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A Framework for Mellin Kind Series Expansion
Methods

Torgeir Brenn and Stian Normann Anfinsen

Abstract—Mellin kind statistics (MKS) is the framework which
arises if the Fourier transform is replaced with the Mellin
transform when computing the characteristic function from the
probability density function. We may then proceed to retrieve
logarithmic moments and cumulants, that have important appli-
cations in the analysis of heavy-tailed distribution models for non-
negative random variables. In this paper we present a framework
for series expansion methods based on MKS. The series expan-
sions recently proposed in [1] are derived independently and in
a different way, showing that the methods truly are Mellin kind
analogies to the classical Gram-Charlier and Edgeworth series
expansion. From this new approach, a novel series expansion is
also derived. In achieving this we demonstrate the role of two
differential operators, which are called Mellin derivatives in [2],
but have not been used in the context of Mellin kind statistics
before. Also, the Bell polynomials [3] are used in new ways
to simplify the derivation and representation of the the Mellin
kind Edgeworth series expansion. The underlying assumption
of the nature of the observations which validates that series is
also investigated. Finally, a thorough review of the performance
of several probability density function estimation methods is
conducted. This includes classical [4], [5] and recent methods
[1], [6], [7] in addition to the novel series expansion presented
in this paper. The comparison is based on synthesized data and
sheds new light on the strengths and weaknesses of methods
based on classical and Mellin kind statistics.

Index Terms—Synthetic aperture radar, non-negative random
variables, probability density function estimation, Mellin kind
statistics, method of log-cumulants, Gram-Charlier series, Edge-
worth series.
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CF Characteristic function.
CGF Cumulant generating function.
FT Fourier transform.
IID Independent and identically distributed.
GΓD Generalized gamma distribution.
MoLC Method of log-cumulants.
MKCF Mellin kind characteristic function.
MKCGF Mellin kind cumulant generating function.
MKE Mellin kind Edgeworth.
MKGK Mellin kind gamma kernel.
MKLK Mellin kind log-normal kernel.
MKS Mellin kind statistics.
MT Mellin transform.
PDF Probability density function.
RV Random variable.
SAR Synthetic aperture radar.
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I. INTRODUCTION

ESTIMATING the probability density function (PDF) is
a central part of many data analysis applications. This

includes various model based image analysis tasks using para-
metric PDFs. The choice of model is a trade-off: Advanced
models can be highly accurate for a relatively wide range
of data, but are usually mathematically and computationally
demanding. Parameter estimation may also pose challenges.
Simple models are implemented easily and run fast, but are
less flexible and may not provide a good fit to the data.

In the case of near-Gaussian data, the Gram-Charlier [8] and
Edgeworth [9] series expansions provide attractive alternatives.
They combine the simplicity of a fitted Gaussian distribution
with the flexibility and accuracy of accounting for higher
order moments of the data, i.e. skewness, excess kurtosis,
etc. However, these methods have not proven as effective
for non-negative random variables (RVs), that is, RVs which
maps to zero on the entire negative part of the real line
(support ⊆ R≥0 = [0,∞)). Radar intensity data naturally fall
into this category, and for the purpose of synthetic aperture
radar (SAR) image analysis, several distributions have been
suggested as data models. These distributions are also relevant
for other coherent imaging modalities, including ultrasound,
sonar and laser images. They are commonly based upon a
doubly stochastic product model [10], [11], which means that
the observed RV is modelled as the product of two unob-
servable RVs, and its PDF is consequentially found through
a multiplicative convolution. There are numerous other fields
in economics, science and engineering that also make use of
heavy-tailed distribution models for non-negative RVs. [12],
[13]

Mellin kind statistics (MKS) were introduced by Nicolas in
[14] and has proven to be a powerful framework designed
to deal with the product model and non-negative RVs. In
MKS, the Fourier transform (FT) is replaced by the Mellin
transform (MT), giving a Mellin kind characteristic function
(MKCF) in place of the classical characteristic function (CF).
The MKCF of a product X · Y of independent RVs is the
product of the constituent MKCFs, matching the property the
CF has with respect to the sum X +Y . Logarithmic moments
and cumulants are statistics with natural inherent qualities
in MKS, and can be retrieved in an analogous way to their
classical linear counterparts. The framework has since been
expanded to the matrix-variate case [15]. Furthermore, it has
been utilized extensively for estimation problems through the
method of logarithmic cumulants (MoLC) [6], used as a tool
to understand the physical process underlying the acquisition
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of coherent images [11], and it has also been used to produce
asymptotic expansions for PDFs [16].

The paper is organized as follows. In Section II, we briefly
summarize the Gram-Charlier and Edgeworth series, the Bell
polynomials, the MT and its properties, and MKS. In Section
III, we introduce a complete framework for the Mellin kind
equivalents of the classical series expansions, including a new
series based on a gamma distribution kernel. These series,
along with other classical and modern methods, are used
to approximate known PDFs in Section IV and to estimate
unknown PDFs in Section V. We give our conclusions in
Section VI.

II. THEORY

A. Classical Series Expansion Methods

For a RV X with unknown PDF fX (x), its CF ΦX (ω) is the
FT of fX (x) [17], that is

ΦX (ω) ≡ F [ fX (x)](ω) =
∞∫

−∞

e jωx fX (x) dx = E{e jωX }, (1)

where j is the imaginary unit, the expectation operation E{·}
is performed with respect to X , and ω ∈ R is the transform
variable. The linear moments of order ν are defined as mν ≡
E{Xν}. The natural logarithm of the CF is called the cumulant
generating function (CGF), since the cumulants cX,ν, ν ∈ Z>0
can (if they all exist) be retrieved from

logΦX (ω) =
∞∑
ν=1

cX,ν
( jω)ν
ν!

. (2)

Let α(x) = (2π)−1/2e−x
2/2 denote the standardized (zero mean,

unit variance) Gaussian kernel with CF Φα(ω) [18]. Unique
to the Gaussian distribution is the property of its cumulants:
cα,ν = 0∀ ν ≥ 3 [19]. Combining (1) and (2) with the CGF of
α(x) gives the CF of X as

ΦX (ω) = exp

{ ∞∑
ν=1
[cX,ν − cα,ν]

( jω)ν
ν!

}
Φα(ω). (3)

where we see for standardized X

cX,ν − cα,ν =
{

0 ν = 1, 2
cX,ν ν ≥ 3 . (4)

The PDF of X can now be retrieved [17] from (3) via the
inverse FT

fX (x) = exp

{ ∞∑
ν=3

cX,ν
(−Dx)ν
ν!

}
α(x), (5)

where exp{·} is the exponential function and Dx = d/dx
is the derivative operator. To get a more tractable expres-
sion, the exponential function is reduced via its power se-
ries exp{x} = ∑∞

k=0 xk/k! to give an infinite double sum.
Now we can collect the terms according to the power of
(−Dx) and recollect the definition of the Hermite polynomials,
Hν(x)α(x) = (−Dx)να(x) [17], to get the classical Gram-
Charlier series

fX (x) =
[
1 +

cX,3
6

H3(x) +
cX,4
24

H4(x) + · · ·
]
. (6)

Edgeworth’s idea was to assume that the nearly-Gaussian RV
X was a standardized sum

X =
1
√

r

r∑
i=1

Zi − m
ς

, (7)

where the RVs Z1, Z2, . . . , Zr are independent and identically
distributed (IID), each with mean m, variance ς2 and higher
order cumulants cZ,ν = ςνλν . The dimensionless λν will
simplify the following derivation, and the properties of the
cumulants give [8]

cX,ν =
λν

r
ν
2 −1 , ν ≥ 3. (8)

Collecting the terms in (5) based on their power of r−1/2

instead gives the Edgeworth series [9]

fX (x) =α(x) + r−
1
2

[
λ3
6

H3(x)
]
α(x) (9)

+ r−1

[
λ4
24

H4(x) +
λ2

3
72

H6(x)
]
α(x) +O

(
r−

3
2

)
.

Its convergence is found to be superior to the Gram-Charlier
series both with few terms and asymptotically [9].

B. The Bell Polynomials

Named in honor of Eric T. Bell who introduced what he
called partition polynomials in [20], the partial Bell polyno-
mials are defined as [21]

Bn,r (x1, x2, . . . , xn−r+1) =
∑
Ξr

n!
n−r+1∏
i=1

1
ji!

( xi
i!

) ji
, (10)

where the sum is the over the set Ξr of all combinations of
non-negative integers j1, . . . , jn which satisfy j1 + 2 j2 + · · · +
(n − r + 1) jn−r+1 = n − r + 1 and r = j1 + k2 + · · · + jn−r+1.
The nth complete Bell polynomial is the sum

Bn(x1, . . . , xn) =
n∑

r=1
Bn,r (x1, x2, . . . , xn−r+1). (11)

The Bell polynomials satisfy [21]

exp

{ ∞∑
ν=1

xν
tν

ν!

}
=

∞∑
n=0

Bn(x1, . . . , xn)
tn

n!
, (12)

and a well-known use of this result is to retrieve the νth order
moment from the cumulants of order ≤ ν [22] as

mν = Bν(c1, . . . , cν). (13)

Another use of (12) is to sort the terms in (5) to retrieve the
Gram-Charlier series in a simple manner [23]. In [24], we
demonstrate how the Bell polynomials can also be used to
sort the terms in the classical Edgeworth series, providing a
simpler way of evaluating (9) up to arbitrary power of r−1/2.
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TABLE I
MELLIN TRANSFORM PROPERTIES

f (x) F(s) = M[ f (x)](s) Condition

Linearity af (x) + bg(x) aF(s) + bG(s) a, b constant, s ∈S f

Scaling f (ax) a−sF(s) a > 0, s ∈S f

Multiplication xn f (x) F(s + n) s + n ∈S f

Differentiation Dn
x f (x) (−1)n(s − 1)nF(s − n) n ∈Z≥0, s − n ∈S f

A combination Dn
x x

n f (x) (−1)n(s − 1)nF(s) s ∈S f

A Mellin derivative (Dx x)n f (x) (−1)n(s − 1)nF(s) s ∈S f

C. The Mellin Transform

The MT of a function f (x) is

M[ f (x)](s) ≡
∞∫

0

xs−1 f (x)dx = F(s) ⇔ f (x) M−−→ F(s), (14)

where s ∈ C is the transform variable. The MT is limited to
functions which satisfy f (x) = 0∀ x < 0, i.e. f(x) has support
⊆ R≥0. The fundamental strip Sf is the largest open strip 〈a, b〉
of Re(s) for which the integral in (14) converges. If s ∈ Sf ,
then f (x) is retrievable via the inverse MT [25],

f (x) =M−1[F(s)](x) = 1
2π j

c+j∞∫
c−j∞

x−sF(s)ds, (15)

where the integral is taken along a vertical line in the complex
plane, with the fundamental strip defined by its real (vertical)
boundaries.

Some general properties of the MT are listed in Table I
[26], [27]. The differentiation properties introduces the falling
factorial, defined as (s− 1)n = (s− 1)(s− 2) · · · (s− n), and the
Mellin derivative1 operator, defined as Dx x. Note that the final
two properties differ because differentiation and multiplication
operations are non-commutative. E.g., for n = 2, f (x) = 1 we
have (Dx x)2 = Dx xDx x = 1, whereas D2

x x2 = Dx2x = 2.

D. Mellin Kind Statistics

While the idea of using the Mellin transform (MT) as a tool
for statistical analysis had been proposed earlier [28], it did
not receive much attention until the introduction of MKS in
[14]. The MKCF φX (s) is defined as the MT of the PDF

φX (s) ≡ M[ fX (x)](s) =
∞∫

0

xs−1 fX (x)dx = E{Xs−1}. (16)

The log-moments are defined as µν ≡ E{(log X)ν}, where
ν ∈ Z≥0. The MKCF can be expressed in terms of the log-
moments by rewriting the transform kernel xs−1 = e(log x)(s−1)

in (16), inserting the power series expansion for the exponen-
tial function, and finally changing the order of integration and

1Dx x and xDx are called "Mellin derivatives" in [2].

summation to recognize the log-moments from their definition,
i.e.

φX (s) =
∞∑
ν=0

µν
(s − 1)ν
ν!

. (17)

As in the classical case, this depends on the existence of all
µν , and under this condition it is also possible to retrieve the
log-moments from

µν = DνsφX (s)
��
s=1 . (18)

The log-cumulant generating function (MKCGF) is defined
ϕX (s) = log φX (s). Provided all log-cumulants κν exist, we
then have

ϕX (s) =
∞∑
ν=1

κν
(s − 1)ν
ν!

, (19)

κν = DνsϕX (s)
��
s=1 . (20)

The equivalent result as (13) trivially holds for the log-
moments and log-cumulants, since their relations are identical
[14], [29].

For a more detailed review of the fundamental properties
of MKS, see e.g. [14] (English translation: [30]), while [15]
emphasizes the analogy to classical statistics and expands the
framework to the matrix-variate case. A comprehensive list of
MKCFs and MKCGFs for several distributions can be found
in [31].

III. A FRAMEWORK FOR THE MELLIN KIND SERIES
EXPANSION METHODS

A. The Mellin Kind Gram-Charlier Series Expansion with
Arbitrary Kernel

For a non-negative RV X and an arbitrary continuous PDF
kernel θ(x) with support R≥0, whose log-moments and log-
cumulants all exist, it is possible to mirror the approach in
Section II leading up to (3), giving the MKCF of X as

φX (s) = exp

{ ∞∑
ν=1
[κX,ν − κθ,ν]

(s − 1)ν
ν!

}
φθ (s). (21)

In the same way [23] applied the Bell polynomials to the
classical Gram-Charlier series, applying the result in (12) gives
us

φX (s) =
[ ∞∑
n=0

Bn(∆κ1,∆κ2, . . . ,∆κn)
(s − 1)n

n!

]
φθ (s), (22)
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where ∆κn = κX,n − κθ,n is used for brevity. Table I contains
the Mellin derivative property, which has not been used in the
context of MKS before now. It provides an inverse MT of
(22), leading up to

fX (x) =
[ ∞∑
n=0

Bn(∆κ1,∆κ2, . . . ,∆κn)
(−Dx x)n

n!

]
θ(x) , (23)

which is the Mellin kind Gram-Charlier series expansion with
arbitrary kernel.

B. The Mellin Kind Gamma Kernel Series

Let

γ(x; a, b) =
{
baxa−1

Γ(a) e−bx , x ≥ 0
0 , x < 0

(24)

denote the gamma distribution PDF with shape a and scale b.
We will now substitute θ(x) → γ(x; a, b) in (23) to get the
Mellin kind gamma kernel (MKGK) series. To get an applica-
ble expression, it is necessary to evaluate (−Dx x)nγ(x; a, b).
By letting b = 1, it is possible to define the polynomials Mn(x)
implicitly as

Mn(x)γ(x; a) = (−Dx x)nγ(x; a). (25)

or2

Mn(x) = x−(a−1)ex(−Dx x)n[xa−1e−x], (26)

and since Dx x is scale invariant, the generalization to arbitrary
b is simply to replace x with bx in the polynomials, i.e.

Mn(bx)γ(x; a, b) = (−Dx x)nγ(x; a, b). (27)

In Appendix A we prove that Mn(x) is a linear combination
of the well-known generalized Laguerre polynomials [33] and
give explicit polynomials for n = 0, 1, 2, 3. The MKGK series
can now be completed by substituting γ(x; a, b) for θ(x) and
(27) into (23) to yield

fX (x) ≈[
N∑
n=0

1
n!

Bn(∆κ1,∆κ2, . . . ,∆κn)Mn(bx)
]
γ(x; a, b),

(28)

where the sum was truncated to finite N .
The parameters a and b of the kernel can be chosen such that

the log-cumulants κγ,1 and κγ,2 match the respective population
log-cumulants κX,1 and κX,2. This way we can approximate
any given PDF model for X. If the model is unknown, then
κγ,1 and κγ,2 can be matched with the corresponding sample
log-cumulants which amounts to producing MoLC estimates
of a and b [6]. This simplification is considerable, as the Bell
polynomials of degree 0 through 6 consist of 30 terms in total,
only 6 of which are non-zero if ∆κ1 = ∆κ2 = 0, and (28) is
reduced to

fX (x) ≈[
1 +

N∑
n=3

1
n!

Bn(0, 0,∆κ3, . . . ,∆κn)Mn(bx)
]
γ(x; a, b).

(29)

The first few terms in the MKGK are presented in (40).

2This definition mirrors the Rodrigues type formulae [32], with the Mellin
derivative replacing the standard differentiation operator.

C. The Mellin Kind Log-normal Kernel Series

Now insert for θ(x) the log-normal PDF kernel

Λ(x; µ, σ) = 1
x
√

2πσ
exp

{
−(log x − µ)2

2σ2

}
(30)

with log-mean µ = E{log X} and log-variance σ2 =

E{(log X − µ)2} [16] to obtain the Mellin kind log-normal
kernel (MKLK) series. To evaluate (−Dx x)nΛ(x; µ, σ), we use
the proof (59) of Lemma 3 from Appendix B to see that

fX (x) =[ ∞∑
n=0

1
n!σn

Bn(∆κ1, . . . ,∆κn)Hn

(
log x − µ

σ

)]
Λ(x; µ, σ).

(31)

Matching of the log-mean µ and log-variance σ2 to κX,1 and
κX,2 not only results in that most of the terms vanish, as with
the MKGK series, but since [31]

κΛ,ν =


µ ν = 1
σ2 ν = 2
0 ν ≥ 3

, (32)

we have that ∆κn = κX,n for n > 2. That is, for Λ(x; µ, σ)
with tailored parameters,

fX (x) ≈
[
1+

N∑
n=3

Bn(0, 0, κX,3, . . . , κX,n)
n!σn

·Hn

(
log x−µ

σ

)]
Λ(x; µ, σ),

(33)

with the first few terms presented in (41).

D. Mellin Kind Edgeworth Series

Recall that the classical Edgeworth series is based on the
assumption in (7) which leads to (8). In Appendix C we prove
that replacing X with log X in (7) gives the log-cumulant
differences

∆κν = κX,ν − κΛ,ν =
{

0 ν = 1, 2
λν

r
ν
2 −1 ν ≥ 3 , (34)

where (32) was also used. Using this result and inserting the
MKCF φΛ(s) of the log-normal kernel into (21) gives

φX (s) = exp

{ ∞∑
ν=3

λν

r
ν
2 −1
(s − 1)ν
ν!

}
φΛ(s). (35)

Shifting the index ν → ν + 2, this can instead be viewed as a
power series in r−1/2

φX (s) = exp

{ ∞∑
ν=1

ζν(s − 1)r
−ν/2

ν!

}
φΛ(s) , (36)

where
ζν(s) =

λν+2
(ν + 1)(ν + 2) s

ν+2 . (37)

Since the function ζν(s− 1) is independent of r , property (12)
gives

φX (s) =
[ ∞∑
n=0

Bn

(
ζ1(s − 1), . . . , ζn(s − 1)

)
r−n/2

n!

]
φΛ(s) . (38)
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This is a polynomial in (s − 1), so the inverse MT can be
applied as for the MKGK and MKLK series to yield

fX (x) =
[
1 +

∞∑
n=1

Bn

(
ζ1(−Dx x) , . . . ,

ζn(−Dx x)
)

r−n/2

n!

]
Λ(x; µ, σ) ,

(39)

where the ζ function from (37) is now used with index n and
the operator −Dx x as input.

As in (33), the term corresponding to n = 0 is unity,
indicating that this is a series around the tailored log-normal
kernel. Lemma 3 is again used to replace the Mellin derivative
with the Hermite polynomials, and the first few terms of the
Mellin kind Edgeworth (MKE) series are presented in (42).
Note that the first correction term of the MKLK and MKE
series are equal.

The MKE series is identical to the series presented in [1],
but it is derived independently as the result of a different
approach. The authors of [1] used a change of variable,
s − 1→ jω, the fact that if Y = log X , and then [14] showed
that φX (s) = ΦY (ω). This allowed for the inverse FT to be
used, while the present approach involves the Mellin derivative
and the inverse MT. Secondly, the role of the Bell polynomials
in the series expansion methods is illuminated to reveal an
alternative representation to the one in [1], which mirrored
the classical Edgeworth series in [9].3. Thirdly, use of Bn(·)
allows generalization into a framework of approximations with
arbitrary kernel function.

IV. APPROXIMATING KNOWN DISTRIBUTIONS

In this section we use the MKGK, MKLK and MKE series
and other methods to approximate known PDFs. That is, we
assume that the distribution parameters are known and do not
need to estimate the log-cumulants κX,n or in fact any quantity
in (40), (41) and (42) from data.

For all simulations in this paper, we compute the Bhat-
tacharyya distance dB( fX (x), f̂X (x)) [35], the Kullback-Leibler
distance4 dKL( fX (x), f̂X (x)), and the maximum error (i.e. the
Kolmogorov-Smirnov test or L∞ norm distance) to ensure that
our conclusions are not colored by our choice of dissimilarity

3The Bell polynomials can be used in the classical (linear) case as well
[23], [34], [24].

4We take distance to mean a non-negative definite symmetric function,
and dKL ( fX (x), f̂X (x)) is the symmetrized version of the Kullback-Leibler
divergence. This follows the nomenclature of [35].

measure. In most cases the results were highly consistent,
allowing us to present only one or two of the measures for
brevity.

Since the series expansions are not in general true probabil-
ity measures (they do not always integrate to unity and exhibit
negative values of f̂X (x)) [9], we needed to slightly modify
the estimates to ensure that the ratios and logarithms in dB(·)
and dKL(·) do not fail, but also gives fair results.5

A. Broad Comparison of the Methods

We start with a general comparison of 7 methods based on
log-cumulants. In addition to the MKGK, MKLK and MKE
series, the methods tested are the gamma, log-normal, K [6],
and generalized gamma (GΓD) [7] distributions with parame-
ters fitted by the MoLC. Note that the MoLC gamma method
corresponds to the kernel of the MKGK series, i.e. N ≤ 2 in
(29), while the MoLC log-normal method corresponds to the
kernels in both the MKLK and MKE series, i.e. N ≤ 2 in
(33) and truncating the entire sum in (39). The series are here
corrected only for κX,3 and κX,4, specifically N = 4 in the
MKGK and MKLK series and truncating terms of O

(
r−3/2)

in the MKE series. Note that fewer terms render the MKLK
and MKE series identical. In Section IV-B we examine how
the series depend on the number of terms.

In Fig. 1, we approximate the K distribution with PDF [14]

K(x; µ, L, M) =

2LM
µΓ(L)Γ(M)

(
LM x
µ

) M+L
2 −1

KM−L

(
2

√
LM x
µ

)
,

(43)

where x, µ, L, M > 0, and the G0 distribution with PDF

G0(x; g, L, M) = LLΓ(L − M)xL−1

gMΓ(L)Γ(−M)(g + Lx)L−M , (44)

where x, g, L > 0 , M < 0. These two distributions are given in
[36] as two distributions with physical foundation which arise
when modelling observed SAR intensity of a heterogeneous
scene.

Fig. 1 (a) shows the relative success of all methods in
modelling the K distribution with a high shape parameter
L = 16, known in the SAR literature as the number of looks
[37]. The MKLK, MKE, and MKGK series visibly improve

5Specifically, to remedy the common feature that the series expansion
methods produce estimates f̂X (x) which integrate to < 1 and result in
dB (·) < 0, we divided f̂X (x) by its integral.

fX (x) =
[
1 +
∆κ3
6

M3(bx) + ∆κ4
24

M4(bx) + ∆κ5
120

M5(bx) +
∆κ6+10∆κ2

3
720

M6(bx) + ∆κ7+35∆κ3∆κ4
5040

M7(bx) + · · ·
]
γ(x; a, b) (40)

fX (x) =
[
1+

κ3

6σ3 H3

(
log x−µ

σ

)
+

κ4

24σ4 H4

(
log x−µ

σ

)
+

κ5

120σ5 H5

(
log x−µ

σ

)
+
κ6 + 10κ2

3
720σ6 H6

(
log x−µ

σ

)
+ · · ·

]
Λ(x; µ, σ) (41)

fX (x) = Λ(x; µ, σ) + 1
r1/2

[
λ3

6σ3 H3

(
log x−µ

σ

)]
Λ(x; µ, σ) + 1

r

[
λ4

24σ4 H4

(
log x−µ

σ

)
+

λ2
3

72σ6 H6

(
log x−µ

σ

)]
Λ(x; µ, σ) + O

(
1

r3/2

)
(42)



DRAFT VERSION 6

(a) (b)

Fig. 1. PDF approximations of known distributions produced by seven methods, with the series expansion methods corrected for κX,3 and κX,4. (a) K
distribution with parameters µ = 1, L = 16, M = 10, (b) G0 distribution with parameters g = 2, L = 4, M = −2.

on their kernels, but they are not able to attain the accuracy
of the three-parameter GΓD when only corrected for κX,3 and
κX,4. The K distribution is of course exact in this case, in the
sense that any deviation is solely the result of computational
inaccuracies, e.g. numerical iterative solutions terminated after
achieving some predefined accuracy. In the following, we will
disregard such technicalities, instead stating the solutions as
exact.

Fig. 1 (b) represents a more challenging case with a heavier
tail. The MKGK series is ill-suited to this case, but the MKLK
and MKE series outperform their kernel and even the MoLC
K and GΓD methods.

In Table II we show the results of experiments where we
have again used the K and G0 distributions as targets, but also
included the gamma distribution from (24), the inverse gamma
distribution [14]

γ−1(x; a, b) = bax−a−1

Γ(a) e−
b
x , (45)

where x, b > 0, a > 0, and the generalized gamma distribution
[38], [39], [7]

GΓD(x; a, b, d) = |d |b
Γ(a) (bx)ad−1 exp{−(bx)d}, (46)

where x, b > 0, a > 0, d , 0. We only present the Kullback-
Leibler distance in this case as the three dissimilarity measures
are consistent, with dKL(·) having the best contrast when the
approximations were highly accurate.

From Table II, we can see that the series expansions improve
on their kernel, and with only two correcting terms they are
competing with the flexible and accurate MoLC K and GΓD
methods. Disregarding distributions which are exact matches,
the series expansions prove the most accurate for 5 of the
10 distributions tested, with the standout performers being the
MoLC GΓD method and the MKE series. These two methods

exhibit flexibility in the sense that they successfully model
all our target distribution. This property is remarkable for a
method as fast as the MKE series.

B. Convergence of the Novel Series Expansion Methods

We will now examine if and how the MKLK, MKE and
MKGK series converge to the true PDF as we correct for
successively higher order log-cumulants.

We found it necessary to present both dB(·) and dKL(·) in
Fig. 2, as the measures are in discord in cases (b) and (c).
Still, we clearly see that the MKE series converges while the
MKLK and MKGK series are less well-behaved. This closely
resembles the convergence properties of the classical Gram-
Charlier and Edgeworth series, which were examined in [9].

Compared to Table II, we see that the MKE series provides
a better approximation to K(x; µ = 1; L = 16, M = 10) than
the top performer MoLC GΓD when corrected for κX,5 and
beyond. The same is the case for γ(x; a = 4, b = 2) and when
correcting for at least κX,7 in γ−1(x; a = 16, b = 2) (these cases
were not included in Fig. 2). For K(x; µ = 2; L = 4, M = 2)
and γ−1(x; a = 4, b = 2), none of the series exceeded the
MoLC GΓD when limited to corrections up to κX,8.

It is clear that the MKE series in particular is a very
attractive alternative when approximating the known PDFs of
non-negative RVs.

V. SYNTHETIC DATA EXPERIMENTS

In this section, the scenario is that the true distributions are
not known, that is, we must estimate the distribution cumulants
and log-cumulants by replacing them with the corresponding
empirical entities. The parameters are estimated using the
MoLC.
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TABLE II
COMPARISON OF PDF APPROXIMATION METHODS FOR DIFFERENT DISTRIBUTIONS, KULLBACK-LEIBLER DISTANCE TO THE TRUE PDF, SERIES

EXPANSIONS CORRECTED FOR κX,3 AND κX,4 , BEST METHOD IN BOLD

K(x; ρ), ρ=[µ, L, M] G0(x; ρ), ρ=[g, L, M] γ(x; ρ), ρ=[a, b] γ−1(x; ρ), ρ=[a, b] GΓD(x; ρ), ρ=[a, b, d]
ρ [1, 16, 10] [2, 4, 2] [1, 16, −10] [2, 4, −2] [4, 2] [16, 8] [4, 2] [16, 8] [4, 2, 2] [16, 8, 2]

MoLC K [6] Exact Exact 6.67·10−3 6.78·10−2 1.02·10−3 5.40·10−4 4.20·10−2 1.06·10−2 7.88·10−3 Failure

MoLC GΓD [7] 3.51·10−7 2.55·10−5 9.29·10−5 1.87·10−3 Exact Exact 4.11·10−6 1.05·10−7 Exact Exact

MKLK, kernel only 3.38·10−3 1.68·10−2 6.84·10−4 5.92·10−3 1.83·10−2 4.69·10−3 1.85·10−2 4.74·10−3 1.91·10−2 4.75·10−3

MKLK series 8.44·10−5 3.00·10−3 6.52·10−6 1.11·10−3 2.61·10−3 1.45·10−4 2.29·10−3 1.30·10−4 2.56·10−3 1.40·10−4

MKE series 6.26·10−6 6.79·10−4 3.96·10−6 9.33·10−4 3.94·10−3 1.31·10−5 7.82·10−3 1.32·10−5 6.40·10−3 1.30·10−5

MKGK, kernel only 2.74·10−3 1.00·10−2 1.88·10−2 9.48·10−2 Exact Exact 7.29·10−2 1.89·10−2 4.81·10−3 1.75·10−3

MKGK series 8.57·10−4 1.46·10−1 3.50·10−3 1.99·100 Exact Exact 5.68·10−2 2.26·10−3 7.20·10−4 4.72·10−4

(a) (b) (c) (d)

Fig. 2. Bhattacharyya distance (top) and Kullback-Leibler distance (bottom) to the true distribution as a function of the number of terms in the series expansion
approximations. True distributions (a) K(x;µ = 1; L = 16, M = 10), (b) G0(x; g = 2, L = 4, M = −2), (c) γ−1(x; a = 4, b = 2), (d) GΓD(x; a = 16, b =
8, d = 2).

A. Broad Comparison Based on Data

We start with a broad comparison as in Section IV-A. In
addition to the seven methods used there, we also compare
the gamma distribution fitted with the maximum likelihood
estimates of the parameters [4] and the classical Gram-Charlier
series with a gamma kernel, which is a series expansion using
the classical (empirical) cumulants with the gamma kernel
tailored using the method of moments [5].

In Fig. 3 (a), all methods proved reasonably successful,
with the MKLK and MKE series outperforming their log-
normal kernel to compete with the more advanced and compu-
tationally demanding MoLC K and GΓD estimates. Fig. 3 (b)
demonstrates a more challenging scenario, due to its heavier
tail. The MKGK series diverged, while the MKLK and MKE
series were again among the best. In a direct comparison with
Fig. 1, we see significantly higher errors when the distribution
is unknown.

It should be noted that the MoLC GΓD method occasionally
failed in testing: The closed form expressions used to estimate
the parameters sometimes failed due to arguments of a square
root being negative. This is inherent to the novel approach
presented in [7], which provides a quick and relatively simple

way of estimating the parameters in the flexible GΓD, that is to
say that the issues are not nearly severe enough to dismiss the
method. Here, we simply check the arguments to the square
root and set them to zero when necessary to get an estimate.
The MoLC K model had similar problems, leading to up to 5
of the 1000 estimates being discarded.

In Table III, the results from Fig. 3 are tabulated, along with
several other experiments corresponding to other underlying
distributions. The series expansion methods were only cor-
rected for κ3, κ4 (two terms). We present the Kullback-Leibler
distance since all dissimilarity measures were for the most part
in accordance in this situation. An exception is that in some
of the cases where the MKLK series exhibited slightly lower
dKL(·) than the MKE series, the latter had the lowest dB(·) of
the two, essentially implying that the MKLK and MKE series
performed evenly in this scenario.

From Table III we can draw the conclusion that, not sur-
prisingly, the best results are achieved when making accurate
assumptions about the data model. E.g., for K distributed
data, the fitted K(·) outperforms the other methods. Likewise,
for gamma-distributed data, the simple gamma models out-
performed the more complex models, and we recall that the
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(a) (b)

Fig. 3. PDF estimates produced by 9 methods, based on 1000 synthesized data points, with the series expansion methods corrected for κ3, κ4. (a) K distribution
with parameters µ = 1, L = 16, M = 10, (b) G0 distribution with parameters g = 2, L = 4, M = −2.

TABLE III
COMPARISON OF PDF ESTIMATION METHODS FOR DIFFERENT TYPES OF DATA, KULLBACK-LEIBLER DISTANCES TO THE TRUE PDF, SERIES

EXPANSIONS CORRECTED FOR κX,3 AND κX,4 ,A BEST METHOD FOR EACH TYPE OF DATA IN BOLD

K(x; ρ), ρ=[µ, L, M] G0(x; ρ), ρ=[g, L, M] γ(x; ρ), ρ=[a, b] γ−1(x; ρ), ρ=[a, b] GΓD(x; ρ), ρ=[a, b, d]
ρ [1, 16, 10] [2, 4, 2] [1, 16, −10] [2, 4, −2] [4, 2] [16, 8] [4, 2] [16, 8] [4, 2, 2] [16, 8, 2]

Fitted γ(·) [4] 3.72·10−3 1.02·10−2 2.04·10−2 1.35·10−1 9.55·10−4 9.85·10−4 7.90·10−2 2.03·10−2 5.60·10−3 2.17·10−3

γ(·) expansion [5] 3.78·10−3 2.06·10−2 7.69·10−2 5.72·10−1 1.71·10−3 1.95·10−3 1.30·100 5.54·10−2 3.95·10−3 2.77·10−3

MoLC K [6] 1.13·10−3 1.37·10−3 7.76·10−3 1.19·10−1 2.23·10−3 1.64·10−3 4.60·10−2 1.17·10−2 8.77·10−3 Failure

MoLC GΓD [7] 1.46·10−3 1.64·10−3 1.56·10−3 3.48·10−3 1.59·10−3 1.49·10−3 1.51·10−3 1.43·10−3 1.67·10−3 1.48·10−3

MKLK, kernel only 4.39·10−3 1.78·10−2 1.65·10−3 6.90·10−3 1.93·10−2 5.68·10−3 1.95·10−2 5.74·10−3 2.01·10−2 5.74·10−3

MKLK series 2.16·10−3 8.15·10−3 2.69·10−3 4.73·10−3 5.43·10−3 2.36·10−3 5.45·10−3 3.11·10−3 6.69·10−3 2.63·10−3

MKE series 2.34·10−3 7.17·10−3 2.62·10−3 6.81·10−3 9.75·10−3 2.89·10−3 1.34·10−2 3.72·10−3 1.23·10−2 3.18·10−3

MKGK, kernel only 3.78·10−3 1.12·10−2 1.98·10−2 9.63·10−2 1.01·10−3 1.01·10−3 7.41·10−2 1.99·10−2 5.84·10−3 2.55·10−3

MKGK series 8.03·10−3 2.23·10−1 9.34·10−3 2.02·100 2.28·10−2 3.41·10−3 1.64·10−1 5.03·10−3 1.04·10−2 2.47·10−3

A The γ(·) expansion was naturally corrected for the corresponding linear cumulants instead.

MKGK kernel is the MoLC estimate of γ(·), while the "fitted
γ(·)" uses the maximum likelihood estimates. This is to say
that when we synthesize data from complicated distributions in
the following, one must keep in mind that if the data in reality
follows a simpler model, then the simple methods should be
tried first.

The MKLK and MKE series are very often among the top
performers, indicating that they are good candidates when
it is difficult to make assumptions on the data. However,
their results are not as strong as they were in Section IV,
presumably since they require the estimation of 4 quantities
(the log-cumulants of order 1 through 4). In the following
sections, we vary the number of terms used and observations
available.

B. The Impact of the Number of Terms

Here we examine series expansion methods (the classical
Gram-Charlier series with a gamma kernel [5], the MKGK,

MKLK and MKE series), with respect to their performance
as the number of correction terms are varied. In Fig. 4 we
present the same four distributions as in Fig. 2 and correct for
up to the 8th order (log-)cumulant. We performed the same
computations for all 10 distributions in Table III, but the results
were too similar to warrant presenting them all.

Clearly, both gamma kernel series are prone to divergence,
only performing well in the case of GΓD data in (d). The
MKLK and MKE fared better, with the latter outperforming
the former when correcting for between κX,5 and κX,7, but not
otherwise. The contrast with Fig. 2 is clear: The benefit of
additional corrections does not outweigh the error introduced
by having to correct for additional log-cumulants with this
number of data points.

C. The Impact of the Number of Observations

This final analysis is concerned with how the performance
of the methods depends on the number of data points (obser-
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(a) (b) (c) (d)

Fig. 4. Bhattacharyya distance (top) and Kullback-Leibler distance (bottom) to the true distribution as a function of the number of terms in the series expansion
estimates. Mean of 1000 iterations with 1000 synthesized data points. True distributions (a) K(x;µ = 1, L = 16, M = 10), (b) G0(x; g = 2, L = 4, M = −2),
(c) γ−1(x; a = 4, b = 2), (d) GΓD(x; a = 16, b = 8, d = 2).

(a) (b) (c) (d)

Fig. 5. Bhattacharyya distance (top) and Kullback-Leibler distance (bottom) to the true distribution as a function of the number of data points. Mean of 1000
iterations, series expansion methods corrected with two terms as in Fig. 3. True distributions (a) K(x;µ = 1, L = 16, M = 10), (b) G0(x; g = 2, L = 4, M = −2),
(c) γ−1(x; a = 4, b = 2), (d) GΓD(x; a = 16, b = 8, d = 2). The classical Gram-Charlier gamma kernel series was omitted from (b) and (c) for readability, as
it was divergent (much higher distances than the others), and the MKGK series was also left out from (b) for the same reason. The MoLC K method failed
in (d), as in Tables II and III.

vations). Specifically: Should the quantity of data impact our
choice of PDF estimate? For the series expansion methods we
also ask whether vast amounts of data permit more terms.

Fig. 5 presents the same distributions as Fig. 4, but fixed
to two correcting terms and with the number of observations
now varying from 100 to 10000. The series expansion methods
benefit more from the increase in observations, which is not
surprising as the (log-)cumulants used in the corrections are
in fact estimated themselves. Especially the methods based
on the log-normal kernel demonstrate their value as they
approach the accuracy of the MoLC GΓD method. We also
see that the MKE series benefits even more from an increase
in the quantity of the data then the MKLK series, presumably

because its second correcting term also accounts for κ2
X,3, i.e.

it is more complex.

Our final investigation seeks to shed light on the practical
question of whether there is an ideal number of correcting
terms for a given number of data points, and if this also
depends on the nature of the data (true distribution) at hand.

In Table IV we present the best (lowest distance) number
of correction terms in the series expansion methods for the
distributions in Figures 5 and 2, when the number of obser-
vations is varied. Clearly, more data points allows for more
terms, as expected. In fact, it is hard to justify compensating
for more than κ3 (conceptually the logarithmic skewness),
unless we have very many data points. We recall that with
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TABLE IV
THE HIGHEST ORDER (LOG-)CUMULANT WHICH SHOULD BE CORRECTED FORA , WITH RESPECT TO THE NUMBER OF OBSERVATIONS FOR

DIFFERENT TYPES OF DATA, BEST METHOD FOR EACH DISTRIBUTION IN BOLD

K(x;µ=1, L=16, M=10)) G0(x; g=2, L=4, M=−2) γ−1(x; a=4, b=2) GΓD(x; a=16, b=8, d=2)
Obs. 102 103 104 102 103 104 102 103 104 102 103 104

Fitted γ(·) [4] κ2 κ3, κ4 κ4, κ6 κ6 κ8 κ3 κ3, κ5 κ2, κ3 κ2, κ3 κ2 κ2, κ3 κ4

MKLK series κ2 κ3 κ3, κ4 κ2 κ4 κ4 κ3 κ3, κ4 κ3, κ4 κ2 κ3, κ4 κ4

MKE series κ2 κ3 κ4 κ2 κ4 κ4, κ5 κ3 κ3 κ5 κ2 κ3 κ4

MKGK series κ2 κ3 κ5 κ2 κ2 κ2 κ2 κ3, κ5 κ3, κ5 κ2 κ3, κ4 κ4

A We take this to mean the correction which results in the lower Bhattacharyya and Kullback-Leibler distance to the true distribution, based on the
mean of 1000 iterations. In cases where the results are very similar or dB (·) and dKL (·) disagree, we have given both log-cumulants.

this lone correction term, the MKLK and MKE series coincide.
Supporting our remarks on Fig. 5, we see that the MKE series
benefits the most from an increase in observations, becoming
the top performer at 10, 000 data points in all four cases.
Finally, we note that [17] commented that estimation of the
linear cumulants of order > 4 was unreliable due to sample
fluctuations. The present findings indicate that the same can
be said in the logarithmic case.

VI. CONCLUSION

We have shown how the classical Gram-Charlier and Edge-
worth series have strong theoretical and practical analogies
in the logarithmic domain, derived using the MT and MKS.
We have introduced the Mellin derivatives in the context of
MKS, providing a useful (and in this case necessary) way to
retrieve the PDF via the inverse MT on the MKCF. The Bell
polynomials have also been used in a new way, providing
a simpler representation of the MKE series. The Mellin kind
Gram-Charlier series expansion with arbitrary kernel indicates
that there are undiscovered methods within the presented
framework.

When approximating known distributions, we have shown
how the Mellin kind series mirrors the performance of their
classical counterparts [9], with the MKE series converging in
a predictable manner over a range of different distributions,
unlike the MKLK and MKGK series. These methods, and the
MKE series in particular, are attractive alternatives which defy
their simplicity to compete, often with relatively few correction
terms, with state-of-the-art methods such as the GΓD and
K distributions with parameter estimates computed with the
MoLC. Unlike these more complicated methods, the series
expansions were completely reliable in the sense that they
never failed to produce an estimate throughout our testing.

In the more realistic situation where the parameters and
log-cumulants of an unknown distribution must be estimated,
the picture is not so clear. Again, the series around the log-
normal kernel were the stand-out performers, but the cost of
added complexity usually outweighed the benefit of correcting
for log-cumulants beyond the logarithmic skewness κ3. At
that point, the MKLK and MKE series coincide as the log-
normal PDF kernel corrected for the empirical logarithmic
skewness. When the amount of data points is very high, further
corrections can have merit.

APPENDIX A
OBSERVATIONS ON THE Mn(x) POLYNOMIALS

A. Mn(x) as a Linear Combination of Laguerre Polynomials

Lemma 1: The polynomials Mn(x) defined in (26) are
linear combinations of the generalized Laguerre polynomials,

Mn(x) =
n∑

k=0

{
n
k

}
(−1)k k!L(a−1)

k
(x), (47)

where
{
n
k

}
denotes the Stirling numbers of the second kind

[40] {
n
k

}
=

1
k!

k∑
i=0
(−1)k−i

(
k
i

)
in, (48)

which is the number of possible ways to partition n labelled
objects into k non-empty and unlabelled subsets.

Proof: Starting with an identity regarding Dk
x xk , see that

Dk
x xk f (x) = Dk−1

x xk−1[(k + xDx) f (x)], (49)

and by repetition we get

Dk
x xk f (x) = (xDx + k)k f (x). (50)

Using the fact that Dx x − xDx = 1, we have

Dk
x xk f (x) = (Dx x + k − 1)k f (x). (51)

By a property of the Stirling numbers [41], the Mellin deriva-
tive from Table I can be rewritten as

(−Dx x)n =
n∑

k=0

{
n
k

}
(−1)k(Dx x + k − 1)k =

n∑
k=0

{
n
k

}
(−1)kDk

x xk,

(52)
and multiplying both sides with the unit scale gamma distri-
bution γ(x; a), the definitions of Mn(x) and L(a)

k
(x) [33] are

recognized on the left and right hand sides, respectively, of

Mn(x) =
n∑

k=0

{
n
k

}
(−1)k k!L(a−1)

k
(x). (53)

Finally, we note that Mn(x) is a nth degree polynomial.

B. The Leading Coefficient of Mn(x)
Lemma 2: Writing Mn(x) = a0 + a1x + a2x2 + · · · anxn,

the leading coefficient an = 1.
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Proof: The only term containing xn in (47) is L(a−1)
n (x),

as the nth Laguerre polynomial is degree n. L(a−1)
n (x) has

leading coefficient (−1)n/n!, giving

an =
{
n
n

}
(−1)nn!

(−1)n
n!
= 1, (54)

where it was used that
{
n
n

}
= 1∀ n.

C. The First Few Mn(x) Polynomials

M0(x) = 1 (55)
M1(x) = x − a (56)

M2(x) = x2 − (2a + 1)x + a2 (57)

M3(x) = x3 − 3(a + 1)x2 + (3a2 + 3a + 1)x − a3 (58)

APPENDIX B
LOGARITHMIC HERMITE POLYNOMIALS

Lemma 3:

(−Dx x)nΛ(x; µ, σ) = 1
σn

Hn

(
log x − µ

σ

)
Λ(x; µ, σ), (59)

where Hn(·) is the nth probabilists’ Hermite polynomials
defined in terms of the standardized (zero mean, unit variance)
Gaussian kernel α(x) = (2π)−1/2e−x

2/2 as [17]

(−Dx)nα(x) = Hn(x)α(x). (60)

Proof: We can use the chain rule to see that

Dlog x =
d

d log x
=

dx
d log x

d
dx
= x

d
dx
= xDx, (61)

where x is to the left of Dx since it is should be multiplied
with the differentiated function. The standardized log-normal
and Gaussian PDFs are related by

Λ(x) = 1
√

2πx
e−
(log x)2

2 =
1
x
α(log x), (62)

giving

(−Dx x)nΛ(x) = (−1)nDx x · · ·Dx x
1
x
α(log x) (63)

= (−1)n 1
x

xDx x · · ·Dxα(log x) (64)

(−Dx x)nΛ(x) = 1
x
(−xDx)nα(log x). (65)

Now we can complete the proof of Lemma 3 by replacing x
with log x in (60) and using (61) and (65) to get(

− d
d log x

)n
α(log x) = Hn(log x)α(log x) (66)

(−Dx x)nΛ(x) = 1
x

Hn(log x)α(log x) (67)

(−Dx x)nΛ(x) = Hn(log x)Λ(x). (68)

The final part of the proof is to generalize the result to
arbitrary log-mean µ and log-variance σ2. Letting log u =

(log x − µ)/σ, the relationship between the standardized and
non-standardized log-normal PDF is

Λ(x; µ, σ) = u
xσ
Λ(u), (69)

giving

(−Dx x)nΛ(x; µ, σ) = (−Dx x)n u
xσ
Λ(u) = 1

x
(−xDx)n

u
σ
Λ(u),

(70)
but

(−xDx)n = (−uDu)n
1
σn

, (71)

so
(−Dx x)nΛ(x; µ, σ) = u

xσn+1 (−Duu)nΛ(u). (72)

We can now use (68) and (69) to finalize the proof of Lemma
3, by reinserting for u to get

(−Dx x)nΛ(x; µ, σ) = u
xσn+1 Hn(log u)Λ(u) (73)

=
1
σn

Hn

(
log x − µ

σ

)
Λ(x; µ, σ). (74)

APPENDIX C
THE MELLIN KIND EDGEWORTH ASSUMPTION

Lemma 4: Assuming that the logarithm of X is the
standardized sum

log X =
1
√

r

r∑
i=1

Zi − m
ς

, (75)

where Z1, Z2, . . . , Zr are as in Section II-A, then the log-
cumulants of X are

κX,ν =


0 ν = 1
1 ν = 2
λν

r
ν
2 −1 ν ≥ 3

. (76)

Proof: Since both quantities are defined as E{(log X)ν},
the log-moments of X are equal to the moments of log X .
The relations between the log-moments and log-cumulants are
identical to those between their classical counterparts [14],
so the log-cumulants of X must also equal the cumulants of
log X . We already stated the cumulants of order ν ≥ 3 of the
standardized sum in (8), and clearly the log-cumulants of X
equals these.

In general, κ1 = µ1 = µ and κ2 = µ2 − µ2
1 = σ

2 [14], but
the standardized sum trivially has zero mean, unit variance,
i.e. X has zero log-mean, unit log-variance and the proof is
complete.
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