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1 Introduction to cryptography

1.1 The objectives of cryptography

Suppose that someone wants to send a message either by letter or electronically

to a receiver, and wants to be sure that no-one else can read the message.

However, there is the possibility that someone else opens the letter or reads

the electronic communication. The solution to this problem is cryptography.

Cryptography enables us to store sensitive information or transmit it across

insecure networks, like the Internet, so that it cannot be read by anyone else

except the intended recipient. Cryptography is the science of using mathe-

matics to encrypt and decrypt messages. In cryptographic terminology, the

original, undisguised message is called plain text or cleartext. Encoding the

contents of the message in such a way that it hides its contents from out-

siders is called encryption. The encrypted message is called ciphertext. The

process of retrieving the plaintext from the ciphertext is called decryption.

Modern cryptography, as applied in the commercial world, is concerned with

a number of problems. The most important of these are:

1) Confidentiality, which is the process of keeping information private

and secret so that only the intended recipient is able to understand it.

2) Authentication, which is the process of providing proof of identity of

the sender to the recipient, so that the recipient can be assured that the

person sending the information is who or what he or she claims to be.

3) Integrity, which is the method to ensure that information is not tem-

pered with during its transit or its storage on the network.

4) Non-repudiation, which is the method to ensure that information can-

not be disowned. Once the non-repudiation process is in place, the sender

cannot deny being the originator of the information.
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1.2 Symmetric key algorithms

Both encryption and decryption make use of a key and are parts of a crypto-

graphic algorithm or system. There are two classes of key based algorithms,

symmetric or secret-key and asymmetric or public key algorithms. The dif-

ference is that symmetric algorithms use the same key for both encryption

and decryption (or the decryption key is easily derived from the encryption

key), whereas the asymmetric algorithms use a different key for encryption

and decryption, and the decryption key cannot be derived from the encryp-

tion key. Symmetric algorithms can be divided into stream ciphers and block

ciphers. Stream ciphers encrypt a single bit of plaintext at a time, whereas

block ciphers take a number of bits (typically 64 bits in modern ciphers)

and encrypt them as a single unit. The most studied and probably the

most widely spread symmetric cipher is DES or Data Encryption Standard.

Because of the increase in the computing power of computers, the basic ver-

sion of DES cannot be considered sufficiently safe anymore. Therefore a

new, more powerful cipher called AES or Advanced Encryption Standard

was standardized in 2001. Other popular and respected algorithms include

Twofish, Serpent, CAST5, RC4, TDES and IDEA.

The main problem with symmetric key algorithms is that since the sender

and the receiver have to agree on a common key, a secure channel is required

between them in order to exchange the key. Transferring the key over the

Internet either in an e-mail message or through simple IRC services is in-

secure. Verbally communicating the key over a phone line runs the risk of

eavesdropping. Similarly, snail mail runs the risk of possible interception.

The security risks that are involved in secret key cryptography have been, to

a large extent, overcome in public key cryptography.
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1.3 Public key algorithms

Public key cryptography uses a key pair instead of just one secret key. Of

this key pair, one key, known as the private key, is always kept secret by the

key holder and is used for decryption. The private key is not transferred to

anyone and is stored securely by the holder. The key used for encryption is

the public key and is freely distributable, for instance it can be placed on one

of the many public key repositories on the Internet. Over the past 30 years,

public key cryptography has become a mainstay for secure communications

over the Internet and throughout many other forms of communications. It

provides the foundation for both digital signatures and key management.

For digital signatures, public key cryptography is used to authenticate the

origin of data and protect the integrity of that data. In key management,

public key cryptography is used to distribute the secret keys used in other

cryptographic algorithms (e.g. DES). The technique is to use a public key

algorithm to encrypt a randomly generated encryption key, and the random

key is used to encrypt the actual message using a symmetric algorithm. This

combined technique is used widely. It is used for Secure Shell (SSH), which is

used to secure communication between a client and a server and PGP (Pretty

Good Privacy) for sending messages. Above all, it is the heart of SSL (Secure

Socket Layer), which is the most widely deployed and used security proto-

col on the Internet today. The protocol has withstood years of scrutiny by

the security community and is now trusted to secure virtually all sensitive

web-based applications ranging from on-line banking and stock trading to

e-commerce. SSL offers encryption, source authentication and integrity pro-

tection for data exchanged over insecure, public networks. It operates above

a reliable transport service like TCP and has the flexibility to accommodate

different cryptographic algorithms for key agreement, encryption and hash-

ing. However, the specification does recommend particular combinations of

these algorithms, called cipher suites, which have wellunderstood security
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properties. For example, a cipher suite such as RSA-RC4-SHA would in-

dicate RSA as the key exchange mechanism, RC4 for bulk encryption, and

SHA as the hashing function. Here we note that hashing function are very

fast cryptographic functions that take a message of arbitrary length and pro-

duce a message digest of specified size. The two main components of SSL

are the Handshake protocol and the Record Layer protocol. The Handshake

protocol allows an SSL client and server to negotiate a common cipher suite,

authenticate each other, and establish a shared master secret using public

key cryptographic algorithms. The Record Layer derives symmetric-keys

from the master secret and uses them with faster symmetric-key algorithms

for bulk encryption and authentication of application data. Public key cryp-

tographic operations are the most computationally expensive portion of SSL

processing. SSL allows the re-use of a previously established master secret,

resulting in an abbreviated handshake that does not involve any public key

cryptography, and requires fewer and shorter messages. However, a client and

server must perform a full handshake on their first interaction. Moreover,

practical issues such as server load, limited session cache and naive Client

authentication are optional. Only the server is typically authenticated at the

SSL layer and client authentication is achieved at the application layer, e.g.

through the use of passwords sent over an SSL-protected channel.

The two most important first generation public key algorithms used to

secure the Internet today are known as RSA and Diffie-Hellman (DH). The

security of the first is based on the difficulty of factoring the product of two

large primes. The second is related to a problem known as the discrete log-

arithm problem for finite groups. Both are based on the use of elementary

number theory. The majority of public key systems in use today use 1024-

bit parameters for RSA and Diffie-Hellman. The US National Institute for

Standards and Technology has recommended that these 1024-bit systems are

sufficient for use until 2010. After that, NIST recommends that they be up-
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graded to something providing more security. The question is what should

these systems be changed to? One option is to simply increase the public

key parameter size to a level appropriate for another decade of use. An-

other option is to take advantage of the past 30 years of public key research

and analysis and move from first generation public key algorithms and on

to elliptic curves. The length of a key, in bits, for a conventional encryp-

tion algorithm is a common measure of security. The following table taken

from [63] gives the key sizes recommended by the National Institute of Stan-

dards and Technology to protect keys used in conventional encryption algo-

rithms like the (DES) and (AES) together with the key sizes for RSA, Diffie-

Hellman and elliptic curves that are needed to provide equivalent security:

Table 1: Comparison of key sizes

Symmetric key
size (bits)

RSA and Diffie-Hellman
key size (bits)

Elliptic curve
key size (bits)

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

.

To use RSA or Diffie-Hellman to protect 128-bit AES keys one should use

3072-bit parameters: three times the size in use throughout the Internet

today. The equivalent key size for elliptic curves is only 256 bits. We can

see that as symmetric key sizes increase the required key sizes for RSA and

Diffie-Hellman increase at a much faster rate than the required key sizes for

elliptic curve cryptosystems. Hence, elliptic curve systems offer more secu-

rity per bit increase in key size than either RSA or Diffie-Hellman public key

systems.

The mathematical problems that RSA and Diffie-Hellman owe their se-

curity are the problem of integer factorization and the discrete logarithm

problem, respectively. The reason why such a large keys are necessary in
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the implementation of RSA and Diffie-Hellman cryptosystems is that there

are well known sub-exponential time attacks on the mathematical problems

which these systems are based upon.

The mathematical problem that elliptic curve cryptosystems rely on is

the discrete logarithm problem over elliptic curves or ECDLP. The reason

why such short key lengths may be used in the implementation of cryptosys-

tems based on elliptic curves is that there is no known sub-exponential time

attack on the underlying mathematical problem when it is applied over a

generic elliptic curve. The objective of this thesis is to try and prove this

last statement.

The reminder of this thesis is organized as follows. Section 2 presents

a short introduction to the parts of the theory of elliptic curves that are

relevant for our work. Section 3 present an overview of attacks that are

applicable for general elliptic curves. The focus will be on the in depth

presentation and analysis of attacks proposed by Pollard. These are the best

’known’ attacks on ECDLP over general elliptic curves. Section 4 present

purpose built attacks that exploit weaknesses in special type of elliptic curves.

Section 5 present an introduction to the theory of hyperelliptic curves and

their application in attacking the ECDLP.
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2 Introduction to elliptic curves

We will now introduce some basic facts about the elliptic curves. This in-

troduction will describe those parts of the theory of elliptic curves which are

relevant for cryptography and the definitions will be given from a crypto-

graphic point of view. A profound treatment of the general theory of elliptic

curves is given in [52] and [53].

Let k be a field, k its algebraic closure and k∗ its multiplicative group.

The projective plane P2(k) over k is the set of equivalence classes of the

relation ∼ acting on k3\{(0, 0, 0)}, where (x1, y1, z1) ∼ (x2, y2, z2) if and only
if there exists u ∈ k∗ such that x1 = ux2, y1 = uy2, and z1 = uz2.

Definition 1 An elliptic curve over k is defined as the set of solutions in

the projective plane P2(k) of a homogeneous Weirstrass equation of the form

E : Y 2Z+a1XY Z+a3Y Z
2 = X3+a2X

2Z+a4XZ
2+a6Z

3

with a1, a2, a3, a4, a6 ∈ k. This equation is referred to as the long Weierstrass
form. ¨

Such a curve should be non-singular in the sense that, if the equation is

written in the form F (X,Y, Z) = 0, then the partial derivatives of the curve

equation ∂F/∂X, ∂F/∂Y and ∂F/∂Z should not vanish simultaneously at

any point on the curve. If all three partial derivatives vanish at some point

P , then P is called a singular point and the equation is said to be singular.

The curve has exactly one point with Z - coordinate equal to 0, namely

(0, 1, 0). This point is called the point at infinity and is denoted by O.
For convenience reasons it is usual to write the Weierstrass equation using

affine coordinates x = X/Z, y = Y/Z,

y2+a1xy+a3y = x
3+a2x

2+a4x+a6.

An elliptic curve E is then the set of solutions to this equation in the affine
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plane A2(k) = k× k, together with the extra point at the infinity O. If the
coefficients of the equation are in k, then E is said to be defined over k, and

this is denoted as E/k. If E is defined over k, then the set of k - rational

points of E, denoted E(k), is the set of points whose both coordinates lie in

k, together with the point O.
Let E be a curve given by the affine Weierstrass equation. We define the

quantities

d2 = a
2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a
2
3 + 4a6

d8 = a
2
1a6 + 4a2a6 − a1a3a4 + a2a23 − a24

c4 = d
2
2 − 24d4

∆ = −d22d8 − 8d34 − 27d26 + 9d2d4d6
j(E) = c34/∆.

Definition 2 Discriminant and j−invariant

The quantity ∆ is called the discriminant of the Weierstrass equation,

while j(E) is called the j-invariant of E if ∆ 6= 0. ¨

The Weierstrass equation is non-singular if and only if ∆ 6= 0. The

j−invariant is closely related to the notion of elliptic curve isomorphism.
Two elliptic curves, E1/k and E2/k that are isomorphic over k have the

same j−invariant, i.e. j(E1) = j(E2). Conversely, two curves with the same
j−invariant are isomorphic over k.

Definition 3 Point addition

The points on an elliptic curve form an abelian group under a certain

addition. The addition operation of two points P,Q ∈ E(k) is defined as
follows:
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1. draw a line through P and Q which intersects the curve at a point T .

2. draw a vertical line through T which intersects the curve at a point R

and define P +Q = R. ¨

If P = Q 6= O then the line in step 1 is the tangent line of the curve

through P . Adding P to O means that the line drawn in step 1 is the vertical

line passing through P , because O is infinitely far and the vertical line in step

2 is the same as the line in step 1, which intersects the curve at the same point

P . This means that P+O = P and O+P = P andO is the identity element.

The inverse of P , denoted −P , requires P + (−P ) = O. According to the

addition rule we can find that−P = (x1, y1−a1x1−a3). The formal definition

of addition in E(k) is as follows. Suppose P = (x1, y1) and Q = (x2, y2) are

points on E other than O. If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then

P +Q = O. Otherwise P +Q = (x3, y3), where

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = −(λ+a1)x3−ν−a3 .

and

λ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y2 − y1
x2 − x1

,

3x21 + 2a2x1 + a4 − a1y1
2y1 + a1x1 + a3

,

if P 6= Q.

if P = Q.

ν =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y1x2 − y2x1
x2 − x1

,

−x31 + a4x1 + 2a6 − a3y1
2y1 + a1x1 + a3

,

if P 6= Q.

if P = Q.
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2.1 Elliptic curves over finite fields

Over a finite field Fq, E(Fq) is an abelian group of rank 1 or 2. The type of the

group is (n1, n2), i.e., E(Fq)e=Zn1 ⊕ Zn2, where n2 | n1, and furthermore n2 |
(q−1).

The number of rational points on a curve is finite, and it will be denoted by

#E(Fq).

Definition 4 Trace of the Frobenius

The quantity t, defined by

t = q + 1−#E(Fq)

is called the trace of Frobenius at q. The trace of Frobenius satisfies

| t |≤ 2q. The Frobenius endomorphism is a map φ which sends (x, y)

to (xq, yq) and fixes O. ¨

The problem of determining the order of the group of points on an elliptic

curve over a finite field is of critical importance in cryptographic applica-

tions. This is because the best method for generating elliptic curves suitable

for cryptography depends on the ability of solving this problem. There are

several approaches, but the best known algorithm is due to Schoof [47]. Al-

though the original algorithm has polynomial running time, it is inefficient

in practice. It was further developed thanks to the ideas and improvements

of Elkies [10] and Atkin [2].

Practical implementations of elliptic curve cryptosystems are usually based

on either the field Fp, where p is a large prime number, or F2n, fields with

characteristic 2.
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2.2 Curves in fields of characteristic p > 3

Assume that k = Fq, where q = pn for a prime p > 3 and an integer

n ≥ 1. The curve equation over k in this case can be simplified to the short
Weierstrass form

E : y2 = x3+ax+b.

The discriminant of the curve then reduces to ∆ = −16(4a3 + 27b2), and its
j−invariant to j(E) = −1728 (4a)3/∆. The inverse of the point P = (x1, y1)
is now −P = (x1,−y1). The addition rules are as follows: for the points
P = (x1, y1) and Q = (x2, y2) the coordinates of the point P +Q = (x3, y3),

Q 6= −P , are given as

x3 = λ2 − x1 − x2

y3 = (x1−x3)λ−y1

where

λ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y2 − y1
x2 − x1

,

3x21 + a

2y1
,

if P 6= Q.

if P = Q.

2.3 Curves in fields of characteristic 2

We assume now that k = Fq, where q = 2n, for an integer n ≥ 1. In this case,
the expression for the j−invariant reduces to j(E) = a121 /∆. In characteristic
2 we can differentiate between two cases, j(E) = 0, i.e. a1 = 0 and j(E) 6=
0. The condition j(E) = 0 is equivalent to the curve being supersingular.

This is a type of curves avoided in cryptography for reasons to be explained

later. We will even though describe this case for reasons of completeness.

If j(E) 6= 0 then the curve equation over k reduces to

E : y2+xy = x3+a2x
2+a6.
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The discriminant of the curve then reduces to ∆ = a6, and its j−invariant
to j(E) = 1/a6. The inverse of the point P = (x1, y1) is given as −P =

(x1, y1 + x1). The coordinates of the sum P + Q = (x3, y3) of P and

Q = (x2, y2), Q 6= −P , are given as

x3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µ
y1 + y2
x1 + x2

¶2
+
y1 + y2
x1 + x2

+ x1 + x2 + a2,

x21 +
a6
x21
,

if P 6= Q.

if P = Q.

and

y3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ
y1 + y2
x1 + x2

¶
(x1 + x3) + x3 + y1,

x21 +

µ
x1 +

y1
x1

¶
x3 + x3,

if P 6= Q.

if P = Q.

If j(E) = 0 then the curve equation over k reduces to

E : y2+a3y = x
3+a4x+a6.

The discriminant of the curve then reduces to ∆ = a43. The inverse of the

point P = (x1, y1) is given as −P = (x1, y1 + a3). The coordinates of the

sum P +Q = (x3, y3) of P and Q = (x2, y2), Q 6= −P are given as

x3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ
y1 + y2
x1 + x2

¶2
+ x1 + x2,

x41 + a
2
4

a23
,

if P 6= Q.

if P = Q.

and

y3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ
y1 + y2
x1 + x2

¶
(x1 + x3) + y1 + a3,

µ
x21 + a4
a3

¶
(x1 + x3) + y1 + a3,

if P 6= Q.

if P = Q.

14



3 General attacks on the ECDLP

The attack in this section are general in the sense that they can be applied to

attack the ECDLP over any elliptic curve, they do not exploit any possible

weaknesses on the curve. The main focus of the section is to give an in depth

analysis of the best known attacks, namely the parallelized Pollard ρ and λ

methods.

3.1 The Pohlig-Hellman and BSGS attack

We start by examining the algorithms that work for any cyclic finite abelian

groups. But, first of all we have to define the elliptic curve discrete logarithm

problem: Let E(k) be an elliptic curve defined over the ground field k =Fq
and P a point of order n from the curve. Given another point Q ∈ E(k) we
have to find λ such that Q = λP, 0 ≤ λ ≤ n− 1, if such an integer exists.

The most obvious method of solving the ECDLP is exhaustive search.

One computes R = [μ]P for μ = 1, 2, 3, ..., and checks whether R = Q.

When equality is reached we conclude μ = λ. The algorithm has no storage

requirements, but has a running time of O(N), where N is the order of the

group, in both the average and worst case.

Pohlig and Hellman have observed that the DLP in a group G is only as

hard as the discrete logarithm problem in the largest prime subgroup of G.

A very important consequence of this is that for elliptic curve cryptography

we select elliptic curves such that #E(k) = N = h · l, where l is a large
prime an the cofactor h is very small, usually h = 1, 2 or 4. The details of

the algorithm can be found in [5].

As a consequence of the Pohlig-Hellman simplification we can concentrate

on solving the DLP in groups of prime order. One way to do this is to use

Shanks’ the Baby-step/Giant-step, BSGS, algorithm.

For the start we have a group G = hP i, which we now assume to have
prime order l. As before we are given Q ∈ G, and we want to find λ(mod l)
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such thatQ = [λ]P .

We define λ as:

λ = λ0+λ1d
√
le

Since λ ≤ l, we know that 0 ≤ λ0,λ1 < d
√
le. We compute the Baby-steps

as

Pi = [i]P for 0 ≤ i ≤ d
√
le.

The pairs (Pi, i) are stored in a table so that one can easily search for items

indexed by the first entry in the pair. One way to do this is to use a hash

table. A hash table is a database accessed by one or more hash functions.

The computation of Baby-steps takes O(d
√
le) time, but there is a similar

amount of storage requirement. We start the computation of Giant-steps by

writing P 0 = [d
√
le]P , followed by the computation of

Qj = Q−[j]P 0 for 0 ≤ j ≤ d
√
le.

The time required to compute the Giant-steps is at most O(d
√
le). The next

step is to try to find a match for Qi in the table of Baby-steps. If we find a

value of Pi such that Pi = Qj, then λ0 = i and λ1 = j, since

[i]P = Q−j[d
√
le]P

and

[i+j d
√
le]P = Q.

The running time of the algorithm is O(
√
l), in both the average and worst

case. The main problem with the algorithm is the requirement of O(
√
l)

storage space. For this reason the algorithm is infeasible in practice.

It has been shown that the BSGS algorithm is the fastest possible method

for solving the DLP in a ’black box group’ [48]. Black box groups are a

theoretical tool which allow the analysis of algorithms in idealized setting. A

black box group is modelled in such a way that the representations of field

elements provide no structure.
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3.2 Pollard‘s ρ algorithm

Pollard based his algorithm on the birthday paradox. That is, if we choose

elements at random from a set of S numbered elements, we only need to

choose
√
S elements in order to get a repetition, also called a collision. Just

as with other methods that are based on a collision search, the goal is to

take a given function f and find two different inputs that produce the same

output. The best attack known on the general ECDLP is the parallel collision

search based on Pollard‘s ρ method. But we start with the simple processor

case. We are given a finite cyclic group G of order N , which we as a result

of Pohlig-Hellman assume to be of prime order, and a function f : G → G,

which we call the iterating function. We select a starting value Z0 ∈ G and
then generate successive terms by the rule Zk+1 = f(Zk), for k = 0, 1, 2....

Since G is finite, this sequence, also called a ’walk’, eventually begins to

cycle. Since the sequence is a walk, each application of the iterating function

is called a ’step’. One simple approach to detecting a collision with Pollard’s

ρ method is to use Brent’s algorithm [8]. That is, there exist two uniquely

determined smallest integers μ ≥ 0 and ε ≥ 1 such that Zk = Zk+ε for

all k > μ. We call μ the preperiod or ’tail’ and ε the period or ’cycle’.

For performance reasons we wish the function f to be a random mapping,

meaning the function f should be equally probable among all functions in

form G → G. The probability that no collision is found after selecting k

inputs is (1− 1
N
)(1− 2

N
)...(1− k−1

N
) ≈ e−k2/2N for large N and k = O(

√
N).

Let E(μ + ε) denote the expected value of the sum of the tail and cycle of

the sequence (Zi), i.e. the expected number of steps taken on the pseudo-

random walk before a collision occurs. Then, under the assumption that f

is a random mapping, the value of E(μ + ε) =
q

π|G|
2
≈ 1, 253

p
|G| [61].

Using Brent’s algorithm the collision is found after an expected number of

≈ 1, 97
p
|G| iterations [59].

The idea behind the iterating function used by Pollard is the following:
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we partition the group G into 3 distinct subsets of roughly equal size, S1,

S2 and S3 based on some easily testable property. Pollard‘s original method

was developed to solve the DLP and implemented for finite fields of the type

Fp. In the ECDLP, we are dealing with a cyclic subgroup of points hP i of
order l, with generator P and group element Q. When adapted for elliptic

curves the original iterating function becomes the following:

f(Z) =

⎧⎨⎩ Z + P ,
2Z,

Z +Q,

if Z ∈ S1.
if Z ∈ S2.
if Z ∈ S3.

⎫⎬⎭
The resulting terms are expressed as Zk = akP + bkQ, where the scalars ak,

bk ∈ {0, ..., l − 1} are computed as:

a0 = 1, b0 = 0

ak+1 = ak + 1, ak+1 ≡ 2ak(mod l), ak+1 = ak for k = 0, 1, 2...

bk+1 = bk, bk+1 ≡ 2bk(mod l), bk+1 = bk+1 for k = 0, 1, 2...

according to the three cases above.

Because the number of points in the group is finite, the sequence of points

must begin to repeat. Upon detection of a collision, that is Zi = Zj, we have

aiP+biQ = ajP+bjQ

Since Q = λP , we have

aiP+λbiP = ajP+λbjP

Using modular arithmetic, we get

ai+λbi ≡ (aj+λbj)(mod l)

and

λ ≡
³
ai−aj
bj−bi

´
(mod l)

unless we are very unlucky and bi ≡ bj(mod l). So the method is a ’Monte
Carlo’ method, since there is no guarantee of success. Since l has no other

factors others than 1 and itself, the only time gcd(bj − bi, l) > 1 holds is if
bj − bi is a multiple of l. Given that the size of l in practice is greater than
2160, this is extremely unlikely.
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3.3 Better random walks

We have said in the beginning that we wish the iterating function f to be

a random mapping. The original ρ method uses an iterating function with

3 clauses. In 2 clauses we perform point addition, Z + P and Z + Q and

are thus taking small steps. Under the third clause, we are performing point

doubling, 2Z, so we are taking a good size step. Unless Q is a small scalar

multiple of P it will take considerable time to walk through the tail and the

cycle and find a match. On the other hand, always taking large steps could

lead to skipping over several terms in the cycle and not obtain a match right

away, which is our objective. It was shown [61] that the value of E(μ + ε)

using Pollard’s original walk is approximately 1, 596
√
l, which is considerably

slower than the expected value of 1, 253
√
l. In the following we are going to

look at the work done by Teske on improving this result.

3.3.1 Linear and combined walk

The original Pollard ρ algorithm does not achieve the performance of a ran-

dom walk. Teske [61] investigated the effect of changing the number of sub-

group partitions and therefore function clauses on the performance of the ρ

method. Two types of better random walks were suggested: linear walk and

combined walk. Linear walks use an iterating function that contains a fixed

number r of clauses, each of which defines a point addition operation unique

to its partition. The question is how should the parameter r be chosen? In

her work Teske experimented with elliptic curve subgroups of prime order

up to 13 digits. The experiments showed that r = 20 is a good choice. It

was also established [61] that taking r = 20 is suitable for simulating random

walks for any size of group orders. Thus, when performing the linear walk we

first partition the group G into 20 sets, S1,...S20. The next step is to define

a set of multipliers Mi, these are produced by generating random integers

si, ti ∈ [1, ..., l − 1] and then computing
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Mi = [si]P+[ti]Q i = 1, ..., 20.

The iterating function is defined as

f(Z) = Z+Mi for Z ∈ Si.

As before the resulting terms are expressed as Zk = akP + bkQ, where the

scalars ak, bk ∈ {0, ..., l − 1} are computed as:

ak+1 ≡ (ak+si)(mod l) and bk+1 ≡ (bk+ti)(mod l).

Through the experiments Teske found that when using linear walk the run-

ning time of the algorithm is E(μ+ ε) ≈ 1, 292
√
l, which is very close to the

expected value of 1, 253
√
l.

Similar to linear walks, combined walks use a fixed number of partitions,

r + q. The iterating function contains r rules that specify point addition

operations and q rules that specify point doubling operations, making a total

of r + q rules. The experimental findings [62] indicate that the best results

is obtained if the ratio of doublings and addings is between 1/4 and 1/2,

while the performance gets worse if the ratio gets much larger than 1. To

explain how to perform this type of walk we choose the values of r = 16

and q = 4. This means that the group G is again partitioned into 20 sets,

S1,...S20. We choose 4 pairwise distinct numbers u1, ..., u4 between 1 and 20

and again define a set of multipliers Mi,

Mi = [si]P+[ti]Q where i = {1, ..., 20} \ {u1, ..., u4}.

The iterating function is defined as

f(Z) =

½
Z +Mi,
2Z,

if i /∈ {u1, ..., u4} and Z ∈ Si.
otherwise.

¾
.

The scalars ak and bk are computed as:

ak+1 ≡ (ak + si)(mod l) or ak+1 = 2ak(mod l).

bk+1 ≡ (bk+ti)(mod l) or bk+1 = 2bk(mod l).
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The reason behind including point doubling is to take bigger steps in our

walk and thus move faster through the tail and cycle to obtain a solution.

Through the experiments it was found that although the combined walk is

slightly faster than the linear walk for small values of p, the latter is to prefer

as p grows. In Teske’ experiments [61] the expected number of steps to be

taken with this walk is approximately 1, 3
√
l.

So far we have not defined how the partition is done. In practice it’s

usual to map an input point Z ∈ hP i to a partition number between 1 and
r with a hash function of the form h : hP i → {1, ..., r}. This hash function
uses an arithmetic operation that is very fast. This ensures the efficiency of

the iterating function at every evaluation of a new term. The hash function

used is:

h(Z) =

⎧⎪⎪⎨⎪⎪⎩
1,
2,
......
r,

if 0 < x < k.
if k < x < 2k.

if (r − 1)k < x < rk.

⎫⎪⎪⎬⎪⎪⎭
where k = 2m/r.

We can base on the hash function on either coordinate without effecting

the performance of the algorithm. Here our hash function is based on the x

coordinate when treated as a binary value. The boundary value k = 2m/r is

used to slice the space of binary strings of fixed length into r subsets of equal

size. Now the k smallest binary values are mapped to the first partition, the

k next largest to the second, and so on until the k largest values, which are

mapped to the last partition r. For the linear walk this means that we should

still compute the set of multipliers Mi as before, but the iterating function

is given by

f(Z) = Z+Mh(Pi) for Z ∈ Si

and the scalars are given as:

ak+1 ≡ (ak + sh(Pi))(mod l)

bk+1 ≡ (bk + th(Pi))(mod l).
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3.4 Parallel collision search

The parallelized version of Pollard‘s ρ method is the method of choice when

solving the ECDLP in practice. The algorithm is though inherently serial in

nature and cannot be directly parallelized over several processors efficiently.

One must wait for a given application of the function f to complete before

the next can start. One way to parallelize the algorithm is to start each

processor with a different starting value Z0 and wait until one of them finds

a collision. If m processors run the algorithm in this way, the speed-up we

get is only about
√
m. It was Wiener and Van Oorschot [42] who presented

an efficient way of parallelization which was based on ’distinguished points’.

A distinguished point is a group element with an easily testable property. An

often used distinguishing property is whether a point‘s binary representation

has a certain number of leading zeros. Several processors each create their

own starting point Z0 and iterate until a distinguished points Zd is reached.

When Zk = akP + bkQ is a distinguished point, the triple (Zk, ak, bk) is

sent and stored in a central list common to all processors. As soon as a

point occurs in two iterations, the remainder of those two iteration trails

will be the same and thus lead to the same distinguished point. Therefore,

by performing the iterations, all processors calculate random group elements

and as soon as the same element has been calculated twice, we are going to

get the same distinguished point twice, as well. If the two representations of

the point, where the trails collided, are different, the representation of the

distinguished point are different too, and therefore we are able to calculate

λ. If we denote the number of processors involved in the search by m and

suppose that each processor will send a distinguished point to the central

list every 1/θ group operations on average, where θ denotes the proportion

of the points that constitute the distinguished points, the expected running

time of the parallel Pollard ρ method is E(μ+ λ) =
q

πl
2
/m+ 1/θ [42].

The great advantage of the parallelized ρ method is that storage require-
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ment is negligible. The reason for this is that it is only the distinguished

points that are stored rather than all points encountered in the search. The

expected space needed in the central list is E(S) = mθE(μ+λ) = θ
q

πl
2
+m

distinguished points. We see that for the memory requirements to be as

small as possible, we have to chose θ as small as possible. But, as θ gets

smaller, the running time of the algorithm gets bigger. We see that there is

a time-space trade-off. In practice the space requirement is chosen in such a

way that the central server has enough memory, and that single processors

can produce distinguished points at an convenient rate, for example one or

two distinguished points each day.

3.5 Improving the algorithm

One way of speeding up the algorithm is to reduce the size of the space that

is being searched by a factor of 2. This can be done by replacing Zi by ±Zi at
each step, here −Zi being the negative of Zi. We can do this by choosing the
point which has a smallest y coordinate when it is interpreted as an integer.

When performing the search Zi, ai and bi should be computed as normal, but

this time we compute −Zi as well. The point with the smallest y coordinate
is taken to be Zi. If it is Zi, then we have the usual triple (Zi, ai, bi). Should

−Zi be used our triple becomes (−Zi,−ai,−bi), i.e. ai is replaced by −ai
and bi is replaced by −bi. Doing this we restrict our search to the points that
have a smaller y coordinate than their negative. Since it yields exactly half

of the points, 6= O, we reduce the search space by a factor of 2. We have to
remember that computing which of Zi and −Zi to use also takes some time,
so the running time of the algorithm is reduced by

√
2.

A problem that we might encounter is the appearance of trivial 2−cycles.
Suppose that Zi and −Zi both belong to the same Sj and that in both cases
after f is applied, the negative of the resulting point is used. This is when

Zi+1 = −(Zi + cjP + djQ) and Zi+2 = −(Zi+1 + cjP + djQ) = Zi. The

23



occurrence of these 2− cycles is reduced by using the linear walk. To reduce
their occurrence we can usee the look-ahead technique which proceeds as

follows. We define fw(Z) ≡ Z + cw + dwQ and suppose that Zi ∈ Sj. Then
f(Zi) = fj(Zi). We begin by computing R = ± fj(Zi), a candidate for Zi+1.
If R /∈ Sj then Zi+1 = R. If R ∈ Sj, then we treat Zi as though it were
in Sj+1 (where j + 1 is reduced modulo 20) and compute a new candidate

R = ±fj+1(Zi). If R /∈ Sj+1, then Zi+1 = R, otherwise we continue trying
j +2, j +3, ... If all 20 choices fail, which is highly unlikely to happen, then

we just use Zi+1 = ±fj(Zi). The idea is to reduce the probability that two
successive points will belong to the same set. We also note that Zi+1 depends

solely on Zi, which is a requirement for parallel collision search to work.

The method for speeding up the parallel collision search described above

can be applied to elliptic curves over any field. Further improvements are

possible if we use special classes of elliptic curves.

3.6 Anomalous binary curves

We say that we are using a subfield curve when the elliptic curve we are going

to use is defined over the field Fqn, n > 1, but the coefficients of the curve

are in Fq. The value of n should be chosen either to be a prime or a product

of a small factor and a large prime to allow for a large enough prime divisor

of #E(Fqn). This because if n factors non-trivially as n = n1n1, then both

#E(Fqn1 ) and #E(Fqn2 ) divide #E(Fqn), limiting the range of the largest

prime divisor of #E(Fqn). In practical implementations it is most usual to use

a class of elliptic curves over F2n whose defining equations have coefficients

in F2. Since it is required that a6 6= 0, they must be defined by either the
equation

y2+xy = x3+1

or the equation

y2+xy = x3+x2+1.
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These curves are called anomalous binary curves or Koblitz curves, although

lately, the term ’Koblitz curve’ is used for any elliptic curve which has

a special endomorphism structure which enables efficient implementations.

( It is very important not to confuse these curves with anomalous curves over

prime fields). The reason for the extended use of these curves are:

1) It is easy to compute the group order #E(F2n).

2) The arithmetic can be made faster by using the Frobenius endomor-

phism. The Weil theorem enables us to compute the number of points on an

elliptic curve over an extension field, #E(Fqn) for n ≥ 2, from #E(Fq) as

follows:

Theorem 5 Let E be an elliptic curve defined over Fq and the trace of the

Frobenius endomorphism t = q + 1 − #E(Fq). Then #E(Fqn) = qn + 1 −
αn − βn, where α and β are complex numbers, | α |=| β |= √q, determined
from the factorization of 1− tT + qT 2 = 0.

Proof. See [52].

An alternative formulation, also leading to an efficient computation is as

follows:

Let #E(Fqn) = qn + 1− an, n ≥ 1. Then the coefficients ai are given by
a0 = 2, a1 = 1, ai+1 = ai − qai−1.

For the second part, from section 2 we know that the Frobenius endomor-

phism ρ acts as ρ : (x, y)→ (xq, yq) on the curve E. In our case ρ : (x, y)→
(x2, y2), since the ground field is F2. On points Z = (x, y) ∈ E(F2n) we have
ρn(Z) = (x2

n
, y2

n
) = Z. Actually, there is an integer σ, 0 ≤ σ ≤ l − 1 such

that ρ(Z) = [σ]Z for every point Z = (x, y) ∈ E(F2n). This integer is called
the eigenvalue of the Frobenius endomorphism.

Now we let (α,α2,α2
2
, ...,α2

n−1
) be a normal basis of F2n over F2, for some

α ∈ F2n. Such a basis always exists for all n ≥ 1. Using a normal basis is
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very efficient, because squaring a field element can than be accomplished by

a cyclic shift of the coefficients of each point coordinate. As it was explained

in [27] this leads to considerable improvements for point multiplication.

This improvement leads to very efficient implementations in both hard-

ware and software and is the reason behind the popularity of anomalous bi-

nary curves. One important note is that the Koblitz curves are resistent to all

the known special attacks which are to be discussed later.

Now we can look at the improvements in Pollard’s algorithm offered by the

use of Koblitz curves.

3.7 Further improvements and practice

The principle behind the improvement is to use equivalence classes, that is, if

there is a convenient equivalence relation on the set, then we can consider a

random walk on the set of equivalence classes rather than the whole set. This

principle can be applied on subfield curves as well, but it is on the anomalous

binary curves that we get the best improvement.

We will use a parallel collision search and compute Zk, ak, bk as usual.

Since we know that ρn(Z) = (x2
n
, y2

n
) = Z, we can also compute the 2n

different points ±ρj(Zk), for 0 ≤ j ≤ n− 1. We would now like to choose a
representative element from this set. We will first consider the n points ρj(Zk)

and use the one whose x is minimal subject to an ordering condition, we can

for instance choose x such that its binary representation has smallest value

when interpreted as an integer. We can then either choose that point or its

negative, applying the same ordering condition used on x to its y coordinate.

This point will replace Zi. If we have chosen ±ρj(Zk) to replace Zk, we must
then replace ak with ±ρjak and also replace bk with ±ρjbk to maintain the
relationship Zk = akP+bkQ. The powers of ρ

j can be precomputed to obtain

further efficiency. The iteration function must be chosen carefully to avoid

the appearance of trivial cycles. Experimentation carried out by Wiener and

Zuccherato shows that if the parallel walk is used, the occurrence of these
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trivial cycles is reduced sufficiently for practical purposes. By using the

method just described we reduce the search space by a factor of 2n, which

reduces the expected running time by a factor of
√
2n, meaning that the

running time of the ρ algorithm is now
p

πl/4n.

The SEC standard [56] gives 20 predefined curves in characteristic 2 and

six of these are Koblitz curves, meaning that they have a convenient endo-

morphism which can be used to speed up the group law. The curves are la-

belled sect163k1, sect233k1, sect239k1, sect283k1, sect409k1 and sect571k1.

The existence of the technic above means that these curves are not as se-

cure as general curves over the same field. For example one would expect

to need approximately 281 operations to break a general elliptic curve over

F163 while the Koblitz curve requires 277 operations. This improvement al-

though modest, means that we should choose another curve if a security

level of 280 is wanted. In a table taken from [56], we can see the differ-

ence between the security of a general curve and a Koblitz curve for the

field sizes in the mentioned standard. It is assumed that the cofactor is

two for the general curves, as this is the most common case in practice.

Table 2: Information on Koblitz vs general curve security

Curves Field size Cofactor
General curve
security

Koblitz curve
security

sect163k1 2163 2 281 277

sect233k1 2233 4 2116 2111

sect239k1 2239 4 2119 2114

sect283k1 2283 4 2141 2136

sect409k1 2409 4 2204 2198

sect571k1 2571 4 2285 2279

.

In 1997 Certicom [9] announced a series of elliptic curve challenges. The last

break came in April 2004, when the ECC2-109 was solved. This problem, as

well as all the solved problems before that, was done by using the Pollard al-

gorithm with distinguished points and the ideas of Teske. The problem was
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distributed over the internet and there was approximately 2600 users who

contributed in the work. The distinguished points were chosen so that ap-

proximately one of every 230 points on the curve would be distinguished. The

team that won began their work in November 2002, which means that the

solution was found some 17 months later. This also means that the field sizes

that are used in practice offer long time security. Actually, we can draw a ta-

ble, taken from [28], that shows the MIPS estimates for the ECDLP over fields

considered for practical use:

Table 3: MIPS years to solve a generic ECDLP using the parallel Pollard

method

q
p

πq/2 MIPS years
160 280 8, 5× 1011
186 293 7, 0× 1015
234 2117 1, 2× 1023
354 2177 1, 3× 1041
426 2213 9, 2× 1051

.

3.8 Pollard’s λ algorithm

Pollard developed this method in order to solve the so called ’interval-[a,b]-

discrete logarithm problem’. The problem at hand is the following: Let G =

hP i be a cyclic group of order g and Q a point from the group such that Q =
P x. We have to find the exponent x, for which we know that x ∈ [a, b] ⊂ [0, g].
In practice it is usual to choose a = 0 and b ¿ g, so that a certain number

of high-order bits of x are known to be zero. The reason why to choose x of

such a form is that the exponentiation P x is faster than for randomly chosen

x. But, as we shall see later, this leads to reduced security and one should

thus be careful when choosing x from such intervals.

Originally, the algorithm was called as ’the method for catching kanga-

roos’, as it is described through two kangaroos, a tame and a wild one. It

is also called the λ method because if the terms of the sequences of both

kangaroos are drawn on a piece of paper, then the figure obtains the shape of
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the Greek letter lambda. In the following we will use the latter. We shall now

describe the algorithm in both its original form and in the version given by

Wiener and van Oorschot. First we give the setup for the methods as it is the

same for them both:

We define a set of jump ’distances’ S = {s1, ..., sr} with si > 0 and a set of
jumps J = {P s1, ..., P sr} and let the mean of the values from S be α. Just

as in the ρ method, we find a hash function G → {1, ..., r} that divides G
into r disjoint sets M1, ...,Mr, which give the rules of the kangaroos’ jumps.

We can, for example, use the same hash function as before. We denote the

tame kangaroo with T and the wild kangaroo with W , T ’s position with tk

and W 0s position with wk. The travel of the kangaroos consists of jumps,

where each jump is a multiplication of the kangaroos current position by

some P si ∈ J . The sequences htki and hwki for k = 0, 1, 2... are given as

tk+1 = tk ∗ P si when tk ∈Mi

wk+1 = wk∗P sj when wk ∈Mj.

We denote the distances travelled by the kangaroos with dk,tame and dk,wild.

With starting distances dk,tame = dk,wild = 0, we define the sequences as

dk+1,tame = dk,tame+si when tk ∈Mi

dk+1,wild = dk,wild+sj when wk ∈Mj.

Now to the algorithms: in Pollard’s version , T is set off from the position

at the end of the interval, t0 = P
b and we let it make Cα jumps, where C is

a constant. We mark the final spot of T with (tN , dN). This position is our

’trap’. In terms of the exponents of P , at each time we know the position

of T . Then W is set off from w0 = Q. Since we do not know x, we do

not know the exact location of W , that is why it is called wild. If the path

of W meets that of T , he continues down the same path and falls into the

trap. If we denote W ’s position at the trap with wM , then tN = wM , that is
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P b ∗ P dN,tame = P x ∗ P dM,wild. From here we can compute x as

x ≡ (b+dN,tame− dM,wild)(mod g).

If the method fails, we set off another wild kangaroo with a starting point

w0 = Q ∗ P z, for some small known z. Now we determine the running time
of this method. After passing P b, the wild kangaroo makes approximately

Cα jumps before catching up with the tame kangaroo. The probability of

landing on the tame kangaroo’s trail is 1/α for each jump. The probability of

success after Cα jumps is approximately 1−(1−1/α)Cα ≈ 1−e−C . The trap
T made is at a distance of about b+Cα2 form P 0. W jumps an approximate

(b− a)/α+Cα times to come this far and has it not yet landed on the trail
of T it can be stopped, because it must have passed T , without landing on

its trail. Because the expected starting point for W is P (a+b)/2, when the al-

gorithm succeeds, the expected number of jumps is (b−a)/2α+Cα. Now we
know that in the algorithm T is sent on its way once and makes Cα jumps,

while W succeeds once and fails 1/(1 − e−C) − 1 times. The total running
time of the algorithm is thus Cα− (b− a)/2α+(Cα+(b− a)/α)/(1− e−C).
Wiener and van Oorschot calculated [42] that this is minimized when

α =
√
b− a

s
1 + e−C

2C(2− e−C).

Evaluating this expression they find that the running time of the algorithm

is minimal when C ≈ 1, 39 and α ≈ 0, 51
√
b− a, and is approximately

3, 3
√
b− a group iterations. All we have to store in this version of the algo-

rithm is the set of jumps and the current position of the two kangaroos. If

we allow more storage, we can use the alternative approach by Wiener and

van Oorschot. They again used the distinguished point technique, but this

time even for the single processor case. We can use the same distinguishing

property as before: a point from the group is distinguished if the point’s

binary representation has a certain number of leading zeros. Now T is set

30



off from t0 = P
a+b
2 and w0 = Q. After each jump of the kangaroos we check

whether the current terms are distinguished points. If this is the case, they

are stored in a hash table. We can check whether a collision has occurred

each time we store a distinguished point. If we come across a distinguished

point such that tN = wM , with N 6=M , then P a+b
2 ∗ P dN,tame = P x ∗ P dM,wild

and

x ≡ (a+b
2
+dN,tame−dM,wild)(mod g).

For the estimation of the running time we let θ denote the proportion of group

elements that are distinguished and assume that α =
√
b−a
2
. It is expected

that the kangaroos trail will collide after 2
√
b− a jumps and it will take ad-

ditional 2/θ iterations to find the distinguished point. In general, the time

until a collision occurs is between
√
b− a, when the solution is near the mid-

dle of the interval, and 3
√
b− a, when it is near the ends. Thus, the running

time is 2
√
b− a+2/θ group iterations. The expected storage requirement is

2θ
√
b− a.
Just as the ρ algorithm, the λ algorithm can also be parallelized so that

we get linear speed up. In fact, there are two different ways of paralellization,

one by Wiener and van Oorschot and another by Pollard.

3.9 The Wiener-van Oorschot parallelization of the λ
algorithm

For a start we assume that we have m processors, with m even. The single

processor case given by Wiener and van Oorschot is actually just a special

case of their parallelization of the algorithm. It corresponds to m = 2, with

two processors simulated on one machine. If m is odd or indefinite, we can

simulate m0 = 2m virtual processors by having one pair of wild and tame

kangaroos on each processor and letting them jump alternately.

Instead of one tame and one wild kangaroo, we will now work with a

herd of m/2 tame kangaroos and a herd of m/2 wild kangaroos, with one
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kangaroo on each processor. We use the same setup as before and assume

that the mean value α of the jump lenghts is m
√
b− a/4. We will count

the running time in terms of iterations, where one iteration comprises one

kangaroo jump on each processor. There is a couple of important variables

we have to discuss before we start our kangaroos. One of them is the choice of

jump distances si. There are two good choices: the first is to choose si to be

powers of two starting with si = 1 up to sr = 2
r−1, where r is such that the

mean value of the si is close to the optimal value of α =m
√
b− a/4. Because

α varies with the number of processors and the length of the interval [a, b],

so does r as well. The second good choice consists of k integers {q1, ..., qk}
randomly chosen from the interval [1, 2α]. The values of qi must be pairwise

distinct and gcd{q1, ..., qk} = 1. Based on the experience from the ρ method,
we may choose k = 20 in order to get sufficiently random kangaroo paths.

The other important variable to consider is the distance δ between mem-

bers of the same herd. It is not desirable to choose δ either too small or

too big. If the distance is too small, it could easily cause collisions between

members of the same herd. The colliding kangaroos would follow the same

path and the herd would effectively be reduced by one member for each such

collision. On the other hand, if the distance was too big, the gap between

the members of the herd in the front and those at the back would eventually

get so big that it would not be possible to view the herd as a group, rather

it would be a collection of kangaroos travelling individually. Experiments

in [60] show that δ should be chosen so that δ ≈ 2α/m. The m/2 tame

kangaroos, T1, ..., Tm/2, are set off from

t0(T0) = P
a+b
2
+(i−1)δ

the m/2 wild kangaroos , W1, ...,Wm/2 , from

w0(Wi) = Q∗P (i−1)δ

where i = 1, ...,m/2, on each processor.
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The initial travel distances are d0,tame(Ti) = d0,wild(Wi) = (i− 1)δ, and each
kangaroo gets a tag which indicates whether it is a tame or wild. As be-

fore, after each jump of the kangaroos it is checked whether some of the new

spots are distinguished points. If we find some distinguished point, we send

it to the central list, together with the corresponding travel distance and

the tame/wild tag. Here it is checked whether there is a reoccurrence of a

distinguished point, and if it is the case the solution is found in a manner

already described.

An unwanted occurrence in this version of parallelization are collisions

between members of the same herd. Such collisions are called useless. There

are m
2
(m
2
− 1) possible pairs for useless collisions among the each of the

herds. It is expected that there will be at most two useless collisions. This

expected value is confirmed through experiments in [60]. The impact of

useless collisions on the running time of the algorithm can be divided into

two cases: m = 4 and m > 4. In general, there are (m/2)2 possible pairs for

useful collisions. The first useless collision reduces this number to m
2
(m
2
− 1).

The second useless collision reduces further this number to either m
2
(m
2
−

2) if it happened in the same herd as the first one, or to (m
2
− 1)2 if it

happened in different herds. This means that the running time is decreased

by a factor of at most m
2
(m
2
− 2). For m > 4 and specially mÀ 4 the effect

of useless collisions is only marginal. For the case m = 4 however, there

is an increase of the running time due to useless collisions. This is because

after the first useless collision the number of useful ones decreases from 4 to

2. Experimental results in [60] show that the running time in this case is

’noticeably’ larger. Therefore, if we only have a network of 4 processors, it is

desirable to work with more than one kangaroo on each of them. It should

also be mentioned that for some choices of the sets of jumps and distances

δ, the occurrence of useless collisions is higher then expected. See [60] for

further comments on this subject.
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To calculate the expected running time of the algorithm, we can divide

the movement of the herds into three parts: the time while they travel in

separate regions, the time while they travel in a common region and a useful

collision occurs and the time until this collision is detected. Since we do not

know which of the herds lies further to the right on the interval [a, b], in this

analysis we will simply talk about a leading and a following herd, rather than

herds of tame and wild kangaroos.

The initial distance between the herds is between 0 and a+b
2
. The ex-

pected separation when the algorithm succeeds is a+b
4
. This means that it

takes about b−a
4α
jumps for the trailing herd to catch up with the one in the

front. After this has happened, the trailing herd enter a region where the

herd of leading kangaroos already landed on m/2α spots. On each step,

the probability that one of the m/2 trailing kangaroos lands on one of these

spots is m2/4α. The expected number of jumps for each kangaroo before this

happens is 4α/m2. Thus, the expected running time until a useful collision

occurs is b−a
4α
+4α/m2 iterations. This value is at its minimum of 2

√
b− a/m

for α = m
√
b−a
4
, which is in correspondence with the assumption from the

start. In general this part of the running time will be somewhere between
√
b− a/m iterations, when the solution is near the middle of the interval,

and 3
√
b− a/m iterations, when it is near the ends. By adding 1/θ, the time

needed to reach the next distinguished point after a useful collision occurred,

to this, we get the expected overall running time of T = 2
√
b− a/m + 1/θ

iterations.

3.10 Pollard’s parallelization of the λ algorithm

Again, we use the same setup as before and let θ denote the proportion of

distinguished points. The main difference between the two parallelization

methods is that in this one there is no possibility of useless collisions. We

will work with u tame and v wild kangaroos, where u and v are coprime. If
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the number of processors involved is m, we will choose u and v such that

u ≈ v ≈ m/2, as this gives the best running time, and u+v ≤ m. We choose
the r jump distances as si = qiuv. Again, we can choose qi to be either

powers of two starting from q1 = 1 up to qr = 2
r−1, or random integers from

the interval [1, 2α]. The mean value of the jump distances should be close to

α =
q

b−a
uv
/2. We set off the tame kangaroos from

t0 = P
a+b
2
+iv where i = 0, ..., u−1

and the wild kangaroos from

w0 = Q∗P ju where j = 0, ..., v−1.

This implies that any two tame or any two wild kangaroos travel with travel

distances that are in pairwise distinct residue classes modulo uv. Since the

equation

(a+b
2
+iv ≡ x+ju)(mod uv)

has a unique solution in i and j, there is just one pair of tame and wild kan-

garoos that travel in the same residue class modulo uv. This means that this

is the only pair that can collide.

As before, we keep track of the distinguished points and when some has

been stored twice, we can find the solution we are looking for. The analysis of

the running time is similar to that from the previous parallelization method,

the only adjustment that has to be done is to replace the interval [a, b] with

[a, b]/uv and to put m = 2, as we only have to consider the expected number

of jumps of the two kangaroos that are destined to collide, and they travel

in a fixed residue class modulo uv. The expected overall running time is

T =
p
(b− a)/uv + 1/θ iterations on each processor. This is approximately

the same running time as for the Wiener-van Oorschot parallelization, pro-

vided that we stick too our assumption that u ≈ v ≈ m/2. This version of
parallelization is easier to handle because we do not have to deal with use-
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less collisions and a proper choice of spacing. However, it only works if the

number of processors is known in advance and all processors take part in the

computation until the end. Since from the beginning of the computation it

is determined which pair of kangaroos is the one to collide, a failure of one of

the two corresponding processors would lead to the computation not being

finished.

At the end, we should note that we might use the λ method to solve

the general discrete logarithm problem. But, it is approximately 1, 6 times

slower than the ρ method if a = 0 and b = ord(G). It becomes faster than

the ρ method when b− a < π/8 · ord(G) [60].
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4 Special methods for solving the ECDLP

The attacks that will be analyzed in this section are special in the sense that

they exploit weaknesses in special types of curves.

4.1 Pairing based attacks on ECDLP

Menezes, Okamoto and Vanstone [36] showed how the Weil pairing can be

used to efficiently reduce the ECDLP in E(Fq) to the discrete logarithm

problem in the multiplicative group of an extension field Fqn , where sub-

exponential running time index calculus methods are known. We refer to

their attack as the MOV-attack. Frey and Ruck [14] proposed a similar

method, but based on the Tate pairing. In the following we will both analyze

the methods and describe an important part of the theory of elliptic curves,

namely the divisor theory.

4.1.1 Divisor theory

For the remainder of this section we let k = Fq, where q is a power of a prime

p and let E be an elliptic curve defined over k.

Definition 6 Divisors

The divisor group of the curve E, denoted by D(E), is the free abelian

group generated by the points on E. Thus a divisor D ∈ D(E) is a

formal sum D =
P
P∈E

nP (P ), where nP ∈ Z are 0 for all but finitely many

P . ¨

The quantity nP specifies the zero/pole property of a point P and its

respective order. Inequality nP > 0 indicates that a point P is a zero, and

nP < 0 indicates that P is a pole.
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Definition 7 Group operation, degree , order and support of a divisor

The group operation on the divisor group is given by D1 +D2 =
P
P∈E

nP (P )

+
P
P∈E

mP (P ) =
P
P∈E

(nP +mP )(P ), where D1, D2 ∈ D(E). The degree of

D is defined by deg D =
P
P∈E

nP . The divisors of degree 0 form a subgroup

of D(E), which we denote by D0(E) = {D ∈ D(E) | deg D = 0}. The

order of D at P is nP , ordP (D) = nP . The support of a divisor D,

denoted supp(D), is the set of points {P ∈ E | nP 6= 0}. ¨

If E is defined by the Weierstrass equation r(x, y) = y2 + a1xy + a3y −
x3 − a2x2 − a4x − a6 = 0, where r ∈ k[x, y], then the coordinate ring of E
over k, denoted k[E], is the integral domain k[E] = k[x, y]/(r), where (r)

denotes the ideal generated by r. The function field k(E) of E over k is the

field of fractions of k[E]. Now let k = ∪n≥1Fqn be the algebraic closure of
k. Then k[E] = k[x, y]/(r) and k(E), the function field of E over k, is the

field of fractions of k[E]. The elements of k(E) are called rational functions.

Let now f ∈ k(E)∗ be a non-zero rational function and P ∈ E\{O}. For
each point P ∈ E there exists a rational function u ∈ k(E), u(P ) = 0 such
that if f ∈ k(E)∗, then we can write f = uds, where s ∈ k(E), s(P ) 6= 0,∞.
The integer d does not depend on the choice of u. The function u is called a

uniformizing parameter for P . The order of f at P is defined to be d, and

we write ordP (f) = d. The point P is a zero of f if and only if ordP (f) > 0

and P is a pole if and only if ordP (f) < 0.

We can define div(f), the divisor of f , as div(f) =
P
P∈E

ordP (f)(P ). If

f ∈ k(E)∗, then div(f) ∈ D0 and div(f) = 0 if and only if f ∈ k∗. For
two rational functions f1 and f2, we have div(f1) + div(f2) = div(f1f2) and

div(f1)− div(f2) = div(f1/f2).
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Definition 8 Principal divisors

A divisor D ∈ D0(E) is defined to be principal if D = div(f) for some

f ∈ k(E)∗. Another way of defining principality is to say that a divisor
D =

P
P∈E

nP (P ) of degree 0 is principal if and only if
P
P∈E

[nP ](P ) = O. ¨

The evaluation of f on a divisor D =
P
P∈E

nP (P ) is defined by f(D) =Q
P∈sup p(D)

f(P )nP . Two divisors are equivalent, denoted D1 ∼ D2, if D1 −D2

is principal. The set Dprinc = {div(f) | f ∈ k(E)∗} of all principal divisors
form a subgroup of D0. The degree 0 part divisor class group or Picard

group of E, denoted Pic0(E), is the quotient of D0(E) by the subgroup

of principal divisors. Further, Pic0k(E) is the subgroup of Pic
0(E) fixed

by Galk/k. Similarly, Pic(E) is the quotient of D(E) by the subgroup of

principal divisors and Pick(E) is the subgroup of Pic(E) fixed by Galk/k.

For each D ∈ D 0(E), there exists a unique point Q ∈ E such that D ∼
(Q)− (O). Another way to represent a degree 0 divisor D is in its canonical

form, D = (Q)−(O)+div(f), for a unique point Q ∈ E and some f ∈ k(E).
The function f is determined up to multiplication by a non-zero element of

k. In order to compute the Weil pairing we must be able to perform two

important computations: firstly, we must know how to add two divisors

written in the canonical form and express the result in canonical form, and

secondly, given a principal divisor D =
P
P∈E

nP (P ), we must be able to find

f ∈ k(E)∗ such that D = div(f).

4.1.2 The Weil pairing

Now we introduce a formula for adding two divisors in canonical form, such

that the result is still in canonical form. This formula provides a method

of finding a rational function f such that div(f) = D for a given divisor D,

and is critical for computing the Weil pairing. Let D1, D2 ∈ D0(E) be given
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by D1 = (P1)− (O) + div(f1) and D2 = (P2)− (O) + div(f2). Assume that

P1+P2 = P3. Let hP1,P2(x, y) = ay+bx+c be the equation of the straight line

passing through P1 and P2, and hP3(x, y) = x+ d be the equation of vertical

line passing through P3. (Note that if P1 = P2, hP1,P2(x, y) is the line tangent

to P1, and if P3 = O, we have hP3(x, y) = 1, a constant equation). Then we

have div(hP1,P2) = (P1)+(P2)+(−P3)−3(O), where P1, P2, and−P3 are zeros

because they are on line hP1,P2 , and div(hP3) = (P3) + (−P3) − 2(O) where

P3, −P3 are zeros because they are on line hP3. From the above discussion,

the sum of divisors D1 +D2 is written as:

D1 +D2 = (P1) + (P2)− 2(O) + div(f1f2)

= (P3)− (O) + div(f1f2) + div(hP1,P2)− div(hP3)

= (P3)−(O)+div(f1f2hP1,P2/hP3).

Before we can discuss the Weil pairing, we need to define the group of n-

torsion points.

Definition 9 Torsion point and torsion subgroup

An n-torsion point P is a point satisfying n(P ) = O, n ∈ Z. The set of

n−torsion points forms a subgroup of E, denoted by E[n]. ¨

Let E(k)[n] denote the subgroup of n-torsion points in E(k), where n 6= 0.

From now on we will write E[n] for E(k)[n], where k denotes the algebraic

closure of k. If gcd(n, q) = 1, then E[n] ' Zn ⊕ Zn. If n = pe, then either

E[pe] ' {O} if E is supersingular or E[pe] ' Zpe if E is non-supersingular.

The notion of supersingularity will be explained in the following subsections.

The following result provides necessary and sufficient conditions for E(k) to

contain all of the n-torsion points in E(k).
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Theorem 10 If gcd(n, q) = 1, then the following is equivalent

i) E[n] ⊂ E(k)

ii) n2 | q+1− t, n | q−1 and either φ ∈ Z or ϑ
µ
t2 − 4q
n2

¶
⊂ Endk(E).

Here t is the trace of the Frobenius endomorphism φ, ϑ is the order of the

discriminant

µ
t2 − 4q
n2

¶
and Endk(E) the ring of k-endomorphisms of E.

Proof. The proof and the explanation how the quantity ϑ

µ
t2 − 4q
n2

¶
is

deduced can be found in [46].

Now we turn our attention to the definition of the Weil-pairing. Let n

be a positive integer coprime to p and μn ⊂ k
∗
be the group of n-th roots of

unity, μn = {u ∈ k
∗ | un = 1}. Given P,Q ∈ E[n], there exist divisors DP ,

DQ ∈ D0(E) such that DP ∼ (P ) − (O) and DQ ∼ (Q) − (O). As n(P ) =
n(Q) = O, divisors nDP and nDQ are principal and there exist rational
functions fP , fQ such that div(fP ) = nDP and div(fQ) = nDQ. Suppose

that DP and DQ have disjoint supports, i.e., supp(DP ) ∩ supp(DQ) = ∅.

Definition 11 Weil pairing

The Weil pairing, denoted en, is a function en : E[n] × E[n] → μn and is

defined as

en(P,Q) =
fP (DQ)

fQ(DP )
.

The value of en(P,Q) is independent of the choice of DP , Dq, fP and fQ.

The Weil pairing has the following properties:

1) Identity: For all P ∈ E[n], en(P, P ) = 1.

2) Alternation: P,Q ∈ E[n], en(P,Q) = en(Q,P )−1.

3) Bilinearity: P,Q,R ∈ E[n], en(P +Q,R) = en(P,R)en(Q,R), and
en(P,Q+R) = en(P,Q)en(P,R).
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4) Non-degeneracy: If P ∈ E[n] then en(P,O) = 1. Moreover, if
en(P,Q) = 1 for all Q ∈ E[n], then P = O.

5) Compatible: If P ∈ E[n] and Q ∈ E[nn0], then enn0(P,Q) =
en(P, n

0Q).

6) If E[n] ⊆ E(k), then en(P,Q) ∈ k for all P,Q ∈ E[n]. ¨

In order to compute the Weil pairing we will proceed using the following

three steps:

1. Pick points T , U ∈ E such that P +T 6= U , Q+U and T 6= U , Q+U . Let
DP = (P+T )−(T ) andDQ = (Q+U)−(U). ThenDP ∼ (P )−(O) andDQ ∼
(Q)−(O).

Step 2. Use an evaluation algorithm to compute fP (Q+U), fP (U), fQ(P+T )

and fq(T ) with div(fP ) = nDP and div(fQ) = nDQ.

Step 3. Compute

en(P,Q) =
fP (DQ)

fQ(DP )
=
fP ((Q+ U)− (U))
fQ((P + T )− (T ))

=
fP (Q+ U)fQ(T )

fQ(P + T )fP (U)
.

A crucial part in the evaluation algorithm in Step 2. For each integerm, there

exists a rational function fm such that div(fm) = m(P+T )−m(T )−(mP )+
(O).
Ifm = n, then div(fn) = n(P+T )−n(T )−(nP )+(O), and fP = fn. For any
points R, S, let hR,S and hR be linear functions, where hR,S(x, y) = 0 is the

straight line passing throughR, S, and hR(x, y) = 0 is the vertical line passing

throughR.

Notice that

div(hm1P,m2P ) = (m1P )+(m2P )+(−(m1+m2)P )−3(O)

and

div(h(m1+m2)P ) = ((m1+m2)P )+(−(m1+m2)P )−2(O).
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Then we have

div(fm1+m2) = (m1+m2)(P +T )−(m1+m2)(T )−((m1+m2)P )+(O) =
m1(P+T )−m1(T )−(m1P )+(O)+m2(P+T )−m2(T )−(m2P )+(O)+(m1P )+

(m2P )+(−(m1+m2)P )−3(O)− [((m1+m2)P )+(−(m1+m2)P )−2(O)] =
div(fm1) + div(fm2) + div(hm1P,m2P )− div(h(m1+m2)P ) and hence

fm1+m2 =
fm1fm2hm1P,m2P

h(m1+m2)P
.

The last equation is recursive with initial conditions f0 = 1 and f1 =
hP+T
hP,T

,

since div(f1) = (P +T )− (T )− (P )+ (O) = (P +T )+ (−(P +T ))− 2(O)−
[(P ) + (T ) + (−(P + T )) − 3(O)] = div(hP+T ) − div(hP,T ). The following,
more formal description of Miller’s algorithm is given in [7]:

Algorithm 12 Miller’s algorithm

Input: Integer n =
tP
i=0

bi2
i with bi ∈ {0, 1} and bt = 1, and a point

S ∈ E.
Output: f = fn(S).

f ← f1;Z ← P ;

For j ← t− 1, t− 2, ..., 1, 0 do

f ← f2
hZ,Z(S)

h2Z(S)
; Z ← 2Z;

if bj = 1 then

f ← f1f
hZ,P (S)

hZ+P (S)
; Z ← Z + P ;

Endif

Endfor

Return f ¨

In the same article, three refinements to the algorithm are presented and

the interested reader is invited to study them closely. With all the necessary

computational prerequisites in place we are now ready to take a look at the

MOV-reduction.
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4.1.3 The MOV reduction

Before looking at the reduction itself however, we need to further explore the

theoretical background:

Theorem 13 If P ∈ E(k) is a point of order n, then there exists Q ∈ E[n],
such that en(P,Q) is a primitive n-th root of unity.

Proof. Let Q ∈ E[n]. From the Weil pairing we have that en(P,Q)
n =

en(P, [n]Q) = en(P,O) = 1. Thus en(P,Q) ∈ μn, where μn the subgroup of

the n-th roots of unity in Fql . Now there are n cosets of the subgroup gener-
ated by P , and by the above lemma, as Q varies among the representatives

of these n cosets, en(P,Q) varies among the elements of μn.

Thus if we let Q ∈ E[n] such that en(P,Q) is a primitive n−th root of
unity we get the following map and theorem:

Theorem 14 The map

f : hP i→ μn

R→ en(R,Q)

is a group isomorphism.

Proof. Clearly f is a homomorphism due to the properties of the Weil

pairing. Suppose that en(R,Q) = en(R
0, Q), then en(R,Q)en(R

0, Q)−1 =

1 =⇒ en(R,Q)en(−R0, Q) = 1 =⇒ en(R − R0, Q) = 1 =⇒ R − R0 = O =⇒
R = R0, thus f is injective. Now since both hP i and μn are finite of order n,

this implies that f is surjective and hence bijective. Therefore hP i ' μn as

required.

Now to the reduction: let P ∈ E(k) be a point of order n, n is an odd
prime number, gcd(n, q) = 1, such that #E(k) = nv and n ∼ #E(k), and
Q ∈ E(k). As usual we want to find λ, 0 ≤ λ ≤ n− 1, such that Q = λP . It

is easy to check whether a solution exists: Q ∈ hP i if and only if n(Q) = O
and en(P,Q) = 1. We can now describe the method for reducing the ECDLP

to the DLP in a finite field in four steps:
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Algorithm 15 The MOV reduction

Input: An element P ∈ E(k) of order n and Q ∈ hP i.
Output: An integer λ such that Q = λP .

1) Determine the smallest integer l such that E[n] ⊆ E(Fql).
2) Find R ∈ E[n] such that α = en(P,R) has order n.
3) Compute β = en(Q,R).

4) Compute λ, the discrete logarithm of β to the base α in Fql. ¨

The output of the algorithm is correct since β = en(Q,R) = en(λP,R) =

en(P,R)
λ = αλ. The discrete logarithm problem in a finite field may then be

solved the subexponential running time index calculus method [58].

There are two major issues we have to deal with in order to be able to apply

the algorithm:

1) the problem of explicitly determining the minimum positive integer l such

thatE[n] ⊆ E(Fql).
2) the problem of efficiently finding n-torsion point R such that en(P,R) has

order n.

4.1.4 The modified MOV algorithm

The authors of the algorithm have presented successful solutions for both

problems for the class of supersingular elliptic curves. But before looking at

the modified algorithm, we have to define supersingularity:

Definition 16 Supersingularity

An elliptic curve E(k) is supersingular if p divides t.

Here p is a characteristic of the field and t is a trace of Frobenius

endomorphism. ¨
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Equivalently, it can be shown that a curve over k with characteristic p

is supersingular if and only if ( i) p = 2, 3 and j(E) = 0 or ( ii) p ≥ 5 and
t = 0, [5]. Supersingularity imposes limitations on the different group struc-

tures E(k) can assume. It turns out supersingular curves have corresponding

groups that are either cyclic of order q or isomorphic to either Z√q+1⊕ Z√q+1,
Z√q−1 ⊕ Z√q−1or Z(q+1)/2 ⊕ Z2. This means that supersingular curves can
be divided into 6 categories. For each category we can precompute l such

that E[n] ⊆ E(Fql). Table 1 of [36] summarizes all the relevant information
on supersingular curves. This takes care finding l. To find R we again take

advantage of the limited group structures. From section 2 we recall that

elliptic curve groups are, in general of the form Zn1 ⊕ Zn2. The extensions
of each category of supersingular curve will be of the form Zcn1 ⊕ Zcn1 for
appropriate c. This will help limit our choices for R. The modified algorithm

is as follows:

Algorithm 17 The MOV reduction for supersingular curves

Input: An element P ∈ E(k) of order n and Q ∈ hP i.
Output: An integer λ such that Q = λP .

1) Determine the smallest integer l such that E[n] ⊆ E(Fql) and the
appropriate value of c by using the table from [36].

2) Pick a random point R0 ∈ E(Fql) and set R = (cn1/n)R0.
3) Compute α = en(P,R) and β = en(Q,R).

4) Compute the discrete logarithm λ0 of β to the base α in Fql.

5) Check whether λ0P = R. If this is so, then λ = λ0 and we are

done. Otherwise, the order of α must be less than n, so go to 2). ¨

For supersingular curves the reduction runs in probabilistic polynomial

time in log q. The detailed calculation of the running time can be found in

[37].
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4.1.5 Application of the algorithm to general elliptic curves

In the previous subsection we saw how the algorithm was completed for the

class of supersingular elliptic curves. Finding solutions to steps 1) and 2)

of the algorithm is however significantly more difficult when working with

general, non-supersingular curves. For the first problem, the answer can be

found in an article by Balasubramanian and Koblitz [3]. They proved that

if n - (q − 1), then E[n] ⊆ E(Fql) if and only if l is the minimum integer

such that n | ql − 1. Hence by verifying that n does not divide ql − 1 for all
integers l ∈ [1, c], where c is chosen so that the DLP problem in kc is deemed
to be intractable, the Weil pairing attack can be circumvented. In the same

paper, they also suggested that we need l = n if n | (q−1) and E[n] * E(k).
Thus, when n is much larger than log q, we may give up applying the MOV

reduction since the extension degree in this case is too large in order for the

reduced DLP in Fql to be solved in subexponential time in log q.

Possible solutions for the problem of finding adequate torsion points have

been suggested in [50]. The authors have proposed three different methods.

The first one is the simple ’brute force’ approach of repeatedly choosing

points from the curve, until a ’good’ point is found. The second one is a

method using the multiplication by constant maps. Both of these methods

require exponential time in l log q. There is however a third method which,

under the assumptions that n - q and n - q − 1, actually is completed in
probabilistic polynomial time in l log q. The method is too detailed to be

presented here, but can be found in its entirety in [50].

4.1.6 The Tate-Lichtenbaum pairing

The Frey-Ruck attack is quite similar in nature to the MOV attack, but uses

the Tate-Lichtenbaum pairing instead of the Weil pairing. Just like the MOV

attack, the Frey-Ruck attack attempts to reduce the ECDLP to the DLP in

a suitable extension field over which the elliptic curve in question is defined,
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where the DLP can be solved with subexponential algorithms.

In the construction of the Tate-Lichtenbaum pairing we will need the

following theorem:

Theorem 18 Weil Reciprocity:

Let f and g be non-zero constant functions defined on a curve E over k,

with div(f) and div(g) having disjoint support. Then

f((g)) = g((f)).

Proof. See [5].

Let E be an elliptic curve defined over k, n a positive integer which is

coprime to q and points P , Q ∈ E(k). Let l be a positive integer such that
the field Fql contains the n−th roots of unity, i.e. n | ql−1. From now on we
let Fql = K. Let E[n] denote the subgroup of n torsion points in E(K) and

nE(K) = {n(P ) | E(K)}. Notice that nE(K) is a subgroup of E(K), and
hence we can look at the quotient group E(K)/nE(K). We are now going to

define a pairing on E[n]×E(K)/nE(K), but we need a place to map to. If
we define the following set, (K∗)n = {un | u ∈ K∗}, we can form the quotient
K∗/(K∗)n, which is a group of exponent n and is isomorphic to μn.

Now let P ∈ E[n] andQ ∈ E(K)/nE(K). Here we notice that technically
we should be writing Q as a coset in the second group, instead we will simply

think of Q are representative of an equivalence class. Now since n(P ) = O,
we can find a function f such that div(f) = n(P ) − n(O). Take D to be

a degree zero divisor equivalent to (Q) − (O), and such that D is defined

over Fql with disjoint support from div(f). To do this we can simply choose

a random S ∈ E(K) and define D = (Q + S) − (S). Since both div(f)
and D are defined over K, the value f(D) ∈ K. Since div(f) and D were

constructed to have disjoint support, f(D) 6= 0, thus f(D) ∈ K. We now
define the Tate-Lichtenbaum pairing:
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Definition 19 The Tate-Lichtenbaum pairing

Let E be an elliptic curve defined over k. Let n be a positive integer with

gcd(n, q) = 1 and D =
P
P∈E

nP (P ). The map

h·, ·i : E[n]×E(K)/nE(K)→ K∗/(K∗)n

hP,Qi → f(D) =
Q
P

f(P )nP

is called the Tate-Lichtenbaum pairing and satisfies the following proper-

ties:

1) Well defined: hO, Qi ∈ (K∗)n for all Q ∈ E(K), hP,Qi ∈ (K∗)n for

all P ∈ E[n] and all Q ∈ nE(K).

2) Non degeneracy: For each point P ∈ E[n]− {0}there is some
point Q ∈ E(K) such that hP,Qi /∈ (K∗)n.

3) Bilinearity: For any integer t, h[t]P,Qi ≡ hP, [t]Qi ≡ hP,Qit modulo
n-th powers. ¨

In general there is no relationship between the Tate and Weil pairing,

however when E is an elliptic curve such that n2 | #E(K) and P , Q are

independent points in E[n] then we have en(P,Q) = hP,Qi/hQ,P i.

4.1.7 The Frey-Ruck attack

For the pourpose of the attack we will use what is referred to as a modified

Tate-Lichtenbaum pairing. We note that the group K∗/(K∗)n is isomorphic

to the group of roots of unity μn and thus an instance of the ECDLP on

E(K) can be mapped to an instance of the DLP in μn. Now we can define

τn to be the following bilinear map:

τn(·, ·) : E[n]×E(K)/nE(K)→ μn

τn(P,Q) = hP,Qi(q−1)/n.
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Although the setting is exactly the same, the second setup is more desirable

since it will yield a definite answer instead of a coset in K∗ modulo n−th
powers. Again, since we are mapping into the group of n−th roots of unity,
we are mapping into a suitable extension field K such that μn ⊆ K. Now we
describe the Frey-Ruck algorithm as given in [22]:

Algorithm 20 The Frey-Ruck algorithm

Input: An element P ∈ E(k) of order n and Q ∈ hP i.
Output: An integer λ such that Q = λP .

1) Determine the smallest integer l such that n | ql−1 and set K = Fql.
2) Pick S;T ∈ E(K) randomly.
3) Compute the element f ∈ K(E)∗ such that div(f) = n((P )− (O))

and compute α = f(S)/f(T ).

4) Compute the element γ = α(q
l−1)/n. If γ = 1, then go to 2).

5) Compute the element g ∈ K(E)∗ such that div(g) = n((Q)− (O))
and compute β = g(S)/g(T ), and δ = β(q

l−1)/n.

6) Solve the DLP δ = γλ in K∗, i.e. the logarithm of δ to the base γ in

K∗. ¨

4.1.8 Comparing the pairing attacks

From the above considerations, we can measure the effectiveness of the Frey-

Ruck algorithm by the extension degree l, which is the smallest integer such

that n | (ql − 1), while we can measure that of MOV algorithm by l, which

is the smallest integer such that E(k)[n] ⊆ E(Fql). Although, the conditions
of the extension degree for the Frey-Ruck algorithm is usually weaker than

that for the MOV algorithm, the work of Balasubramanian and Koblitz shows

that the condition n | (ql−1) is equivalent to the condition E(k)[n] ⊆ E(Fql)
if n - (q− 1), i.e. the effectiveness of the MOV algorithm is the same as that
for the Frey-Ruck algorithm if n - (q − 1). It was shown in [26] that elliptic
curves of trace 2 are the only case for which this is not true. For these

curves the MOV algorithm is exponential, while the Frey-Ruck algorithm is

subexponential.
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4.2 The Smart attack against anomalous elliptic curves

In order to avoid the MOV-attack Miyaji [41] proposed the use of anomalous

elliptic curves over Fp which are such that #E(Fp) = p. However, such

curves are themselves weak. Methods to attack the anomalous curves have

independently been proposed by Smart [55], Satoh and Araki, and Semaev

[49]. We will outline the method proposed by N. Smart. It uses the theory

of elliptic curves defined over the field of p−adic numbers Qp. Details from
the theory that are important for the attack will be given here.

4.2.1 Introduction to the p-adic numbers

We introduce here the p−adic numbers and their basic properties. Let p be
a prime number and a a rational number. The number a can be expressed as

a = pr
m

n
, where r ∈ N and m, n ∈ Z are not divisible by p. We then define:

Definition 21 The norm:

ordp(a) = r and |a|p =
½
p−r,
0,

if a 6= 0.
if a = 0.

.

The function |.|p : Q→ [0,∞) is a norm on Q , i.e.

i) |a|p = 0⇐⇒ a = 0.

ii) |ab|p = |a|p |b|p.

iii) |a+ b|p ≤ |a|p + |b|p. ¨

This norm induces a metric dp(., .) on Q defined by dp(a, b) = |a− b|p.
The field Qp of p − adic numbers is the completion of Q for the metric

dp, i.e. a ∈ Qp if and only if there exists a sequence (an), n ∈ N, such
that |an − a|p → 0 as n → ∞. The natural representation of p−adic num-
bers is by an infinite series of the form c−np

−n + ... + c0 + ... + cmp
m + ...,

where the ci’s are integers such that 0 ≤ ci ≤ p − 1. An element a ∈
Qp is called a p − adic integer, if ordp(a) ≥ 0. The set of p−adic in-
tegers is denoted as Zp. ( The latter must not be confused with Z/pZ).
For more details on p−adic numbers, see [29].
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4.2.2 Theoretical tools necessary for the attack

We consider an elliptic curve E defined over k, where k = Fq. We would like

to represent the points of E with one parameter in k. In order to do this,

we make the change of variables:

z = −x
y
and w = −1

y

µ
so x =

z

w
and y = − 1

w

¶
The coordinate z has no connection with the projective coordinate Z. The

point O is now represented as the pair (0, 0) in the (z, w)-plane. The usual

Weierstrass equation for E becomes

w = z3+a1zw+a2z
2w+a3w

2+a4zw
2+a6w

3 (= f(z, w)).

As the next step, we substitute the equation into itself recursively and obtain

ω as a power series in z:

w(z) = z3 + (a1z + a2z
2)w + (a3 + a4z)w

2 + a6w
3

= z3 + (a1z + a2z
2)[z3 + (a1z + a2z

2)w + (a3 + a4z)w
2 + a6w

3]

+(a3 + a4z)[z
3 + (a1z + a2z

2)w + (a3 + a4z)w
2 + a6w

3]2

+a6[z
3 + (a1z + a2z

2)w + (a3 + a4z)w
2 + a6w

3]3 + ...

= z3 + a1z
4 + (a21 + a2)z

5 + (a31 + 2a1a2 + a3)z
6

+(a41 + 3a
2
1a2 + 3a1a3 + a

2
2 + a4)z

7 + ...

= z3(1+A1z+A2z
2+...)

where An ∈ Z[a1, ..., a6] is a polynomial in the coefficients of E. In [52] it is
shown that this recursion converges to a power series. Using the power series

w(z), we find the Laurent series for x and y.

x(z) =
z

w(z)
=
1

z2
− a1
z
− a2 − a3z − (a4 + a1a3)z2 − ...

y(z) = − 1

w(z)
= − 1

z3
+
a1
z2
+
a2
z
+a3+(a4+a1a3)z+...
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Thus, we see that the pair
³
x(z),y(z)

´
yields a solution in the sense of formal

power series, i.e. if we substitute the formal power series x(z), y(z) into the

equation for E, we get the same formal power series on each side. Then, if

we want to produce some points on E(k) using the z−coordinate, we have
to verify that the series x(z), y(z) converge in the field k. In the field Qp, it

is the case if ordp(z) ≥ 1, i.e. z ∈ pZp and the coefficients a1, a2, a3, a4 and
a6 lie in Zp. This gives an injection pZp → E(Qp).

There is an addition law on the formal power series that corresponds to

the addition law on E(k). Let (z1, w1), (z2, w2) two points of E in the (z, w)-

plane, then the z−coordinate of the sum of these points z3 is obtained as a

power series in z1 and z2

z3 = F (z1, z2) = z1 + z2 − a1z1z2 − a2(z21z2 + z1z22)− (2a3z31z2 − (a1a2−

3a3)z
2
1z
2
2+2a3z1z

3
2)+... ∈ Z [a1, ..., a6][z1, z2]

The development used to find F is explained in [52].

From now on, we assume that E is defined over Qp. In the following we will

define various groups and isomorphisms.

The first group to be defined is bE(pZp); it is essentially the set pZp with the
addition law x⊕ y = F (x, y) for all x, y ∈ pZp, where F is the formal power

series defined before. Similarly, bE(pnZp) is the set pnZp with this addition law
for all x, y ∈ pnZp.
Let now π be a function that reduces p−adic integers modulo p, i.e.

π : Zp → Fp

a0+a1p+... → a0

The reduction of E modulo p is the elliptic curve eE/Fp obtained after re-
ducing the coefficients of E modulo p. A point P ∈ E can be represented

as (x1, y1, z1) with x1, y1, z1 ∈ Zp and at least one of x1, y1, z1 in Zp/pZp.

The reduced point eP of P is obtained by reducing every projective co-
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ordinate of P modulo p, namely eP =
³
π(x1),π(y1),π(z1)

´
= (ex1, ey1, ez1).

The n−th subgroup of E is defined as En(Qp) = {P ∈ E(Qp) | ordp(Px) ≤
−2n}∪{O}, where Px denotes the x−coordinate of the point P .
The three subsets of E important for us are:

i) The set E0(Qp) = {P ∈ E(Qp) | eP ∈ eE(Fp)}, contains the points which
reduce modulo p to an element of E(Fp).

ii) The set E1(Qp) = {P ∈ E(Qp) | eP = eO}, contains the points which
reduce modulo p to the identity element.

iii) The setE2(Qp) = {P ∈ E(Qp) | ordp(Px) ≤ −4}∪{O}.

There are two exact sequences defined by these subgroups:

0→ E1(Qp)→ E0(Qp)→ E(Fp)→ 0

which means that multiplying an element of E0(Qp) by a multiple of p will

produce a result which lies in E1(Qp).

0→ E2(Qp)→ E1(Qp)→ F+p → 0

where F+p denotes the additive group of Fp. This sequence tells us that if we

multiply an element in E1(Qp) by a multiple of p we will obtain an element of

E2(Qp).

We will now define three important isomorphism:

Definition 22 Three isomorphisms:

Isomorphism 1: ϑp : bE(pZp)→ E1(Qp).

z →
µ

z

w(z)
,− 1

w(z)

¶
.

In general, bE(pnZp) ' En(Qp).
Isomorphism 2: The formal logarithm logF induces an isomorphism

between bE(pZp) and pZp : logF : bE(pZp)→ pZp.
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logF(z) =
R
ω(z) = z +

c1
2
z2 +

c2
3
z3 + ...

where ω(z) = (1+ c1z+ c2z
2+ c3z

3+ ...)dz is the invariant differential onbE(pZp).
In general, bE(pnZp) ' pnZp through logF .
Isomorphism 3: ψp : E1(Qp)→ pZp.

P → logF ◦ϑ−1p (P ).

In general, En(Qp) ' pnZp. ¨

4.2.3 The reduction

We let eE be a curve of trace one defined over a finite field Fp with p prime, i.e.
# eE(Fp) = p. Since p is a prime, eE(Fp) is cyclic group and therefore eE(Fp) '
F+p . As usual we are given eP, eQ ∈ eE(Fp) and we want to find λ, such that eQ =
λ eP .
Before looking at the reduction itself, we present two isomorphisms that are

of crucial importance for the method:

Theorem 23 Two isomorphisms:

E(Qp)/E1(Qp) ' eE(Fp) and E0(Qp)/E1(Qp) ' E1(Qp)/E2(Qp) ' F+p .
Proof. In order to prove the first one it suffices to consider the reduction

map modulo p, π : E(Qp)→ eE(Fp) and its kernel E1(Qp). The isomorphism
is given by applying the first isomorphism theorem of the group theory on π.

The second one is a consequence of the isomorphisms 1, 2 and 3 given earlier.

The first step is to compute the lifts P,Q ∈ E(Qp) of the points eP andeQ. A point P ∈ E(Qp) is said to be a lift of eP if it reduces to eP modulo p.
A method for computing a lift is given in [32]. It follows that

Q−λP = R ∈ E1(Qp)
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The next step is to multiply both sides of the last expression by p. This gives

[p]Q−λ([p]P ) = [p]R ∈ E2(Qp)

Since [p]P and [p]Q lie in E1(Qp), we can apply isomorphism 3 from Defini-

tion 22. Then we get

ψp([p]Q)−λψp([p]P ) ∈ p2Zp.

So, this expression can be written in the form

c1p+c2p
2+...−λ(d1p+d2p2+...) = b2p2+b3p3+...

where the c1’s are the coefficients of the p−adic expansion of ψp([p]Q) and
the d1’s are the coefficients of the p−adic expansion of ψp([p]P ). Finally, we
obtain

λ =
ψp([p]Q)

ψp([p]P )
mod p =

c1
d1
mod p.

Now it suffices to show how ψp(P ) can be computed for a point P ∈ E1(Qp).
In order to find λ, we only have to compute this modulo p2. According to the

definition of ϑp, we have ϑ
−1
p (P ) = −

Px
Py
∈ bE(pZp), where Px, Py denote the

x−, y−coordinate of P . Hence, using the definitions of the formal logarithm
and of ψp, we get

ψp(P ) ≡ −
Px
Py
(mod p2).

The algorithm requires O(log p) group operations on E(Qp) [5]. With prob-

ability 1/p the above method will fail to find the required discrete logarithm

as we will obtain ψp([p]P ) ≡ 0. However, a different curve E(Qp) can then

be chosen which reduces to eE(Fp) modulo p and the method repeated.
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5 The use of hyperelliptic curves in attacking

the ECDLP

5.1 Basic definitions and properties

Hyperelliptic curves are a special class of algebraic curves and can be viewed

as generalizations of elliptic curves. There are hyperelliptic curves of every

genus g ≥ 1. A hyperelliptic curve of genus g = 1 is an elliptic curve. We
start by giving a formal definition of hyperelliptic curves:

Definition 24 Hyperelliptic curve

Let k be a field and k its algebraic closure. A hyperelliptic curve C of

genus g over k (g ≥ 1) is an equation of the form

C : v2 + h(u)v = f(u) in k[u, v] (1)

where h(u) ∈ k[u] is a polynomial of degree at most g, f(u) ∈ k[u] is a
monic polynomial of degree 2g+1 and there are no solutions (x, y) ∈ k×k
which simultaneously satisfy the equation y2+h(x)y = f(x) and the partial

derivative equations 2y + h(x) = 0 and h0(x)y − f 0(x) = 0. ¨

A singular point on C is a solution (x, y) ∈ k× k which simultaneously
satisfies the equation y2 + h(x)y = f(x) and the partial derivative equations

2y + h(x) = 0 and h0(x)y − f 0(x) = 0. This means that hyperelliptic curves
are by definition non-singular.

Lemma 25 Let C be a hyperelliptic curve over k defined by equation (1).

1) If h(u) = 0, then char(k) 6= 2.

2) If char(k) 6= 2, then the change of variables u→ u, v → (v − h(u)/2)
transforms C to the form v2 = f(u), where degu = 2g + 1.

3) Let C be an equation of the form (1) with h(u) = 0 and char(k) 6= 2.
Then C is a hyperelliptic curve if and only if f(u) has no repeated

roots in k.
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Proof. 1) Suppose that h(u) = 0 and char(k) = 2. Then the partial

derivative equations reduce to f 0(u) = 0. Note that degu f
0(u) = 2g. Let

x ∈ k be a root of the equation f 0(u) = 0 and let y ∈ k be a root of the
equation v2 = f(x). Then the point (x, y) is a singular point on C.

Statement 1) now follows.

2) Under this change of variables the equation (1) is transformed to

(v − h(u)/2)2 + h(u)(v − h(u)/2) = f(u)

which simplifies to v2 = f(u) + h(u)2/4. We note that degu(f + h
2/4) =

2g + 1.

3) A singular point (x, y) on C must satisfy y2 = f(x), 2y = 0 and

f 0(x) = 0. Hence y = 0 and x is a repeated root of the polynomial

f(u).

We continue the presentation of hyperelliptic curves by defining some

important properties.

Definition 26 Rational points, point at infinity, finite points, opposite, spe-

cial and ordinary points

Let K be an extension field of k. The set of K− rational points on C
denoted C(K) is the set of all points P = (x, y) ∈ K×K which satisfy

the equation (1) of the curve C together with a special point at infinity

denoted O. K is called the base field. The set of points C(k) will simply

be denoted by C. The points in C other than O are called finite points.

For P = (x, y) ∈ C the inverse (or conjugate) of P is the pointeP = (x,−y − h(x)). When P satisfies P = eP it is called a special
(or ramified) point. Otherwise the point is called ordinary. The point at

infinity O is a special point O = eO. ¨
58



Next we define the Jacobian of an hyperelliptic curve over k. As we

will see later, this quantity plays a crucial role in the implementation of

hyperelliptic curve cryptosystems. In analogy with the divisor theory for the

elliptic curves, we let D0 denote the divisors of degree 0 and the set of all

principal divisors by Dprinc.

Definition 27 The Jacobian of the curve C over k

The quotient group JC(k) = D
0/Dprinc is called the Jacobian of the curve

C over k. ¨

Here we note that a divisor D =
P
P∈C

nP (P ) is said to be defined over k if

Dσ =
P
P∈C

nP (P
σ) = D for all automorphisms σ of k over k. If D is defined

over k, it does not mean that each point in the support of D is k−rational.
A principal divisor is defined over k if and only if it is a divisor of a rational

function that has coefficients in k. .

In order to have a unique representation for the divisors in J(C) we introduce

reduced and semi-reduced divisors:

Definition 28 Semi-reduced and reduced divisors

A semi-reduced divisor is a degree 0 divisor of the form

D =
P

P∈C\O
nP (P )− (

P
P∈C\O

nP )O with the following properties:

(1) nP ≥ 0.

(2) if P 6= eP and nP > 0, then n eP = 0.
(3) if P 6= eP and nP > 0, then nP = 1.
A semi-reduced divisor is called a reduced divisor when additionally:

4)
P
P∈C

nP ≤ genus. ¨
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Lemma 29 For each divisor D ∈ D0 there exists a semi reduced divisor D1

(D1 ∈ D0) such that D ∼ D1.

Proof. Let D =
P
P∈C

nP (P ). Let (C1, C2) be a partition of the set

of ordinary points on C such that

1) P ∈ C1 if and only if eP ∈ C2
2) if P ∈ C1 then nP ≥ n eP .
Let C0 be the set of special points on C. Then we can write

D =
P
P∈C1

nP (P ) +
P
P∈C2

nP (P ) +
P
P∈C0

nP (P )− n(O).

We consider the following divisor:

D1 = D −
P

P=(x,y)∈C2
nP div(u− x)−

P
P=(x,y)∈C0

¹
nP
2

º
div(u− x).

This in turn equals:

D1 =
P
P∈C1

(nP − n eP )(P ) + P
P∈C3

(nP − 2
¹
n eP
2

º
)(P )−

P
P∈sup p(D1)

nP (O).

Thus it follows that every divisor D ∈ D0 can be modified by principal

divisors to obtain a semi-reduced D1 ∼ D.

Lemma 30 For each divisor D ∈ D0 there exists a unique reduced divisor

D1, D1 ∈ D0, such that D ∼ D1.
Proof. The proof of both the existence and uniqeness can be found in

[39].

The statement of the last lemma means that each equivalence class con-

tains a unique reduced divisor and the set of reduced divisors of C over k

forms a complete system of representatives for the Jacobian of C over k.

Each semi-reduced divisor D =
P

P∈C\O
nP (P ) − (

P
P∈C\O

nP )O defined over k
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can be uniquely represented by a pair of polynomials a, b ∈ k[u], where

a(u) =
Q
P∈C

(u−xP )nP is monic, and b(u) is the unique polynomial such that:

(i) deg b < deg a

(ii) for all P ∈ C; if nP 6= 0, then b(xP ) = yP

(iii) a divides b2+bh−f .

In this case, D = gcd(div(a), div(b− v)), and we write D = div(a, b). There-

fore, each reduced divisor D defined over k has a unique representation of

the form D = div(a, b), where a, b ∈ k[u] with a monic, deg b < deg a < g,

and a divides b2 + bh − f . The degree of D is deg a. We notice that the

opposite of D = div(a, b) is given by −D = div(a,−h− b).

For hyperelliptic curves of genus g ≥ 2, there is no natural group law

for a curve C defined over k. A group law is defined via JC(k). If k is a

finite field, there are only finitely many divisor class representatives of the

form div(a, b), and JC(k) is a finite abelian group. If k has order q and

the curve C is of genus g over k, then the theorem of Weil implies that

(
√
q − 1)2g ≤ #JC(k) ≤ (

√
q + 1)2g, so #JC(k) ≈ qg. Cantor developed

an efficient algorithm for calculating the group law on specific hyperelliptic

curves. The restrictions of this algorithm were the assumptions that h(u) = 0

and char(k) 6= 2. This algorithm was later generalized by Koblitz. Koblitz’s

algorithm makes use of the unique reduced representation of the elements of

JC(k). The algorithm contains two steps. Let D1 = div(a1, b1) and D2 =

div(a2, b2) be reduced divisors defined over k, so a1, b1, a2, b2 ∈ k[u]. The

first part of the algorithm finds a semi-reduced D = (a, b) with a, b ∈ k[u],

such that D ∼ D1 +D2. The second part of the algorithm reduces D to an

equivalent reduced divisor D0.
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Algorithm 31 Computation of the composition

Input: Reduced divisors D1 = div(a1, b1) and D2 = div(a2, b2).

Output: A semi-reduced divisor D = div(a, b) such that D ∼ D1 +D2.

1) Compute d1 = gcd(a1, a2) = e1a1 + e2a2.

2) Compute d = gcd(d1, b1 + b2 + h) = c1d1 + c2(b1 + b2 + h).

3) Let s1 = c1e1, s2 = c1e2 and s3 = c2 so that

d = s1a1 + s2a2 + s3(b1 + b1 + h).

4) Set

a =
a1a2
d2

and

b =

µ
s1a1b2 + s2a2b1 + s3(b1b2 + f)

d

¶
mod a. ¨

The complete proof that this part of the algorithm works can be found

in [39].

Algorithm 32 Computation of the reduction

Input: A semi-reduced divisor D = (a, b).

Output: The unique reduced divisor D0 = div(a0, b0) such that D0 ∼ D.

1) Set

a0 =

µ
f − bh− b2

a

¶
and

b0 = (−h− b)mod a0.

2) If deg(a0) > genus then go to step 1).

3) Make a0 monic. ¨

Once again, the complete proof that this part of the algorithm works can

be found in [39].
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5.2 The discrete logarithm problem on hyperelliptic
curves

We will in the following make a short review of the attacks which are specific

to hyperelliptic curves. The description and analysis of these attacks is not

the objective of this paper and we will limit us to give the expected running

times of the various attacks. The reason to list them is that they are used

in the final stage of the GHS attack on the ECDLP which will be described

in the next subsection. Now we describe the discrete logarithm problem

on hyperelliptic curve or HCDLP. Let C be a hyperelliptic curve of genus

g over k = Fq. The HCDLP is defined as follows: given C, D1 ∈ JC(k),
r = ord(D1), and D2 ∈ hD1i, find the integer λ ∈ [0, r − 1] such that
D2 = λD1.

Since the HCDLP is a generalization of the ECDLP it is no surprise that

all of the known attack on the ECDLP can be extended to an attack on

the HCDLP. This includes the Pohlig and Hellmann, the BSGS, the MOV

and the Frey-Ruck attacks. But just as for the ECDLP, these methods only

have limited success in solving the HCDLP. And again, the first method that

poses a real threat is Pollard’s ρ method. The expected running time of the

algorithm is O(g2qn/2 log2 q/m) [24], where, as before, m denotes the number

of processors involved. However, since the group operations in E(k) can be

performed faster than the group operations in JC(k), it is more efficient to

apply the ρ method directly in E(K).

The other alternative is to use index-calculus algorithms. Adleman, De-

Marrais and Huang (ADH) [1] presented the first index-calculus algorithm

for solving the HCDLP. Their algorithm was described for the case q an odd

prime, but this was later extended in [4] to arbitrary q. The algorithm has

an expected running time of Lq2g+1[c] for g → ∞ and log q ≤ (2g + 1)0,98,
where c < 2, 313 and Ln[c] = O(exp((c + o(1))

√
logn log logn)) [24]. The

algorithm does not assume that the group order #JC(k) is known.
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Building on the ADH algorithm, Gaudry presented an algorithm [20]

which has an expected running time of O(g3q2 log2 q + g2g!q log2 q). If g is

fixed, then this running time is O(q2+²) and the algorithm can be modified

to one with running time O(q
2g
g+1

+²
) as q → ∞ [19]. Gaudry’s algorithm is

faster than the ρ method when
n

2
>

2g

g + 1
[35], but becomes impractical for

large genera, g ≥ 10, because of the large multiplicative factor g!.
For larger g, the algorithm of Gaudry and Enge [11] should be employed.

This algorithm has an expected running time of Lqg [
√
2] = Lq2g+1[1] bit oper-

ations for g/ log q →∞, where Ln[c] = O(exp((c+ o(1))
√
log n

√
log log n)).

Since its running time is subexponential in qg, this algorithm is infeasible

when qg is very large, i.e. qg ≈ 21024 [35]. The main reason for the im-

proved running time over the ADH is that the order and structure of JC(k)

is assumed to be known.

5.3 The Gaudry, Hess and Smart (GHS) attack on the
ECDLP

The technique of Weil descent to solve the ECDLP was first proposed by Frey

[13]. This strategy was detailed further by Galbraith and Smart [16]. These

papers were rather general in their scope, but were not detailed enough to

give precise and efficient algorithms to solve the ECDLP for specific curves.

The work of Gaudry, Hess and Smart [19] was less general than the earlier

works but gave much more powerful and efficient techniques. We refer to the

method as the GHS attack. We will in the following give an overview of the

attack. More detailed analyses can be found in papers from the references.

Before describing the method we note that almost all research on Weil

descent has been performed in characteristic 2. The ideas are easily applied

to finite fields Fpn , where p is odd and n < 1, but the results in these cases

are not as strong as in the case of characteristic 2.

We start now the description of the algorithm. Let l and n be positive
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integers. For the remainder of the section we let q = 2l, k = Fq and K =

Fqn be the field extension, with k−basis {ψ0,ψ1, ...,ψn−1}. We consider the

elliptic curve E defined over K by the equation

E : y+xy = x3+ax2+b, a ∈ K, b ∈ K∗.

Let σ : K → K be the Frobenius automorphism defined by α→ αq, and let

bi = σi(b) for 0 ≤ i ≤ n− 1. We define

m = m(b) = dimF2(SpanF2{(1,
√
b0), (1,

√
b1), ..., (1,

p
bn−1)})

and assume one of the following conditions

i) n is odd, or ii) m(b) = n, or iii) TrK/F2(a) = 0 [19].

The first step of the in the process is to construct the Weil restriction

WE/k of scalars of E over k. We set

a = α0ψ0 + α1ψ1 + ...+ αn−1ψn−1

b = β0ψ0 + β1ψ1 + ...+ βn−1ψn−1

x = x0ψ0 + x1ψ1 + ...+ xn−1ψn−1

y = y0ψ0 + y1ψ1+ ... + yn−1ψn−1

where αi, βi ∈ k are given and xi, yi ∈ k are variables. Substituting these
equations into the equation for our elliptic curve and equating coefficients

of ψi, we obtain WE/k, which is an n−dimensional abelian variety defined
over k, the group law on WE/k being given by the group law on E(K). This

process is called Weil descent.

The next step is to intersectWE/k with n−1 carefully chosen hyperplanes
to obtain the hyperelliptic curve C. The genus g of C is either 2m−1 or

2m−1 − 1, where m = m(b).
The final step of the method is to construct an explicit group homomor-

phism

φ : E(K)→ JC(k).
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It was argued in [19] that assuming #E(K) = rd, r a prime and d a small

integer, it is highly unlikely that the kernel of φ will contain the subgroup of

order r of E(K) unless E is defined over a proper subfield of K containing

k. Thus, φ can be used to reduce instances of the ECDLP to instances of

the HCDLP. Namely, given P and Q ∈ hP i, then logPQ = logφ(P )φ(Q).
Now, the GHS attack is deemed to be successful if the genus g of C is

small enough so that either Gaudry’s or Gaudry and Enge’s algorithm is

more efficient than Pollard’s algorithm. The GHS attack fails if either qg is

too large, say qg ≥ 21024, or if g = 1, in which case JC(k) is isogenous with
E(K). For the case q = 2 this translates to m ≥ 11 or m = 1 [35].
Menezes and Qu [35] proved the following theorem which characterizes

the smallest values of m > 1 and the elliptic curves which give rise to such

m.

Theorem 33 Let n be an odd prime, t the multiplicative order of 2 modulo

n and s = (n− 1)/t.

i) The polynomial xn − 1 factors over F2 as (x− 1)f1f2...fs, where the
fi’s are distinct irreducible polynomials of degree t. For 1 ≤ i ≤ s
define

Bi = {b ∈ K | (σ − 1)fi(σ)b = 0}.

ii) For all 1 ≤ i ≤ s and all b ∈ Bi, the elliptic curves

y2 + xy = x3 + αx2 + b

y2 + xy = x3 + b

have m(b) ≤ t+ 1, where α is a fixed element of K of trace one.

iii) If m(b) = t+ 1 then E must be one of the previous curves for some i

and some b ∈ Bi.

iv) The cardinality of the set
S

i=1..s

Bi is qs(q
t − 1) + q.
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Proof. See [35].

It was also shown in [35] that if n is a prime in the range 160 ≤ n ≤
600 and q = 2 then the GHS attack will be infeasible. Since F2n with n

prime are the field dimensions of interest when implementing elliptic curve

cryptography schemes, we might conclude that the GHS is ineffective on

real-life implementations. However, there are a few deployed elliptic curve

systems that use the fields F2155 and F2185 in some standards. Curves over the

field F2155 were examined in [24] and it was established that the GHS attack

could be used to attack approximately 232 isomorphism classes of elliptic

curves defined over this field. Since there are about 2156 isomorphism classes

of elliptic curves over F2155, the probability of finding one where the GHS

attack is applicable is negligible. Further analysis of the GHS attack has

been given in [33].

A new approach to Weil descent was given in [15]. It was shown that we

can sometimes apply the GHS attack to a curve which has a large value of

m(b). The idea is to find an isogenous curve E0(K) which has a small value

of m(b0) and an isogeny E(K)→ E0(K). The discrete logarithm problem in

E(K) can then be mapped in to the discrete logarithm problem in E0(K) and

then this can be mapped using the GHS method to the discrete logarithm

problem in the Jacobian of a hyperelliptic curve of low genus. Efficient

methods to find the isogenous curve and the isogeny are given in [15], as

well as a study as to how effective this extension to the GHS method is in

practice. This extension to the original attack can still not solve real life

problems, but as it was pointed out in [33], the failure of the GHS method

does not imply a failure of the Weil descent methodology, there may be other

useful curves which lie on the Weil restriction WE/k that are not constructed

by the GHS method.
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Summary

In this thesis we presented the known algorithms for attacking the dis-

crete logarithm problem over the elliptic curves, the ECDLP. We started by

presenting some basic definitions and facts from the theory of elliptic curves.

We proceeded to describe the generic attacks, i.e. algorithms that may be

used to solve the ECDLP over general elliptic curves. An in depth analysis

of Pollard’s ρ and λ algorithms were given. The analysis included both the

original method of Pollard and the improvements given by Teske. In addi-

tion we have shown the way to parallelize the algorithms, i.e. how to run

the attack over a number of processors. The parallelized ρ algorithm is the

method of choice when trying to solve the ECDLP in practice. It was used

to solve to ECDLP challenges set by the Certicom company.

We have also presented special algorithms for solving the ECDLP. These

attacks are special in the sense that they are designed to exploit weaknesses

in the structure of some classes of elliptic curves. The algorithms that

were analyzed included the Menezes-Okamoto-Vanstone (MOV) algorithm

based on the Weil pairing, the Frey-Ruck (FR) algorithm based on the Tate-

Lichtenbaum pairing, the algorithm of Smart on the anomalous curves and

the relatively new algorithm of Gaudry, Hess and Smart (GHS) based on the

Weil descent methodology. These algorithms are effective in attacking classes

of elliptic curves which they were designed for, but are easily circumvented

in actual implementations.
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