory to our vision of the SVF as a resource pool. In our
model the URL would change often depending on accessible devices. Re-routing could
perhaps have been possible, but would increase the time frame for making the pilot.
Moreover, for the peers to be located through browsers, we would need to install

 94

additional software on each peer anyway which would minimize the benefit of using a
browser client as opposed to employing a native GUI. Another approach which maybe
could have worked was to construct a dynamic webpage stored locally which were
refreshed from time to time as messages arrived. While this may have been possible to
carry out we have not chosen this solution.

Since a decentralized solution would anyway require local software installation, we have
chosen a native GUI. Loosing the user’s familiarity with the browser, we on the other
hand have the benefit of stripping the application GUI for any additional functionality.
The users will be limited in application configuration, since most functionality will be
hidden by decisions taken during the design process. Experienced users may dislike the
lack of configuration, but for inexperienced users the threshold will be lowered.

For design development and to further clarify application functionality, we outline some
GUI functionality here. One rule of thumb towards simplicity is to avoid several
windows that give the user alternative choices in ways to proceed. If only one window is
opened, the users are limited to work with that window [70]. Furthermore, the number of
buttons and choices in the window should be kept to a minimum.

The GUI should offer the following choices:

• Fetching a file into the SVF repository.
• Deleting a file from the SVF repository.
• Open a file by connecting it to another application.
• Fetching a remote file.
• Create and join a SVF.
• Withdraw a SVF membership.

 95

 96

5 Implementation

This chapter presents the implementation choices made as well as how the programming
was carried out. Section 5.1 describes the implementation environment, while 5.2
explains the choices of software with respect to programming language and database
choice. Section 5.3 goes into detail about the implementation itself.

5.1 Implementation environment
In order to make the application versatile, we preferred the application to run in as many
environments as possible. However, due to time limitations, the application has been
tested on Microsoft XP (ver 5.1 with Service Pack 2). The version of Java used has been
Java 2 Platform (J2SE), version 1.4.2 with JXTA library version 2.4. The database
chosen was One$DB 4.1 Beta embedded version (see 5.2.2 for database choice).

The application was developed and tested on a portable Dell Latitude D620, with CPU
Intel Core Duo, 2048 RAM and a harddisk of 100 GB.

5.2 Software choice
This section elaborates on the choice of software used. In 5.2.1 we explain why we
choose Java as the programming language and in 5.2.2 we explain our choice of database.

5.2.1 Programming language
The choice of a programming language was more or less bound to be Sun’s Java since a
functionality criteria was to be platform agnostic. Java is available on both open source
Unix-like platforms and vendor specific platforms like operating systems from Microsoft
and Macintosh. Java is also available for a large number of hand-held devices which is
attractive. C, Perl, Python, C# could have been reasonable alternatives, but does as easily
offer the same range of platform availability.

5.2.2 Database
There exist a number of commercial databases specifically targeted as "embedded".
"Embedded" refers to a database not running as a separate process, but instead being

 97

directly linked into the application requiring access to the stored data [71]. This is in
contrast to more conventional database management systems (for example MS SQL
server, Oracle, or postgreSQL), which run as a separate process, and where the
application connects using some form of inter process communication (for example
TCP/IP sockets).
The main advantage of embedded database systems lies in their application availability
and ease of administration [71]. As the data is kept in ordinary files in the user's space,
there is no need to obtain special permissions to connect to the database process or to
obtain a database account. Furthermore, since embedded databases require only an
available library, they can be useful in constrained environments where resource devices
are limited. Embedded database can also be linked to an application and shipped along
with the rest of the software.
We chose our database due to the following criteria:

• It should be an embedded database as we want a tight integration with the
application. Moreover, only one application instance should use the database.

• The database should preferably be implemented in Java to avoid additional
language installations.

• Available on as many operating systems platforms as possible. We would like our
application to function in as many different settings as possible.

• A well-defined API, for example a version of SQL. A well-defined API makes it
easier to integrate the database with the application.

• Easy to install and well documented. This is necessary to avoid spending
additional time in finding out how to set up and use the database.

• Available without costs as there is no implementation budget.

Also, some other criteria were considered, but not equally emphasised as our
implementation is a demonstrator:

• Software maintenance available. This is useful if the application should be
released and distributed to a larger audience.

• Licence allowing re-distribution. Correct licensing is also important during a
software release.

• Preferably open source, so that optimizations/changes could be carried out if
needed.

• Small footprint, considering our functionality criteria of availability on a large
number of devices also including those with limited resources.

 98

Due to financial limitation of the pilot project only freely available databases could be
considered. Of these, One$DB was chosen (see appendix A for a list of possible
databases). The choice of using One$DB did not come as a result of thorough evaluation
of all possibilities, but rather as an acceptance of the first database found that actually
suited our needs.

One$DB fulfils most of the criteria except it had a larger footprint than some other
databases. For example Hypersonic SQL had a very small footprint of less than 100 Kb.
On the other hand, One$DB comes with a number of features of interest like sequences
and triggers. One$DB is written in the Java language which is desirable since it will not
require support for additional languages. Otherwise, one of the most appreciated features
about One$DB is the well-written and up-to-date documentation which was lacking for a
many of the other available databases. One$DB also comes with LGPL (Lesser General
Public License) which could be a reasonable starting point for further development later
on and is thus also open source.

5.3 Application implementation
An overview of the application classes are shown in Figure 5-1, which may be compared
with the architecture overview in Figure 4-1. The most important class is the
LookupManager.java responsible for the interfaces and logic, together with the
SVFGUI.java implementing the GUI.

We have chosen to start with the GUI description as it gives an overview of the
application features. Thus SVFGUI.java is described in 5.3.1 together with the java class
responsible for message feedbacks, messageGUI.java. In order to create a loose
coupling between the main logic and the GUI, we use the interface class
LookupListener.java and a class holding a structure for events, LookupEvent.java.

In 5.3.2 we describe the features of the repository and a description of the repository
database itself. The repository is connected with the classes LookupManager.java and
SVFConnectToDatabase.java. The first class is responsible for the interaction between
the different modules and the SQL calls to the database. SVFConnectToDatabase.java
handles routines for the SQL statements as well as implementing additional logic to
initiate the database and open and close database connections.

 99

The implementation logic and connection to JXTA in LookupManager.java is explained
throughout the rest of the section. As an aid to get an overview, for each subsection we
have added the methods from LookupManager.java connected with the text.

 In order to utilize the JXTA platform, a configuration must be set up as described in
5.3.3. Central to the implementation is the JXTA discovery and rendezvous service
described in 5.3.4, which provides connection to other peers as well as routing. The
group concept is elaborated in 5.3.5, where we have implemented additional security to
demonstrate how a closed group concept could function. Subsection 5.3.6 describes
communication using ports, pipes and queues. The messaging itself is described in 5.3.7
while versioning detection is handled in 5.3.8.

Middleware

Application

SVFGUI.java

LookupManager.java
Database

File directory

SVF repository

Cache JXTA framework

Consts.javaLookupEvent.java LookupListener.java

MessageGUI.java

SVFConnectTo
Database.java

Figure 5-1 Overview of the software modules.

The SVF is a fully decentralized solution and where all peers have the same software
installed. Thus the architecture of Figure 5-1 is implemented by all peers connecting to
the SVF network.

In this section the term “this device” refers to a random device interacting with other
devices through the SVF application.

 100

5.3.1 The graphical user interface (GUI)
As mentioned in our functionality criteria in 4.1, the user interface design should be
focused on simplicity. Thus all requested functionality should be available but nothing
else, to avoid confusing the users by giving them many alternatives to choose from [70].
The panel in Figure 5-2 thus consist of the following elements:

Figure 5-2 The SVF graphical user interface.

• A heading that displays the name of the currently active folder or alternatively

“No Active Shared Virtual Folder” if no folder has been selected.
• A list-box marked “Shared files:” where one file can be selected at the time. If a

file is a later version than number one, the version of the file will also be
displayed.

• Between the “Shared files:” list-box and the buttons there is an area displaying

 101

information on the file currently selected. Here the file name, size, version and
author ID are displayed as well as last modification date, information on whether
the file is remotely or locally available, and whether the file has been copied to
other devices. Additional information could also have been displayed, but we
consider this information to be sufficient for demonstration purposes.

• An “Add file to SVF”-button is used to copy a file into the repository.
• The “Remove file”-button is used to remove a file from the repository and copy it

to outside the repository.
• The “Get remote file”-button is used to request a remote file from the repository

for download from another SVF member.
• The “Open file”-button is used to open the file for modification. Today only an

editor is connected for demonstration purposes.
• The “Leave SVF”- button is used to withdraw a SVF membership.
• The “View password”-button is a somewhat unusual security handling of the

group login password. Each SVF folder has its own password, to ensure the group
is closed to outsiders. Since a peer could be member of many different groups,
there will be a lot of passwords to handle for each peer. Thus it would be
unreasonable to demand the users to remember all passwords. At the same time,
the users will need to know the group password in order to invite new members
into the group. Section 6.4.2 describes other alternatives to this approach, but for
the pilot we have chosen to allow a user currently logged in to a group to view the
password.

• A text-field marked “Name of shared virtual folder” where the name of the new
folder could be written or copied from the list-boxes below.

• A text-field marked “Password” where the password of the group is demanded.
• For groups that one is already a member of (displayed in the lower, left-most list-

box) it is not necessary to apply a password for accessing them. This is done
because there would be too many passwords to handle otherwise.

• A list-box marked “Membership SVFs:” where all SVFs the device currently is a
member of are shown. By selecting one of the SVFs, it will be copied to the
above text-field.

• A list-box marked “Other SVFs:” where all SVFs currently available from the
device’s cache are shown. The groups shown here are not filtered in any way by
the application in the demonstration version, thus new groups, membership
groups and other JXTA groups are shown.

• A list-box marked “Connected devices:” where devices currently using JXTA are

 102

shown. This box does not have any purpose except that users may wish to check
whether collaborating devices are currently logged on the same network and thus
could connect to the same group.

• The button marked “Establish SVF” at the bottom of the application can be used
to establish a new SVF or to log on to an already existing group.

The graphical user interface is programmed in the java class SVFGUI.java (see Figure
2-1). The most important method is layoutComponents() which does all component
layering and display. Most of the buttons, text-fields and list-boxes initiated here have
mechanisms for handling user interaction attached to them as SVFGUI.java implements a
listener interface for receiving action events:

btnFetch.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 btnFetch_actionPerformed();}});

Here SVFGUI.java and the object created with the class are registered with the button
btnFetch component, which is using the button’s addActionListener method. When a
user presses the button, an action event occurs that invokes the
btnFetch_actionPerformed() method. Calls to other methods connected to
components are carried out similarly.

As the users operate the GUI, they will expect a fast application response to interaction.
In order to ensure this, we will need to provide the GUI with a number of threads that can
carry out tasks simultaneously:

SwingUtilities.invokeLater(

 new Runnable() {

 public void run() {

 The GUI components are created from the Swing package in Java. We use the

SwingUtilities.invokeLater()to update the Swing components from a different
thread than the thread that dispatched the event. For instance, when an item from a
selected list are populated with data, there may be a perceptible delay from the time a
button is activated and until the list is updated. If user interaction would be implemented

 103

within one of the actionPerformed methods, the button would remain painted in its
pressed state until the call to the actionPerformed method had returned. It would take a
while for the button to return, and thus lengthy operations could not be performed in
event handler methods as other events would not be dispatched until the event handler
method had returned.

A main design issue has been to create a loose coupling between the GUI and the
application logic. Changes added to the SVFGUI.java should not lead to greater changes
to the application logic code in LookupManager.java and vice versa in order to save
time during programming and to separate different concerns. Moreover, as the GUI
require a number of threads, it is also desirable to co-ordinate these.

In order to separate the GUI from the implementation logic, and to control interaction
between the many threads, the GUI is created over an asynchronous model as outlined by
Simon [72]. An overview is shown in Figure 5-3, enlarging four classes from Figure 5-1
with snippets of code. LookupEvent.java holds a structure of events. The data is a string
array holding the results (result) and the name of the receiver (fromWho). The

LookupEvent is immutable, so it should not be changed regardless of which method that
is processing the events. Thus many methods may utilize the same class.

The interface LookupListener.java is offered to classes that would like to receive the
structure of events. The SVFGUI.java class has implemented the LookupListener
interface, and thus receives information on events put on the array. The events are
handled in the method lookupCompleted().

 104

public interface LookupListener {
public void lookupCompleted

(LookupEvent e);

SVFGUI.java

LookupManager.doBtnFetch();

LookupManager.java

LookupEvent(String fromWho,
String[] results) {

this.fromWho = fromWho;
this.results = results;}

LookupEvent.java
LookupListener.java

SVFGUI implements
LookupListener{

lookupCompleted
(final LookupEvent e)

private Collection listeners = new ArrayList();

doBtnFetch(String chosenFiles) {
fireLookupCompleted(fromWho, results);

public void fireLookupCompleted
(String fromWho, String[] results){
LookupEvent event =
new LookupEvent(searchText, results);
Iterator iter = new ArrayList(listeners).iterator();
while (iter.hasNext()) {

Object temp = iter.next();
LookupListener listener = (LookupListener) temp;
listener.lookupCompleted(event); }}

public void addListener(LookupListener listener){
listeners.add(listener);}

public void removeListener(LookupListener listener){
listeners.remove(listener);}

Figure 5-3. Separations of concerns between the GUI and the application logic.

At the other end, LookupManager.java has added a collection of LookupListeners in
the declaration list so more than one event can be passed at the same time through the
event array. Also, two methods named addListener() and removeListener()in
LookupManager.java add and remove elements in the listeners array.

SVFGUI.java calls the application logic directly (shown with doBtnFetch() as an
example in Figure 5-3). In LookupManager.java the methods carrying out the work
never returns any results back to SVFGUI.java directly. Instead they call a method
fireLookupCompleted()to put the results on to the array of events. The
fireLookupCompleted() constructs an event, iterate through the array of listeners and
calls the appropriate methods of the listeners. The listener registers when elements are
put on the array to be processed. Once the listener has been set up, the peer can continue
with other tasks because the listener will be triggered asynchronously when an element is
received. In this way the GUI and the implementation logic can be more loosely coupled
and more easily allow for code removal and additions.

Error messages and messages of information are written to the display by the class

messageGUI.java called from SVFGUI.java (see Figure 5-1).

 105

5.3.2 The file repository
Since the SVF application is decentralized, all peers must run a copy of a database
repository and keep a directory available for file storage. The database takes care of all
information related to peers, groups and files in the repository. The peers are identified in
the database through their IDs, whose are generated by JXTA and assumed to be globally
unique. This also holds for the ID of each of the groups (SVFs). JXTA builds an ID from
a Universal Unique Identifier (UUID), which is a 128-bit hexadecimal number that
functions as a unique identifier for each object [73]. The UUID itself is generated
according to the “ISO/IEC 11578:1996” specification [74]. The last two hex characters
of the ID define the type of ID; for example whether it is a peer ID or a group ID.

All local files will be stored in a directory whose location is specified in the class
Consts.java (see Figure 5-1). The file contains all parameters that is needed to be set
before startup. The files are not stored under their original names but are renamed after
their identifier (FID) from the local database, a number given in ascending order (using
sequences in SQL). Thus the FID is a local id, and not an id uniquely defined across the
whole SVF network.

peer

PID

pname

groups

gname

GID

files

FID
fname

author
stampTime

size1

fileCopy

fileGroup

versionNo

password

sent

uniPPID

proPPID

copyPID
1

1

Figure 5-4. ER schema diagram for the SVF database.

 106

The files are added or removed from the repository upon the user’s request. It is possible
and necessary to allow for files to have the same original name within a SVF as there
could be different versions of the same file, but it requires that the files are kept in
different locations with different devices.

groups: The groups that this device is a member of.
GID: The unique group id given by JXTA.
gname: The name of the group used by JXTA which is not unique.
password: The password of this group.
uniPPID: The unicast pipe ID belonging to this group.
proPPID: The propagate pipe ID belonging to this group.

files: All files within groups that this device is a member of.
FID: A local unique file id given by a sequential number generated by

the database.
fname: The name of the file which may not be unique.
stampTime: The timestamp of the file.
author: The author (creator) of the file.
versionNo: The file version.
size1: The file size.

fileGroup: The connection between files and groups.

fileCopy: Which file belongs to which peer in the repository.
copyPID: The ID of the peer that issued the file notification, aka who holds a

file or who has removed a file.
sent: Whether the file has been distributed to other members or not.
 This is of importance in order to update the file version.

After normalization of the tables created from the ER schema diagram, we get the tables
shown in Table 5-1. The first column represents the field name, the second the data type.

 107

peer
PID String
pname String
groups
GID String
gname String
password String
uniPPID String
proPPID String
files
FID String
fname String
author String
stampTime String
versionNo String
size1 String
fileGroup
GID String
FID String

fileCopy
FID String
fname String
sent Boolean
copyPID String

Table 5-1. The normalized database tables.

The table peer is used only to register the peer name and JXTA ID of this device. It is
necessary especially during initialization of the JXTA platform, but is also used by the
many threads of LookupManager.java.

The table groups identify all groups that this device is currently a member of and keep
track of their group ids and passwords. A new row will be inserted as this device joins a
new SVF and a row will be deleted when this device leaves the SVF. The groups table is
often searched in order to find a file or notification within a group.

 108

The files table keeps track of all files stored in the SVF repositories this device is a
member of. It also holds information about each file. The table is frequently updated as
notifications are received from other peers or files are added or removed locally.

The fileGroup table connects each file with a group. A copy of a file can be added to
several groups, but will be given a unique FID each time it happens. Thus the FID
identifies exactly one copy of a file. Also, each new copy of the file will be put out into
the file directory on disk. This is necessary as a file can be overwritten independently
within each group. Thus two copies of the same file can become two different files if one
of them is updated.

The fileCopy table contains information about files that are currently available in the
repositories. This table is updated every time a file is copied, added or removed from the
SVF. sent are there for versioning reasons; sent is set to true if the file has been copied
between devices. CopyPID holds the peer ID of the device which sent the file update
notification, or alternatively the peer ID of this device for locally stored files.

Database

LookupManager.javaSVFConnectToDatabase.java

public void fireLookupCompleted
(String searchText, String[] results){

SVFConnectToDatabase mydata =
new SVFConnectToDatabase();
String SQL = "select PID from peer”;
String result[] = mydata.selectDB2
(SQL, usernameDB, passwordDB);

public String[] selectDB2(String SQL,
String username, String password) {

public boolean changeDB(String SQL,
String username, String password) {

SQL = "insert into fileGroup values
('" + PID + "','" + GID + "')";
mydata.changeDB(SQL,
usernameDB, passwordDB);

public void deleteExternal() {

Figure 5-5. Separations of concerns during database connection.

The basic interaction with the embedded database are carried out by the class
SVFConnectToDatabase (see Figure 5-1 for overview and Figure 5-5 for details) which

 109

has methods changeDB() and selectDB2() which handles SQL insert, delete and select
commands issued to them. changeDB() is synchronized as we do not want several
threads to delete or update the same row simultaneously which would lead to database
error. The interaction with the database goes through the LookupManager.java class
which uses fireLookupCompleted() to pass on database results as events (also see
Figure 5-3).

During a session, rows can be added or deleted, but the major cleaning up of tables will
be carried out every time a device starts the SVF application using method
deleteExternal() in LookupManager.java. Rows from files not stored locally will be
identified by their copyPID in table files, and deleted. The tables files, fileGroup
and fileCopy are affected by these updates. We do the cleaning up during log on
because the device can log off from the SVF in an uncontrollable manner (for example
through lack of battery capacity).

5.3.3 JXTA platform configuration and application setup

Method Description
start() Initiates the JXTA platform, the discovery and

rendezvous service. Also join the base JXTA peer
group, netPeerGroup.

Table 5-2. Main methods in LookupManager.java for JXTA configuration.

In order to start the JXTA peer, a platform configuration must be set up. The setup is
carried out in the method start() in LookupManager.java. The NetworkConfigurator
provides a simple programmatic interface for JXTA configuration.

The NetworkConfigurator takes care of JXTA initialization such as generating a new
peer id if not already set:

 p = IDFactory.newPeerID(PeerGroupID.defaultNetPeerGroupID);

Moreover the configuration itself must have a home directory, as well as a device
nickname, a user login (using the setPrincipal() method), a password and a

 110

description of the peer which must be set. The peer itself should also be set to a startup
mode, either as an edge node, a relay node, a rendezvous server or a proxy server as
explained in subsection 2.5.6. Our peers start the application as edge nodes:

config.setMode(NetworkConfigurator.EDGE_NODE);

In order to be sure we get a stable rendezvous peer, it is possible to initially connect to an
already localized peer. We use one of Sun’s servers:

config.addRdvSeedingURI(new URI("http://rdv.jxtahosts.net/cgi-

bin/rendezvous.cgi?2"));

Saving the new setup for the NetworkConfigurator object completes the configurator
initialization. Once set, JXTA will install a subdirectory under the defined JXTA home
directory called cm where the configuration is stored. Deleting the subdirectories makes it
possible to reconfigure the JXTA peer.

In the pilot application, the JXTA home path can be set in the consts file (described in
subsection 5.3.2, see also Figure 5-1). The Consts.java file also contains the home path
of the embedded database as well as the directory where the local repository files are
kept.

 111

5.3.4 JXTA advertisement, discovery, service and rendezvous

Method Description
start() Initiates the JXTA platform, the discovery and

rendezvous service. Also join the base JXTA peer
group, netPeerGroup.

startGroupSearching() Searches for peer group advertisements.
startPeerSearching() Searches for peer advertisements.
searchForSubPeerGroup() Searches for a specific peer group advertisement

in the local cache (for group establishment).
getPeerCache() Searches for peers in the local cache and displays

the result in the GUI.
getGroupCache() Searches for groups in the local cache and

displays the result in the GUI.
discoveryEvent() Handles incoming discovery responses from other

peers.
waitForRendezvousConnection() Blocks if not connected to a rendezvous, or

until a connection to rendezvous node occurs.
rendezvousEvent() Receives an incoming rendezvous event
stop() Removes a peer from subscribing to rendezvous

events.

Table 5-3. Main methods in LookupManager.java connected with discovery and rendezvous.

All network resources in JXTA such as peers, peergroups, pipes, and services are
represented by advertisements [73, 75]. Advertisements are meta-data structures
represented as XML documents. The JXTA protocols use advertisements to describe and
publish the existing network resources. Peers discover resources by searching for their
corresponding advertisements, and may cache any discovered advertisements locally.

Each advertisement is published with a lifetime that specifies for how long the
advertisement will remain valid in the publisher’s cache. It renders possible the deletion
of obsolete resources without requiring any centralized control. An advertisement can be
republished before the original advertisement expires to extend the lifetime of a resource.

 112

In addition one can specify the expiration time of an advertisement which determines
when the advertisements will expire in receiver's caches. If the lifetime is long enough,
the advertisement will stay in the receiver's caches for the full expiration time. For our
implementation, we use the default lifetime which is one year for locally created
advertisements and an expiration time of two hours for remotely published
advertisements.

A service is uniquely defined by its advertisement which provides all necessary
information. Both the Peer Discovery Protocol and the Rendezvous Protocol described
below are examples of services offered which may be implemented by a peer. It is also
possible to define one’s own services in a JXTA network and not just to use already
defined services as shown in subsection 5.3.5.

To search for advertisements, we use the Peer Discovery Protocol. First a pointer to the
Peer Discovery Service must be obtained which is carried out at the end of the start()

method in LookupManager.java:

 discovery = netPeerGroup.getDiscoveryService();

Next a Peer Discovery Service event listener is registered to process discovery responses
after we sent discovery queries:

 discovery.addDiscoveryListener(this);

The event listener functions similarly to the event listener for the GUI described in
subsection 5.3.1. When the listener has been initialized, the peer can continue with other
tasks because the listener will be triggered asynchronously when an event is received. For
our implementation the group and the peer search are run as two different threads thus we
have added listeners both to startGroupSearching() and startPeerSearching().

These methods search for groups and peers remote and fetches them to the local cache.

To search for an advertisement in the cache (if it is not in the database which we search
first), we use either the getRemoteAdvertisements() or the

getLocalAdvertisements() methods. These methods are used in

searchForSubPeerGroup(), getPeerCache() and getGroupCache().

 113

In searchForSubPeerGroup() we are searching for a peergroup advertisement which
contains a tag named Name with the variable groupName as value. We are requesting a
single response match (threshold value of 1). The first input is null which indicate use of
the rendezvous service for searching (see below). The last null value indicate the use of
callback or not, which we do not use.

discovery.getRemoteAdvertisements(null, DiscoveryService.GROUP,

"Name", groupName, 1, null);

After sending the discovery request, we wait for response. Discovery responses are
processed by the discovery event listener discoveryEvent() method. Here we collect
the peer and the peergroup advertisements.

It is possible to limit the number of incoming advertisement as there can be many. In
getGroupCache()the number of advertisements are limited to groups established by the
SVF application only using the description tag in the group advertisement:

discovery.getLocalAdvertisements(discovery.GROUP, "Desc", "SVF*");

A peer uses the Peer Discovery Service to find advertisements in the JXTA network
which again uses a Peer Resolver Service based the Peer Resolver Protocol for issuing
queries and receiving back answers. The Peer Resolver Protocol wraps a query in its own
message, and sends the new message to other peers. The Peer Resolver Protocol running
on the remote peers will receive the wrapper message and then forward the underlying
message to the appropriate handler. Hopefully there will be a response to the request. The
remote peer will put the response into a Peer Discovery Service response message, and
the Peer Discovery Service will pass the message to the Peer Resolver Service to deliver
to the requesting peer. The Peer Resolver Service will then wrap the message into its own
message again and forward it to the first Peer Resolver Service for unwrapping and
forwarding.

The Peer Resolver Service may use either the Peer Endpoint Protocol or the Rendezvous
Protocol or both for transportation. The Peer Endpoint Protocol is the protocol which is
responsible for the routing within the network. It discovers a route (sequence of hops) to

 114

send a message to another peer potentially traversing firewalls and NATs (see subsection
5.3.6). The Rendezvous Protocol is used for propagating a message within a peergroup.

In order to find other peers on the network and connect to them in groups, we use the
Rendezvous Protocol. The Rendezvous Protocol is designed to propagate messages
between peers within a group using a rendezvous peer. A rendezvous peer is a device that
has the ability to propagate received messages to other rendezvous peers. Thus it has a
list of several rendezvous peers it may forward to, instead of just one.

It is possible to designate a peer as a rendezvous peer at startup (for our implementation it
must be set in start() in LookupManager.java)or to connect to other rendezvous peers
that could be servers in the network (For example Sun has set up some servers, see
subsection 5.3.3). It is also possible that a device will become a rendezvous peer by
dynamically assignment.

If a peer is not a rendezvous peer, it may be an edge peer which we have designed our
peers to become. An edge peer will only connect to one rendezvous. If that rendezvous
fails, the peer will failover transparently to another available rendezvous. Once a peer is
connected to a Rendezvous, the peer can start to search and create pipes as described in
subsection 5.3.6.

For our peers, at start() we connect to the Rendezvous Service through a call to the
base peer group netPeerGroup object:

rendezvous = netPeerGroup.getRendezVousService();

rendezvous.addListener(this);

The netPeerGroup object also gives access to other services within a peer group
(discovery, pipe, etc). We get a pointer to the Rendezvous service and register an event
listener for that service. Afterwards we wait for a Rendezvous event connect before
proceeding further through the call as in method waitForRendezvousConnection():

 if (!rendezvous.isConnectedToRendezVous()) {

 115

The rendezvousEvent() listener method is called whenever a new
Rendezvous event occurs. Here as soon as we get a Rendezvous connect or reconnect
event (in case the peer was already connected), we notify the main thread to
proceed.

In order to remove the peer from the rendezvous listener service, in the stop()method
we use:
 rendezvous.removeListener(this);

 116

5.3.5 JXTA secure group concept

Method Description
start() Initiates the JXTA platform, the discovery and

rendezvous service. Also join the base JXTA
peer group, netPeerGroup.

doBtnEstbSVF() Responsible for creation of a peergroup and for
a peer to join the group.

searchForSubPeerGroupDB() Search the database for a peer group ID
matching a peer group name.

searchForSubPeerGroup() Searches for a particular peer group advertise-
ment in the local cache (for group
establishment)

createPeerGroupAdvertisement() Creates a peer group advertisement.
createPeerGroup() Responsible for creation of a secure peergroup
createPasswdMembershipPeer-

GroupModuleImplAdv()

Creates the module implementation advertise-
ment connected with the group advertisement.

createPasswdMembership-

ServiceModuleImplAdv()

Creates the password membership service
implementation advertisement to be put into the
module implementation advertisement.

joinPeerGroup() Responsible for logging on to a secure peer
group.

completeAuth() Authentication towards a secure peer group.
createInputPipe() Responsible for pipe administration and setting

up the propagate input pipe. Administers the
message queue and coordinates incoming and
outgoing messages.

createGroup() Responsible for creation of a non-secure peer
group with advertisement.

joinSubPeerGroup() Joins a non-secure peer group.
doBtnLeaveSVF() Logs off the current peer group and deletes all

related peer group information from the
database

Table 5-4. Main methods in LookupManager.java connected with the group concept.

 117

A closed group concept is a part of the functionality criteria for SVF (see 4.1) to avoid
others to remove files or to fill up the SVF with unwanted resources. While a fully secure
group concept is outside of the scope of the thesis, we have implemented a secure peer
group to get an impression of how JXTA handles security within groups.

As we start the SVF application, we must connect to the base JXTA peergroup called
netPeerGroup (with the group name “World Peergroup”) which all peers must be
members of. We join this group in start() in LookupManager.java by executing:

NetPeerGroupFactory factory = new NetPeerGroupFactory();

 netPeerGroup = factory.getInterface();

Here we instantiate the netPeerGroup. We also add the netPeerGroup to the database
because we need it for comparison with other groups later on. This base peergroup
connection is important in order to be connected to the discovery, rendezvous and other
services (as shown in subsection 5.3.4). As soon as we have connected to the

netPeerGroup, users may access another group (a SVF) in three ways:

1) They may write a new group name in the “Name of shared virtual folder” text-
field, add a password and create a new group which others may join through
publishing of the group announcement.

2) They may select a group from the list box “Membership SVFs” whose ID are
stored in the database together with the password. Thus choosing this alternative a
user need not apply any password.

3) They may select a group from the list box “Other SVFs” whose advertisement
resides in the cache but where password needs to be supplied in order to access
the group the first time. Groups named in the “Other SVFs” may also reside in the
database, in which case the password is obtained already.

All three alternatives are followed by pressing the “Establish SVF” button. The button
calls the doBtnEstbSVF() method in LookupManager.java, which carries out the main
work during establishment or re-establishment of a group. The password from the
database are never shown in the text-field, but if ever needed there is the button called

 118

“View password” that can be used if a user need to give away the password to another
peer as he logs on.

All groups beside netPeerGroup must be joined in two operations. First the group
advertisement must be found or created, thereafter the peer must authenticate itself
against the membership service in order to join the group. For the first part, establishing
the group advertisement could be done in three ways carried out in the following priority:

1) If the group ID is found in the database, a group advertisement could be recreated.
2) If the group advertisement is found in the cache, we have the advertisement and

do not need to reconstruct it.
3) Construct a new group ID and group advertisement.

The doBtnEstbSVF() is the method in LookupManager.java which is responsible for
group creation and joining. doBtnEstbSVF()first checks if the group ID can be found in
the database by calling the method searchForSubPeerGroupDB(). If the group ID is
found, it is fetched and used for re-creation of the advertisement. If there are no fitting
entries in the database, we start searching the local cache for the group advertisement
using the discovery service:

discovery.getLocalAdvertisements(DiscoveryService.GROUP, "Name",

groupName);

The local cache is searched by use of the groupname. Quite similar to the local
advertisement we also search for the group remotely by using getRemoteAdvertisement
as explained in subsection 5.3.4 above.

If the group ID or advertisement still cannot be found, we will have to generate a new ID
as done in the method createPeerGroupAdvertisement():

subPeerGroupAdvertisement.setPeerGroupID

(IDFactory.newPeerGroupID());

Regardless of whether we have the peergroup advertisement itself, or only an ID we must
call the method createPeerGroup() from doBtnEstbSVF() which establishes the peer
group itself:

 119

 subPeerGroup=netPeerGroup.newGroup(subPeerGroupAdvertisement);

When creating a secure peer group, JXTA is neutral to cryptographic schemes or security
algorithms [76]. It does not mandate any specific security solution. Instead JXTA
provides a framework that allows different security solutions to be plugged in. For
example, all messages have a designated credential field that can be used to store
security-related information. JXTA does not specify how the information is interpreted as
it is beyond the scope of the specification and is left to services and applications
themselves to decide.

For our application we have decided to use a simple password encryption which has been
cracked for more than 20 years ago [55]. Still it demonstrates the principles of a closed
group concept which is our aim.

If we do not have the advertisement, we need to create it according to our security
demands. The peer group that is being built does not have the same characteristics as a
standard peer group has, since we demand password authentication before joining the
group. The additional authentication must be conveyed to other peers so they know how
to log on to the group. In order to convey this, we need to modify the module
implementation advertisement (see Figure 5-6) that is issued together with the group
advertisement. The module implementation advertisement needs to call the
net.jxta.impl.membership.PasswdMembershipService (B in Figure 5-6) instead of
net.jxta.impl.membership.NullMembershipService (A in Figure 5-6) which is used for
peer groups that does not demand authentication.

A new membership service will be a part of a module implementation advertisement
which contains many services and is published together with the peergroup advertisement
in order to give potential group members access to it. (See Appendix B for a listing of a
group advertisement example and connected module implementation advertisement.)
We carry out the publishing in the createPeerGroup() method, where the fields

DEFAULT_LIFETIME and DEFAULT_EXPIRATION functions as explained in subsection
5.3.4.

 120

Group advertisement Module implementation advertisement

<MSID>
urn:jxta:uuid-DEADBEEFDEAFBABA
FEEDBABE000000010406
</MSID>

<MSID>
urn:jxta:uuid-DEADBEEFDEAFBABA
FEEDBABE000000010406
</MSID>

<Desc>
Module Impl Advertisement for the
PasswdMembership Service
</Desc>
<Code>
net.jxta.impl.membership.
PasswdMembershipService
</Code>

Group advertisement Module implementation advertisement

<MSID>
urn:jxta:uuid-DEADBEEFDEAFBABA
FEEDBABE000000010406
</MSID>

<MSID>
urn:jxta:uuid-DEADBEEFDEAFBABA
FEEDBABE000000010406
</MSID>

<Desc>
Reference Implementation of the
MembershipService service
</Desc>
<Code>
net.jxta.impl.membership.NullMembershipService
</Code>

A

B

<Parm>
<login>

Peer1:FHZR
</login>

</Parm>

Figure 5-6. Module implementation advertisements with different levels of authentication.

createPeerGroup() calls the createPeerGroupAdvertisement()which is responsible
for the actual creation of the new peergroup advertisement itself. The peergroup
advertisement is constructed similarly to the above description; either by means of
getting the group ID or a previously created peergroup advertisement as described above.
In addition it is necessary to connect the peergroup advertisement with the new module
implementation advertisement, done by adding a new Module Spec ID (MSID) which
connects the two advertisements (see Figure 5-6):

subPeerGroupAdvertisement.setModuleSpecID(passwdMembershipModuleIm

plAdv.getModuleSpecID());

Moreover, the login name and the encrypted password must be included into the
peergroup advertisement. Thus a tag called <login> is added to the XML document
which is the peergroup advertisement (see the group advertisement in Figure 5-6, B):

subPeerGroupAdvertisement.putServiceParam(PeerGroup.membershipClas

sID,loginAndPasswd);

 121

createPeerGroup() also calls the createPasswdMembershipPeerGroupModule-
ImplAdv() which is responsible for the creation of the module implementation
advertisement. As seen in Appendix B, the module implementation advertisement is quite
extensive, thus instead of creating all the different service advertisements over again, we
have chosen to use a standard module implementation advertisement and only modify the
membership advertisement. The standard module implementation advertisement
allPurposePeerGroupImplAdv is first fetched:

allPurposePeerGroupImplAdv=netPeerGroup.getAllPurposePeerGroupImpl

Advertisement();

The allPurposePeerGroupImplAdv has the structure of a hashtable from which all the
different service advertisements can be extracted. In order to modify the module
implementation advertisement, we must first get hold of the hashtable itself:

Hashtable allPurposePeerGroupServicesHashtable = new

Hashtable(passwdMembershipPeerGroupParamAdv.getServices());

As we wish to update the membership implementation advertisement only, we need to
remove the all purpose membership service implementation advertisement and replace it
by the password membership service implementation advertisement:

allPurposePeerGroupServicesHashtable.remove(allPurposePeerGroupSer

viceID);

allPurposePeerGroupServicesHashtable.put(PeerGroup.membershipClass

ID,passwdMembershipServiceModuleImplAdv);

Then we insert the new element into the hashtable:

passwdMembershipPeerGroupModuleImplAdv.setParam((Element)

passwdMembershipPeerGroupParamAdv.getDocument(new

MimeMediaType("text/xml")));

Finally we update the module implementation advertisement with the new MSID to
connect it with the group advertisement:

 122

passwdMembershipPeerGroupModuleImplAdv.setModuleSpecID(IDFactory.n

ewModuleSpecID(passwdMembershipPeerGroupModuleImplAdv.getModuleSpe

cID().getBaseClass()));

The createPasswdMembershipServiceModuleImplAdv() is called from the
createPasswdMembershipPeerGroupModuleImplAdv() and creates the actual
password membership service implementation advertisement which is put into the
hashtable structure. The creation of the password membership service implementation
advertisement is straight forward: the MSID is created and inserted, the implementation
description is inserted and the <Code> element, which contains a reference to the
package needed in order to load and execute the code of this implementation (see Figure
5-6 B). The other tags of the password membership service implementation are not
changed and can thus be adopted from a generic template.

After the group is created, the doBtnEstbSVF() calls joinPeerGroup() which does
the peer authentication towards the group. joinPeerGroup() gets hold of the
membership service that we created which allows the peer to establish an identity within
a peer group.

The peergroup membership service first establishes a default temporary identity for the
peer within the peergroup. This identity only allows the peer to authenticate itself to
establish the true identity. Thus, first the peer must apply for a temporary identity:

Authenticator auth = membershipService.apply(authCred);

The peer provides the membership service with an initial credential which may be used
by the service to determine which form of authentication should be used to establish the
peer’s true identity. An authenticator object is returned to find the authentication form.
The actual authentication completion is done in completeAuth() called by

joinPeerGroup() where the authentication methods needs to be extracted from the
authenticator object. The login and password will be tested if the “setAuth1Identity”

and the “setAuth2_Password” are present:

if (doingMethod.getName().equals("setAuth1Identity")) {

 doingMethod.invoke(auth, AuthId);

 123

if (doingMethod.getName().equals("setAuth2_Password")) {

 doingMethod.invoke(auth, AuthPasswd);

Afterwards, the completed authenticator object is returned to the membership service and
the identity of the peer is finally tested against the new credential available from the
authenticator. The identity of the peer remains as it was until the join operation
completes:

membershipService.join(auth);

If accepted, the group is successfully joined by the peer.

The method doBtnEstbSVF()which is responsible for setting up and joining the group
also takes down and cleans up after the previous group (if it exists) by setting a global
flag called pipeStopped which takes down the pipes and resign from the membership
service by the command:

membership.resign()

issued in method createInputPipe(). Here the existing peer identity that was
established is discarded and the current identity is set to the “nobody” identity.

In order to demonstrate the group concept even without security, we have enclosed the
methods for logging on to a group also without any access restrictions. The methods
createGroup() and joinSubPeerGroup() carries out the group creation process and
joining but without any demand for authentication.

When a SVF no longer is needed, it may be abandoned and deleted from the database.
The doBtnLeaveSVF() handles this situation, when a user presses the “Leave SVF”
button. In order to withdraw a SVF membership, the group must be logged on to before
withdrawal, as the doBtnLeaveSVF() always deletes the current group. The

doBtnLeaveSVF()deletes the group from the database, deletes all files connected with
the group, and issues notification messages on the delete to the other devices currently
logged on to the group. It will also take down any pipes that are currently up, but only
after the last notification messages has been sent. Because it may take some time to issue

 124

the final notification messages, there is a delay before the pipes are taken down which
also the users will experience.

For a while the group advertisement may stay in the cache. Thus, in case of regrets, it
should be possible to reconstruct the group even after deletion. After some time, it will
also be deleted from the cache, and the ID of the group will be lost.

5.3.6 Communication: Ports, pipes and queues

Method Description
createPropagatePipeAdv() Create a propagate pipe advertisement
createUniPipeAdv() Create a unicast pipe advertisement
createInputPipe() Responsible for pipe administration and creating

a propagate input pipe. Administers the message
queue and coordinates incoming and outgoing
messages.

createUniInputPipe() Creates a input unicast pipe.
createPropagateOutputPipe() Creates an propagate output pipe.
sendUniPipe() Creates a unicast output pipe.
pipeMsgEvent() Receives messages from incoming pipe events.
handleMsg2() Opens incoming messages and initiate a

message response if needed.
sendOutputPipe() Creates output messages and sends them.

Table 5-5. Main methods in LookupManager.java connected with pipe use.

One of the primary reasons behind the JXTA is to facilitate the transfer of information
between peers. The services are made known to the peers through advertisements, and
messages and file downloads are usually transferred through pipes. The pipe concept is
similar to that found in the Unix system, in which a pipe connects two commands.

In the application, all message communication is carried out by means of pipes. The
pipes themselves are abstractions on top of the lower Peer Endpoint Service layer. The
Peer Endpoint Service is the mechanism used for building communication channels
between peers. The Peer Endpoint Protocol is responsible for determining a route

 125

between peers in the JXTA network and is the protocol that actually carries out the
message transmission. The service may use transport protocols TCP/IP, HTTP, Transport
Layer Security (TLS), Beep and ServletHTTP and also be built around others. All
transport protocols must implement a number some functionality to be used with JXTA.
The two most important implementations are a method to send a message from one peer
directly to another without any type of routing needed, and a method for issuing a
message to all local peers reachable from the current peer.

The Peer Endpoint Service is responsible for only sending messages between peers. The
peers can be directly connected, or relay peers can act as intermediates. When endpoint
routing is needed, the routing peer will try to minimize the amount of work by use of a
route cache. A route cache is used when the routing peer checks its internal cache to find
the route. If a route is found, a route query message is sent to the JXTA network.

All messages from the endpoint router use both the discovery and router services. These
services allow the query messages to be published and routed throughout the JXTA
network. Finding the address is based on getting a JXTA ID and returning an endpoint
address that can be used to communicate with the peer. First it is checked whether the
peer is directly connected, secondly previously used routes in the cache are checked, and
finally a query is issued if the route cannot be found. If a response is received for the
query, this route will be added to the cache. If returning unsuccessful, an error message
will be written back to the user.

During connection, the receiving peer must offer some endpoint to which the sender peer
can connect to. The endpoints could be either an IP-address and a port number as
specified in the TCP/IP protocol, but could also be a secure endpoint using the TLS or
using an endpoint defined by a JXTA ID. The receiving code registers a listener which
determine whether any messages that arrive at the endpoints should be processed. The
listener is designed to monitor messages based on an endpoint service and parameter
values.

When the listener is triggered, the listener method will receive both the source and
destination addresses of the communication, as well as a message object. The string
associated with the message can be extracted and processed (se subsection 5.3.7).

 126

The Pipe Binding Protocol is built on top of the Peer Endpoint Protocol, and is
responsible for allowing messages to be passed from peer to peer. The Pipe Binding
Protocol may run on top of the Rendezvous Protocol (see subsection 5.3.4) or the Peer
Endpoint Protocol. The Pipe Binding Protocol outlines three different types of pipes; a
unicast pipe, a secure unicast pipe and a propagate pipe. The latter is used in one-to-many
connections.

In order to connect two peers using a pipe, a peer will create an input pipe as well as a
pipe advertisement. A remote peer must get the pipe advertisement through a query or
through information provided directly by the host peer. The Pipe Service is obtained
through the peer group of which the peer is currently a member of:

 PipeService pipe = subPeerGroup.getPipeService();

In our application we use two pipes; a propagate pipe for issuing notification messages
and a unicast pipe for carrying out peer download. The methods
createPropagatePipeAdv() and createUniPipeAdv() creates the pipe services for the
two pipes. The service provides the ability to create input and output pipes and create a
message object to be sent through the pipe. In LookupManager.java the
createInputPipe() method sets up the propagate input pipe:

 InputPipe pipeIn = pipe.createInputPipe(pipeAdv, this);

Similarly, the unicast input pipe is generated in the createUniInputPipe() method. For
the output pipe there is a similar approach:

OutputPipe pipeOut = pipe.createOutputPipe(pipeAdv, timeout);

The createPropagateOutputPipe() method and the sendUniPipe() method are
responsible for setting up the output pipes. Our createInputPipe() method controls
the setting up and taking down of the pipes. Most of the time a propagate input pipe will
be up listening for messages. If a message is received, it is taken care of through a
PipeMsgListener service. Through the PipeMsgListener service the pipeMsgEvent()

is executed, and the incoming messages extracted are dealt with in handleMsg2() (see
subsection 5.3.7 for message handling).

 127

Within intervals, the output pipe is set up and messages transferred if there are any
coming in from other methods. Methods in LookupManager.java may throw messages
they want to submit as elements on to the vector outputQueue. Before setting up the
output pipe, the outputQueue is checked for messages. If the message is a file download,
the pipe set up will be the unicast pipe instead of the propagate pipe. Similarly, the device
issuing a request for a file will automatically set up a unicast input pipe listening as soon
as the request message is issued. sendOutputPipe() and sendUniPipe() are responsible
for the actual message sending.

Similarly to the peers and groups in JXTA, all the pipes have a pipe ID. The application
uses two fixed pipe IDs, in order avoid pipe advertisement distribution. Similar to the
groups and peers, pipe advertisements can be distributed through publication. However,
this is not desirable, as we do not know exactly which peer is sending out an
advertisement at what time [76]. Often with JXTA, two peers wanting to connect both
issue a pipe advertisement with different IDs. Some peers may pick up the advertisement
with one of the IDs while other peers pick up the advertisement with another ID. Thus
communication will be very uncertain after a while, since the peers also cache
advertisements. Although we could delete all pipe advertisements from local caches at an
early stage, we would then have the problem of finding a pipe service at all.

Since using one pipe corresponds to using one port (port number 9700), we can only have
one pipe up and running at a time. Thus, during the time that the propagate input pipe is
not up because we have to send messages or receive a file, the device could loose
messages. While we have used queues to avoid downtime as much as possible, especially
during a long file download a device could loose a lot of messages. Because of this issue,
we have also not allowed the users to be connected to more than one group at the time.
As a side effect, this restriction also helps preventing network congestion.

The propagate pipe is also an obstacle to security within the group as JXTA does not
currently offer built-in security here. Thus for a secure SVF, security would have to be
carried out by the application itself. Since the propagate pipe could not be securely
implemented and security had to be put aside in the thesis due to time constraints, we
have not implemented secure unicast channels either. A secure unicast channel is similar
to an ordinary unicast, but requires all files to be divided into chunks of maximum 64 kb
before transmission.

 128

5.3.7 Messaging

Method Description
sendOutputPipe() Creates output messages and sends them.
sendOutputPipeUpd() Sends a update or “new” message with several

message elements.
pipeMsgEvent() Receives messages from incoming pipe events.
handleMsg2() Opens incoming messages and initiate response

if demanded.

Table 5-6. Main methods in LookupManager.java connected with messaging.

Notification messages are an important part of the SVF as described in 4.4 and 4.5. All
application messages (notifications well as file downloads) are issued as messages using
pipes. The messages have different formats depending on their type. The messages
themselves are separated by different element types:

new: A new device has logged on to the group and sends the latest updates.
upd: When a new message is received, the other group members should respond by

sending their latest updates. An update message should also be issued when a new
file has been added to the repository.

rmv: A remove notification should be issued when a file has been removed from the
repository.

req: Issue a request for a file from any of the other members in the group.
dwn: A download message contains the actual file to be downloaded.

Each message element type is accompanied by a number of other elements as well:

new:
no: The number of recurring elements issued in this message
FID+ <no>: The local file ID.
fname+<no>: The file name.

 129

author+<no>: The file author ID.
version+<no>: The file version.
sizes+<no>: The file size.
sender+<no>: The peer ID of the peer who sent the request.

The <no> indicates that each element has a number added to it. Thus all elements can be
repeated as many times as there are files in the local repository.

 upd:
no: The number of recurring elements issued in this message
FID+ <no>: The local file ID.
fname+<no>: The file name.
author+<no>: The file author ID.
version+<no>: The file version.
sizes+<no>: The file size.
sender+<no>: The peer ID of the peer who sent the request.

The <no> indicates that each element has a number added to it. Thus all elements can be
repeated as many times as there are files in the local repository.

 rmv:
fname: The file name.
author: The file author ID.
version: The file version.
sender: The peer ID of the peer who sent the request.

 req:
fname: The file name.
author: The file author ID.
version: The file version.
sender: The peer ID of the peer who sent the request.

 dwn:
fname: The file name.
author: The file author ID.
version: The file version.

 130

file: The file itself.

Two of the notification messages require a response from the receivers. First, issuing a
“new” message requires that the others respond with an update also issuing all files that
is currently contained within the group of their local repository. Second, a file request
notification must be responded to by a file download if any of the peers have the
requested file.

The messages themselves are created using a message object. Elements are added to the
message object in this way:

StringMessageElement version1 = new StringMessageElement

("version", version , null);

 msg.addMessageElement(null, version1);

Here an element is created called “version” where the variable version is inserted. The
last null argument is used for digital signatures. If no signature is specified, null is
passed. The null value passed in the addMessageElement indicates that the default
namespace is used (which is the set of name tags in this MessageElement, which again is
just “version”).

 The message itself is sent by the command:

 pipeOut.send(msg);

All message creation and issuing are carried out in the methods sendOutputPipe() and
the sendOutputPipeUpd(). The latter handles update and new messages when this
device need to inform the other group members of all files in the local repository, not just
the change of one file.

The pipeMsgEvent()method picks up the messages as incoming events from the

OutputPipeListener. The handleMsg2() extracts the messages by the following
commands:

 version = getMsgElement(msg,"version");

 131

where msg is the message object and version is the element type.

5.3.8 Versioning

Method Description
doBtnAddSVF() Adds a new file to the SVF repository.
doBtnDelFile() Removes a file from the repository.
doBtnOpenFile() Opens a file by means of a third party

application.
checkRepositoryUpdates() Checks if any of the files located in the SVF

directory has received a new modification date.
If they have, the database is updated and
notifications created.

Table 5-7. Main methods in LookupManager.java connected with versioning.

File versioning is carried out in order to ensure other participants are informed as file
repositories are updated as described in 4.5. When a new file is added to the repository
through the method doBtnAddSVF(), the file itself will be copied into the common
directory, and the database will be updated, setting the filename, author and other
information. The version will always be set to one. But before the update, a check must
be carried out to ensure the file is uniquely defined within the group and local repository.

A file in the local repository can be opened for read and write access by a third party
application. In order to do so, the path of the execution file for the third party application
must be set in the Consts.java file, the setup file which has been mentioned several
times in this chapter (see also Figure 5-1).

The doBtnOpenFile() will open the file if a user presses the “open file” button. The
method chooses a fitting application to open the file with, based on the file extension. In
our pilot version of the SVF, the Notepad application and a browser have been
connected. Of course more applications could be connected or alternatively one could
connect the file opener of the operating system which we have not done as the pilot is a
demonstrator only.

 132

The file itself has to be saved back to the same location under the same name in order to
be registered as a new file version. If it is stored under another name, the application will
not register the file as a member of the local repository at all. In order to include such
files in the repository, the file must be added to the repository again as a new file and will
be marked as a first version.

If a file is written to and saved back again under the same name, within a time interval
that can be set, the repository directory will be swept looking for file updates. The
repository sweep is initiated at the startSVF() in the SVFGUI.java class which calls
the checkRepositoryUpdates() method that does the actual work.

The sweep starts with comparing the database files table with the file’s modified date in
the directory. If the files modified date is newer than the registered date, the stampTime
in the database files table will be updated. The file’s version number will then be
incremented. But if the increment causes a collision with another uniquely defined file,
the user will be given the option of saving the file under another name or alternatively the
file will be deleted. As a confirmation of the version change, an update message is issued
to the other group members. If updates are only found for groups that this device
currently is not logged in to, no update messages will be issued since the changes to the
files will be registered as we log on to the group by the issue of a “new” message.

When a file is downloaded from one peer to another, the file will be registered with the
same file version and author as it had during download time. As mentioned in section 4.5,
a file with an incremented version number could either be a copy or it could be a
previously downloaded version that has been updated independently. In order to see the
difference the field sent in the database table fileCopy are set as a file is copied or
received. Thus the files will be marked as a copy, while a file without the sent field set
will be an unique file. The application users will see the differences because the author
will be changed as a file is updated locally. For files that are not the first version, the file
list in the GUI will show the version number in square brackets (see Figure 5-2).
Similarly to above, it is not allowed to download a file if the file version, name and
author is the same.

For remote files, the sent field will not be accessible to others. This is to avoid additional
messages to be issued as the sent field changes after a download.

 133

Removing a file is carried out by pushing the “Remove file” button and running the
corresponding doBtnDelFile(). Here the file and related information are deleted from
the database and a notification message on the removal is issued.

 134

6 Testing and discussion

In this chapter we will discuss the results from the project. In 6.1 we describe the results
from testing the system and in 6.2 we describe the demonstrator’s limitations. In 6.3 our
research contribution is summarized. In 6.4 we comment on the thesis results both for the
model and the implementation, An important issue is how well the system scales as
discussed in 6.5. Finally in 6.6 we suggest improvements and extensions to the system.

6.1 Testing
Most of the development has been carried out between two instances of SVFs on the
same computer. Creating groups and joining them function well, also to withdraw a SVF
membership although it may take some time as remove messages are issued before the
pipe is taken down.

We have not taken any measures to separate groups with the same name, as it was
considered irrelevant to demonstate our model. However, should the software ever be
released, this must of course be accounted for.

Importing a file and removing a file is also working, with the exception of some
filenames with unusual characters like ’ which we did not have time to sort out. (We
experienced troubles with a file called “Beethoven’s symphony No. 9 (Scherzo)”) .

The other device sees the file through notifications well, but we may get trouble in
downloading files if the network connection to the rendezvous is lost for some reason,
also temporarily. The rendezvous we tested against was external, which means that the
Internet network connection from time to time could be temporarily unstable or slow to
establish. When this happens we usually get trouble during file transferal. We have found
that retrying later on and ensuring that the rendezvous connection usually is there, is the
best way of coping with file transferal failures.

During file versioning, the author is shown as a JXTA ID. We could also have converted
the ID to a peer’s nickname, which we think would have worked better. Thus, we have
added a field me in the peer table to differenciate between this device and others.
However, we have enough time to finish this change.

 135

Regarding versioning of the files, this is working well with the exception of repository
updates that today allow one file to update to another with the same name, version and
author. This should not happen, and is of importance to our model, but be still consider
the model to be a sufficient proof of concept.

During testing, we also discovered that our GUI is not optimal, as we think the file list-
box should have been extended to also include the different authors and locations. Today
we must select a file in order to see these details, as files with the same filename and
versions appear equal to the users otherwise.

During the testing of the secure login we experienced that this feature is not functioning
since it is possible to log on to a group also with another password than the one
requested. We have also tested Sun’s tutorial code in this matter receiving the same
result. There seem to be errors with the authentication toward the rendezvous as the
rendezvous never asks for a password confirmation. The group concept itself with unicast
and multicast is however functioning according to specifications.

The application is stopped by executing the close button in the upper right corner.
Sometimes the closing can be delayed, as the rendezvous need to be contacted for the
peer to be removed from all groups and services.

6.2 Limitations of the implementation
Besides the already mentioned weaknesses, our implementation is limited by the lack of
large scale tests and the lack of tests using a number of different operating systems and a
variety of devices with different resources available. Moreover, while we have
demonstrated how to use secure access to get into a group, security for the whole group
concept has not been considered.

Finally, but still crucial to the application, we have not received any user feedback on our
system nor carried out usability testing for the GUI.

 136

6.3 Research contribution
As described in related work in section 2.6, quite a few has previously offered solutions
for file exchange, but to our knowledge combining the following elements together is
new:

• Casual collaboration (through a simplified GUI to avoid a steep learning curve
and through an application that aims at being accessible in a wide range of
settings).

• Access to a secured repository containing files over a user-defined time period
without need of server access.

• A collection of files located differently appearing to the user as one unity.
• Document versioning detection as group users collaborate.

The most closely related applications usually focus on one or two of the elements that the
SVF contains, but not the combination of all three.

The GRAM pilot project is probably the project that is closest to ours and thus worth
mentioning in particular. GRAM is similar, but also far more elaborate in offering
resources amongst the participants. A difference is that the GRAM pilot is created for
software developers, and not for people without particular technical background who just
wants to share resources. Thus we would not call the GRAM pilot “casual” in its
approach, although otherwise the solution are much more elaborate than our model.

6.4 Discussion of results
We have divided the discussion of the results further into a discussion about the SVF
model itself in 6.4.1 and a discussion of the implementation in 6.4.2. At the end we have
also included a small discussion of the shortcomings of the JXTA as middleware in 6.4.3.

6.4.1 The SVF model
We have used our pilot as a proof of concept for our SVF model. The pilot testing has so
far been successful, although some testing remains, see section 6.2.

The tests we have carried out so far raises a few questions about the model we have used.
The tuplespace model was used as a template for our SVF model. Our main reason for
choosing the model was that resources were put into a “pool” which is shared by all

 137

participants. This approach is particular attractive also to our approach with many
distributed devices. However, the tuplespace model is also not concerned with who put
out a tuple into the tuplespace. As long as only the notifications are issued, this also
works well for our application. But we think that for file download, the SVF users would
like to know which device currently holds the different files, since some peers would be
more attractive than others to download from.

Had the network connection between the devices been optimal and all devices
resourceful it would probably not have been important from where the file was offered.
But as the networks functions today with varying bandwidth and device capacity, some
devices are more easily accessible than others when it comes to downloading files. This
could to some extent be accounted for if several devices hold the same file copies (see
6.6). But if not, the user may prefer to download a file later on if network connection is
poor or the device has little resources.

As a device leaves the network, we may also like to know which files are not available
any longer. We may carry out an unsuccessful search or ask around who had the file, but
we foresee that it would be easier to see which device(s) the file is located on and wait
until this device reconnects before starting a search.

Moreover, in spite of our choice of the tuplespace model for our application, the JXTA
middleware uses the publish-subscribe model for their group concept where a peer
subscribe to propagate messages as long as the peer is connected to the group. Thus our
SVF implementation is also under influence of the publish-subscribe model as long as we
employ JXTA as our middleware. In this way our SVF application and not the
middleware becomes responsible for finding a solution to message loss for devices that
are removed ad-hoc. The mechanism we employed is the passing of new and update
messages as a peer joins a group. Thus, we may claim that the SVF implementation also
uses the publish-subscribe model. Had we employed another middleware than JXTA, the
publish-subscribe model would maybe not have been used.

Another issue is the file update and collaboration around it. As the model is today, all
files have to be downloaded before they are read or written to. By this organization
updating in this way, we get a very simple but also functional model with few messages
going around in the network. But the model, especially combined with a common
repository where all files are kept and where different groups have their own copy of a

 138

file, is not optimal with respect to disk space. However, for most modern computers disk
space is not critical, while network capacity and the overhead working time to organize
other more elaborate models could be bottlenecks. This conclusion may not hold for
small portable devices where disk space can be critical.

6.4.2 The implementation
As mentioned in the previous subsection, the pilot implementation has worked well
during the tests that we have carried out. However, we have not strained the
implementation by running it over narrow banded networks or tested it large scale. Thus,
so far the notification messages seem to work well, although we suspect that messages
could be dropped especially during file download. To some extent it could be accounted
for by logging off and on to the group, but we would maybe need additional mechanisms
in order to account for lost messages especially if a group grows large both in files and
members.

A critical issue in the use of the SVF pilot today is the JXTA Discovery Service
harvesting too many advertisements. The peer advertisements in the pilot could be
excluded, as it has no function beside the nice ability to know whether your collaboration
partners are online. But the number of groups on the JXTA network may grow too large
for the system to handle properly, especially if a device is connected to the Internet over
longer periods of time and thus has well established routes in the network. To some
extent we have accounted for this by filtering the group advertisements based on the
XML tag <Desc> (description) which is set specifically for all group instances generated
in the SVF application. This approach works as long as the SVF application has not been
put into large scale use.

To also filter away SVF groups that we are not interested in, we could carry out
publishing of group advertisements only issued specifically to devices we would like to
invite into the group. Thus other devices could avoid the burden of additional incoming
group advertisements for which they are not invited anyway. For peers joining later on,
we could send them the advertisement in the same way.

This approach raises issues about peer discovery in a similar way as do group discovery
for our pilot. As the approach would help filtering the number of incoming group
advertisements, we now have an issue with filtering peers instead. A solution could be

 139

not to make a peer visible to all users in the network, but only issue peer advertisements
to the peers that you would like to collaborate with. However, at some stage new peers
would have to be added to a device’s peer list in order to know where to send group
advertisements. Thus it will be hard to avoid the Peer Discovery Service to be collecting
peers we are not interested in collaborating with as well. The solutions would maybe be
to keep an address book, and issue our peer ID by another media like e-mail to
collaborating partners. Then we could perhaps limit the Peer Discovery Service
sufficiently. We could also use a catalogue service analogue to the Domain Name
Service, but then we are back to relying on servers or routing peer messages in the
network.

The group security is a shortcoming of the application. Although we in section 1.3
defined it outside of the scope of our first pilot, in some situations clearly a secure group
concept would be vital to application success. Although unsuccessful, we have
implemented a basic password routine to demonstrate secure group logon, but we have
not secured the passwords available on each peer in any way. Moreover, there are also
some shortcomings of the JXTA security concept which lacks a security regime for
propagate messages and advertisements (see subsection 6.4.3). In addition, there is the
issue of securing the many groups with different means of authentication. In the pilot a
group is authenticated by sharing common passwords, one for each group which would
be too much for one user to remember as the numbers of groups grow large. An
alternative could be to use asymmetric cryptography with digital signatures where all
group advertisements could be joined by invitations which were signed by the person
inviting to ensure that the message had not been tampered with. In order to login to the
group, each participant could use their own private key. Thus the number of tokens to log
on to a group could be reduced to a private key only. JXTA offers the possibilities to add
asymmetric cryptography including digital signatures to messages and unicast pipes.

Port access is a potential bottleneck to the SVF application. While a large file is
downloaded, the SVF today will not be able to catch notifications at the same time. Using
sockets to split the traffic between two ports could provide us with more access capacity,
but still the receiving port would be busy with the incoming file instead of listening to
notifications.

In our application we use the same pipe ID for all unicast pipes. One could foresee that if
several pairs of peers in a large group initiated download simultaneously, there could be a

 140

cross-connection between the peer couples as they all connected to the common
rendezvous peer. However, so far this has not been confirmed during testing. To avoid
this, we could send a newly generated pipe ID together with the notification as we
request a file. Using a separate pipe advertisement should be avoided as it could lead to
communication problems as described in 5.3.6.

Since JXTA offers no secure propagate pipes, we have not implemented secure unicast
channels. A secure unicast channel is similar to an ordinary unicast, but requires all files
to be divided into chunks of maximum 64 kb before transmission.

Today there are no application mechanisms that handle the situation where two different
groups have the same name. Since this is a matter of getting hold of the right
advertisement ID, the ID or another type of identification must be added to the list box in
the GUI to make the group appear unique to the user and to the application. As this is not
considered important for demonstrator purposes, we have omitted the feature in the pilot
implementation.

Finally, the GUI, the many listeners provided by JXTA and the juggling of the pipes
altogether requires many threads to be used. All these threads make the application quite
resource intensive which makes it difficult to run several instances on the same PC, let
alone to run it as it is today on a smartphone or another device with little resources. To
encounter for the situation, JXTA promise the use of minimal edge peers which can send
and receive messages, but does not cache advertisements or route messages.

6.4.3 Shortcomings of the JXTA
Routing and discovery issues as peers move around are still a large obstacle in P2P
networks. Even searching for a particular peer or group using the JXTA ID will not
necessarily provide results especially if the devices are separated wide apart. The
rendezvous peers connected to the devices may not have a direct route to each other, and
as queries needs to be issued and responded to, the search expires before reaching the
other party. While routing in JXTA seems to be well considered and carefully planned,
we believe routing and discovery for P2P networks for a particular peer moving around
on the Internet deliver far poorer quality than for stationary devices today.

 141

Also, in 6.4.2 we mentioned the need for reducing the amount of advertisements to an
acceptable level, which is only partly supported today by the JXTA. Today, it may take
some time for Internet connected JXTA devices to find a route to a new device that is
being connected. But after a few days or weeks, the route is found, and there is a large
response of unknown groups and peers fetched by the Peer Discovery Service if not
filtered. Even limiting the groups to only SVF applications as we have done could be a
problem if the SVF were put into large scale use.

Moreover, as mentioned in 6.4.2, JXTA provides a security regime, but the regime itself
comes with some drawbacks with respect to our SVF model as we need propagate
messages and advertisements to be encrypted and connected to a security model as well.
Without providing security for these types of communications, we will not have a fully
secure group concept. As of today, we would have to implement this security ourselves.
Regarding our problems in making our security solution work, we have not had time to
investigate the errors thoroughly.

Searching for pipes through pipe advertisement does not function well in JXTA as
mentioned in 5.3.6 and 6.4.2. Too many different pipe IDs could be generated by
different devices which will be an obstacle in choosing a common pipe ID for
communication. Thus pipe IDs must be distributed along with the group advertisement or
by passing messages directly by means of pipes whose ID already has been distributed.

6.5 Scalability
Many of the issues we have mentioned 6.4 also affect scalability. These are the
difficulties of P2P routing over the Internet, the need for additional filtering of incoming
advertisements, the number of file copies generated taking up space as they are copied
one time per group and the lack of access to more than one pipe at the time. In addition
we do not know how traffic will grow in the network as the number of SVF peers grow
large. But we do know that JXTA functions fairly well at least where distances are not
too large.

If the groups become large, there is a risk that there could be a lot of messages in the
network if files are updated intensively. Also, messages could be dropped, which is a
serious obstacle.

 142

Also, we have chosen Java as our platform with scalability in mind. Java offers wide
platform accessibility from smaller and portable devices to servers and resourceful
computers. It is also available on a wide range of operating systems which is beneficial.
The SVF application itself today runs on a very limited number of these platforms, thus
the application would need adjustments in order to function well. Of particular interest
would be to modify the code to fit some of the smartphone devices running operating
systems like Symbian. As JXTA offers a special minimal edge peer connection for these
devices without routing or caching, likely the pilot would have to be modified quite a lot
to fit, as databases could then not be used either. Thus storage need on such devices
would have to be considered carefully.

6.6 Future work
Foremost, a reliable security concept and an advertisement limitation should be carried
out for our SVF implementation as described in subsection 6.4.2. Along with the
limitations, we could also carry out peer group invitations through use of advertisements
issued only to invited peers.

Depending on how the SVF behaves in a large scale environment, we would maybe need
to implement a more failure proof system for notification messages if these are lost for
some reason.

Regarding file versioning detection, as mentioned in the testing in 6.1 we would like to
change the GUI file list-box not only to show file names and versions, but also to show
other features like on which peer the file resides and the file author as well. This would
be helpful in finding the specific file, without having to select many different files for
viewing.

We would also like to extend the versioning detection carried out in our pilot by a
graphical representation showing the branching of the file versioning tree. Moreover, we
could have marked the graphical representation by file location and version number.
Also, allowing the users themselves to mark two files in the repository as versions of one
another could have been useful. This should be allowed even though the files had
different names.

 143

There are times when creating a group could be too cumbersome. For example, if only
one file needs to be transferred, and thereafter we wish to withdraw the SVF
membership. For these instances it would have been possible only to issue files on the
network without any need to establish a SVF. Technically our application allows for it, as
one could transfer files without being connected to a JXTA subgroup as well. All devices
log on to the base netPeerGroup, which could also be used to transfer files directly. We
would not have any security here, but for a casual transferral of one file only, it could
represent an attractive feature.

If more than one device has a file copy which is requested for download, we would also
like to add mechanisms for choosing the most resourceful device with the best
connection. This could have been carried out by letting the less resourceful devices be
waiting a little bit before they responded to the file request. Resourceful devices could
respond immediately. Alternatively, a swarming protocol as described in 2.3.1 could be
useful especially in class learning environments to avoid the problem of “hearding”,
where a number of peers request a popular file all at the same time. Relying on multicast
would be the most effective, but a swarming protocol could also be used to improve the
spreading of large files quickly if all requests do not come exactly at the same time.

In our pilot we did not implement search functionality neither for files, peers nor groups
although one could foresee it as useful with the growth of a larger SVF network. Search
of peers and groups would be straight forward using the Peer Discovery Service, while
file search could respond by finding the file in the database and selecting the file entry in
the GUI. A device could search within the currently available SVF repository for a file or
a particular version of a file. An extension of the search could be to store the search
request in the database if it could not be answered by the member devices currently
logged on to the SVF. Later on, when other SVF members logged in, the search could be
repeated to see if any of these devices had the file. For some files request, it would be
beneficial to extend the search period in this manner, while for others, the file would
loose interest if not downloaded immediately.

During the opening of a file by a third party application, we could have connected our
application to the application chooser available from the operating system instead of just
adding a few applications as we have done for our pilot model. Also, during download
we could have given the user more feedback on how long time the download would take.

 144

Moreover, today the system only handles files as resource exchange. Offering other
resources for exchange as well could be of interest. Of course, this and the other
suggestions must be considered also from a simplicity point of view. If the application
becomes extensive, the threshold for use will be higher as well. By implementing all
functionality described in this section, the abilities of the system could change
considerably, which also should be taken into account.

 145

 146

7 Conclusion

In this thesis we have considered different models for casual collaboration based on the
P2P technology. We have employed the tuplespace model to build a tool for casual
collaboration of resources called the Shared Virtual Folders (SVF). Thus a number of
peers share resources from a common virtual folder. The folder is a repository where
each peer offers a part of their local harddisk for sharing. The repository is virtual since it
is made up of many harddisks, while the users perceive it as one unity. In order to ensure
resource handling through collaboration, versioning detection within the folder is part of
the model.

Thereafter, we implemented a pilot application based on the SVF model where resources
were implemented as file exchange only due to time constraints. The application appears
to be well functioning, while we have not yet tested it in a larger scale. While
improvements could be made to our pilot, our model for SVF seems viable.

We think that our approach to resource sharing through SVFs contains some valuable
contributions. While many solutions for file exchange exist, our SVF combines the
elements of 1) casual collaboration through a simplified GUI to avoid a steep learning
curve and through an application that aims at being accessible in a wide range of settings,
2) access to a secured repository containing files over a user-defined time period without
need of server access, 3) a collection of files located differently appearing to the user as
one unity and 4) document versioning detection as group users collaborate. Futhermore,
despite limitations, we have gained some insight in casual collaboration using the P2P
approach through our implementation.

 147

 148

8 References

1. Borch, N. and L.K. Vognlid. Searching in variably connected P2P networks. in

International MultiConference in Computer Science & Computer Engineering
2004. Las Vegas, Nevada.

2. Androutsellis-Theotokis, S. and D. Spinellis, A survey of peer-to-peer content
distribution technologies. ACM Computing Surveys, 2004. 36(4): p. 335-371.

3. Denning, P., et al., Computing as a discipline. Communications of the ACM,
1989. 32(1): p. 9-23.

4. NRC, Academic careers for experimental computer scientisks and engineers.
1994, National Research Council, National Academy Press. p. 17-20.

5. NationalResearchCouncil, Academic careers for experimental computer scientists
and engineers., in National Research Council. 1994, National Academy Press:
Washington, DC. p. 17-20.

6. Schoder, D. and K. Fischbach, Peer-to-peer prospects. Communications of the
ACM, 2003. 46(2): p. 27-29.

7. Barkai, D., Peer-to-peer computing. 2001, Hillsboro, OR: Intel Press, Intel
Coorporation

8. Schoder, D., K. Fischbach, and C. Schmitt, Core concepts in peer-to-peer
networking, in Peer-to-peer computing : the evolution of a disruptive technology
R. Subramanian and B.D. Goodman, Editors. 2005, Idea Group Pub: Hershey, PA

9. Groove. Groove Virtual Office. 2006 [cited 2006 01.03]; Available from:
http://groove.net.

10. Milojicic, D.S., Kalogeraki, V.,Lukose, R.,Nagaraja, K.,Pruyne, J.,Richard,
B.,Rollins, S.,Xu, Z. Peer-to-peer computing. 2002 [cited; Available from:
http://citeseer.ist.psu.edu/cache/papers/cs/25966/http:zSzzSzwww.hpl.hp.comzSzt
echreportszSz2002zSzHPL-2002-57.pdf/milojicic02peertopeer.pdf.

11. Napster. Napster. 2007 [cited 10.04.2007]; Available from:
http://www.napster.com/.

12. Clarke, I., Sandberg, O., Wiley, B., Hong, T. W. Freenet: A Distributed
Anonymous Information Storage and Retrieval System in Proc. of the ICSI
Workshop on Design Issues in Anonymity and Unobservability 2000. Berkeley,
CA.

13. Cohen, B. Incentives Build Robustness in BitTorrent. in 1st Workshop on
Economics of Peer-to-Peer Systems. 2003. Berkeley, CA.

14. Kubiatowicz, J., Bindel, D.,Chen, Y.,Czerwinski, S.,Eaton, P.,Geels,
D.,Gummadi, R.,Rhea, S.,Weatherspoon, H.,Weimer, W.,Wells, C.,Zhao, B.
OceanStore: An Architecture for Global-Scale Persistent Storage. in Ninth
international Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2000). 2000. Cambridge, MA.

15. Anderson, D.P., Cobb, J.,Korpela, E.,Lebofsky, M.,Werthimer, D, SETI@home:
An experiment in public-resource computing. Communications of the ACM,
2002. 45(11): p. 56-61.

 149

http://groove.net/
http://citeseer.ist.psu.edu/cache/papers/cs/25966/http:zSzzSzwww.hpl.hp.comzSztechreportszSz2002zSzHPL-2002-57.pdf/milojicic02peertopeer.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/25966/http:zSzzSzwww.hpl.hp.comzSztechreportszSz2002zSzHPL-2002-57.pdf/milojicic02peertopeer.pdf
http://www.napster.com/

16. fightAIDS@home. 2006 [cited 01.03.2006]; Available from:
http://fightaidsathome.scripps.edu/.

17. Cohen, E., Shenker, S. Replication Strategies in Unstructured Peer-to-Peer
Networks. in In Proceedings of ACM SIGCOMM. 2002. Pittsburgh, PA.

18. Adar, E. and B.A. Hubermann. Free riding on Gnutella. First Monday 2000
[cited; Available from:
http://www.firstmonday.dk/issues/issue5_10/adar/index.html.

19. Lui, S.M., Lang K R, and S.H. Kwok. Participation incentive mechanisms in
peer-to-peer subscription systems. in 35th Hawaii international Conference on
System Sciences. 2002. Hawaii.

20. Johanson, B. and A. Fox, Extending tuplespaces for coordination in interactive
workspaces. The Journal of Systems and Software, 2004. 69: p. 243-266.

21. Marshall, D. Remote Procedure Call. 1999 [cited 23.03.07]; Available from:
http://www.cs.cf.ac.uk/Dave/C/node33.html.

22. Alonso, G., et al., Web services. Concepts, architectures and applications., ed. M.
Carey and S. Ceri. 2004, Berlin Heidelberg, Germany: Springer.

23. Tanenbaum, A.S., Steen, M. v., Distributed systems: principles and paradigms.
2002, Upper Saddle River, N.J.: Prentice Hall. XXII, 803 s.

24. Wikipedia. Message -oriented middleware. 2005 [cited 27.03.07]; Available
from: http://en.wikipedia.org/wiki/Message_Oriented_Middleware.

25. Terpstra, W.W., Behnel, S., Fiege, L., Zeidler, A., Buchmann, A.P. A Peer-
to_peer Approach to Content-Based Publish/Subscribe. in Second Int workshop
on Distributed Event-Based Systems. 2003. San Diego, CA, USA.

26. Oki, B., Pfluegl, M.,Siegel, A.,Skeen, D. The Information Bus – an Architecture
for Extensible Distributed Systems. in 14th ACM Symposium on Operating System
Principles. 1993. Asheville, NC, USA.

27. Hansen, K. and C. Damm. Building flexible, distributed collaboration tools using
type-based publish/subscribe — the Distributed Knight case. in IASTED
International Conference on Software Engineering. 2004. Innsbruck, Austria.

28. Muthusamy, V., Jacobsen, H-A. Small-Scale Peer-to-Peer Publish/Subscribe. in
Second Workshop on Peer-to-Peer Knowledge Management. 2005. La Jolla, San
Diego, California, USA

29. Carriero, N., Gelernter, D., Linda in context. Communications of the ACM, 1989.
32(4): p. 444-458.

30. Johanson, B., A. Fox, and T. Winograd, The interactive workspaces project:
Experiences with ubiquitous computing rooms. Pervasive computing, 2002(April-
June): p. 71-78.

31. Perich, F.J., A., Finin, T., Yesha, Y. , On Data Management in Pervasive
Computing Environments. IEEE Transactions on Knowledge and Data
Engineering, 2004. 16(5): p. 621-634.

32. Xu, B. and O. Wolfson. Data management in mobile peer-to-peer networks. in
Databases, information systems, and peer-to-peer computing (DBISP2P). 2004.
Toronto, Canada.

33. Stutzbach, D., D. Zappala, and R. Rejaie. The Scalability of Swarming Peer-to-
Peer Content Delivery in Networking 2005. 2005. Waterloo Ontario Canada.

34. Wilson, B.J., JXTA. 2002, USA: New Riders Publishing.

 150

http://fightaidsathome.scripps.edu/
http://www.firstmonday.dk/issues/issue5_10/adar/index.html
http://www.cs.cf.ac.uk/Dave/C/node33.html
http://en.wikipedia.org/wiki/Message_Oriented_Middleware

35. Friday, A., Roman, M.,Becker, C.,Al-Muhtadi, J., Guidelines and open issues in
systems support for Ubicomp: reflections on UbiSys 2003 and 2004. Personal
Ubiquitous Computing, 2006. 10(1): p. 1-3.

36. Sousa, J.P. and D. Garlan. Aura: An Architectual Framework for User Mobility in
Ubiquitous computing Environments. in Software Architecture: System Design,
Development and Maintenance (Proceedings of the 3rd Working IEEE/IFIP
Conference on Software Architecture). 2002. Kalsruhe, Germany: Kluwer
Academic Publishers.

37. Verma, D.C., Using peer-to-peer systems for data management, in Peer-to-peer
computing : the evolution of a disruptive technology R. Subramanian and B.D.
Goodman, Editors. 2005, Idea Group Pub: Hershey, PA

38. Borch, N.T. Improving semantic routing efficiency. in Second Annual
International Conference on Mobile and Ubiquitous Systems: Networking and
Services. 2005. San Diego, California.

39. Elmasri, R.A. and S. Navathe, Fundamentals of database systems. 2000, Reading,
MA, USA: Addison-Wesley.

40. Kubiatowicz, J., Extracting guarantees from chaos. Communications of the
ACM, 2003. 46(2): p. 33-38.

41. Stoica, I., Morris, R.,Liben-Nowell, D.,Karger, D.R.,Kaashoek, M.F.,Dabek,
F.,Balakrishnan, H., Chord: A scalable peer-to-peer lookup service for internet
applications. . IEEE/ACM Transactions on networking, 2003. 11(1): p. 17-32.

42. Ferreira, R.A., et al. Search with Probabilistic Guarantees in Unstructured Peer-
to-Peer Networks. in Proceedings of IEEE P2P'05. 2005. Konstanz, Germany.

43. Conradi, R. and B. Westfechtel, Version Models for Software Configuration
Management. ACM Computing Surveys, 1998. 30(2): p. 232 - 282

44. Collins-Sussman, B., B.W. Fitzpatrick, and C.M. Pilato, Version control with
subversion. 2004, O'Reilly Media: Stanford, California

45. Takata, K. and J. Ma. GRAM - A P2P System of Group Revision Assistance
Management. in 18th International Conference on Advanced Information
Networking and Applications (AINA). . 2004. Fukuoka, Japan: IEEE.

46. Wikipedia. Revision control. 2006 [cited 26.03.07]; Available from:
http://en.wikipedia.org/wiki/Revision_control.

47. Emmerich, W., Enigneering Distributed Objects. 2000, Chichester, West Sussex,
England: John Wiley & Sons Ltd.

48. Ding, C.H., Nutanong, S., Buyya, R., Peer-to-Peer Networks for Content Sharing,
in Peer-to-Peer Computing: The Evolution of a Disruptive Technology, R.
Subramanian, Editor. 2005, Idea Group Publishing: Hershey, PA, USA.

49. Joseph, S. Semantically routing queries in peer-to-peer networks. in Proceedings
of the International Workshop on Peer-to-Peer Computing 2002. Pisa, Italiy.

50. Wikipedia. Bonjour. 2006 [cited 09.02.2006]; Available from:
http://en.wikipedia.org/wiki/Bonjour_%28protocol%29.

51. Apple. Bonjour. 2006 [cited 09.03.2006]; Available from:
http://images.apple.com/macosx/pdf/MacOSX_Bonjour_TB.pdf

52. Asterisk. 2006 [cited 09.02.2006]; Available from: www.asterisk.org.

 151

http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Bonjour_%28protocol%29
http://images.apple.com/macosx/pdf/MacOSX_Bonjour_TB.pdf
http://www.asterisk.org/

53. Microsoft. Universal Plug and Play in Windows XP. 2001 [cited 09.02.2006];
Available from:
http://www.microsoft.com/technet/prodtechnol/winxppro/evaluate/upnpxp.mspx.

54. UPnPForum. Software Development Kits (SDKs). 2007 [cited 27.03.2007];
Available from: http://www.upnp.org/resources/sdks.asp.

55. JXTA. JXTA v 2.3. x:Java Programmer’s guide. 2006 [cited; Available from:
http://www.jxta.org/docs/JxtaProgGuide_v2.3.pdf.

56. Borch, N. Social peer-to-peer for social people. in International conference on
Internet technologies & applications. 2005. Wrexham, United Kingdom.

57. Borch, N. The Socialized.Net. 2005 [cited 27.03.2007]; Available from:
http://www.socialized.net/files.html.

58. Wikipedia. Shared resource. 2007 [cited 27.03.07]; Available from:
http://en.wikipedia.org/wiki/Shared_file_access.

59. Wikipedia. Samba (software). 2007 [cited 27.03.07]; Available from:
http://en.wikipedia.org/wiki/Samba_%28software%29.

60. J_K9@Linux. Proposing An Open Source Groove Alternative. 2007 [cited
28.03.07]; Available from: http://wolphination.com/linux/2007/02/13/proposing-
an-open-source-groove-alternative/.

61. Wikipedia. Microsoft Office Groove. 2007 [cited 28.03.07]; Available from:
http://en.wikipedia.org/wiki/Microsoft_Office_Groove.

62. iFolder. iFolder. 2006 [cited 27.03.07]; Available from: http://www.ifolder.com.
63. Wikipedia. Google Docs&Spreadsheets. 2007 [cited 02.06.07]; Available from:

http://en.wikipedia.org/wiki/Google_Docs_&_Spreadsheets.
64. JXTA. myJXTA User Guide. 2006 [cited 27.03.07]; Available from:

http://instantp2p.jxta.org/Userguide.html.
65. JXTA. The JXTA Content Manager Service. 2006 [cited 27.03.07]; Available

from: http://cms.jxta.org/cmswhitepaper.html.
66. JXTA. myJXTA2 project home. 2006 [cited 27.03.07]; Available from:

http://myjxta2.jxta.org/.
67. Stone, E., Czerniak, T., Ryan, C., McAdoo, R. Peer to Peer Routing. [cited

28.03.07]; Available from:
http://ntrg.cs.tcd.ie/undergrad/4ba2.05/group6/index.html.

68. Wikipedia. Gnutella. 2007 [cited 28.03.07; Available from:
http://en.wikipedia.org/wiki/Gnutella.

69. UPnPForum. UPnP. 2007 [cited 27.03.2007]; Available from:
http://www.upnp.org/about/default.asp.

70. Arlov, L., GUI-guiden. 1996, Oslo, Norway. 42-53.
71. Janert, P. Embedded databases. 2004 [cited 31.03.07]; Available from:

http://www.perl.com/pub/a/2004/09/12/embedded.html.
72. Simon, J. Rethinking Swing Threading. 2003 [cited 25.05.07]; Available from:

http://today.java.net/pub/a/today/2003/10/24/swing.html?page=1.
73. Gradecki, J.D., Mastering JXTA. Building Peer-toPeer Applications. 2002,

Indianapolis, Indiana, USA: Wiley Publishing, Inc.
74. ISO/IEC, Information Technology - Open Systems Interconnection - Remote

Procedure Call (RPC). 1996, 11578:1996. ISO (International Organization for
Standardization). .

 152

http://www.microsoft.com/technet/prodtechnol/winxppro/evaluate/upnpxp.mspx
http://www.upnp.org/resources/sdks.asp
http://www.jxta.org/docs/JxtaProgGuide_v2.3.pdf
http://www.socialized.net/files.html
http://en.wikipedia.org/wiki/Shared_file_access
http://en.wikipedia.org/wiki/Samba_%28software%29
http://wolphination.com/linux/2007/02/13/proposing-an-open-source-groove-alternative/
http://wolphination.com/linux/2007/02/13/proposing-an-open-source-groove-alternative/
http://en.wikipedia.org/wiki/Microsoft_Office_Groove
http://www.ifolder.com/
http://en.wikipedia.org/wiki/Google_Docs_&_Spreadsheets
http://instantp2p.jxta.org/Userguide.html
http://cms.jxta.org/cmswhitepaper.html
http://myjxta2.jxta.org/
http://ntrg.cs.tcd.ie/undergrad/4ba2.05/group6/index.html
http://en.wikipedia.org/wiki/Gnutella
http://www.upnp.org/about/default.asp
http://www.perl.com/pub/a/2004/09/12/embedded.html
http://today.java.net/pub/a/today/2003/10/24/swing.html?page=1

75. JXTA. MiniJxta Sample Application. 2005 [cited 260507]; Available from:
http://people.jxta.org/tra/minijxta/MiniJxta.html.

76. Oaks, S., B. Traversat, and L. Gong, JXTA in a nutshell. 2002, Sebastopol, CA,
USA: O'Reilly & Associates, Inc.

77. Freebyte. Freebyte's Guide to Free Databases 2007 [cited 310307]; Available
from: http://www.freebyte.com/programming/database/#opensourcedatabases.

 153

http://people.jxta.org/tra/minijxta/MiniJxta.html
http://www.freebyte.com/programming/database/#opensourcedatabases

 154

9 Appendix A: Embedded databases

Evaluation of embedded databases. Some databases have been left out because of lack of information about them or because they
clearly was not freely available. This guide has been carried out based on the guide of Freebyte [77] in addition to database
homspages. The footprint is not included in the table.

*: Embedded? X = yes **: Open source? X = yes ***: Embedded routines for ping, FTP, telnet, SMTP, POP3, HTTP
Database * ** Language Platform SQL type URL Maintenance Cost

/licensing
Access

Embedded
MySQL

X X ANSI C Win95/Win98/NT, Linux, Solaris,
FreeBSD, AIX, SunOS, etc.
drivers available.

SQL www.mysql.com/
products/embed
ded/

MySQL AB GPL Native C API, JDBC,
ODBC, Python,Perl,
PHP, .NET, Ruby, VB

PostgresSQL X X C, C++, or Java Runs on various flavours of unix,
like Linux, FreeBSD. Clients
available for OS/2 and Win32.

SQL www.postgresql.
org/

Yes, many BSD ODBC and JDBC drivers
available.

Firebird X X C and C++ 32-bit Windows, Linux (i586 and
higher), Solaris (Sparc and
Intel), HP-UX (i386), FreeBSD
and MacOS X. Some Firebird
1.0 builds are also available for
WinCE and AIX.

Modified
ANSI
SQL:99

www.firebirdsql.
org/

Firebird
foundation

Initial
Developer's
PUBLIC
LICENSE

native/API, dbExpress
drivers, ODBC, OLEDB,
.Net provider, JDBC
native type 4 driver,
Python module, PHP,
Perl, etc.

SQLite X X C Linux-x86, Windows. Binaries:
Linux-x86, Windows, and Mac
OS-X ppc and x86.

SQL-92 www.sqlite.org/ Maintained by
SQLite. Active
contributors.

Public
domain

C/C++, Python
applications and more

Gadfly X X Python All Pyhon supported OS. ODBC
2.0 SQL

gadfly.sourcefor
ge.net/sql.html

No ongoing
support

Freely use
and copy it
as long as
you don't
change or
remove the
copyright

Python

GNU SQL X X C Unix Supports
SQL89
and
some
extensio
ns from

directory.fsf.org/
gnusql.html

Freeware GNU
General
Public
License,
Version 2

C/Unix

 155

SQL-92.
CQL++ X X C++ Based on KDE. Windows NT,

Windows 95, Windows 3.1 or
Windows for Workgroups(client
only), OS/2, Sun O/S, Sun
Solaris, HP-UX, SCO UNIX,
Linux, or any UNIX or other
environment with a compatible
C++ compiler.

SQL www.cql.com/ Machine
Independent
Software
Corporation

Free, GPL
license.

ODBC

SolidDB
Embedded-
Engine

X ? Built on mySQL Linux, Windows, Solaris, Unix,
Sun Netra HA Suite, and
VxWorks.

SQL www.solidtech.c
om

Solid Commercial
ly available

ODBC, JDBC

Empress RDBMS X ? C API, rest
uncertain

Solaris, SUN O/S, HP-UX, AIX,
Tru64 UNIX (Compaq), IRIX,
SCO, Linux, Red Hat,
SUSE, FreeBSD, etc, WIN NT,
WIN 2000, WIN XP, QNX 4 & 6,
Lynx O/S, Bluecat, RTLinux,
Linux PPC, Lynx O/S

SQL www.empress.c
om/

Empress
Software Inc

Empress
licence

C, JAVA, Microsoft
Excel, Visual Basic and
HTML.

RDM Embedded X ? C and C++ OS running C/C++, perhaps
more

XML,
SQL

www.birdstep.co
m/start/

Birdstep Birdstep’s
licence

XML interface.
Interfaces for Java,
C/C++, and SQL. ODBC

c-treeSQL Server X ? C QNX,LynxOS,Windows, Mac
OS, HP-UX, Solaris.

SQL-92,
ISAM

www.faircom.co
m

Faircom Faircom
licence
Commercial
ly available

Embedded SQL,
Interactive SQL, JDBC,
and ODBC). C and C++
interfaces and VCL/CLX
components

Integra4 RDBMS X ? C/C++ ? SQL-92 www.co-
soft.com/

Cosoft India
Ltd

Cosoft India
licence

ODBC, C, C++ or Java

H2 database
engine

X X Java. H2 is built
from scratch to
overcome some
limitations of
Hypersonic SQL
/ HSQLDB.

Java enabled platforms. Can
also be compiled to native code
using GCJ.

SQL www.h2databas
e.com/html/fram
e.html

H2 group modified
version of
the MPL 1.1
available at
www.mozill
a.org/MPL

JDBC and (partial)
ODBC API; Web Client
application

HSQLDB/
Hypersonic SQL

X X Java Java enabled platforms. SQL www.hsqldb.org/ Hypersonic
SQL Group.

Hypersonic
SQL Group
licence

embedded (into Java
applications)

One$DB X X Java One$DB can run on any
operating system for which the
JVM (Java Virtual Machine) is
available.

SQL:99 www.daffodildb.
com/

Daffodil DB LGPL
license

ODBC, JDBC 3.0

MS SQL server
2005 Express
Edition

X N Windows Windows SQL www.microsoft.c
om/sql/editions/
express/default.

Microsoft Free to
download,
free to

ODBC, JDBC

 156

http://www.solidtech.com/products/relationaldatabasemanagementsoftware/solidDB.asp
http://www.solidtech.com/products/relationaldatabasemanagementsoftware/solidDB.asp
http://www.solidtech.com/products/relationaldatabasemanagementsoftware/soliddbforvxworks.asp

mspx redistribute,
IBM Cloudscape X X Java

Java (all platforms), C (ODBC,
X/Open CLI) on Windows, PHP
(cross-platform).

SQL-92
and
partial
SQL:199
9 and
SQL:200
3

www-
306.ibm.com/sof
tware/data/cloud
scape/

IBM Zero-cost
licensing,
for
redistributio
n or
department
al use.

JDBC 3.0 compliant
ODBC, X/Open CLI

FlashFiler X X Delphi/Kylix(Pas
cal)

Different versions of Windows SQL sourceforge.net/
projects/tpflashfil
er/

Maintained by
a team of
individuals.

Mozilla
Public
License 1.1
(MPL 1.1)

Borland Delphi and C++
builder

DiamondBase ? ? C++ ? ? www.csse.mona
sh.edu.au/~darr
enp/diamondbas
e.html

Maintained by
individuals.
Very little info
available

Free non
commercial
use, and is
negotiable
for
commercial
use.

?

DataReel *** X C++
development kit HPUX, MSDOS, RedHat Linux,

Solaris, Windows

C++
routines

www.datareel.co
m/

DataReel
Software
Development

GNU
Lesser
General
Public
License
(LGPL)

C++ routines

Oracle Berkeley
DB

X X Java, XML.
Bindings C,
[C++]], Java,
Perl, Python, Tcl,
Smalltalk and
more

Oracle Berkeley DB is a library
that links directly into the
application.

 Linking
routines

www.oracle.com
/database/berkel
ey-db/index.html

Oracle Dual
license

Linking routines,
Java, XML

 157

http://www-306.ibm.com/software/data/cloudscape/
http://www-306.ibm.com/software/data/cloudscape/
http://www-306.ibm.com/software/data/cloudscape/
http://www-306.ibm.com/software/data/cloudscape/

158

10 Appendix B: Group and service advertisement
examples

This appendix consists of samples of a group and a service advertisement. The group
advertisement is listed first. The <GID> tag represents the group ID and the <MCID> is
the Module Class ID which is unique and connects the peergroup advertisement with the
module implementation advertisement. From the peergroup advertisement we see that the
name is “TestGroup” and under the <login> tag are the login name and the encrypted
password stored.

Both the group advertisement and the connected module implementation advertisement
are published at the same time. The <Parm> elements which is found in both
advertisements contains arbitrary parameters that are interpreted by each implementation.
The <Svc> tags, also found in both advertisements, are elements that describe the
association between a group service denoted by its MCID, and arbitrary parameters
encapsulated in a <Parm> element.

In the module implementation advertisement, under the first <Svc> tag, the membership
implementation is announced.

<?xml version="1.0"?>
<!DOCTYPE jxta:PGA>
<jxta:PGA xmlns:jxta="http://jxta.org">
 <GID>
 urn:jxta:uuid-4D6172676572696E204272756E6F202002
 </GID>
 <MSID>
 urn:jxta:uuid- DEADBEEFDEAFBABAFEEDBABE000000010406
 </MSID>
 <Name>
 TestGroup
 </Name>
 <Desc>
 Peer group using Password Authentication
 </Desc>
 <SVC>
 <MCID>
 urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000505
 </MSID>
 <Parm>
 <login>
 Peer1:FHZR
 </login>
 </Parm>
 </SVC>
</jxta:PGA>

Figure 10-1. The group advertisement

 159

<?xml version="1.0"?>
<!DOCTYPE jxta:MIA>
<jxta:MIA xmlns:jxta="http://jxta.org">
 <MSID>
 urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000010406
 </MSID>
 <Desc>
 General Purpose Peer Group Implementation
 </Desc>
 <Comp>
 <Efmt>
 JDK1.4.1
 </Efmt>
 <Bind>
 V2.0 Ref Impl
 </Bind>
 </Comp>
 <Code>
 net.jxta.impl.peergroup.StdPeerGroup
 </Code>
 <PURI>
 http://www.jxta.org/download/jxta.jar
 </PURI>
 <Prov>
 sun.com
 </Prov>
 <Parm>
 <Svc>
 <jxta:MIA xmlns:jxta="http://jxta.org">
 <MSID>
 urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000050206
 </MSID>
 <Desc>
 Module Impl Advertisement for the PasswdMembership
Service
 </Desc>
 <Comp>
 <Efmt>
 JDK1.4.1
 </Efmt>
 <Bind>
 V2.0 Ref Impl
 </Bind>
 </Comp>
 <Code>
 net.jxta.impl.membership.PasswdMembershipService
 </Code>
 <PURI>
 http://www.jxta.org/download/jxta.jar
 </PURI>
 <Prov>
 sun.com
 </Prov>
 </jxta:MIA>
 </Svc>
 <Svc>
 <jxta:MIA xmlns:jxta="http://jxta.org">
 <MSID>
 urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000020106
 </MSID>
 <Desc>
 Reference Implementation of the Resolver service
 </Desc>
 <Comp>
 <Efmt>
 JDK1.4.1
 </Efmt>
 <Bind>
 V2.0 Ref Impl
 </Bind>
 </Comp>

 160

 <Code>
 net.jxta.impl.resolver.ResolverServiceImpl
 </Code>
 <PURI>
 http://www.jxta.org/download/jxta.jar
 </PURI>
 <Prov>
 sun.com
 </Prov>
 </jxta:MIA>
 </Svc>
 <Svc>
 <jxta:MIA xmlns:jxta="http://jxta.org">
 <MSID>
 urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000060106
 </MSID>
 <Desc>
 Reference Implementation of the Rendezvous service
 </Desc>
 <Comp>
 <Efmt>
 JDK1.4.1
 </Efmt>
 <Bind>
 V2.0 Ref Impl
 </Bind>
 </Comp>
 <Code>
 net.jxta.impl.rendezvous.RendezVousServiceImpl
 </Code>
 <PURI>
 http://www.jxta.org/download/jxta.jar
 </PURI>
 <Prov>
 sun.com
 </Prov>
 </jxta:MIA>
 </Svc>
 <Svc>
 <jxta:MIA xmlns:jxta="http://jxta.org">
 <MSID>
 urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000030106
 </MSID>
 <Desc>
 Reference Implementation of the Discovery service
 </Desc>
 <Comp>
 <Efmt>
 JDK1.4.1
 </Efmt>
 <Bind>
 V2.0 Ref Impl
 </Bind>
 </Comp>
 <Code>
 net.jxta.impl.discovery.DiscoveryServiceImpl
 </Code>
 <PURI>
 http://www.jxta.org/download/jxta.jar
 </PURI>
 <Prov>
 sun.com
 </Prov>
 </jxta:MIA>
 </Svc>
 <Svc>
 <jxta:MIA xmlns:jxta="http://jxta.org">
 <MSID>
 urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000040106
 </MSID>
 <Desc>
 Reference Implementation of the Pipe service
 </Desc>
 <Comp>
 <Efmt>

 161

 JDK1.4.1
 </Efmt>
 <Bind>
 V2.0 Ref Impl
 </Bind>
 </Comp>
 <Code>
 net.jxta.impl.pipe.PipeServiceImpl
 </Code>
 <PURI>
 http://www.jxta.org/download/jxta.jar
 </PURI>
 <Prov>
 sun.com
 </Prov>
 </jxta:MIA>
 </Svc>
 <Svc>
 <jxta:MIA xmlns:jxta="http://jxta.org">
 <MSID>
 urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000100106
 </MSID>
 <Desc>
 Reference Implementation of the Always Access service
 </Desc>
 <Comp>
 <Efmt>
 JDK1.4.1
 </Efmt>
 <Bind>
 V2.0 Ref Impl
 </Bind>
 </Comp>
 <Code>
 net.jxta.impl.access.always.AlwaysAccessService
 </Code>
 <PURI>
 http://www.jxta.org/download/jxta.jar
 </PURI>
 <Prov>
 sun.com
 </Prov>
 </jxta:MIA>
 </Svc>
 <Svc>
 <jxta:MIA xmlns:jxta="http://jxta.org">
 <MSID>
 urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000080106
 </MSID>
 <Desc>
 Reference Implementation of the Endpoint service
 </Desc>
 <Comp>
 <Efmt>
 JDK1.4.1
 </Efmt>
 <Bind>
 V2.0 Ref Impl
 </Bind>
 </Comp>
 <Code>
 net.jxta.impl.endpoint.EndpointServiceImpl
 </Code>
 <PURI>
 http://www.jxta.org/download/jxta.jar
 </PURI>
 <Prov>
 sun.com
 </Prov>
 </jxta:MIA>
 </Svc>
 <Svc>
 <jxta:MIA xmlns:jxta="http://jxta.org">
 <MSID>
 urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000070106

 162

 </MSID>
 <Desc>
 Reference Implementation of the Peerinfo service
 </Desc>
 <Comp>
 <Efmt>
 JDK1.4.1
 </Efmt>
 <Bind>
 V2.0 Ref Impl
 </Bind>
 </Comp>
 <Code>
 net.jxta.impl.peer.PeerInfoServiceImpl
 </Code>
 <PURI>
 http://www.jxta.org/download/jxta.jar
 </PURI>
 <Prov>
 sun.com
 </Prov>
 </jxta:MIA>
 </Svc>
 <App>
 <jxta:MIA xmlns:jxta="http://jxta.org">
 <MSID>
 urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000C0206
 </MSID>
 <Desc>
 JXTA Shell Reference Implementation
 </Desc>
 <Comp>
 <Efmt>
 JDK1.4.1
 </Efmt>
 <Bind>
 V2.0 Ref Impl
 </Bind>
 </Comp>
 <Code>
 net.jxta.impl.shell.bin.Shell.Shell
 </Code>
 <PURI>
 http://www.jxta.org/download/jxta.jar
 </PURI>
 <Prov>
 sun.com
 </Prov>
 </jxta:MIA>
 </App>
 </Parm>
</jxta:MIA>

Figure 10-2. The module implementation advertisement.

 163

	Siri Birgitte Uldal
	Siri Birgitte Uldal
	Abstract
	Table of contents
	1. Introduction
	1.1 Problem description
	1.2 Goal and objectives
	1.3 Limitations and assumptions
	1.4 Method
	1.5 Research contribution
	1.6 Outline

	2 Background
	2.1 Peer-to-peer networks
	2.1.1 Definition of a peer-to-peer network
	2.1.2 An overview of P2P networks
	2.1.3 Decentralized versus centralized P2P networks

	2.2 Resource sharing concepts
	2.2.1 Remote procedure call (RPC)
	2.2.2 Message oriented middleware (MOM)
	2.2.3 The publish-subscribe model
	2.2.4 Tuple spaces

	2.3 Properties of resource sharing models
	2.3.1 Interruption handling during data transfer
	2.3.2 Data push versus pull
	2.3.3 Configuration
	2.3.4 Incentive mechanisms and accountability
	2.3.5 Persistence and search guarantees

	2.4 Versioning detection and control
	2.4.1 Versioning models
	2.4.2 Versioning detection
	2.4.3 Software configuration management (SCM)

	2.5 Middleware for P2P networks
	2.5.1 Why middleware
	2.5.2 Types of middleware
	2.5.3 Characteristics of decentralized P2P middleware
	2.5.4 Bonjour
	2.5.5 Universal Plug and Play (UPnP)
	2.5.6 JXTA
	2.5.7 The Socialized.Net

	2.6 Related works
	2.6.1 Bluetooth/OBEX/FTP
	2.6.2 Microsoft Shared Folders/SAMBA
	2.6.3 Microsoft Office Groove
	2.6.4 iFolder
	2.6.5 Google Docs & Spreadsheets
	2.6.6 myJXTA
	2.6.7 GRAM
	2.6.8 Gnutella

	3 Casual resource sharing with shared virtual folders
	3.1 Scenarios
	3.2 Casual resource sharing
	3.3 Shared virtual folders
	3.4 Versioning detection
	3.5 SVF operations and properties
	3.6 Comparison to related works

	4 Application design
	4.1 Functionality criteria
	4.2 Application architecture
	4.3 Choice of middleware
	4.4 Casual resource sharing
	4.4.1 Resource sharing issues
	4.4.2 Notification messages
	4.4.3 SVF log on and log off
	4.4.4 File download

	4.5 Versioning detection
	4.6 The repository
	4.7 The graphical user interface (GUIs)

	5 Implementation
	5.1 Implementation environment
	5.2 Software choice
	5.2.1 Programming language
	5.2.2 Database

	5.3 Application implementation
	5.3.1 The graphical user interface (GUI)
	5.3.2 The file repository
	5.3.3 JXTA platform configuration and application setup
	5.3.4 JXTA advertisement, discovery, service and rendezvous
	5.3.5 JXTA secure group concept
	5.3.6 Communication: Ports, pipes and queues
	5.3.7 Messaging
	5.3.8 Versioning

	6 Testing and discussion
	6.1 Testing
	6.2 Limitations of the implementation
	6.3 Research contribution
	6.4 Discussion of results
	6.4.1 The SVF model
	6.4.2 The implementation
	6.4.3 Shortcomings of the JXTA

	6.5 Scalability
	6.6 Future work

	7 Conclusion
	8 References
	9 Appendix A: Embedded databases
	10 Appendix B: Group and service advertisement examples

